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Abstract. AI for well-known games such as Chess and Go has experi-
enced decades of research focusing on playing just a little better. We will
look into Tetris Link a board game that is still lacking any scientific anal-
ysis. Besides assessing the branching factor (162) and first player advan-
tage (not significant), we compare different approaches to automatically
master the game, namely: Reinforcement Learning (RL), Monte Carlo
tree search (MCTS) and heuristics. We let them play against each other
in a tournament, and the heuristics are strongest followed by MCTS and
RL. We also let real people (n=7) familiar with the game play against
the heuristic, and the AI lost the majority of the matches.
For RL, we go into detail on designing a working environment and test
the effect of decisions on training success. In our findings, using different
encodings for the observation (image vs array) does not affect training.
For the reward function, it was best to include many factors such as
scolding for unsuitable inputs instead of only giving the score or only a
reward at the end of an episode.

Keywords: Tetris Link, Heuristics, Monte Carlo tree search, Reinforce-
ment Learning, RL Environment, OpenAI Gym
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1 Introduction

Board games are not only popular among players but also researchers. Sci-
entific papers that analyse the game of Chess date back centuries[69,85]. Al-
ready in 1826 were they writing about machines that supposedly played Chess
automatically[8], but they were not sure whether it was still operated somehow
by people. Nowadays, we know for sure that there are algorithms that can,
without the help of humans, automatically decide on a move. In the game of
Go, these algorithms even beat the world champion[7]. In this paper, we want
to investigate the game and automated play approaches for the board game
Tetris Link, because it has not been done yet (section 2.1). For that, we im-
plement a digital version of the board game (section 5.1) and take a brief look
at the games theoretic aspects (section 3). Based on that theory, we develop
a heuristic playing agent (section 4.3). To have an estimate of the heuristic’s
skill, we let humans play against the heuristic (section 6.2). For inspiration on
other AI approaches, we look at the previously mentioned success in Go, namely
AlphaGo, which combines Reinforcement Learning (RL) and Monte Carlo tree
search (MCTS)[82]. We separately look at RL (section 4.2) and MCTS (section
4.1) as options to implement agents. Because we need to design an environment
for the RL agent, we assess the impact of choices like observation (section 6.4)
and reward (section 6.5) on training success. We also briefly touch the topic of
reproducibility (section 6.3) in the deep learning field. For MCTS, we analyse
the importance of the default policy (section 6.6) and underline the effect of
the branching factor on a random default policy (section 6.9). In the end, we
compare the performance of these agents using a skill rating algorithm (section
4.4) after letting them compete against each other in a tournament (section 6.8).

1.1 Research Questions

In our journey towards building game playing agents for Tetris Link, visualised
in Figure 1, and written in section 7.1, we stumble upon some questions relevant
for different scientific fields. Because many of these questions require specific
knowledge of these fields we pose and answer them at the end of this thesis.

2 Related Work

2.1 Tetris Link

Searching Google Scholar for the exact quoted term “Tetris Link” brings up three
papers in total[23]. Two of them are entirely unrelated and talk about optical
refrigerators, where there seems to be a phenomenon that is called “Tetris”,
which they “link” to a specific behaviour. The third paper[65] deals with the
board game Tetris Link:

Does experiential learning improve learning outcomes in an undergrad-
uate course in game theory? – a preliminary analysis
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Fig. 1: A diagram visualising the journey towards building AI agents for Tetris
Link. The numbers in parentheses reference the corresponding sections.
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Undergraduates are supposed to learn“business decisions” by playing. Stu-
dents have to play Tetris Link and another board game. Afterwards, they are
required to write a report about similarities between business decisions, and
the decision one has to make within the game. In the reports, they were hop-
ing students would use the following keywords: Dominance, Blocking, Strategy,
Market Share, Competition, Diversification. These keywords describe the game
quite well because one has to place blocks to achieve maximum coverage (or dom-
inance) and at the same time make sure the opponent has a hard time doing the
same by blocking them off and keeping their “market share” at a minimum. The
experiment is coined successful as many people reported that Tetris Link helped
them understand the theories being taught in the class. Since there currently is
no paper analysing the game more in-depth, we do it in section 3.

2.2 Monte Carlo tree search

Monte Carlo tree search (MCTS) is a well known and tested approach for agents
in board games. The first successful applications include games such as Go
(1993), Bridge (1998) and Scrabble (1998)[10]. In 2007 an MCTS agent gained
its first world championship medal in a general game playing competition[10],
proving its broad applicability to different games. Games like Tetris Link that
focus on connections are another strong suit of MCTS[10]. These include Hex,
Havannah, Y and Lines of Action[10]. Games are not the only useful application
for MCTS. It can solve transportation problems[88], schedule projects[51] and
even figure out NP-complete puzzles[76]. The remarkable thing about MCTS is
that it does not require domain knowledge for any of this, although for some
tasks, such as playing Super Mario, including some domain knowledge can in-
crease performance[37]. Furthermore, MCTS guided by a neural network, e.g.,
AlphaGo[81], could be seen as including domain knowledge because the network
trains on played matches.

2.3 Reinforcement Learning

Reinforcement learning (RL) is an old psychological concept that was already
studied in 1957 to teach rats[83]. Dogs are another great example showing that
positive and negative reinforcement can work well to shape behaviour in
animals[52,55]. One of the first applications in computer science of RL, as we
know it today, was in 1983 to a pole balancing problem[6]. These continuous
control tasks work well and often occur in robotics. An example of this is letting
two arms juggle a stick which was already learned in 1994[75]. RL is not lim-
ited to robotics. A non-exhaustive list of other applications includes profitable
stock trading[39], traffic signal control for better traffic flow[5], mastering video
games[58] or image segmentation[74]. Even human-like skills such as learning a
chain of actions to reach a goal[44], or using existing learned knowledge to more
quickly understand a new task (transfer learning)[87] are achievable. This paper
focuses on applying it to board games. The most well known RL board game
application is to the game of Go by David Silver[82]. It gained a lot of media
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attention because it beat a human grandmaster in the game[7]. It is important
to note that here RL was only used to guide an MCTS search instead of directly
outputting which action to take. In the board game Settlers of Catan RL also
needed help by a model tree to reach a decision[68]. In Othello, the RL agent
directly determines its action without any guidance[17]. In our experiments
(section 6.7), we will also let the RL agent directly decide which action to take
instead of being a guide to other algorithms.

3 Tetris Link

Tetris Link, depicted in Figure 2, is a turn-based board game for two to four
players1.

Fig. 2: A photo of the original Tetris Link board game. The coloured indicators
on the side of the board help to keep track of the score.

1 Information of the game Tetris Link and strategies were deduced by the paper au-
thor using the actual board game because as noted in related work (section 2.1) no
scientific paper analysed Tetris Link yet.
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It is a fully observable perfect information game2 because one can deduce all
relevant information, such as the number of pieces of a specific shape a player
has left, from looking at the state of the board. In an imperfect information
setting, not all relevant decision making information is available at all times[84].

Like the original Tetris video game, it features a ten by twenty grid in which
shapes called tetrominoes3 are placed on a board. This paper will refer to
tetrominoes as blocks for brevity. The five available block shapes are referred to
as: I, O, T, S, L4. Every shape has a small white dot, also in the original physical
board game variant, to make it easier to distinguish individual pieces from each
other. As can be seen in Figure 3a, without the dots one would hardly be able
to make out the two individual blocks forming the U. Every player is assigned a
colour for distinction and gets twenty-five blocks so five of each shape. In every
turn, a player must place precisely one block. If no block that fits is available
to the player anymore, then he will be skipped. A player can never voluntarily
skip if one of his available blocks fits somewhere in the board even if placing it
is disadvantageous. The game ends when no available block fits into the board
anymore. The goal of the game is to gain the most points.

(a) No points for red be-
cause the group only has
two blocks.

(b) Three points for red
because the three blocks
form a chained group.

(c) One minus point for
red that could be fixed in
Tetris but not Tetris Link.

Fig. 3: Small sections of game boards that visually explain some game rules.

One point is awarded for every block, provided that it is connected to a group
of at least three blocks. Not every block has to touch every other block in the
group. Figure 3b visualises this. The I block only touches the T but not the L

2 The original rules define an imperfect information game, but because we play without
rolling dice, it becomes a perfect information game.

3 A shape built from squares that touch each other edge-to-edge is called a
polyomino[15]. Because they are made out of precisely four squares, these shapes
are called tetromino[95].

4 The S and L blocks may also be referred to as Z [11] and J [12].
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on the far right. Since they together form a chained group of three, it counts as
three points. Blocks have to touch each other edge-to-edge, so Figure 3a would
mean no points for the red player as the I is only connected edge-to-edge to the
blue L.

A player loses one point per empty square created with a maximum of two
minus points per turn. Figure 3c shows how one minus point for red would look
like. Moreover, it underlines a fundamental difference between regular Tetris and
Tetris Link. In Tetris, the blocks slowly fall, and one could nudge the transparent
L under the S to fill the hole. Since Tetris Link is a physical board game, one
can only throw pieces into the top and let them fall straight to the bottom.
The fall cannot be influenced, so the whole can never be filled. In the original
rules, a dice is rolled to determine which block is placed. If a player is out of
a specific block, he gets skipped. However, since every block is potentially one
point, being skipped means missing out on one point. Due to chance, it might
also be that a player gets skipped multiple times and loses the ability to win the
match because he is behind too much on points. Because of this disadvantage,
this paper modified the rules to allow the player to freely choose a block to place
so no points can be lost to the skip mechanic. Being skipped due to missing a
block without rolling dice is possible, but much less probable.

3.1 Verifying completability

We will start by verifying that every game can come to an end and will not
somehow loop forever. The board is ten squares wide and twenty squares high
so it can accommodate 200 individual squares. Every player has twenty-five
blocks, each consisting of four squares. There are always at least two players
playing the game.

playerP ieces ∗ squaresPerP iece ∗ playerAmount
= 25 ∗ 4 ∗ 2

= 200

So two players can place a total of 200 squares. Disregarding block shape
the board can always be perfectly filled up. Even with block shape and piece
limitations in mind, the game can always end, because at most they could lead
to holes that then lead to a full board earlier because it can not accommodate
all pieces.

3.2 Branching Factor

An essential part for tree search (see section 4.1) algorithms is the branching
factor of a game. The branching factor is the number of possible moves a player
can make in one turn[18]. Calculating the number of possible moves means find-
ing out how many different positions and orientations for a block are available.
First of all, we look at the number of orientations for each block. The I has
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two as it can face either horizontally or vertically. The O block has only one
orientation because it is a square, so if one turns or mirrors it, the shape does
not change. The T and the S block have four different orientations for every side
one can turn it to. The L is an unusual case as it has eight orientations. Four
for every side, one can turn it to, but when one mirrors the shape, it has four
additional sides to be turned to. Hence, nineteen different shapes can be placed
by rotating or mirroring the available five base blocks. Since the board is ten
units wide, there are also ten different drop points per shape. So in total, there
are 190 possible moves one can take in one turn. The game rules state that all
placed squares have to be within the bounds of the game board. Twenty-eight of
these moves are always impossible because they would have some squares that
are overlapping the bounds either on the left or right side of the board. So the
exact branching factor or number of maximum possible moves in one turn for
Tetris Link is 162. Since the board gets fuller throughout the game, the branch-
ing factor also goes down. To see how the branching factor develops throughout
a match, we simulate 10,000 games using random play as well as the user and
random heuristic (section 4.3). How the heuristic agents work and what their
prepositions (user / tuned / random) mean will be explained in section 4.3. We
graph the average number of moves per turn as can be seen in Figure 4.

Fig. 4: The average number of possible moves throughout played turns.
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Although the average line of random play is less jittery, the margins, visible in
Figure 5, show much stronger deviations in random play. For heuristic matches,
the deviation is a lot smaller. The first eight to ten turns, all moves are available

Fig. 5: The average number of possible moves throughout played turns, including
the minimum and maximum values as blocks to stress the possible deviation
depending on the board situation.

regardless of the quality of play. After that, there is a slow but steady decline.
The fact that random moves already end at turn thirty underlines the low quality
of random moves. Many holes with many minus points are created, and fewer
blocks fit into the board, meaning fewer plus points can be gained and the
game ends earlier. The heuristic shows that good gameplay also fills most of
the board and hence takes more than forty turns. Furthermore, the amount of
possible moves midgame (Turn 13-30) decline a lot slower, and hence offer more
variety to the outcomes.

3.3 First move advantage

A controversial topic in turn-based games is whether making the first move gives
the player an advantage[93]. To put this into numbers, we let different strategies
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play against themselves 10,000 times to look at the win rate. Furthermore, the
first six (#1) or all (#2) moves are recorded and checked for uniqueness. How
the heuristic agents work and what their prepositions (user / tuned / random)
mean will be explained in section 4.3.

Random
Random
heuristic

User
heuristic

Tuned
heuristic

Win Rate #1 47.84% 47.15% 71.93% 68.41%

Unique
Games #1

10,000 2188 7 29

Win Rate #2 48.16% 47% 71.65% 70%

Unique
Games #2

10,000 10,000 7 50

Table 1: A table showing whether taking the first turn gives the player an
advantage over 10,000 games. Furthermore, the first six (#1) or all turns (#2)
are compared for uniqueness to see whether the same games keep repeating.

As can be seen in Table 1, the win rate for random heuristic choices is almost
50%. Although the win rate for the first player is a lot higher for the tuned
heuristics, these numbers are not as representative because the heuristic repeats
the same tactics over and over again resulting in only seven or twenty-nine unique
game starts. If we replay the same game over and over again, then we will not
know whether the first player has an advantage. Especially considering that at
least until turn ten all moves are always possible meaning at turn six there are
around 1013 or 18 Trillion5 possible outcomes but only seven or twenty-nine of
those are ever chosen! Since random heuristic has a lot more deviation and plays
properly as opposed to complete randomness, we believe it represents the actual
chances of the first person winning best. Moreover, around 47% is close to an
equal opportunity.

The user heuristic merely repeats seven unique matches, meaning its choices
are quite limited. For the tuned heuristic there are more unique games, meaning
more deviation between moves can happen. Still, 50 out of 10,000 unique games
is quite limited. #1 and #2 were calculated independently, so in total 20.000
games were played. Also seeing only small deviations in the percentages suggests
that these numbers are quite stable. Different match history comparisons of
Chess also measure a difference of around two to five percent in win rate for the
first player[93]. However, since neither Tetris Link nor Chess have been solved,
one cannot know for sure that there is a definite advantage.

5 BranchingFactorTurnAmount = 1626 = 18, 075, 490, 334, 784
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3.4 Strategies

As the keywords from the related work (see section 2.1) already suggest: Tetris
Link is a competitive strategy game. With its high branching factor, it is up
to the player to make use of his knowledge to break these possibilities down to
the most valuable moves. Strategies that can be used to assess a board state
and figure out an optimal play are essential for this. We go into some example
strategies that may help the player get closer to a win.

Block

Orientation 0 1 2 3 4 5 6 7

I 6 9 - - - - - -
O 6 - - - - - - -
T 4 6 5 6 - - - -
S 5 6 5 6 - - - -
L 6 7 6 6 6 7 6 6

Table 2: This table displays the number of connectable edges after placing a
block. The rows represent the block type and the columns the rotation value.

First of all, a player needs to connect their blocks to gain points. However,
the game is turn-based, so depending on the number of players, one to three
other blocks will be placed, meaning the block that was just placed might be
unreachable in the next turn. To maximise the probability that one does not
get blocked off until the next turn, one has to maximise the connectability6 of
the block. Connectability describes the number of open edges to which another
block could connect after placing it. In Table 2, the connectability of each block
for each rotation is listed. Most blocks offer a connectability of around six. The
vertical I offers by far the highest connectability, but since one only has five of
them, one should not immediately use them all up. The I is the only block that
prevents taking minus points, all other blocks will leave a lot of empty spaces
below them. As previously shown in Figure 3c, edges that face downwards
can only be connected to existing blocks or will create minus points. Hence
downwards facing edges are not included in the count of the table. Furthermore,
if two edges form a corner, they are counted as one because only one square can
ever fit and it will automatically be connected to both edges. However, a match
of Tetris Link will not be won by solely focusing on connectability and forming
groups. Blocking off the opponent and making sure they do not get any points
is also a priority. Figure 6a shows an example of a situation where aggressive
moves are worthwhile. Red made the mistake of not realising that it could lose
two points at the bottom because it can only connect on the right-hand side

6 Strategy terms are made up by the papers author
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(a) The situation in which
blue has to decide to
block red or focus on con-
nectability.

(b) Blocking off the op-
ponent denies them two
points but yields less con-
nectability.

(c) Focusing on con-
nectability allows the
opponent to save the two
points.

Fig. 6: Small sections of game boards that underline the importance of blocking
off the opponent. The leftmost side is the end of the game board. Blocks could
only be added to the right or above the existing blocks.

(left-hand side is already the edge of the game board). Blue can now block red
off, as portrayed in Figure 6b, which makes red permanently lose two points at
the cost of three connectability for blue. Alternatively, blue could play defensive
and focus only on connectability, as seen in Figure 6c. Blocking off is the better
play, because in a 1v1 the connectability of the I, as well as the group in total,
is still high enough in Figure 6b that red cannot wholly block said group off in
one turn, hence the connectability loss of three is negligible. The rule that a
player can only gain a maximum of two minus points per turn can be exploited in
combination with blocking. Figure 7a shows a situation where red made another
mistake and is now vulnerable to loose three blocks in one turn. Figure 7b shows
how blue could block red off at the cost of minus points. Red loses three Points in
total while blue loses one (+1 - 2 = -1) which means a net gain of two points for

(a) The situation in which
blue has to decide to
block red or focus on con-
nectability.

(b) Blue blocks off three
possible points for red at
the cost of taking two mi-
nus points.

(c) Pointwise more op-
timal play, making red
loose two points while
blue gains one point.

Fig. 7: Small sections of game boards showing that taking minus points can give
the player an advantage. Left and Right of the image are the limits of the board.
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blue. One might also block red off only partially, as seen in Figure 7c. Red will
lose two points, and blue will gain one point, which is a net gain of three points
for blue and hence would be the most valuable play for the situation. Whether
Figure 7b or Figure 7c is the better play is disputable, as the red block on the
right in Figure 7c leaves red with more possible moves the next turn, and makes
it harder to shut them out completely which would force them to start a new
block group. A player can also try to force another player to take minus points
by exploiting the fact that a player may not skip a turn voluntarily. Figure 8a
shows a hypothetical setup where both players filled the board, leaving out only
one straight empty line and one height on the top. The only blocks that can
fit here are either a horizontal I or a vertical L, which makes this an excellent
example of why one should keep at least one I for the late game. We assume
that the I ’s have already been used up to create the whole, so the L has to be
placed as seen in Figure 8b. This strategy can help turn around a match right
before the end. However, it is a risky strategy because it is difficult to guarantee
that it is not your own turn when the whole has to be filled, and nothing else fits
anymore. From personal experience of the author, this strategy backfires more
often than it helps. Similar wholes also come into existence without consciously
creating them during regular gameplay. These wholes also need to be taken into
account of the connectability of a block. Although both red and blue have a
connectability of eight within the whole, only a vertical I can fit in there. So
even though theoretically a connectability of eight is given, the situation reduces
this to a practical connectability of two.

(a) A setup forcing play-
ers to take minus points.

(b) Only L fits, so red has
to take two minus points.

Fig. 8: Small sections of game boards showing that minus points can be forced
upon a player. Assuming that there is only one square free at the top and none
at the left and right side of the group.
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4 Methods

The methods section presents all information related to the inner workings of
the playing agents. It also explains how we will evaluate a players skill in section
4.4.

4.1 Monte Carlo tree search

4.1.1 Game tree

The connection between trees and games might not be obvious, but Wikipedia
explains it very nicely: “A game tree is a directed graph whose nodes are posi-
tions in a game and whose edges are moves”[94]. So every game state represents
a node. Every action one can take at the specified node results in an edge to
a new node. This new node represents the state after the action was taken. A
tree search then searches through a given tree to find the best possible action.

4.1.2 Algorithm

Monte Carlo tree search (MCTS) is an algorithm that specifies the way a game
tree is explored. If not otherwise cited, the following information is gathered
from Browne’s MCTS Survey[10].

MCTS has a generic four-stage approach visualised in Figure 9:

Fig. 9: A single iteration of the generic four-stage MCTS approach. Inspired by
[10].

1. Selection: From the current root node children are selected using the tree
policy until a node that needs expansion7 is found. If it is a non-terminal
and unvisited node, it can be expanded.

7 A node counts as expanded if it was visited, and at least one child node was added.
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2. Expansion: Child node(s) are added to expand the tree given the possible
actions.

3. Simulation: From the newly added node, the game is simulated until the end
to know whether the player would win or not. In the simulation, the actions
of the player and the opponent are chosen using the so-called default policy.

4. Backpropagation: The result bubbles back up the tree through the selected
nodes.

As can be seen in Figure 9 and read in the ordered list, these four steps rely
on two policies: The tree policy to decide which node is selected and expanded
next as well as the default policy which decides how the simulations are played
out. The tree policy needs to find the right balance between discovering new
nodes (exploration) and deepening info about existing nodes (exploitation). The
default policy needs to find the right balance between speed and realistic game
simulation results since its results are used for the tree policy. The speed of
the default policy is essential to the quality of the algorithm because MCTS is
an anytime algorithm. The MCTS Loop can be run indefinitely and hence be
stopped at any point in time. The longer it runs, the more the result converges
to the optimal play, but it is important that good actions can be found in a
reasonable time. By modifying these policies, different MCTS variations yielding
different results can be created. The following subsections introduce the different
policies used for the experiment.

4.1.3 UCT / UCB1

The most commonly used MCTS policies are based on a multi-armed bandit
algorithm called upper confidence bound for trees (UCT)[43]. The multi-armed
bandit problem refers to problems where the player needs to choose one of k
actions to maximise the cumulative reward[10]. As tree policy, the upper confi-
dence bounds (UCB1) formula is used:

UCB1 = Xj + 2Cp

√
2 lnns
nj

Where Xj is the average reward of leaf j, ns is the number of the times the
parent node was visited, nj the amount of times the inspected child node was
visited and Cp is a constant that is bigger than zero[10].

This formula very clearly shows the balancing between exploration and ex-
ploitation. The first component of the formula Xj makes sure that good nodes

are exploited further. The second component of the formula 2Cp

√
2 lnns

nj
is re-

sponsible for the exploration. That is why Cp is called the exploration parameter
because it can influence the balance between exploration and exploitation. For
the default policy, one should use uniformly random choices.
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4.1.4 PoolRAVE

Pool Rapid Action Value Estimation (PoolRAVE) is an extension to the generic
MCTS to bias the search by adding the all moves as first (AMAF) heuristic to
the tree policy[72].

RAVE modifies UCB1 by replacing the exploration constant Cp with the
RAVE value[72]:

RAV E = xj + αxRAV E
s,j +

√
2 lnns
nj

As in UCB1 (section 4.1.3), the underscored s refers to parent values and
underscored j to the child node under consideration.

The RAVE value xRAV E
s,j is the percentage of wins established with RAVE

values instead of standard wins and losses.
α is a per-node value that is initially set to one, and after every pass through,

it is updated with the following fomula[27]:

β − nRAV E
s,j

β

Here β is a freely choosable parameter that takes the role of the exploration
parameter. If it is high already visited nodes are more likely exploited until they
have been visited β times. After that exploration of new nodes takes precedence.
nRAV E
s,j denotes the total number of games, including simulations, starting from

s where the action that leads to j has been chosen.
The RAVE values are calculated by looking at the AMAF wins and losses

instead of the actual wins and losses.
The biggest difference is in the node value updating. xRAV E

s,j and nRAV E
s,j are

updated after every simulated playout, not only after a batch of simulations. In
turn, the RAVE values rise quicker, and the algorithm gains more confidence in
its win rates[27].

Besides tracking different visit and win counts PoolRAVE further modifies
the tree selection. At the beginning of the selection step with a fixed probability
p, one of the k best moves according to the RAVE value is chosen for further
exploitation instead of using the normal tree policy.

4.1.5 Transposition Table

One single state might be reached through different sequences of actions. Such
duplication of states is called a transposition[53]. The actual state of a Tetris
Link game is defined by the location and orientation of blocks and whose turn it
is. An example of such a representation using numerical values can be found in
section D.1. By hashing theses states and storing them in a table, one can check
whether the current state has already been seen[53]. By linking two different
paths to one target node a whole subtree, that usually would have to be checked,
can be eliminated, which significantly reduces the search space. In Chess, one of
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the most popular methods for hashing is called Zobrist Hashing [53]. It works by
storing a randomly generated number for every possible value that can be found
in a specific grid field. So for Tetris Link, there can be two different numbers
per player in a field, so each grid field has four random numbers. For every
grid that is occupied, the accompanying random number is XOR’ed. Since the
random numbers only have to be initialised once and then it is just at most 200
XOR operations this is reasonably fast. The alternative to Zobrist is the default
hashing algorithm for Rusts HashMaps called SipHash[42]. Since MCTS has to
check as many positions as possible, the transposition table lookup needs to be
as fast as possible. Hence a benchmark was conducted, and its results are visible
in Table 3.

SipHash
(array)

SipHash
(string)

Zobrist
(array)

Zobrist
(direct)

Milliseconds 3.75 6.84 3.52 3.99

Table 3: A benchmark of different hashing functions for the transposition table.

Zobrist hashing offers two advantages. First of all, storing a single 64-bit
number uses far less memory than a 1608 bit8 array as would be the case with
SipHash9. Second of all, Zobrist is ≈ 0.2ms quicker than the fastest SipHash
variant. When Zobrist gets a reference to the game board and iterates over the
placed blocks to figure out which random values need to be XOR’ed (direct), it
is unexpectedly ≈ 0.38ms slower than first creating a full board representation
array and hashing that using Zobrist (array). The resulting hash is a 64-bit
unsigned integer. Hence it can differentiate between ≈ 1.8∗1019 10 board states.
After eight turns, there are already ≈ 7.6 ∗ 1019 11 board states, so conflicts,
where two different states hash to the same value, are bound to happen. Initially,
this posed a problem on the results of the MCTS search, but we found a way
to mitigate this by introducing a sanity check. If a transposition is found the
depth and the amount of possible actions of both nodes is compared. Only if
those match is the already known node used. The sanity check does not prevent
conflicts, but it reduced the amount of search breaking transpositions in our
experiments.

8 8bit ∗ 201entries = 1608bit
9 A HashMap will keep all keys in its original unhashed form, so if an array is passed

as key, then a clone of it will be kept in memory.
10 18,446,744,073,709,551,615
11 76,848,453,272,063,560,000
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4.2 Reinforcement Learning

Fig. 10: A diagram visualising the standard reinforcement learning model in-
spired by [41].

In the standard reinforcement learning model, depicted in Figure 10, an
agent is connected to an environment[41]. The environment gives the agent its
observation. Based on this observation, the agent can take actions that modify
the environment. For each action taken, the agent gets a reward as well as the
newly modified state of the environment.

With AlphaGo Zero, Deepmind has shown that reinforcement learning can be
effectively applied to guide a Monte Carlo tree search (MCTS) to acquire expert-
level play[82]. We show the importance of guidance through a tree with a high
branching factor in pure MCTS experiments in section 6.6. Pure reinforcement
learning problems, without MCTS, usually focus on continuous control tasks[50]
such as the Cartpole environment[9]. In it, a stick needs to be kept from falling
over by being able to apply force to it form the left or right.

Unfortunately, Deepmind does not open source their code12, but they publish
papers for scientists to reproduce the results. The case of “minigo”[47] shows the
problems with having to re-implement such an experiment. Their final results
are comparable but not as good as the original AlphaGo Zero paper[47]. Repro-
ducibility still poses a big problem in the field of neural networks[36]. We will
also be experimenting with reproducibility in section 6.3. A direct competitor
to Deepmind is OpenAI. OpenAI achieved great success by showing that AI can

12 They also should not, considering that they are not making any profits yet[78].
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play Dota 2 competitively[20]. They were funded by Elon Musk with the goal to
make AI accessible to everyone[57]. They try to publish as much as possible, but
they too try to make a profit and do not publish everything. Fortunately, the
most important RL algorithms (PPO2, TRPO, A2C, DQN,...) have been pub-
lished by them under the name “baselines”. These are reference implementations
that are not well documented, but that has been solved in a fork called “stable-
baselines”[30]. Furthermore, OpenAI developed the “gym”[9]. Gym leverages
the standard reinforcement learning model from Figure 10 by specifying a uni-
form programming interface for agent environment interaction. The algorithm
implementation itself then only interacts with the provided gym without any
knowledge of the game behind it. This is beneficial because the implementa-
tions of the algorithms are independent of the gym implementation. Hence we
can use existing implementations of RL algorithms that have been battle-tested
on various existing problems13. This enables us to focus on providing a suitable
environment from which agents can learn well (see section 5.2). Another benefit
of the gym architecture is that it enables transfer learning experiments to be
carried out easily[66]14. Transfer learning can boost learning of a new task and
also allows a single model to master multiple tasks simultaneously[67].

4.3 Heuristics

A heuristic in the field of AI can be seen as any device, that one believes to
provide a useful, but not necessarily correct or perfect, solution to a problem[73].
In this instance, the device is a function whose input is a game board state, and
the output is the decision which blocks to place where. With the analysis of
strategies (see section 3.4), we already have knowledge that can be represented
numerically about how good a specific move could be. Namely: connectability,
group size, blocking and points. Connectability counts the number of accessible
edges to which further blocks could be connected. Group size, as the name
suggests, is the total amount of blocks that are connected in one way or the
other. So for example, if two groups with two blocks each exist, then this value
would be four. For blocking we count the number of edges of a player that touch
the edge of an opponent. If a players square touches an opponent square edge
to edge the opponent can never connect his own square to said edge anymore
and hence loses one connectability. Furthermore, the players’ score is included
in order to know whether increasing the group size was beneficial for the points
as well.

Each of these four values is assigned a weight to be multiplied with. The
four multiplication results are then summed up. For every possible action in a
given turn, the heuristic value is calculated, and the one with the highest value
is chosen. If multiple moves have the same maximum value, a random one of
these best moves is chosen. The initial weights were manually set by letting the

13 Thirty-nine papers cite the stable-baselines according to Google Scholar[24].
14 The different gym environments will need the same action and observation space for

this to work!
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heuristic play against itself and seeing which combination would result in the
most points gained for both players. We refer to this as user heuristic. We then
use Optuna, a hyperparameter tuner (section 5.3.3), to tune a set of weights
that reliably beat the user heuristic and call it tuned heuristic. For playstyle
variety (see Table 1) we also test a so-called random heuristic which at every turn
generates four new weights between zero to fifteen. In section 6.2, an experiment
with real players against the heuristic is conducted.

4.4 Skill Evaluation

In order to evaluate the different playing agents, we need a stable numeric rat-
ing to judge their skill level. The most well-known rating that achieves this is
called ELO, invented for the game of Chess by Arpad Elo[22]. However, the
original algorithm specifies a singular numeric value that does not allow for un-
certainty. This was addressed in 1929 by using a bayesian approach that allows
for uncertainty[97]. Furthermore, rating two players whose ratings are far apart
might distort the rating of the better player in the original algorithm, but the
bayesian approach fixes this[97]. This is relevant because we expect random play
in our Tournament (section 6.8) to perform badly and do not want the other
ratings to be distorted by that.

Since Tetris Link could be played by more than just two players we want
a rating system that supports multiplayer free-for-all ratings. We found an
algorithm based on the Bradley-Terry model[22], which uses a bayesian approx-
imation method and supports multiplayer free-for-all games[92]. We will refer
to this algorithm as Bayesian Bradley Terry (BBT). A player rating in BBT
consists of two floating-point numbers: Sigma (σ) and Mu(µ). Sigma is the ab-
solute rating similar to ELO. Mu represents the skill uncertainty that prevents
bad updates if peoples skills are too far apart. The final numerical value that
will be found in the evaluation (section 6.1) is then calculated by:

σ − 3 ∗ µ

In the original paper, they use a skill rating from 0 to 50, similar to
TrueSkill[29]. By changing the β parameter of the rating function, we can make
said rating range from around 0 to 3000, which is the standard range in ELO
ratings[22]. Furthermore, to have an estimate of how strong the algorithms
would be against a human, we run experiments with actual human players in
section 6.2.
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5 Design

5.1 Implementation

For the experiments (section 6), a digital implementation of the board game
is required. A client-server web app of the game using JavaScript (JS) and
NodeJS is implemented for visual analysis of matches as well as gathering hu-
man play data (section 6.2 and Figure 12). However, MCTS and RL require
an implementation that focuses on performance so that the search/training pro-
cess is not slowed down by the game simulation. So a second implementation
in Rust is done. Both implementations share a common game log format us-
ing JSON to enable interoperability. An example of what said log looks like
for Figure 7b can be found in section D.3. The MCTS search is implemented
in Rust and can directly interact with the game. The existing RL code (gym,
stable-baselines) is written in Python. To connect Python to our Rust imple-
mentation, we compile a native shared library file and interact with it using
Pythons ctypes. Besides preventing a third game implementation in Python, us-
ing native shared libraries is known to improve performance for computationally
expensive tasks[40]. This known performance improvement is used by libraries
such as numpy[90] or TensorFlow[1].

5.1.1 Performance

In order to assess and optimise the simulation performance, a benchmark is
conducted using a desktop machine (section A.1). One full game where the
first possible action is always chosen is played and the final score calculated.
The initial implementation in JavaScript (JS) requires 82ms on average for this.
A simple reimplementation of the JS code in Rust already speeds this up to
12ms. Through a list of optimisations (section A.3) one such simulation in Rust
now takes 590µs on average. These changes focus mostly on preventing heap
allocations by reusing and resetting existing objects and arrays or incrementally
updating game-related information instead of calling a function that gathers the
info from scratch into a newly allocated object. So this speedup by a factor of
2015 is solely achieved by reducing RAM allocations and caching results.

For MCTS, performance is also essential as one of its parameters is thought
time and considering more nodes means getting closer to the optimal play (see
section 4.1). This is why we chose tree parallelisation[10], so many threads can
expand the same game tree simultaneously. In a single-threaded, test around
3532 nodes are visited per second on average using the optimised game simu-
lation. Due to locking mechanisms, this does not linearly scale up. Using 12
threads around 16258 nodes are visited per second on average. Unrelated exper-
iments with MCTS in Go claim a significant speedup when ignoring locks even
though some computed info is lost to data races[19]. We also tried a lock-free
variant but did not measure a noticeable difference in visited nodes and hence

15 12ms
0.59ms

≈ 20.339
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will be using the locking variant in our experiments. We also experimented with
a heuristic default policy to guide the MCTS. However, the heuristic calculation
is so slow that it only manages to visit ten nodes per second. The heuristic takes
that long because, for all possible moves, it has to clone the game board, simulate
the action and then calculate the heuristic value. We know from the base im-
plementation optimisations that RAM allocations are slow, and the game object
is cloned up to 162 times per decision. Not even multi-threading the heuristic
process can make this fast enough for MCTS16.

5.2 Reinforcement Learning Environment / Gym

Implementing an RL environment poses different challenges to the developer. In
OpenAI gym the observation (5.2.1), as well as the actions (5.2.2), are modelled
through so-called spaces. A space can be a singular (un)bounded number or an
array/tuple of (un)bounded numbers. Furthermore, the reward (5.2.3) function
is essential for the learning process of an RL algorithm. The environment design
and training process allow for many mistakes that are documented in section
5.3.4.

5.2.1 Observation space

There are two options for the observation space. Either pass a simple numerical
board representation (see section D.2) into a multi-layer perceptron (MLP) or
pass an image representing the current board state (see Figure 11) into a con-
volutional neural network (CNN). Looking at AlphaGo[81] and Othello[17], we
see that they try to give as much information as possible in the observation.
AlphaGo even encodes historical information to prevent illegal repetition moves
as well as information about who received the “komi”17.

Hence we try to encode every available information of the game state in an
observation. Besides the position of blocks that includes: the current score of
each player, the number of available pieces per shape as well as which moves
are currently possible. For the numerical representation, we add the additional
information below the board representation, which is why we restrict the info to
be ten units wide.

The image is just a conversion of the numerical representation, so it has the
same info in the same widths. To fit the info into the originally only 32x32 image
we put the additional info on the right of the board instead of below it. This
32x32 representation is later scaled up to 64x64 to work out of the box with the
stable-baselines CNNPolicy.

The information encoding is built so that in theory, it supports up to four
players. The first four pixels in the first line represent the points of each player.
The more points, the more intense the green becomes. Below that are two lines

16 The ten nodes per second with the heuristic default policy were measured using the
already multi-threaded heuristic.

17 Komi refers to the first turn advantage points[81].
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that represent the number of pieces per player. The first line represents the
pieces for player one and two and the second line for player two and four (in the
figure the second line is blank because there are only two players playing). Full
green means all pieces are available, as it fades fewer pieces are available. Below
that are nineteen lines in which each pixel belongs to one of the 190 available
actions. If the pixel is green, the action at the index is possible, if it is not, then
that action is not possible.

To make this abstract description more understandable, we will look at dif-
ferent board states and their observation. At the start of a game (11a), almost
everything regarding the possible moves is green18, the available pieces are fully
green, and the score is neutral green. In the middle of a game (11b) the scores
for player one and two are different, both have some pieces that are not available
anymore, and only a few select actions are still possible. At the end of a game
(11c), the score is different in shade. Almost all players pieces have been used,
and there is no possible action anymore.

(a) A board before any
moves were made.

(b) A board in the middle
of an ongoing game.

(c) A board after the
game is finished.

Fig. 11: The environments observation space represented as a 64x64 image. Un-
used pixels are black, but for readability, have been set to white in the above
pictures.

5.2.2 Action space

For the action space, we tried using a singular discrete number between 0 and
162 (the branching factor). However, the RL agent would not understand which
actions are valid in a given turn and countering with a negative reward while not
progressing the game resulted in a known Not a Number (NAN) bug explained
in section 5.3.5. We tried drawing inspiration for a solution to this from the

18 As explained in section 3.2, there are 190 available actions, but twenty-eight of them
are never possible, which are represented here as the white holes in between.



26

official list of available third party gyms[63]. As mentioned before, RL usually
focuses on continuous problems[50], such as the Cartpole environment[9]. The
third-party gym list is no exception to this. Only one of the listed environments
is a board game, namely GymGo implementing Go. Looking into the source
code, we quickly found that they face the same problem. The provided gym
would not allow an RL algorithm to run because the observation space was not
specified at all, and the action space was defined as a number where it would
need to be a gym.spaces object. We offered the project an already merged pull
request19 to address these issues, but that only makes it runnable. It still faces
the problem that invalid actions keep being suggested by the RL algorithm.

Back to our Tetris Link gym, we changed the action space to be an array
of 190 numbers between 0 and 1. The highest number that references a valid
action is then chosen. This results in ignoring all invalid actions regardless of
their value. Filtering out invalid turns is common practice for RL boardgame
problems (AlphaGo[81], Othello[17]). The only problem with this is that the
agent will not know if we had to filter his answer, which we try to address using
the reward function in the next section.

5.2.3 Reward function

Giving the right reward for an action is crucial in allowing an agent to under-
stand its goal during the learning process[25]. Because of the reward functions
importance, we try multiple solutions and run an experiment (section 6.5) to
find out which one works best.

Our first approach Guided tries to guide the learning as much as possible. We
sum up the player’s score and group sizes and divide them by 100 so that its a
number between zero and one. We include the group size because a players score
can only increase after at least three good turns. For more guidance, we add
0.05 if the chosen action was valid or subtract 0.05 if the highest value referred
to an invalid action. Furthermore, we want to help the agent understand the
relevance of its suggested actions. So we take the value of the chosen valid action
and subtract 0.0004 for every other value in the array that is not at least 0.1
smaller than the chosen action. These two scolding mechanisms are supposed
to teach the agent only to suggest valid actions and to focus on suggesting
one singular high value. Modifying the reward in such a way is called shaping
and is supposed to help an agent learn how to reach the goal[25]. Existing
experiments with shaping show mixed results[25], which is another reason to
compare different reward types for our environment. If the agent won at the end
of a game, it receives an additional ten points and if it looses we subtract ten
points.

The second approach Score tries to do as little guidance as possible, so the
agent figures out the rest for himself. We only give the current score of the player
as reward (also divided by 100). Just like in the first approach winning adds
and loosing subtracts ten points. Only returning the score without guidance as

19 https://github.com/aigagror/GymGo/pull/1
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a reward has been successfully used to teach RL Atari games[58]. For both Score
and Guided, only the delta between the previous and current reward is used.

Our last approach focuses on simplicity by giving out zero as reward except
at the end of the game, where it is either one for winning or minus one for
loosing. This kind of reward is also used in the DQN application to Othello[17].

Summing it up, we have the following reward types:

1. Guided: score+groupSize
100 − scolding

2. Score: score
100

3. Simple: ±1 at the end of the game depending on win / loss

5.3 Reinforcement Agents & Training

In this section, we present the used RL algorithms (section 5.3.1) and how we
use them for our agents (section 5.3.2) in the tournament. We also go into detail
on how we optimise the hyperparameters for the training as well as problems
that we ran into in the training process (section 5.3.4 & 5.3.5).

5.3.1 Algorithms

stable-baselines offers implementations for many existing RL algorithms.
Whether an algorithm can be used depends on its support of the chosen action
and observation space[30]. Given that both our observation and action space use
the Box -space, we are able to use: A2C, TRPO, PPO220. Initially, we planned
on comparing all of the usable RL algorithms, but due to numerous problems
with the training (section 5.3.4 & 5.3.5) and the amount of time, a training
requires we had to settle on one for the final training. We chose PPO2 because
it combines ideas from both TRPO and A2C in order to improve upon them[77].
This improvement helps PPO2 to outperform TRPO as well as A2C in six out
of seven existing gyms dealing with continuous control tasks[77].

5.3.2 RL Agents

We define an RL agent as the combination of environment and algorithm choice.
As stated in section 5.3.1, we will only be using PPO2 as RL algorithm. To
make the best environment choices, we first did experiments on the observation
space (section 6.4) and reward function (section 6.5) in order to find out with
which one the agent learns best. Based on the results of these experiments, we
choose the numerical observation input (section 5.2.1) and the guided reward
function (section 5.2.3) and call the agent RL-Selfplay.

Next, we introduce the RL-Selfplay-Heuristic agent. We take a trained RL-
Selfplay agent and continue training it by playing against the heuristic. Obser-
vation and reward are the same as for RL-Selfplay.

20 ACER, ACKTR, DDPG and SAC should have also been usable with the observation
/ action space, however, due to bugs listed in section B.5 we could not.
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Because the heuristic plays well even with random weights, we also introduce
an agent called RL-Heuristic. This agent gets the numerical observation as input
and outputs four numbers that represent the heuristics weights (section 4.3). We
use a modified version of the guided reward function:

(ownScore− opponentScore) + groupSize

100
The difference in points between itself and the opponent is used, so it learns

to gain more points than the opponent, which in turn encourages tactics such
as blocking (section 3.4). Scolding is not necessary anymore as we do not have
to filter the output in any way.

5.3.3 Hyperparameters

Every reinforcement learning algorithm comes with its own set of hyperparame-
ters, which can make or break the training process of an agent[33].

Fortunately, there is more software that helps tackle the problem: Optuna[3].
Optuna is an, at the time of writing, new21 hyperparameter optimisation frame-
work. It stands out by currently being the only hyperparameter optimisation
framework whose API is define-by-run and not define-and-run. Define-and-run
networks do not let the user alter the intermediate variables after their def-
inition in contrast to define-by-run[3]. Furthermore, Optuna uses a bayesian
optimisation algorithm. Bayesian optimisation has already shown success in
AlphaGo[13]. Hence we believe it should help in this application as well. More-
over, Optunas API is intuitive: Define a variable name, a range and a generation
function (random number, [(log) or (discrete)] uniform distribution, or cate-
gory). The newly generated parameters can then be passed to the reinforcement
learning algorithm. Ranges and generation functions are chosen by us and are
determined by studying the effect and the default value of each hyperparameter.
The exact search settings are listed in section B.1.

5.3.4 Failed attempts

Because Optunas tuned hyperparameters did not perform as expected, we looked
into alternatives. DeepMind showed that population-based hyperparameter tun-
ing could yield better results than bayesian approaches[38], such as the one Op-
tuna uses. There is another Python framework called tune[49] that provides a
readily usable implementation of population-based search. Unfortunately, the
best-reached reward is around -0.11 before the training breaks by only suggest-
ing NAN as actions. Running into this is a known problem, as explained in the
next section 5.3.5.

Also, we were not able to reliably reproduce the achieved reward that Optuna
found when trying the hyperparameters out in regular training which is why we
look into reproducibility in our evaluation (section 6.3).

21 It was published on the 4th of August 2019 shortly after hyperparameter tuning was
evaluated for this work.
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Initially, we only trained against the random heuristic. However, the agent
never seemed to learn much or quickly deteriorated after a bit of improvement.
In an experiment with the board game Othello, it has been shown that tempo-
ral difference algorithms perform better when playing against themselves while
pure Q-Learning works well against a fixed opponent[89]. That is why the final
RL training focuses on learning from self-play (section 6.7) instead of a fixed
opponent.

5.3.5 NAN Problems

A trained agent can become unusable and only produce NAN values as output.
This is a known problem[31] and can be caused by many things, but in particular
bad hyperparameters can provoke it more easily. We only ran into this issue
with our initially discrete action space (section 5.2.2) and when using tune’s
hyperparameter search (section 5.3.4) but never during more than ten million
steps of training (section 6.7) or Optunas hyperparameter search (section 6.4).
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6 Evaluation

6.1 Measurements

All measurements are taken using the desktop machine described in section A.1.
Only RL hyperparameter search (section 6.5 and 6.4) and RL training (section
6.7) were conducted on a server provided by the University of Leiden that is
detailed in section A.2.

6.2 Human Play

6.2.1 Setup

(a) The intro screen
shown after opening the
customised link.

(b) The info screen ex-
plaining the controls of
the game.

(c) The after game screen
informing the user of his
reward.

Fig. 12: Screenshots of the modified browser game implementation provided to
participants of the human play experiment.

To gain an estimate on the strength of the heuristic we collect data with
real human players. We modified the web version of the game (section 5.1) to
give players the ability to face the heuristic in 1v1 battles, as shown in Figure
12. For every game, we collect player name, bot type, full game log and the
reward an RL agent would have received for the Guided reward (section 5.2).
Using the full game log, we can extract the score/winner and visually inspect
the board state at every turn. We invited thirteen people to participate in the
experiment: four experienced22, six casual23 and three beginner24. Participants
are only familiar with the actual board game and have never used or played the

22 These players have played countless matches over many years.
23 These players have played more than a dozen matches.
24 These players have played at least one round of the game.
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digital version provided here. Every participant receives a unique link that logs
them in (Figure 12a) to ensure that we know who played which match. The
controls are shown to the player (Figure 12b), and then they can begin playing.
At the end of a match, players can see their achieved reward25 and are invited
to play another round (Figure 12c). The opponent alternates between the user
heuristic and the random heuristic. Due to the small participant size, this is a
qualitative and not a quantitative study[56]. The results of this experiment are
presented in the next section 6.2.2.

6.2.2 Results

Out of the thirteen invitees six have not played any game (two experienced,
three casual, one beginner) which leaves the survey with n=7 (two experienced,
three casual, two beginner). In total, twenty-five matches were played, but only

All
Experien-

ced
Casual Beginner

Random
heuristic

User
heuristic

Games
(Won /
Total)

14 / 19 5 / 6 7 / 10 2 / 3 3 / 13 2 / 6

Win
rate

73.68% 83.33% 70% 66.66% 23.07% 33.33%

Draws 1 0 1 0 1 0

Won by
points

2.92 4.2 2 1.5 6.3 9

Average
points

14.53 16.17 13.90 13.34 15.77 11.17

Table 4: The results of participants versus heuristics. Won by points refers to
the point advantage a player had at the end of a game and is displayed as average
over all matches.

nineteen were completed. As can be seen in Table 4, participants won 73.68% of
those nineteen matches. A steady rise in average point advantage, win rate and
average achieved points from beginner (1.5, 66.66%, 13.34) to casual (2, 70%,
13.90) to experienced (4.2, 83.33%, 16.17) confirms the skill estimate of the
participants. The difference in win rate between the user and random heuristic
suggests that due to the randomness of the weights, bad moves become more
probable. Interesting to see is that when the heuristic won its point advantage
was much higher than when players won, even though players won more matches
but then by fewer points.

25 Guided Reward from section 5.2.3.
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(a) User heuristic
(red, 8 points) vs
Casual (blue, 5
points).

(b) User heuristic
(red, 17 points)
vs Casual (blue, 2
points).

(c) User heuristic
(red, 5 points) vs
Casual (blue, 11
points).

Fig. 13: Screenshots of the final game boards from participants playing against
the user heuristic.

Thanks to the web interface (section 5.1), we can also look at the boards of the
played matches and how they developed over the turns. Through that, we found
out that the only two matches that the user heuristic won, were matches where
players tried to exploit its predictability. The user heuristics connectability
weight is high, so it always places all vertical I ’s it has in the first five turns
(section 3.4). In Figure 13a, the player tries to prevent the heuristic from gaining
height by taking minus points themselves with horizontal I ’s. This try was
unsuccessful, and the points lost to blocking made the player unable to catch up
again. In another match, shown in Figure 13b, a player first builds a big base
at the bottom until the heuristic used up all of its vertical I ’s and then blocks
the left and right access to the vertical I ’s. The player succeeded in not letting
the bot connect to its vertical I ’s, but again the player was unable to regain the
points lost to blocking. Figure 13c shows a third match that the heuristic lost.
The player successfully exploited the lack of vertical I ’s in the late game. They
force a one width whole in the playfield effectively rendering one side of the I ’s
useless, and the player successfully keeps the heuristic from gaining points by
blocking off access to two block groups. The random heuristic games also allow
for strategy interpretations. In all three matches displayed in Figure 14, one
can see that bad weights can result in a block being placed in the middle of
nowhere. This block can never be connected and is effectively a lost point. This
mistake cost the bot two points in the match that was a draw (Figure 14b), so
without them, the bot could have won. The randomness can also lead to taking



33

minus points at times where it could have been prevented. An example of that
is shown in Figure 14a. The block at the far right, making a lot of minus points
could have been rotated so that no minus points are taken. Compared to the
user heuristic, the random heuristic seems to play more defensive, resulting in
more dense and connected structures. In the match shown in Figure 14c, one
can see that the end game of the bot was weak. Instead of building upwards, it
should have started to slowly spread to the left to also gain more width instead
of height. This match also shows wits from the human player. To prevent the
bot from connecting its block on the left with its blocks on the right, the player
puts a vertical I between them. Besides not being able to connect its blocks
anymore, the game is also instantly over. If the last vertical I would have been
placed one more square to the right the game could have continued for two more
turns and the bot would have been able to connect, however, the outcome of the
match would stay unchanged.

(a) Random heuristic
(red, 19 points) vs
Experienced (blue, 13
points).

(b) Random heuris-
tic (red, 16 points)
vs Casual (blue, 16
points).

(c) Random heuris-
tic (red, 16 points)
vs Casual (blue, 20
points).

Fig. 14: Screenshots of the final game boards from participants playing against
the random heuristic.

6.2.3 Bugs

In an initial test with only one participant, there was a bug where under certain
circumstances the AI would not make its turn, but the participant could then
control the opponent, so effectively the participant played against themselves.
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Fortunately, this was discovered before sending links out to all participants.
The bug was fixed, and the matches affected by it removed from the records.
Furthermore, there was a bug in the selection of the opponent, which is the
reason that there are thirteen matches against the random heuristic and only
six matches against the user heuristic.

6.3 Reproducibility

6.3.1 Setup

Reproducibility is a big problem in the field of neural networks[36]. Besides
the hyperparameter settings, a lot of weights relevant for training are initialised
using pseudo-random number generators[96]. These pseudo-random numbers
are a deterministic row of numbers that are calculated using a specific seed[54],
so changing the seed results in a different row of numbers. If not set via an
API-call a random seed is chosen. Hence not training on a set seed will lead
to different results at every run. So, in theory, using a set seed and the same
hyperparameters should yield the same result.

It is common to parallelise the mathematical calculations required for the
training process using multi-threading or GPUs[62]. We are using stable-baselines
which use TensorFlow for the neural networks. It is a known problem that GPU
calculations in TensorFlow are less precise than CPU calculations[79], and the
problem is actively being worked on[61]. When we started the RL experiments26

stable-baselines was at version 2.6.0. In that version, only the learn function
receives a seed. However, we know that already in the network initialisation
random numbers are used. Furthermore, tuned hyperparameters did not yield
the same result when training on them, so we became suspicious and checked the
stable-baselines documentation. In the currently not yet released27 version 2.9.0,
which is already represented in the documentation, they say that GPUs never
yield reproducible results and for full reproducibility multi-threading needs to
be disabled for TensorFlow[32]. As 2.9.0 is not yet released, we slowly patch in
different changes to the reproducibility. First, we changed the number of used
CPUs to one in the PPO2 class file and used the set global seed function already
available in 2.6.0 before instantiating the model. These results still were not
fully reproducible either. Upon further investigation, we saw that a new func-
tion called set random seed was introduced to the ActorCriticRLModel class in
2.9.0, which is the base class of PPO2. Now the seed gets passed to the construc-
tor of an RL algorithm, before initialisation of the model as we tried earlier. The
reason why our experiment with set global seed did not work is that the newly
introduced set random seed calls the seed function on the environment, action
and observation space, which set global seed did not do. With these code changes
in place28, we were able to get the same results with a set seed.

26 At the start of July.
27 Writing and experimenting at 20.11.2019.
28 Full patch detailed in section C.1.
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We train using a set seed 102 steps for ten times and see if results are repro-
ducible. Only with the final code patches, and GPU disabled were the results
reproducible. With this seemingly reproducible code, we train using all three
different reward options until a local optimum is reached (or 10,000 steps have
been done). We define a local optimum as the same match repeating three times
in a row. Each seed is trained five times with, and we measure the number of
steps it took, the average reward achieved, and what the average score of the
players was. We repeat this process for 52 different randomly selected seeds.

6.3.2 Results

Even with all these changes, the results are still not reliably reproducible, as
can be seen in Table 5. Only 20 out of 52 tried seeds came to the same result
more than once. Interestingly enough, these twenty successfully reproducible
seeds are the same across all three reward functions, implying that some seeds
are less reproducible than others. It is baffling that two other seeds were only
reproducible with the least effective simple reward. We want to stress that the
reproducibility patches use code from an unreleased version of stable-baselines
that tries to address this issue. So our experiments suggest that more changes
are necessary and probably will follow before actual release to ensure consistent,
reproducible results. The large standard deviation for the number of required
steps underlines the impact the seed has on training success.

Reward Type All Equal
Amount of

Steps
Episode
Reward

Score

Guided 20 of 52 326.01 0.22 2.21

Simple 22 of 52 0.0 0.0 4.44

Score 20 of 52 860.61 0.03 2.92

Table 5: Results of self-play with different reward types until either a local
optimum or 10,000 steps have been reached. Step, Reward and Score show the
standard deviation between seeds.

At the end of January 2020, OpenAI announced that they choose PyTorch
as a standard framework rather than TensorFlow or others[64]. Besides claim-
ing increased productivity, no detailed comparison of the available options and
reasons to why PyTorch was chosen is given. Reproducibility might be one
factor that played into that decision. In a TensorFlow Github issue, a user
claims that in PyTorch, GPU calculations are already deterministic[80]. Another
user suggests replacing TensorFlow with PyTorch, in an AI Stack Exchange is-
sue about problems with reproducibility in TensorFlow [14]. Regardless of the
used implementations, researchers have already identified all possible sources
of non-determinism in RL and urge framework developers to eliminate every
non-determinism in these sources[60].
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Our reproducibility experiment focuses only on our application, and the is-
sues with TensorFlow provided that data and parameters are given. However,
there are also other issues in reproducing papers published in scientific jour-
nals or conference. Because of this, the International Conference on Learning
Representations (ICLR) started a reproducibility challenge in 2015 that is still
repeated every year[71]. They invite researchers to choose an AI paper, read it
and try to reproduce its results. Pineau summarised the results in a talk at the
ICLR 2018[70]. Only 32.7% were able to reproduce most of the work in a paper.
54.5% were only able to reproduce some of the work. 9.1% say that they were
not able to reproduce most of the work, which leaves 3.7% that were not repro-
ducible at all. And we have not even touched the problem that some RL papers
are so computation-intensive that it is near impossible for regular researchers
to reproduce them. For example, in the AlphaGo Zero paper, they claim that
training took 40 days on their TPUs[82]. If one were to rent as many TPUs as
used in their experiment for that period of time, it would cost approximately 35
Million dollars[34].

6.4 Observation Space

6.4.1 Setup

In this experiment, we want to find out if training success is dependent on the
way information is encoded in the observation. For that, the same information
is encoded into a numerical array and an RGB image (see section 5.2.1). For
comparison, we run the hyperparameter search of the RL-Heuristic with both
kinds of input. All available hyperparameters of PPO2 are being evaluated at the
same time. Section B.1 lists the exact hyperparameter name and the ranges that
are tried out. We train for 100,000 steps using the suggested hyperparameters.
After the training, we let it play 500 episodes and take the average reward
achieved as a measure of goodness of the parameters.

6.4.2 Results

It seems that there is no difference in training effectiveness between the two,
as can be seen in Figure 15. Both arrive at a maximum reward of around 0.07
after forty tries. The results of unpredictability between seeds and settings from
the previous section 6.3.2 also reflects well in this graph. Both reach a reward
of around 0.65 at the first step, which is only 0.05 less than the maximum
found, and the development of the reward is not steady at all but jitters heavily.
Ideally, a hyperparameter search would slowly converge towards a maximum[3].
One reason for the jitteriness could be that all available hyperparameters are
being evaluated at the same time with rather large ranges for each individual
parameter. That makes the space of viable hyperparameters smaller while at
the same time enlarging the space of hyperparameters that probably do not
work well. There are other things to consider when choosing the observation
space, such as memory. The RGB image uses 768kb29 per observation, while the

29 Each pixel consists of three floats. A float uses 64bit. 64∗64∗3∗64
1024

= 786, 432
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Fig. 15: The development of the achieved reward in the Optuna hyperparameter
search for RL-Heuristic.

numerical array is only 26.56kb30 big. Moreover, every number in the observation
has a neuron in the input layer with a weight attached to it[2]. In an update
of the weights after receiving a reward, all weights are adjusted[86], so having a
smaller input layer results in faster training. Hence not using the image requires
less memory and training is faster.

6.5 Reward Function Effectiveness

6.5.1 Setup

In order to figure out the effectiveness of the different reward functions (section
5.2.3), we reuse data collected for the reproducibility experiments (section 6.3).
Per reward function, we collect the averages for the number of steps it took, the
average reward achieved, and what the average score of the players was in the
results.

6.5.2 Results

Our results, shown in Table 6, indicate that the Guided reward function works
best. It only takes around 3183 steps on average to reach a local optimum, and
the average scores achieved in the matches is the highest. The Score reward
function also lets the agent reach a local optimum, but it takes twice as long as

30 10∗42∗64
1024
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the Guided function, and the score is slightly lower as well. The simple reward
function seems unfit for training. It never reached a local optimum in the 10,000
steps we allowed it to run and it got the lowest score in its games.

Reward Type
Amount of

Steps
Episode
Reward

Score

Guided 3183.49 -0.17 -5.6

Simple 10000.0 -0.0 -12.25

Score 6214.45 -0.09 -6.88

Table 6: Results of self-play with different reward types until either a local
optimum or 10,000 steps have been reached. Step, Reward and Score show the
average of all seeds.

6.6 MCTS Effectiveness

6.6.1 Setup

Initial test matches of MCTS against the user heuristic showed a zero percent
win rate and a look at the game boards suggested a near-random play. We use a
basic version of MCTS and a random default policy because heuristic guidance
was too slow (see section 5.1.1). AlphaZero has shown that even games with
high branching factor such as Go can be played well by MCTS when guided by
a neural network[82]. However, without a network or a heuristic, we rely on ran-
dom guidance. To prove that this guidance is at fault for the bad performance,
we abuse the fact that the user heuristic plays very predictably (section 3.3). We
use the RAVE-MCTS variant (without the POOL addition), pre-fill the RAVE
values with 100 games of the user heuristic playing against itself and then let
the MCTS play 100 matches against the user heuristic. We run this experiment
with different RAVE β parameters (section 4.1.4) which is responsible for the
exploration/exploitation. The closer the RAVE visits of a node reach β, the
smaller the exploration component becomes. Furthermore, we will be using the
slow heuristic default policy in this experiment.

6.6.2 Results

Our MCTS implementation can play well and have a high win rate, as can be
seen in Figure 16. This result underlines that in games with high branching
factors, MCTS needs good guidance through the tree in order to perform well.
The declining win rate with a higher beta value suggests that exploration on
an already partially explored game tree worsens the result if the opponent does
not deviate from its paths. The rise in win rate for a β value of 5000 after
the large drop in 2500 underlines the effect that the randomness involved in the
search process can have. Even though the heuristic default policy worked in this
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Fig. 16: Win rates of pre-filled MCTS playing against the RL-Heuristic com-
pared by the RAVE-β parameter.

experiment, we will still use a random default policy for the tournament (section
6.8). This is because there will be no pre-filling the tree in the tournament and
with the heuristic default policy nearly no nodes will be visited of the empty
tree (section 5.1.1).

6.7 RL Agents Training

6.7.1 Setup

In this section, we detail the training process of the RL agents. Due to the
reproducibility problematic (section 6.3), each training is done four times, and
only the best run is shown. RL-Selfplay and RL-Selfplay-Heuristic are trained
with the default PPO2 Hyperparameters given in section B.2. For the RL-
Heuristic, we have tuned hyperparameters available from the observation space
evaluation (section 6.4) that are given in section B.3.

Furthermore, we increase the hidden layer amount from two hidden layers
with size 64 to three hidden layers with size 128 because increasing the network
size decreases the chances of getting stuck in local optima[46].

When playing only against themselves, the networks still quickly reached
a local optimum even with increased layer size. This optimum manifested in
the same game being played on repeat and the reward per episode staying the
same. This repetition is a known problem in self-play and can be called “chasing
cycles”[91]. To prevent these local optima, we train five different agents against
each other in random order. To be able to train against other agents, we directly
modified stable-baselines code. The exact changes are detailed in C.2.
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6.7.2 Results

The training process for RL-Selfplay can be seen in Figure 17. In the begin-
ning, it keeps improving, but after peaking around 1.5 million steps, it only
deteriorates. For RL-Selfplay-Heuristic we use the two best candidates from

Fig. 17: The training process of RL-Selfplay visualised by the average achieved
reward per 100,000 Steps.

RL-Selfplay namely #3 after one million steps with a reward of 0.04 and #1
after 1.5 million steps31 with a reward of 0.034. Initially, we only trained for
one million steps, but because it still seemed to improve its reward, we increased
that amount to 4.6 million steps. This proved to be a good decision, as can be
seen in Figure 18 because RL-Selfplay#1-Heuristic reaches its peak after 3.44
and RL-Selfplay#3-Heuristic after 3.64 Million steps with a reward of 0.032 and
0.024. This is our first pure RL trained agent that is able to achieve a positive
reward while playing against the heuristic. A peculiar thing about the training
process is that two different models in different training units have the same
performance drops around the same step size.

Usually, a reward training graph should, although jittery, steadily improve
and climb in the reward achieved[59]. We believe the constant deterioration,
shown in Figure 17, to be caused by the way we implement self-play. After
critical review, we realised that the opponent’s decisions are bleeding into the
training. For example, when model A plays against model B, then decisions,

31 The actual peak is at 1.7 million steps, but the model was only saved every 500,000
steps.
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Fig. 18: The training process of RL-Selfplay-Heuristic visualised by the average
achieved reward per 20,000 Steps.

observations and reward of both models are used to update model A, but model
B stays unchanged. Only when model B is then the primary trained model and
plays against model A is model B updated but model A not. So we do the
same experiment again with the fix that decisions from model B do not factor
into the training of model A (code see C.3). We call this agent RL-Nobleed.
Unfortunately, as shown in Figure 19, the training still deteriorates after peaking.
The achieved reward does not jitter as much anymore. Even though the training
process goes on for longer, the deterioration is less. It only degrades to around
0.02 after around 12 million steps, whereas the previous version dropped down
to 0.05 within just 9 million steps. So there is a notable improvement, but it did
not solve the problem of deterioration. Furthermore, RL-Nobleed arrives at the
same maximum reward of around 0.046, but it does so after 20-25 million steps
instead of 5-15 million steps. The training of RL-Nobleed-Heuristic, portrayed in
Figure 20, does not show us anything new or interesting. The peculiar periodic
drops in the reward still occur.



42

Fig. 19: The training process of RL-Nobleed visualised by the average achieved
reward per 100,000 Steps.

Fig. 20: The training process of RL-Nobleed-Heuristic visualised by the average
achieved reward per 20,000 Steps.
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Fig. 21: The training process of RL-Heuristic visualised by the average achieved
reward per 50,000 Steps.

The RL-Heuristic reward curve, visualised in Figure 21, is more jittery than
the self-play training. We looked at the output values of RL-Heuristic and
figured the reward function design was a mistake. It sets the weights for its
own score and group values to zero, the enemy block value to fifteen and the
connectability varies between four and seven. So by negating the players score
with the opponent’s score, we have unwillingly forced the heuristic to focus
only on blocking the opponent over everything else. Needless to say with these
weights, RL-Heuristic rarely wins. Although it manages to keep opponents score
low, it does not focus on gaining points which leaves it with a point disadvantage.
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6.8 Tournament

6.8.1 Setup

In the tournament, we will pit all previously shown AI approaches against each
other. Every bot will play 100 matches against every other bot. In the end, every
bot will have played 1400 matches. We have nine different RL bots (see section
6.7), three MCTS bots (see section 4.1) and three heuristic bots (see section
4.3). The parameter settings for the MCTS bots can be found in section B.4.
The bots skill will be compared via a BBT skill rating (section 4.4). We expect
MCTS to play badly due to its random default policy (section 6.6) in a high
branching factor environment. From the training of the RL-Agents (section 6.7)
we know that they can hardly beat the heuristic. Hence we expect the heuristic
to play the best followed by RL and MCTS.

6.8.2 Results

Fig. 22: The skill rating (section 4.4) of the agents that participated in the
tournament.

The skill rating portrayed in Figure 22 confirms our expectations. The three
heuristic agents take the top 3, followed by RL and MCTS. Remarkably, the
tuned heuristic performed best, even though it is only optimised to play well
against the user heuristic, but yet it performs best across all agents. In the
human play experiment, the random heuristic performed better than the user
heuristic, which the skill rating confirms.
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Seeing RL-Heuristic as the best RL approach further proves that the other
RL agents have not learned anything close to good gameplay. In section 6.7, we
have shown that RL-Heuristic only focuses on blocking off the opponent, so even
though it uses the heuristic to make decisions, the weights make it choose bad
actions. Interestingly, there seems to be little difference in the skill of RL-Selfplay
and RL-Nobleed, even though RL-Nobleed tries to improve upon RL-Selfplay.
Seeing that all RL agents consistently beat MCTS with a random default policy
proves that the agents definitely learned to play something. However, it is not
good enough yet to beat the heuristic.

We know that a random default policy for MCTS is infeasible for good play,
so the bad skill rating in this tournament is expected. In a previous experiment
(section 6.6), we have shown that if MCTS analyses paths that are very prob-
able to be taken by the enemy, then it works excellent with win rates close to
90+%. However, it is interesting that the MCTS-UCB variant performed best
because the other two variants try to improve the performance of UCB via slight
modifications (section 4.1). Considering that the heuristic was not even strong
enough to beat beginner human players (section 6.2), but yet leads this skill
rating shows that there is still much work to be done to improve the strength of
Tetris Link agents.

The skill rating omits information about the quality of the individual moves.
To gain further insight into that, we provide Figure 23. Here we can see that
every agent manages at least once to gain 8 points or more. This means that
every agent had at least one match where they played reasonably well. Looking
at the lowest achieved score and average score, we can see that every agent
except for the pure heuristic ones play badly, considering that on average, they
only make ±3 points.

The lousy performance raises the question of whether it was chance that
every agent had at least one good match with 8+ points. To find that out, we
inspect the board state from some of the matches in which agents achieved their
maximum score. Looking at the best match of MCTS-RAVE in Figure 24a,
we can see that the tree search can work even with a random default policy.
Only three blocks at the right are placed badly and never connect. All other
blocks are perfectly connected. RL-Nobleed#2 ’s best match, shown in Figure
24b, suggests a good understanding of the core game principle. Only two blocks
at the top right are not connected in a group because the enemy blocked it off.
Other than that, only four blocks are put down so that minus points are taken.
Only one mistake less and the match could have been a draw. We know that RL-
Heuristic focuses on blocking off its opponent while completely ignoring its own
points (section 6.7). Yet in a match portrayed in Figure 24c, it still managed to
achieve 16 points. Blocking off is very successful in this match, and the opponent
only manages once to connect one single group of three blocks to gain points.
Based on these three matches, we conclude that it was not up to chance but up
to skill that these agents gained the number of points they did.
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Fig. 23: Visualisation of the scores that agents achieved in the tournament.
Agents are sorted by the skill rating portrayed in Figure 22.
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(a) MCTS-RAVE
(red, 9 points) vs.
Random heuristic
(blue, 18 points)

(b) Tuned heuristic
(red, 16 points) vs
RL-Nobleed#2 (blue,
14 points).

(c) RL-N-H#5 (red,
-15 points) vs RL-
Heuristic (blue, 16
points).

Fig. 24: Selection of screenshots from tournament matches where an agent
achieved their maximum score.

6.9 Verifying the MCTS Implementation

6.9.1 Setup

Because MCTS takes the last place in the tournament (section 6.8), we want to
prove that our MCTS implementation is not faulty. With a heuristics pre-filled
tree (section 6.6) the implementation can perform well in Tetris Link against a
limited opponent.

The fact that the default policy is crucial to MCTS performance can be seen
in practical applications such as the board game Hex. MoHex 2.0, the 2013
Hex champion[26], uses a special default policy and includes learned patterns
to guide the tree search[35]. For an even stronger agent, Mohex v3 now uses
neural networks to guide through the search, just like AlphaGo[21]. As further
correctness proof, we implement a version of the board game Hex in Rust. We
use a simple heuristic based on Dijkstra’s shortest path algorithm[16], to have
something to compare MCTS to. In a test with a 7x7 Hex game, our tree
parallelised MCTS implementation can visit around 35000 nodes per second
with a random default policy and 4500 nodes per second with a heuristic default
policy. This implementation of Hex is not optimised for performance as the Tetris
Link implementation is, so a higher visit count could probably be reached. We
believe that because for Hex the heuristic policy is reasonably fast, the better-
guided version will perform a lot better. Hence we will let all three MCTS
agents play against the heuristic once with a random and once with a heuristic
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default policy. In Hex, the first player has a definite advantage[4]. This can
be countered by the pie rule stating that the second player can switch colour
in their first turn[48]. We play without the pie rule and give the heuristic the
first turn advantage so that MCTS has to outplay the heuristic to win. To also
underline the effect of the branching factor on MCTS performance, we will play
on Hex boards of size 2x2 to 12x12.

6.9.2 Result

The same MCTS implementation that lost in the Tetris Link tournament can
win consistently in smaller Hex grids regardless of the default policy suggesting
that the implementation is not at fault.

Fig. 25: The win rate of our MCTS implementation with a heuristic default
policy playing against the dijkstra based heuristic in the game of Hex.

By comparing Figure 25 with Figure 26, one can clearly see that the heuristics
default policy outperforms a random default policy. No variant wins in a 2x2
field because we play without the pie rule. The heuristic always makes the
same first move, and the second player never has the ability to win, as shown
in Figure 27. In bigger sizes, MCTS has a chance because the heuristic is not
guaranteed to play perfectly and if a certain path is blocked, then it might make
a suboptimal move allowing MCTS to take the lead.

For the heuristic default policy, UCB performs best in smaller search spaces,
but as soon as the field is bigger than 7x7, UCB can not hold up anymore.
RAVE seems to have problems with too small search spaces, but as soon as the
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Fig. 26: The win rate of our MCTS implementation with a random default policy
playing against the dijkstra based heuristic in the game of Hex.

grid size is larger than three, it consistently wins the majority of the matches
(up until 11x11). PoolRAVE wins most consistently but also slowly deteriorates
with growing fields. Throughout all three variants, a regression of performance
with an increasing branching factor can be seen. This further underlines that in
games like Tetris Link with a rather large branching factor, the guidance through
the tree is essential for success and also the reason for the bad tournament
performance. This is also shown by MoHex v3, where they use a neural network
as guidance through the tree to further increase performance over their previous
custom-built default policy for the game of Hex[21]. Further underlining the
effect of the branching factor is the random default policy result in Figure 26.
As long as the branching factor does not exceed 36 (6x6), there is a good chance
that matches can be won with UCB. Anything above that is almost impossible
to win regardless of MCTS variant.

Besides the branching factor influence, we believe that a bad turn in Hex has
fewer consequences than in Tetris Link32. First of all, Hex has no concept of
minus points. One can only win or lose. Moreover, completely blocking access to
one piece requires up to six enemy pieces around it in Hex. In Tetris Link, one
to two turns can be enough to block off multiple blocks completely (see figure
6b in section 3.4).

32 Assuming that both players do not play perfectly.
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Fig. 27: This board shows why no MCTS variant (red) can win against the
heuristic (blue) in 2x2 fields without the pie rule. The heuristic will always
choose the lower left as the first move, which gives two options (green) to win
in the next turn. Hence red can never win in this situation because it can only
fill one of the green spots and blue will take the other one and win.

7 Conclusion

Board game strategy analysis has been done for decades, and especially games
like Chess and Go have seen countless papers analysing the game, patterns and
more to find the best play strategies[82]. We contributed to that field by taking a
close look at the board game Tetris Link. We have shown play strategies (section
3.4) that can be used to develop a reasonably well playing heuristic (section 4.3).
While the strategy is key to winning, some games, such as Hex, give the first
player a definite advantage. In our experiments, there is no clear advantage for
the starting player in Tetris Link (section 3.3).

With a solid understanding of the game itself, we investigated different ap-
proaches for AI agents to play the game, namely heuristic, RL and MCTS. We
have shown that all tested approaches can perform well against certain oppo-
nents. The best automatic approach has proven to be the heuristic (section 4.3)
although it can not consistently beat human players even when they are new to
the game (section 6.2.2).

Training an RL agent (section 6.7) for Tetris Link has proven to be com-
plicated. Just getting the network to produce positive rewards required much
trial and error, and in the end, the agent did not perform very well even when
consistently achieving a positive reward. We believe the learning difficulty in
Tetris Link comes from the many opportunities to make minus points in the
game. One turn offers at most one plus point, or three and more if a group is
connected, but that means that the previous two or more turns at most gave
zero points if not even more minus points. Hence recovering from minus points
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is difficult, and the quickest way to do it is to make the enemy take minus points.
However, that is also a risky strategy that can backfire (section 3.4).

Reproducible training is also a problem we stumbled over. It is well known
that neural network algorithms results can differ strongly by just changing little
of the input (e.g. data, or parameters such as the random seed). Neverthe-
less, if the input stays the same, then the results should also stay unchanged.
However, in our experiments (section 6.3), that was not the case, and less than
half of the time, training was actually reproducible. This is a known problem
related to stable-baselines and TensorFlow, of which developers are aware and
actively working on[61,32]. Our reproducibility problems only focused on the
code that runs it, but there are other reproducibility problems in the AI field.
At the ICLR challenge in 2018, where they asked researchers to try to reproduce
papers, only 32.7% of checked papers were mostly reproducible[70]33. Luckily
people are working on identifying sources of reproducibility issues and propose
solutions[28]. Software like OpenAI Gym tackles one of the problems. Namely,
uniform environments for more reliable benchmarks across different RL algo-
rithm implementations. So with our Tetris Link Gym implementation, we offer
researchers another environment for benchmarking. The used software environ-
ment is also still rapidly growing and developing, as can be seen with OpenAI’s
standardisation of PyTorch[64].

Although MCTS performed poorly in our tournament, we have shown that
with proper guidance through the tree MCTS can perform very well in Tetris
Link (section 6.6) and also Hex (section 6.9). That is why a combination where
RL guides an MCTS through the tree works very well, e.g. AlphaZero[82] or
MoHex v3[21], and is something to try in future work (section 7.2).

7.1 Contributions

This section poses and answers research questions that were encountered during
the work on this thesis.

For Tetris Link, our main question was: Which of the AI approaches performs
best in a tournament? In our experiment (section 6.8), the heuristic works best
followed by RL and MCTS. Because of MCTS bad performance, we wondered:
How big is the branching factor and how does it develop over the course of a
match? The branching factor is 162, and through a match, it slowly declines
(section 3.2). However, the available moves decline faster if the move quality is
bad, e.g. a random player. In the game of Hex, the first player has an advantage
which is the reason for the pie rule. Because of that, we speculated: Does the
starting player have an advantage in Tetris Link? By doing an experiment, we
found out that the starting player had a win rate of around 48%, which does not
indicate an advantage (section 3.3).

To build a heuristic, we stumbled over the question: What numerical values
can be extracted from a game state to build a heuristic? We found four differ-
ent strategies that can be represented as numerical values (section 3.4 & 4.3).

33 To enable reproducibility of this work all used code is available at
https://github.com/Hizoul/masterthesis
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Considering that the heuristic is the winner of the tournament reassures us that
these four measures have been a good choice. We know that compared to our
approaches, the heuristic is the strongest, but one question remains: How does
the heuristic fair out against humans? In our experiments, the heuristic is easily
beatable even by beginner players (section 6.2). The user heuristic had a win
rate of 33.33% and the random heuristic a win rate of 23.07%.
Our initial experiments with MCTS in Tetris Link were quite unsuccessful, and
it also comes in last in the tournament. That is why we asked ourselves: Is a
random default policy actually feasible for a game with a high branching factor?
To find this out, we let our MCTS implementation play in increasingly big Hex
fields, and we can see a clear deterioration as the field size and hence branching
factor increases (section 6.9). Because the random default policy did not work
well in Tetris Link, we wondered: Could the heuristic be used as default policy?
It is possible, and we did try it out however our heuristic calculation is too slow
and did not allow the MCTS to inspect a lot of nodes which makes it infeasible
for usage (section 5.1.1). From the Hex MCTS verification (section 6.9), we
know that MCTS can work well in a smaller branching factor. In the first player
advantage experiment, we have seen that the user heuristic plays very determin-
istically without branching out a lot so we thought: Can pre-filling the search
tree make up for a bad default policy? The answer is yes. Through pre-filling
the tree MCTS achieved a win rate of 94% against the user heuristic.
In order to use a Reinforcement Learning agent, an environment needs to be
built. An environment consists of an observation space, action space and a
reward (section 4.2). For each of these parts, questions arose during implemen-
tation. The observation space can be passed as a numerical array processed by
an MLP or an image processed by a CNN, which brings the question: Does it
affect training? In an experiment, we found out that there is no measurable
impact on training success (section 6.4). However, size-wise an image requires
more bytes which in turn also leads to slower training. The action space can be a
discrete number for the specific move to make or a probability distribution over
all possible actions. So the question is: Which of the two should one use? With
a discrete number, we were not able to bring the RL agent to learn anything, so
we had to go with the probability distribution where invalid moves are masked.
The reward is the trickiest part because it allows for much more flexibility. What
should be rewarded? One thing is for sure: To win needs to increase and to loose
decrease the reward. However, should it only reward at the end of a game, or
also give the delta of the current score after every move? Furthermore, should
bad suggestions where the highest number had to be masked because it was an
illegal move be scolded? In our experiment giving as much information in the
reward worked best, so we give the delta of the score, scold for answers that had
to be corrected and increase/decrease the reward for a win/loss. In the training
of the RL-Heuristic, we also saw that with a bad decision in the reward, one
could guide the agent to learn the wrong thing. In this instance, it learned to
ignore its own points and focus only on blocking the opponent because, as a
reward, we gave the difference in points between the agent and its opponent. If
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opponents make fewer points because they are being blocked, then the reward of
the agent is less negative. Because of reproducibility issues, we wondered: Does
training with the exact same parameters yield the same result if done multiple
times? In theory, it definitely should. Every algorithm is deterministic, and if
the pseudo-random suggestions are deterministic by using the same seed, then
the training result should be the same. In our experiment, 20 out of 52 seeds
were reproducible. This is not the expectation, and something in the code base
is causing these issues. However, we also used alpha software that is actively
working on this problem, so this might be solved soon.
Moreover, we contributed code to open source projects in the RL field. We fixed
the action and observation space code for the OpenAI Gym GymGo (section
5.2), and we have modified the stable-baselines to allow agents to play against
themselves or even other agents (section 5.3 and C.2).

7.2 Future Work / Limitations

Our experiments are far from exhaustive, and there is still much that could be
tried in order to improve the results. First of all Tetris Link is a game for two
to four players with imperfect information through dice rolling. Our experi-
ments and analyses have focused only on a two-player setup without dice rolling
to have perfect information. Increasing player count and introducing imperfect
information would impose a whole new difficulty level on the AI approaches.
Furthermore, the reward function test (section 6.5) is limited in scope. Longer
training units that are not cut off after 10,000 steps and also a tournament at
the end to determine the best reward function would increase the relevance of
the results. There is also a lack of variety in RL algorithms. All agents are using
PPO2, but especially for the reward function test seeing whether the results are
consistent across different algorithms would be interesting. For the tournament
(section 6.8) it would be nice to test an agent that combines RL and MCTS like
AlphaZero[82] to verify that the combination of the two also works well in Tetris
Link. Moreover, the branching factor development (section 3.2) and first turn
advantage (section 3.3) analysis are limited to data generated by the heuristic
and random play. More agents that play the game more human-like would un-
derline the correctness of the results. This paper only uses RL implementations
from OpenAI (gym and baselines). Other frameworks, such as OpenSpiel[45],
could be evaluated as alternatives. Even more interesting would be to do the
reproducibility (section 6.3) experiment with different implementations of the
same algorithm and the same hyperparameters.
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Appendices

A Additional Performance Information

A.1 Desktop Hardware Specifications

The following are the exact specifications of the desktop computer used in most
of the experiments:

Part Specification

CPU Intel(R) Core(TM) i7-5930K CPU @ 3.50 GHz, 6 Core(s)

GPU NVIDIA GTX 980 Ti

RAM 32 GB

Storage 256 GB SDD

OS Arch Linux

Mainboard ASUS X99-A

Containerisation Docker

A.2 Server Hardware Specifications

The hyperparameter optimisation (section 6.4) and the RL model (section 6.7)
training was done on the duranium server offered by LIACS to students of the
University of Leiden which has the following specifications:

Part Specification

CPU Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz

GPU NVIDIA GTX 980 Ti and NVIDIA Titan

RAM 126 GB

Storage 3 TB HDD

OS CentOS 7

Containerisation None

A.3 Rust performance optimisations

The following is a complete list of performance optimisation changes to the
Rust game implementation. Every entry starts with the average time a game
simulation took (see section 5.1.1) followed by a textual description of the code
change.

– 12ms - naive JS reimplementation
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– 4.5ms - cache possible plays instead of using a function that computes it
every time

– 4.5ms - use number instead of string for player identification

– 4.2ms - Determine highest y once in get possible plays and cache result in-
stead of twice without cache in can place block

– 1.5ms - use one global shape cache instead of each game field recalculating
its own

– 1.5ms - introduce redundant constants for existing constants that were casted
to usize at runtime

– 1.7ms - (reverted because regression) use i64 instead of i8 for numerical types

– 0.9ms - all allocations of objects and arrays moved to constructor and in the
functions use clear() / reset() instead of new allocations

– 0.85ms - only update lowest y once per newly placed block using update -
lowest for block

– 0.59ms - incrementally update highest y, lowest ys cmp, gather positions,
update lowest for block and player score

– 0.59ms - target host cpu with export RUSTFLAGS=’-Ctarget-cpu=native’

B Hyperparameters

B.1 PPO2 Search

def optimise_ppo2(trial):

return {

’n_steps’: trial.suggest_int(’n_steps’, 32, 5000),

’gamma’: trial.suggest_loguniform(’gamma’, 0.6, 0.9999),

’vf_coef’: trial.suggest_loguniform(’vf_coef’, 0.1, 1),

’max_grad_norm’: trial.suggest_loguniform(’max_grad_norm’, 0.1, 1)

↪→ ,

’learning_rate’: trial.suggest_loguniform(’learning_rate’,

↪→ 0.000005, 0.05),

’ent_coef’: trial.suggest_loguniform(’ent_coef’, 1e-20, 0.01),

’cliprange’: trial.suggest_uniform(’cliprange’, 0.05, 1.9),

’noptepochs’: trial.suggest_int(’noptepochs’, 1, 48),

’lam’: trial.suggest_uniform(’lam’, 0.6, 1.2)

}

Fig. 28: The Optuna settings used to search the hyperparameterspace of PPO2.
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B.2 RL-Selfplay Hyperparameters

Parameter Value

gamma 0.99

n steps 128

ent coef 0.01

learning rate 0.00025

vf coef 0.5

max grad norm 0.5

lam 0.95

nminibatches 4

noptepochs 4

cliprange 0.2

B.3 RL-Heuristic Hyperparameters

Parameter Value

n steps 1912

gamma 0.893772595247008

vf coef 0.124083762089201

max grad norm 0.790427907967279

learning rate 0.0106800972074722

ent coef 3.11268993114624e-07

cliprange 1.13010015406973

noptepochs 7

lam 0.80055096907225

B.4 MCTS Search parameters

Parameter Value

Thought time 1000ms

Simulation amount 50

Exploration constant 2.0

Lookahead limit for default policy playouts None

RAVE Beta parameter 1000

B.5 Unusable RL Algorithms

Some stable-baselines algorithms should have been usable with the chosen ac-
tion/observation spaces according to the documentation. However, upon trying
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them out, some did not. The not working algorithms with the respective error
message are ACER (Figure 29), ACKTR (Figure 30), DDPG and SAC (Figure
31).

Traceback (most recent call last):

File "libs\optuna\study.py", line 468, in _run_trial

result = func(trial)

File "acer_tuner.py", line 44, in optimise_agent

model.learn(int(2e4), seed=seed)

File "libs\stable_baselines\acer\acer_simple.py", line 474, in learn

runner = _Runner(env=self.env, model=self, n_steps=self.n_steps)

File "libs\stable_baselines\acer\acer_simple.py", line 596, in __init__

obs_height, obs_width, obs_num_channels = env.observation_space.shape

ValueError: not enough values to unpack (expected 3, got 2)

Fig. 29: The error message produced when trying to use ACER.

Traceback (most recent call last):

File "libs\optuna\study.py", line 468, in _run_trial

result = func(trial)

File "acktr_tuner.py", line 35, in optimise_agent

model = ACKTR("MlpPolicy", env, nprocs=1,verbose=0, **model_params)

File "libs\stable_baselines\acktr\acktr_disc.py", line 103, in __init__

self.setup_model()

File "libs\stable_baselines\acktr\acktr_disc.py", line 118, in

↪→ setup_model

raise NotImplementedError("WIP: ACKTR does not support Continuous

↪→ actions yet.")

Fig. 30: The error message produced when trying to use ACKTR.
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Traceback (most recent call last):

File "libs\optuna\study.py", line 468, in _run_trial

result = func(trial)

File "ddpg_tuner.py", line 39, in optimise_agent

model = DDPG("MlpPolicy", env, verbose=0, observation_range

↪→ =(-126,126),

**model_params)

File "libs\stable_baselines\ddpg\ddpg.py", line 298, in __init__

self.setup_model()

File "libs\stable_baselines\ddpg\ddpg.py", line 336, in setup_model

**self.policy_kwargs)

File "libs\stable_baselines\ddpg\policies.py", line 239, in __init__

feature_extraction="mlp", **_kwargs)

File "libs\stable_baselines\ddpg\policies.py", line 111, in __init__

scale=(feature_extraction == "cnn"))

File "libs\stable_baselines\ddpg\policies.py", line 26, in __init__

assert (np.abs(ac_space.low) == ac_space.high).all(),

"Error: the action space low and high must be symmetric"

Fig. 31: The error message produced when trying to use DDPG and SAC (for
SAC the code paths are different but it gave the same ValueError.

C Code Changes to Open Source Projects

C.1 Reproducibility

For a reproducibility experiment (section 6.3), we modified code in stable-baselines.
The git diff between the changes and v2.6.0 is shown below.

diff --git a/stable_baselines/common/base_class.py b/

↪→ stable_baselines/common/base_class.py

index a0637d8..86c822d 100644

--- a/stable_baselines/common/base_class.py

+++ b/stable_baselines/common/base_class.py

@@ -69,6 +69,28 @@ class BaseRLModel(ABC):

" environment.")

self.n_envs = 1

+ def set_random_seed(self, seed):

+ """

+ :param seed: (int) Seed for the pseudo-random generators. If

↪→ None,

+ do not change the seeds.

+ """

+ # Ignore if the seed is None

+ if seed is None:
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+ return

+ # Seed python, numpy and tf random generator

+ set_global_seeds(seed)

+ if self.env is not None:

+ if isinstance(self.env, VecEnv):

+ # Use a different seed for each env

+ for idx in range(self.env.num_envs):

+ self.env.env_method("seed", seed + idx)

+ else:

+ self.env.seed(seed)

+ # Seed the action space

+ # useful when selecting random actions

+ self.env.action_space.seed(seed)

+ self.action_space.seed(seed)

+

def get_env(self):

"""

returns the current environment (can be None if not

↪→ defined)

diff --git a/stable_baselines/ppo2/ppo2.py b/stable_baselines/ppo2

↪→ /ppo2.py

index 330f585..cef6dcb 100644

--- a/stable_baselines/ppo2/ppo2.py

+++ b/stable_baselines/ppo2/ppo2.py

@@ -50,7 +50,7 @@ class PPO2(ActorCriticRLModel):

def __init__(self, policy, env, gamma=0.99, n_steps=128,

↪→ ent_coef=0.01,

learning_rate=2.5e-4, vf_coef=0.5, max_grad_norm=0.5, lam

↪→ =0.95,

nminibatches=4, noptepochs=4, cliprange=0.2, cliprange_vf=

↪→ None, verbose=0,

tensorboard_log=None, _init_setup_model=True, policy_kwargs=

↪→ None,

- full_tensorboard_log=False):

+ full_tensorboard_log=False,seed=None):

super(PPO2, self).__init__(policy=policy, env=env, verbose

↪→ =verbose,

requires_vec_env=True, _init_setup_model=_init_setup_model

↪→ ,

policy_kwargs=policy_kwargs)

@@ -95,6 +95,7 @@ class PPO2(ActorCriticRLModel):

self.n_batch = None

self.summary = None

self.episode_reward = None
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+ self.seed = seed

if _init_setup_model:

self.setup_model()

@@ -113,12 +114,13 @@ class PPO2(ActorCriticRLModel):

self.n_batch = self.n_envs * self.n_steps

- n_cpu = multiprocessing.cpu_count()

- if sys.platform == ’darwin’:

- n_cpu //= 2

+ n_cpu = 1 #multiprocessing.cpu_count()

+ # if sys.platform == ’darwin’:

+ # n_cpu //= 2

self.graph = tf.Graph()

with self.graph.as_default():

+ self.set_random_seed(self.seed)

self.sess = tf_util.make_session(

num_cpu=n_cpu, graph=self.graph)

n_batch_step = None

C.2 Self Play

For a self play experiment (section 6.7), we modified code in stable-baselines.
The git diff between the changes and v2.6.0 is shown below.

diff --git a/stable_baselines/ppo2/ppo2.py b/stable_baselines/ppo2

↪→ /ppo2.py

index cef6dcb..d105f67 100644

--- a/stable_baselines/ppo2/ppo2.py

+++ b/stable_baselines/ppo2/ppo2.py

@@ -50,7 +50,7 @@ class PPO2(ActorCriticRLModel):

def __init__(self, policy, env, gamma=0.99, n_steps=128,

↪→ ent_coef=0.01,

learning_rate=2.5e-4, vf_coef=0.5, max_grad_norm=0.5, lam

↪→ =0.95,

nminibatches=4, noptepochs=4, cliprange=0.2, cliprange_vf=

↪→ None, verbose=0,

tensorboard_log=None, _init_setup_model=True, policy_kwargs=

↪→ None,

- full_tensorboard_log=False,seed=None):

+ full_tensorboard_log=False,seed=None, self_play=False):
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super(PPO2, self).__init__(policy=policy, env=env, verbose

↪→ =verbose,

requires_vec_env=True, _init_setup_model=_init_setup_model

↪→ ,

policy_kwargs=policy_kwargs)

@@ -95,6 +95,8 @@ class PPO2(ActorCriticRLModel):

self.n_batch = None

self.summary = None

self.episode_reward = None

+ self.self_play = self_play

+ self.opponent = None

self.seed = seed

if _init_setup_model:

@@ -317,7 +319,7 @@ class PPO2(ActorCriticRLModel):

as writer:

self._setup_learn(seed)

- runner = Runner(env=self.env, model=self, n_steps=self.n_steps,

- gamma=self.gamma, lam=self.lam)

+ runner = Runner(env=self.env, model=self, n_steps=self.n_steps,

+ gamma=self.gamma, lam=self.lam, self_play=self.self_play,

+ opponent=self.opponent)

self.episode_reward = np.zeros((self.n_envs,))

ep_info_buf = deque(maxlen=100)

@@ -431,7 +433,7 @@ class PPO2(ActorCriticRLModel):

class Runner(AbstractEnvRunner):

- def __init__(self, *, env, model, n_steps, gamma, lam):

+ def __init__(self, *, env, model, n_steps, gamma, lam,

+ self_play, opponent=None):

"""

A runner to learn the policy of an environment for a model

@@ -444,6 +446,8 @@ class Runner(AbstractEnvRunner):

super().__init__(env=env, model=model, n_steps=n_steps)

self.lam = lam

self.gamma = gamma

+ self.self_play = self_play

+ self.opponent = opponent

def run(self):

"""
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@@ -463,8 +467,14 @@ class Runner(AbstractEnvRunner):

mb_obs, mb_rewards, mb_actions, mb_values, mb_dones,

↪→ mb_neglogpacs =

[], [], [], [], [], []

mb_states = self.states

ep_infos = []

+ env_to_change =

+ self.env.envs[0] if self.env.envs is not None else self.env

+ env_to_change.self_play = self.self_play

+ env_to_change.self_play_is_second_player = False

for _ in range(self.n_steps):

- actions, values, self.states, neglogpacs =

- self.model.step(self.obs, self.states, self.dones)

+ model_to_use = self.model

+ if self.opponent is not None and

+ env_to_change.self_play_is_second_player:

+ model_to_use = self.opponent

+ actions, values, self.states, neglogpacs =

+ model_to_use.step(self.obs, self.states, self.dones)

mb_obs.append(self.obs.copy())

mb_actions.append(actions)

mb_values.append(values)

@@ -480,6 +490,10 @@ class Runner(AbstractEnvRunner):

if maybe_ep_info is not None:

ep_infos.append(maybe_ep_info)

mb_rewards.append(rewards)

+ if not self.dones:

+ env_to_change.self_play_is_second_player =

+ not env_to_change.self_play_is_second_player

+ else:

+ env_to_change.self_play_is_second_player = False

# batch of steps to batch of rollouts

mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)

mb_rewards = np.asarray(mb_rewards, dtype=np.float32)

C.3 Self Play nobleed

For a self play experiment (section 6.7), we modified code in stable-baselines.
This is the version that also corrects the problem with bleeding over information
from model b to model a. The git diff between the changes and v2.6.0 is shown
below.

diff --git a/stable_baselines/ppo2/ppo2.py b/stable_baselines/ppo2

↪→ /ppo2.py

index cef6dcb..121f6f7 100644
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--- a/stable_baselines/ppo2/ppo2.py

+++ b/stable_baselines/ppo2/ppo2.py

@@ -50,7 +50,7 @@ class PPO2(ActorCriticRLModel):

def __init__(self, policy, env, gamma=0.99, n_steps=128,

↪→ ent_coef=0.01,

learning_rate=2.5e-4, vf_coef=0.5, max_grad_norm=0.5, lam

↪→ =0.95,

nminibatches=4, noptepochs=4, cliprange=0.2, cliprange_vf=

↪→ None, verbose=0,

tensorboard_log=None, _init_setup_model=True, policy_kwargs=

↪→ None,

- full_tensorboard_log=False,seed=None):

+ full_tensorboard_log=False,seed=None, self_play=False):

super(PPO2, self).__init__(policy=policy, env=env, verbose

↪→ =verbose,

requires_vec_env=True, _init_setup_model=_init_setup_model

↪→ ,

policy_kwargs=policy_kwargs)

@@ -95,6 +95,8 @@ class PPO2(ActorCriticRLModel):

self.n_batch = None

self.summary = None

self.episode_reward = None

+ self.self_play = self_play

+ self.opponent = None

self.seed = seed

if _init_setup_model:

@@ -317,7 +319,7 @@ class PPO2(ActorCriticRLModel):

as writer:

self._setup_learn(seed)

- runner = Runner(env=self.env, model=self, n_steps=self.n_steps,

- gamma=self.gamma, lam=self.lam)

+ runner = Runner(env=self.env, model=self, n_steps=self.n_steps,

+ gamma=self.gamma, lam=self.lam, self_play=self.self_play,

+ opponent=self.opponent)

self.episode_reward = np.zeros((self.n_envs,))

ep_info_buf = deque(maxlen=100)

@@ -431,7 +433,7 @@ class PPO2(ActorCriticRLModel):

class Runner(AbstractEnvRunner):

- def __init__(self, *, env, model, n_steps, gamma, lam):
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+ def __init__(self, *, env, model, n_steps, gamma, lam,

+ self_play, opponent=None):

"""

A runner to learn the policy of an environment for a model

@@ -444,6 +446,8 @@ class Runner(AbstractEnvRunner):

super().__init__(env=env, model=model, n_steps=n_steps)

self.lam = lam

self.gamma = gamma

+ self.self_play = self_play

+ self.opponent = opponent

def run(self):

"""

@@ -463,23 +467,38 @@ class Runner(AbstractEnvRunner):

mb_obs, mb_rewards, mb_actions, mb_values, mb_dones,

↪→ mb_neglogpacs =

[], [], [], [], [], []

mb_states = self.states

ep_infos = []

- for _ in range(self.n_steps):

+ env_to_change =

+ self.env.envs[0] if self.env.envs is not None else self.env

+ env_to_change.self_play = self.self_play

+ env_to_change.self_play_is_second_player = False

+ has_opponent = self.opponent is not None

+ n_steps_to_use = self.n_steps * 2 if has_opponent else self.

↪→ n_steps

+ for _ in range(n_steps_to_use):

+ model_to_use = self.model

+ is_opponents_turn =

+ has_opponent and env_to_change.self_play_is_second_player

+ if is_opponents_turn:

+ model_to_use = self.opponent

actions, values, self.states, neglogpacs =

self.model.step(self.obs, self.states, self.dones)

- mb_obs.append(self.obs.copy())

- mb_actions.append(actions)

- mb_values.append(values)

- mb_neglogpacs.append(neglogpacs)

- mb_dones.append(self.dones)

+ if not is_opponents_turn:

+ mb_obs.append(self.obs.copy())

+ mb_actions.append(actions)

+ mb_values.append(values)
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+ mb_neglogpacs.append(neglogpacs)

+ mb_dones.append(self.dones)

clipped_actions = actions

# Clip the actions to avoid out of bound error

if isinstance(self.env.action_space, gym.spaces.Box):

clipped_actions = np.clip(actions, self.env.

↪→ action_space.low,

self.env.action_space.high)

self.obs[:], rewards, self.dones, infos =

self.env.step(clipped_actions)

- for info in infos:

- maybe_ep_info = info.get(’episode’)

- if maybe_ep_info is not None:

- ep_infos.append(maybe_ep_info)

- mb_rewards.append(rewards)

+ if not is_opponents_turn:

+ for info in infos:

+ maybe_ep_info = info.get(’episode’)

+ if maybe_ep_info is not None:

+ ep_infos.append(maybe_ep_info)

+ mb_rewards.append(rewards)

+ if not self.dones:

+ env_to_change.self_play_is_second_player =

+ not env_to_change.self_play_is_second_player

+ else:

+ env_to_change.self_play_is_second_player = False

# batch of steps to batch of rollouts

mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)

mb_rewards = np.asarray(mb_rewards, dtype=np.float32)

D Game Field Representations

D.1 Numerical Field Representation

This is a numerical array representation of the current state of a Tetris Link
game board. Every player has two numbers because every block consists of one
special highlighted square and 3 regular squares. The highlight square is required
to be able to count the number of blocks and be able to distinguish individual
blocks from each other when they form a group.

0020440220

1223401200

3444000440

2000003400

1200000220
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2000001200

3444004400

2000003400

1200002000

2000001200

4000002440

3400003420

4000001220

2200000440

1200003400

3444000220

0220001200

1200004400

4400003400

3400001222

D.2 Reinforcement Learning Field Representation

This is a numerical array representation of the current state of a Tetris Link
game board including game state information such as score, available pieces and
possible moves. Every player has two numbers because every block consists
of one special highlight square and 3 regular squares. The highlight square is
required to be able to count the amount of blocks and be able to distinguish
individual blocks from each other when they form a group. After 20 rows the
additional info begins. For details see section 5.2.

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0022000000

0012000000

0122200400

1222004400

0122204400

0400004300

0400003400

0403444404

0301222404
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1222000334

-85-1-1-1-1-1-1-1-1

0455505554

-1-1-1-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1

111111111-1

-11-1-1111111

1111111111

1111111111

111111-1-1-11

11-1111-1111

1111111111

1111111111

11-1111-1-11-1

1111111111

1111111111

1111111111

1111111111

1111111111

1111111111

1111-11-11-11

-11-1-1-1-1-1-1-1-1

D.3 JSON Gamelog

Below is an example of the game log format used for interoperability between
the JS and Rust game implementation. This specific log produces the board
state seen in Figure 7b.

{

"log": [{

"PayloadRolled": {

"from": 1,

"block": 3

}

}, {

"PayloadConsidering": {

"play_index": 98

}

}, {

"PayloadPlaced": {

"from": 1,

"block": 4,

"orientation": 4,
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"x": 0,

"y": 0

}

}, {

"PayloadRolled": {

"from": 0,

"block": 0

}

}, {

"PayloadConsidering": {

"play_index": 68

}

}, {

"PayloadPlaced": {

"from": 0,

"block": 3,

"orientation": 2,

"x": 2,

"y": 1

}

}, {

"PayloadRolled": {

"from": 1,

"block": 0

}

}, {

"PayloadConsidering": {

"play_index": 118

}

}, {

"PayloadPlaced": {

"from": 1,

"block": 4,

"orientation": 0,

"x": 3,

"y": 0

}

}, {

"PayloadRolled": {

"from": 0,

"block": 0

}

}, {

"PayloadConsidering": {

"play_index": 70
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}

}, {

"PayloadPlaced": {

"from": 0,

"block": 3,

"orientation": 0,

"x": 3,

"y": 1

}

}, {

"PayloadRolled": {

"from": 1,

"block": 0

}

}, {

"PayloadConsidering": {

"play_index": 19

}

}, {

"PayloadPlaced": {

"from": 1,

"block": 1,

"orientation": 0,

"x": 2,

"y": 2

}

}, {

"PayloadRolled": {

"from": 0,

"block": 0

}

}, {

"PayloadConsidering": {

"play_index": 9

}

}, {

"PayloadPlaced": {

"from": 0,

"block": 0,

"orientation": 1,

"x": 4,

"y": 3

}

}, {

"PayloadRolled": {
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"from": 1,

"block": 0

}

}, {

"PayloadConsidering": {

"play_index": 25

}

}, {

"PayloadPlaced": {

"from": 1,

"block": 1,

"orientation": 0,

"x": 8,

"y": 0

}

}, {

"PayloadRolled": {

"from": 0,

"block": 0

}

}, {

"PayloadConsidering": {

"play_index": 12

}

}, {

"PayloadPlaced": {

"from": 0,

"block": 0,

"orientation": 0,

"x": 6,

"y": 2

}

}, {

"PayloadRolled": {

"from": 1,

"block": 0

}

}, {

"PayloadConsidering": {

"play_index": 0

}

}]

}
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