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Abstract—Computer simulations have been used to model
psychological and sociological phenomena in order to provide
insight into how they affect human behavior and population-
wide systems. In this study, three agent-based simulations (ABSs)
were developed to model opinion dynamics in an online social
media context. The main focus was to test the effects of ‘social
identity’ and ‘certainty’ on social influence. When humans
interact, they influence each other’s opinions and behavior. In
recent years attention has been paid to how polarization and
extreme opinions emerge within populations, including on social
media. It was hypothesized that the influence of other agents
based on ingroup/outgroup perceptions can lead to extremism
and polarization under conditions of uncertainty. The first two
simulations isolated social identity and certainty respectively to
see how social influence would shape the attitude formation of
the agents, and the opinion distribution by extension. They were
designed to address the flaws of previous models of opinion
dynamics, which were remedied to some extent, but not fully
resolved. The third combined the two to see if the limitations of
both designs would be ameliorated with added complexity. The
combination proved to be moderating, and while stable opinion
clusters form, extremism and polarization do not develop in the
system without added forces.

1. INTRODUCTION

Social influence on social media websites like Facebook
has become a prominent topic as it seems to be a factor
in swaying political opinion. Notably the injection of ‘fake
news’ has been argued to contribute to the development of
information disorders, such as the spread of disinformation,
and the emergence and persistence of polarization and of
extremism (Lazer et al. 2018, Lewandowsky et al. 2012). On
Facebook in particular, information is disseminated differently
from traditional media outlets, as it is negotiated by a network
of “friends” with whom the user has some kind of relationship,
so that one’s social network will affect what information
they are exposed to. Some studies have shown that Facebook
networks, like real-world networks, can be highly segregated
(Hofstra et al. 2017), contributing to the formation of small
groups who communicate among each other with little or no
exposure to contrasting opinions (so-called echo chambers),
which compound the problem of the spread and circulation
of misinformation. There is reason to believe, then, that
social influence itself is a major factor in how information
is distributed in this context.

Social influence is the process by which people adjust their
opinions in some capacity based on their interactions with
other people (Moussaı̈d et al. 2013). This study aims to explore
social influence insofar as social identity and uncertainty
contribute to it. The key aim of this study is to see if these two

factors in a social media communication structure will affect
the extent to which agents are vulnerable to social influence,
which will in turn will affect how they form their attitudes1.
Attitude formation is the process by which an individual goes
from unstable, ambivalent or ambiguous attitudes about a
certain subject to a stable opinion. Once an attitude is formed,
it becomes the standard by which an individual uses to evaluate
the attitudes of others (Sherif & Cantril 1945).

The way attitudes are distributed across a population can
vary. Polarization occurs when two, often conflicting, attitudes
are highly represented. Brexit is an important example of
polarization, showing how these system-wide dynamics have
real-world, large-scale societal implications. Conversely, con-
sensus is when the population agrees on one attitude. An
example of near consensus, according to the Pew Research
Center, is that 95% of Americans think open and fair elections
are at least somewhat important.2 Heterogeneous distributions
occur when people have many different opinions spanning
across the spectrum, resulting in a diverse set of attitudes. For
example, while many Americans believe in health care reform,
there are a myriad of opinions as to the best way to enact it,
according to a number of recent polls.3 These system-wide
dynamics are what will be examined in this paper as possible
attitude distributions.

Humans form groups based on their social identity. In this
study, social identity is operationalized as the set of groups
an individual subscribes to, and includes demographic traits
like gender, race, and nationality but also cultural traits such
as ethnicity, religion, and political affiliation (cf. Abrams et
al. 2006). It is assumed that group structures affect how
information is distributed. Therefore social identity is used as
a variable to see what effect it has on system-wide opinion
dynamics. Uncertainty refers to the confidence with which
an agent holds an opinion, and it is shown to be affected
by group membership (Smith et al. 2007, Hogg et al. 2007,
Hogg et al. 2012). Group membership is an important concept
driving social influence, because people are more likely to
be influenced by those who they consider to have the same
group membership as themselves, or their ingroup. Conversely
those who identify as a different social category are considered

1In the literature, ‘attitude’ and ‘opinion’ are often used interchangeably.
2Pew Research Center, March, 2017, “Large Majorities See Checks and

Balances, Right to Protest as Essential for Democracy”,https://www.people-
press.org/2017/03/02/large-majorities-see-checks-and-balances-right-to-
protest-as-essential-for-democracy/

3Gallup, May, 2019, “Americans’ Mixed Views of Healthcare
and Healthcare Reform”, https://news.gallup.com/opinion/polling-
matters/257711/americans-mixed-views-healthcare-healthcare-reform.aspx
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outgroup members and are less influential (Abrams et al.
1990).

While some models have combined uncertainty and social
identity (Grow et al. 2011), the context of their social inter-
actions are dyadic (an interaction between two agents), unlike
online social networks. Multiadic communication (one agent
communicating to many other agents at once), which is how
information is shared on Facebook, has not been extensively
studied. While fewer studies have modeled online social
networks (Quattrociocchi et al. 2014, Madsen 2018), they
have not take into account the specific factors studied here.
Furthermore, simulations of extremism and polarization often
insert extremist agents into the population, suggesting that
extremism does not arise from the same cognitive motivations
as the rest of the population (Deffuant 2006, Madsen 2018).
In this study, it is assumed that this is not necessarily the case:
it is tested if extremism can arise from these models without
inserting a few agents who perpetuate it with unique behaviors.

The problem of misinformation is widespread and arguably
very dangerous for society. It is estimated that the average
American encountered between one and three fake articles
daily in the month before the 2016 presidential election, with
the vast majority reported being seen on Facebook (Lazer et al.
2018). The fact that Russia has used Facebook as a propaganda
tool for political influence demonstrates the severity of the
problem and the great need for research into helping to un-
derstand the dynamics of how information influences peoples’
attitudes. By doing so, we can develop counter strategies to
these misinformation campaigns.

The reasons people hold opinions are complex, but it is
never in a vacuum. The models developed here focus on social
identity driving ingroup/outgroup perceptions of agents, which
then influence agents attitudes and attitude certainty (Grow et
al. 2011), in order to see how they affect how information
is shared on Facebook. Following, Section 2 will provide
context for this work in terms of previous agent-based models
of opinion dynamics. Subsequently, section 3 will give an
overview of the present study while sections 4, 5 and 6 will
describe the three models developed for this study in detail.
Finally, section 7 is a general Discussion & Conclusion of the
findings from these three models.

2. BACKGROUND RESEARCH

2.1. Modelling Opinion Dynamics

The typical way of modelling opinion dynamics in ABMs
is using a continuous opinion model, where opinions are
represented on a continuous scale (say, between 0 and 1),
and the similarity between any two opinions is defined by
how close they are on the continuum. This allows for social
influence by agent’s pulling (or pushing) each others opinions
along the spectrum through interaction according to the rules
of the model. This continuum represents moderate opinions in
the center, and extremist views on either end (Duggins 2014,
Flache et al. 2017).

When combining social influence and opinion dynamics,
these models have four potentials for distributing opinions:
consensus, polarization, strong diversity or weak diversity.

As mentioned, consensus is agreement on one opinion, and
polarization on two opposing opinions. Strong diversity refers
to the representation of many opinions along the spectrum,
and weak diversity is so-called “opinion clustering”, where
only several opinions are represented (Duggins 2014).

2.2. Abelson Diversity Puzzle

The fundamental problem with this type of representation
is the so-called Abelson’s Diversity Puzzle, which says that
social influence represented on a spectrum with opinions
being pulled towards each other will always lead to consensus
unless there are perfectly separate agents who enact zero
influence on one another (Abelson 1964, DeGroot 1974). In
a highly connected world it is unreasonable to assume that
there are entirely isolated groups of individuals who receive
no influence from other groups (Mäs et al. 2010), so there
must be another explanation for the persistence of a diversity
of attitudes in connected networks like Facebook.

Furthermore, consensus on many issues in large, diverse
groups is empirically not how it works. While consensus can
happen, and is important in certain situations (such as dis-
course among experts), when a large diversity of perspectives
is involved, it can be very difficult to come to (Bohman, 2007).
We can see this with the difference between the scientific
consensus and the public opinion on evolution in the United
States. According to Pew Research, in 2009, while 97% of
scientists agreed on the theory of evolution, only 1/3 of the
public did, with the other 2/3 believing in some form of
creationism.4 Different motivations and perspectives can yield
different beliefs about scientific fact, which if everyone was
motivated by rationalism, would lead to a consensus among
the population. Consensus can even be undesirable if it was
not formed based on mutual interest and rational deliberation,
because people are subject to cognitive errors. Heterogeneous
systems can eliminate cognitive errors in attitude formation by
drowning out possible biases of judgement (Bohman, 2007).
This is particularly salient in the communication structure of
social media, where people receive information from many
different sources whose reliability is questionable. Because
these models are trying to simulate Facebook, where people of
different social identities often do not come to a consensus on
their opinions about a particular issue, the Abelson problem
is one which must be reckoned with.

2.3. Solutions in Modelling

The most prominent and perhaps successful solution to
this problem is the bounded confidence model (Hegselmann
& Krause 2002, Deffuant et al. 2000). Bounded confidence
models assign ‘boundaries’ between what agents can be influ-
enced by who and in what direction. Agents have an opinion
and a threshold (the ‘bound of confidence’) on either side
of their opinion, where if another agent’s opinion is within
this threshold, then it can be influenced, if it is outside, it
can no longer be influenced. Relative Agreement Models are

4Pew Research Center, July, 2009, “Evolution, Climate Change and
Other Issues”, https://www.people-press.org/2009/07/09/section-5-evolution-
climate-change-and-other-issues/
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an augmentation on this, where the amount of agreement
between agents will determine the extent of the influence, and
agents with lower thresholds (equated with less “uncertainty”
surrounding their opinion) will proportionately have more
influence in the model (Deffuant et al. 2000, Meadows et al.
2012). This is taken to be a more faithful representation of real
influence, because influence is proportional to the certainty of
that agent (and not a binary only taking account the distance
of opinion), so that confident agents can be more convincing
despite how different their opinion is from a less certain agent
(Meadows et al. 2012).

There are two major issues with these models. Firstly, if
there is even a slight probability that an agent will influence
another agent outside of its bound of confidence, the system
degrades to consensus (Figure 1) (Kurahashi-Nakamura et al.
2016). Secondly, the clustering of agents are a mathematical
necessity determined by their initialized distance from each
other and agents only interact on the basis of this distance,
which is unrealistically oversimplified even for a reductive
model of human behavior.

Fig. 1. Probability of acceptance outside of bounds of confidence of .0001
will eventually lead to consensus (from Kurahashi-Nakamura et al. 2016).

Another approach is to add a disintegrating force which
pulls agents away from assimilating towards one another. Two
theories of why this could occur are social distancing, where
agents move their attitudes away from dissimilar others (Mäs
et al. 2014), and optimal distinctiveness, where agents strive to
be unique when there are high levels of similarity in a popu-
lation (Smaldino et al. 2012). Individuation is often modelled
using noise, whereby an agent will change its attitude from
other agents with a certain probability. If these are totally
randomized (Kurahashi-Nakamura et al. 2016), stable clusters
will evolve over time. However, while the clusters themselves
are stable, no particular agent holds a stable opinion, because
they are all vulnerable to random opinion change (Figure 2).
As attitude stability is related to attitude strength, this model
presumes all agents attitude strength be dynamic, and does not
account for social factors which could affect attitude stability
(Petty 2014, Tormala 2016).

Following the idea of individuation, optimal distinctiveness
is modelled where agents change their opinion as a function
of the amount of agents who hold a certain opinion. Here,
clustering occurs but they are dynamic (Mäs et al. 2010,
2014). While agents maintain their opinion consistently until
the pressure to individuate is great enough, which in a micro
(individual) level is more consistent than the previous system,
the distribution of opinions is constantly changing. Macro-

level attitude stability is not represented in this construct, and
the clustering amounts to a macro random-walk (Figure 3).

Fig. 2. Opinion Noise: Stable clusters result but any agent has probability (m)
of changing it’s opinion, which is the same for all agents (from Kurahashi-
Nakamura et al. 2016).

Fig. 3. Opinion noise: sufficient pressure (too many agents hold similar
opinions) will trigger disintegration, leading to dynamic opinion changes
which never stabilize (from Mäs et al. 2014).

3. PRESENT STUDY

The models described here are also models of social in-
fluence, but social influence is mediated by social identity
and certainty. This is conceptually driven by the idea that
attitudes are embedded in a social context, and that people
base their attitudes around their social ties (Hogg et al. 2007).
Furthermore, their susceptibility to influence is mediated by
how certain they are, with less certain agents being more
vulnerable to changing their opinion (Tormala 2016), and
social cohesion facilitating certainty (Petty et al. 2014).

Three models were developed for experimentation. In the
first model, instead of agents forming groups because of
attitude proximity (as with the BC model), they will form
groups based on similarity of social identity, following the
identity repertoire construct (Lustick 2000). The second model
takes the BC model as is, but uses certainty as a negotiator
for group formation as well as stochastic noise, to see if this
affects the mathematical rigidity of the original model. Finally,
the two models are combined to see if a combination of them
creates a more faithful representation of attitude formation,
and see what tweaking the parameters of this system results
in. If it is possible for stable opinion clustering to form (that
is, a heterogeneous distribution) given the Abelson Diversity
Problem, can extremism or polarization be modelled by the
design of these models given the variables in question? Each
model is discussed separately in sections 4, 5 and 6, including
their design choices, assumptions and results of experimenting



4

TABLE I
MODEL FEATURES

Bound of
Confidence

Noise Meaningful
Inter-Agent Ties

Micro Cluster
Stability

Macro Cluster
Stability

Hegselmann & Krause yes no no yes yes
Kurahashi-Nakamura no yes yes no yes
Mäs no yes yes yes no
Model 1 no no yes yes yes
Model 2 yes yes no yes yes
Model 3 yes (random) yes yes yes yes

Comparing the models presented here with previous work described. Micro cluster stability refers to the consistency of each
individual agent, so that the overall clusters are not stable but agents are not subject to randomly changing their opinion across
the spectrum. Macro cluster stability refers to the stability of the clusters themselves over time, despite that some agents
may change their opinion at random. Meaningful inter-agent ties refers to group formation occurring outside of mathematical
necessity which is the fallback of the Hegselmann Krause model (discussed above). Other models remove the bound of
confidence but fail to achieve micro and macro cluster stability. Model 3 does use a bound of confidence, but as it is random
it allows for clustering which would not be possible under the typical bounded confidence conditions (Figure 1).

with each, followed by an overall Discussion & Conclusion in
section 7.

4. MODEL 1: SOCIAL IDENTITY

This model relies conceptually on the idea of in-
group/outgroup perceptions, where an agent can only be
influenced by another agent if they are perceived of as their
ingroup. The major challenge in this construct is that, on
average, if the agent’s ingroups are too broad, and contain
too many agents, there is too much influence and consensus
will occur. Conversely, if the agent’s ingroups are too small,
no agent will be influenced and anomie (each agent maintains
their own opinion and it does not change) will result. Further-
more, if the agent’s criteria for someone being a member of
their ingroup is that they share all of their traits in common,
consensus will occur among those agents who share all traits.
In other words, each ‘type’ of agent has a singular opinion.

What is being manipulated here is how many identity
dimensions agents are comparing themselves on (e.g. they only
consider gender, or gender and religion, when determining
their ingroup), and how many possible identities exist within
these dimensions (e.g. three possible religions). The combi-
nation of these two factors determines the composition of the
population, and therefore how diverse it is.

The goal here is to see if there is some combination where
ingroup sizes will facilitate clustering, but not into groups of
agents who share all traits. The major questions here are:
• What population composition will result in stable opinion

clustering? That is, what are the diversity requirements
for the population as a whole?

• What ingroup requirements (if any) will result in stable
opinion clustering? How closed/open must agents be in
determining their ingroup?

4.1. Design

Each agent has a set of identity traits referred to here (and in
the literature) as their ‘identity repertoire’ (Lustick 2000). In
this experiment, this repertoire is a set of arbitrary length, and
the length of the set affects the composition of the population.
Larger identity repertoires, and more options within each
identity dimension will lead to a more diverse population.

This repertoire is the same length for every agent, and it
corresponds to the identity dimensions mentioned previously
(the set of identities agent use to compare each other). If
the identity repertoire length is 3, this could theoretically
correspond to gender, race, and religion.

Within each identity an agent has a corresponding category
(e.g. Christian/Muslim/Jewish), which is indicated as a dis-
crete integer. This means that if two agents share an integer
on one dimension, they are of the same category on this
dimension, but for the purposes of this model, they cannot
switch. The larger the repertoire and the more possible ‘types’
within each repertoire, the more possible combinations for an
individual agent. For example, consider a population which
has an identity repertoire of 2 (they compare themselves on
2 dimensions) and each dimension has 2 categories (0 or 1).
This basic combination means that there are 4 possible types:
00, 01, 10, 11. Agents in this construct may share no traits
in common (00 and 11), one trait in common (00 and 01),
or all traits in common (00 and 00). Whether or not an agent
considers another agent their ingroup is defined by how many
traits they share in common, which is also a variable named
the ‘similarity threshold’.

The model is fully connected to the extent that each agent
is exposed to the attitude of any other. On each time step, a
random agent is chosen to ‘broadcast’ it’s opinion, which is
then received by all agents in the network. If this agent is in a
particular agent’s ingroup, it will be influenced by this agent
to some degree, ku, the ‘influence factor’. If x is an agents
attitude and x′ is the influencing agents attitude, the change
in the agents attitude, ∆x, is calculated as follows:

∆x = x+ ku|x′ − x| (1)

Where x moves towards x′ by the difference between x and
x′ times ku.

The influence factor ku is a modified version of Deffuant
et al. (2006) which includes the uncertainty of the influencing
agent (which will be used in Model 2) and is calculated as
follows:

ku(x, x′, u, u′) = (1− u′)(e−(x−x
′u)2) (2)
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Where u is the agents uncertainty and u′ is the influencing
agent’s uncertainty.

This equation moderates the degree to which an agent will
go towards another agent’s opinion. If the agent is very certain,
ku will be smaller, and the more quickly the graph of possible
influence given the difference between the two attitudes will go
to zero. Also, the larger the distance between the two agent’s
attitudes, the faster the equation goes to 0 generally.

This basic formula will be used throughout the models,
however as mentioned this particular model does not take
uncertainty into account as a variable. For these simulations,
both u and u′ will be set to .5 for all agents and will not
be subject to change as a result of influence. The equation is
then:

ku(x, x′) = .5(e−(x−x
′.5)2) (3)
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Fig. 4. Influence when certainty is set to .5.

Figure 4 shows that agents will go half the distance towards
the other agent as their opinion differences approach 0. As
certainty never changes, this functions to mediate the distance
towards another agent’s opinion an agent will go on any
interaction, where agents who are farther away on the opinion
spectrum will be influenced less, which is consistent with
principles of opinion formation like social judgement theory
(Sherif et. al 1965) and other models of opinion dynamics,
including bounded confidence (Hegselmann & Krause 2002).
This is also consistent but a somewhat modified version of
many influence models, who either use an average of the
two opinions or a coefficient which mediates the degree of
influence proportionately (see Deffuant et al. 2006).

In order to maintain the integrity of the model conceptually
(in terms of the Abelson Diversity Puzzle), agents who are
under no chance of influence are altered. That is, if an
agent does not share enough similarities with any agent to
consider them the ingroup (and therefore are immune to social
influence), their similarity threshold is lowered until they are
ensured to have at least one ingroup member. The result is
a shift in the distribution of agent similarities from a normal

distribution, which happens with a single similarity parameter,
to a linear distribution (Figure 5).

This is important for two reasons. First, the distribution of
nodes in social networks affects how influence is distributed
(Stocker 2002, León-Medina 2019). Many social networks are
known to have a power relationship (Madsen 2018). That is,
there are a few well connected nodes, but the majority of nodes
have much fewer connections on average, known as a scale-
free network (Figure 7). Given the constraints of the design,
this study was unable to duplicate the conditions by which a
real power distribution can be achieved. However, the linear
distribution is an approximation which is facilitated by the
identity repertoire model. Because of the model design, as
long as the relationship between what agents consider their
ingroup reflects the power distribution more than the normal
distribution, opinion clusters result while still maintaining a
connected network. Secondly, this redistribution results in a
network which looks more like an actual online social network
(Mislove et al. 2007). Figure 6 shows a typical Facebook
network which results from scale-free networks, where may
people have a small number of connections and a few have a
dense number.

Note that the information being exchanged is random and
equal, that is, no particular agent takes precedence or has more
opportunity to broadcast, so that the resulting clusters could
be compared to an unbiased system. This is important for
further experimentation in injecting other variables, but also in
seeing to what extent ingroup/outgroup perceptions contribute
to clustering on their own without positive feedback loops.

4.2. Results
When agents must share all traits in common to be con-

sidered an ingroup, stable opinion clusters occur. They are
essentially small consensus islands whereby each type of agent
is excluded from influence from any agent who does not share
all of their traits. This is not only an artificial barrier which
does not contribute anything new to the opinion dynamic
problem, but also empirically people do not agree categorically
with others who share all of their identity traits. That is, the
overall opinion landscape is not divided into subgroups who
entirely agree with people who are exactly like them, and are
unable to be influenced by those who are not, the reality is
a bit more nuanced. However, as with the Abelson Diversity
Problem, in populations which are not sufficiently diverse, if
agents consider anything less than sharing all traits in common,
the population will converge to consensus (Figure 8).

The solution to this, then, is to increase the identity reper-
toire and the complexity of each dimension, and to find the
optimum number of traits by which agents compare each
other and see what the resulting opinion clusters are. There
are only a few scenarios which create any semblance of
a reasonable amount of clustering, or a balance between
consensus and complete anomie (Figure 8, 9). The diversity
has to be large enough whereby there are no ‘types’ for agents
to separate into, so that they form groups with others based
on overlapping, uncorrelated traits.

The problem with this system is that it is not realistic. Hav-
ing one similarity threshold for basically the entire population
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Fig. 5. Distribution of the amount of connections for each node.

Fig. 6. One particular Facebook network, has clusters of nodes with small
connections to other clusters of nodes.

is not how people identify their ingroups, some people are
more or less open than others. There are no ‘rigid’ rules as to
how people choose to identify with each other, and on what
grounds. If the amount of similarities is loosened in either
direction, or the threshold is randomized, the result is either
anomie if it is too rigid, or consensus if it is too open or
random.

It is hoped that by adding other variables, the rigidity can be
loosened and a more realistic system develop. There are many
other factors which could affect how influence works are not
taken into account in this model. For example, conformity is
the tendency for humans to be influenced by large groups of
people who agree with each other (Asch 1956). Here, agents
will be influenced equally by anyone in their ingroup, whether
or not other members of their ingroup also agree with them. If
agents were influenced proportionally to the amount of their
ingroup who hold an attitude, this would make this model
less simplistic. Therefore, it is encouraging that at least under
very limited circumstances, identity and affiliation itself can
have some effect on stable opinion clusters, supporting the
assumption that social identity explains some of the many
possible factors in attitude formation.

Fig. 7. (Top) Scale free network vs random network. (Bottom) Node
distribution of scale free (power) and random (normal) networks, compare
with Figure 5.

5. MODEL 2: CERTAINTY

This model is based directly on the bounded confidence
model, but this study does not claim to resolve the prob-
lems with the BC system, where small random amounts of
acceptance outside the threshold creates consensus, as with
the Abelson problem. Instead, it is to modify the Bounded
Confidence construct, which by design deterministically has
agents cluster by nearest ‘acceptable’ neighbors, creating
stable opinion clusters as a mathematical necessity. By in-
troducing certainty, it is hoped that the diversity of sources of
information circulating in the system will affect the quality
of these clusters to create a more realistic set of opinion
dynamics. “More realistic” means specifically:
• A system where the diversity of information being circu-

lated affects the overall certainty of the system, and the
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be a bit higher than 50% to avoid monoculture.
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Fig. 9. Clustering occurs when the diversity is higher, and the requirement for
similarities is relatively high. Type clusters occur at strict similarity require-
ments (100%), with low levels of diversity. Typically, similarity requirements
below 50% will lead to consensus, although requirements as high as 75% can
lead to consensus in low diversity populations.

length of time for the system to stabilize.
• A system which agents do not cluster according to their

“uniform” distribution as with BC models.
The certainties of the agents will be negotiated by the source

of the information being broadcast (whether it is from their
ingroup or their outgroup), so that it is the exposure to infor-
mation which makes an agent more or less certain (Visser et al.
2004). The reason this is important in studying social influence
in identity is that in moments of uncertainty, people default
to the opinions of others (Smith et al. 2007).5 This tendency
facilitates misinformation, because when an individual defaults
without question, their beliefs can be reinforced by others
regardless of the validity of that attitude, or the consequences
of believing it (Moussaı̈d et al. 2013).

5Classical studies in psychology have also long confirmed this tendency.
See Sherif(1936) for social norms, Festinger(1954) for social comparison
theory, Asch(1956) for conformity, Schacter(1959) for affiliation and Turner
& Hogg(1987) for social categorization theory. For a summary see Smith et
al. (2007, pg 770).

While there have been many opinion models based on cer-
tainties of the agents and how this affects influence, the results
are not emergent properties of individual agents who have the
same “cognitive” motivations, but manufactured results from
specifically designed populations. For example, many studies
on extremism seed their populations with “moderates” and
“extremists” (Deffuant 2006, Madsen 2018). These extremists
have a higher certainty than moderates, which ultimately ends
in polarization. This logically follows from the rules of the
diversity problem, because agents with higher certainties will
draw less certain agents, and those who are closer to this
agent on the spectrum will categorically be influenced by it,
resulting in polarization. So finally, this model hopes to see
if a system where all agents have the same set of tools for
influence (i.e. no agents are “more certain” by makeup) can
result in stable majority/minority opinion clusters, or indeed
extremism or polarization.

5.1. Design

In this model, agents still broadcast their opinion at random,
but their opinions can change randomly based on their cer-
tainty. Certainty is a number between 0 and 1 which describes
how committed the agent is to the opinion it holds. Low
certainties allow for a greater likelihood of random opinion
change, or noise.

Two principles are borrowed from Grow (Grow et al. 2011)
which are drawn from psychological research and used in their
model on certainty and social influence:

1) Certainty is inversely related to the ability to be influ-
enced.

2) Certainty is directly related to the amount of agreement
among peers (social consensus).

Equation 1 ensures that agents who are more certain will be
less influenced by agents whose opinion is farther from them
on the spectrum, thereby fulfilling principle 1 (Figure 10).
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Fig. 10. As the certainty of x increases, the influence factor drops quickly to
zero as the difference between their opinions (|x− x′|) increases. For lower
certainties of x (0.0 -0.4), even if the difference between them is 1.0, they
will still be influenced to some degree.

Principle 2 describes the process of certainty changing as a
result of the (non-linear) interactions among agents. Therefore,
it was fulfilled using a series of coefficients which change the
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certainty of the agent depending which agent is broadcasting
at a particular time step:
• If an agent broadcasts, its certainty increases. This means

agents will not broadcast an attitude held in uncertainty,
and that voicing an opinion is related to being more
certain (Tormala 2016, pg 6).

• If an agent receives information (i.e. is not broadcasting),
its certainty changes relative to the agent who is
broadcasting:

– If the broadcast comes from an outgroup, certainty
will decrease by a small amount. This supports
ambivalence coming from contrary information. This
model does not take into account distancing forces,
which suggest negative influence (Mäs et al. 2014),
or moving away from opinions of the outgroup.

– If the broadcast comes from the ingroup, certainty
will increase if the agent agrees with this
information, or the agent changes their mind and
adjust their attitude with respect to this information.
If the agent does not adjust their attitude, their
certainty will decrease with contrary information.
This is consistent with, when confronted with
contrary information from a trusted source (the
ingroup), it will make one less certain of their own
ideas, but social consensus will make one more
certain (Johnson 1940, Tormala 2016).

TABLE II
RECEIVING BROADCAST WEIGHTS

Ingroup Outgroup
Change Attitude (1)µ = +1 (2)µ = −.01

Agree Disagree (5)µ = −.01
(3)µ = +1 (4)µ = −1

Values of µ for each possible scenario of receiving
information. (1) If an agent changes its mind it can only
do so if the broadcast is from the ingroup. (2)(5) A small
change happens from not agreeing with your outgroup
which makes the system less stable the more opinions
are broadcasted. (3)(4) The weight of not changing an
attitude is equal but opposite whether you agree or disagree.
This supports agreement, and means groups will have a
collective raise in attitude the more closely they agree with
one another. Groups are punished if they do not agree, so
the larger majority is dismantled if there are more opinions
within the ingroup(4).

All of these results have a population of 100 agents and
are measured first with a uniform starting certainty of .5. The
reason for this is twofold: first, if agents all begin with the
same certainty the resulting groupings will not be affected by
the initial state and second, .5 certainty will ensure the system
begins in a state of enough certainty that noise will not take
over and equilibrium can be reached.

To adjust certainty as described above, agent x with uncer-
tainty u adjusts its certainty at each time step as follows:

u(t+1) = u+ εµ (4)

TABLE III
BROADCAST WEIGHTS

Change Attitude µ = 1
Do Not Change Attitude µ = .01

Broadcasting has a higher weight
when the agent changes their mind,
supporting the idea that to express
a contrary opinion means one is
more certain. Attitudes which are ex-
pressed generally get a small change,
meaning certainty increases over
time.

Where ε = .01, and µ varies depending on the communi-
cation. ε is a measure of the speed of certainty change, and
has been chosen as .01 for practical purposes of simulation
duration (ε varies with the number of agents and is calculated
by the percent of the population of a single agent, with a
population of 100, this is 1% or .01). µ is a weight value that
when varied promotes different dynamics in the simulation
(Tables 2 and 3).

Finally, agents with low certainty can change their opinion
at random with a probability defined by the following equation,
which is a function of the agent’s uncertainty u:

p(u) = (ue−(1−u))2 (5)

Which results in Figure 11 and is determined by a probability
event.
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Fig. 11. The probability of change goes towards 0 as certainty increases.
Probability is .17 when the certainty is .5 (initial certainty). For clarity
certainty is used here, which is equal to 1-u in the equation above.

5.2. Results

The resulting system is one where the “pressure to conform”
is high enough that extremism, and indeed small groups in gen-
eral, can only persist in situations which have a diverse enough
opinion cluster that majority pressures do not overcome small
ingroup stability. That is, since large groups of agents are
consistently confirming each others opinions, if they are large
enough they will destabilize small groupings. The stability of
cluster formation, then, is related to the number and population
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of each opinion group, which is consistent with the literature
on social groups and attitude certainty (Petrocelli 2007).

First, an information space where certainty (on average)
is less given the amount of information being circulated is
demonstrated in Figure 12 and 13. To start, Figure 12 shows
simply the more clusters the longer the system takes to stabi-
lize, with a Pearsons correlation of .49 (moderately positive).
Figure 13 shows that average certainty after 100 stable runs is
significantly smaller given a larger amount of clusters, which
demonstrates that more information in the system leads to
less certain agents overall (more clusters = more attitudes).
This trend diminishes after longer runs, but this is because
for a cluster to be stable, the average certainty is always
increasing, if the average certainty were always decreasing,
the cluster would be vulnerable to random opinion change
and would no longer remain stable. Furthermore, the certainty
increasing over time when unchallenged is considered a feature
of certainty under normal conditions (Petrocelli 2007, Tormala
et al. 2009). Given this stage is a random expression of
opinions which eventually stabilizes, it suffices to use the first
100 runs as an indication of the uncertainty a diversity of
information causes in the system.
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Fig. 12. Time until equilibrium is reached and number of clusters at
equilibrium. Each dot represents one simulation run.

Figure 14 may seem to contest Figure 13, because the
average certainty for large clusters (meaning less clusters
overall), is higher than smaller ones, therefore small numbers
clusters would have high certainty average and it is not a
feature of the information being circulated. However, Figure
14 is the average of each cluster based on it’s population at the
moment the simulation has stabilized for 100 epochs, while
Figure 13 is average certainty over the course of 100 epochs.
Figure 14 shows that the certainty of agents on average is
based on the size of the cluster, which is desirable for this
model, because we want to reinforce group formation, and
then see what happens when we disrupt it.

6. MODEL 3: COMBINATION

This model is a combination of the two former models.
It is hoped that combining both can resolve issues with the
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Fig. 13. Average certainty of clusters over the course of the simulation. Each
dot represents one simulation run.
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Fig. 14. Average certainty at the moment of stabilization. Each dot represents
one cluster.

previous by virtue of its complexity, and produce a less rigid
model by employing both certainty and identity.

6.1. Design

This model uses all of the former methods, running es-
sentially in parallel. Here, however, the similarity threshold
was able to be lowered to less than 50% similarities, and the
difference tolerance (essentially the ‘bound of confidence’),
will also be randomized between 0 and 1. This creates a
heterogeneous population of more and less ‘open’ agents
who nevertheless operate by the same basic rules as the
previous implementations. Heterogeneity is a desirable feature
in agent-based models generally in that it is more reflective
of human populations (Epstein 2006). Also, ‘relaxing’ the
strict parameters required in the first models addresses the
limitations of those models in hopes that this simulation will
produce clustering with less rigid restrictions.

Due to this heterogeneity, however, an asymmetry of in-
group relationships occur, which it did not in the previous two
models. This is because each agent has different requirements
for what it considers its ingroup, based on its ‘openness’. The
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result, when using the basic parameters of µ listed above,
is the inability for the system to reach equilibrium for any
agent who has an asymmetrical ingroup construct. While
exposure to a diversity of opinions does produce more attitude
ambivalence (Visser 2004), having a large amount of agents
constantly shifting their opinion towards any possible influence
demonstrates the limitations of the design.

In order to minimize this, three weight measures were
added: conformity, ranking, inertia. The conformity weight is
simply a measure of what percentage of the agent’s ingroup
agree with the broadcast (including the broadcast agent itself).
Ranking takes into account the percentage of similarities the
agent shares with the broadcasting agent, with the most similar
agent in the ingroup having a ranking of 1. Ranking is based
on prominence, which is the importance a given agent puts
onto each identity (Grant et al. 2012). Each identity has
a “prominence”, and adding all of these together for one
agent is 1, making an identity a percentage of the overall
repertoire. Conformity and ranking are multiplied by µ so
that the broadcasts with low ingroup agreement and low
identity similarity will have less effect, and those with high
ingroup agreement and high identity similarity will maintain
a positive feedback loop. Finally, inertia is a positive measure
of how many times an agent has been influenced, making the
probability of influence slightly lower over time. This means
agents with large ingroups who change their mind often are
encouraged to find equilibrium.

Since this simulation is essentially unbiased, that is, agents
broadcast information at random, and no outside influence is
injected, it is interesting to see if extremism can emerge in the
system itself (endogenously). As described in Model 1, the
structure remains important here in the potential emergence
of extremism within the system. It is the combination of
uncertainty and small connections which facilitate the lack
of influence and amount of noise which allows for extremism
to develop. Agents with high amounts of connections express
higher level of uncertainty (as is consistent within the liter-
ature, see Visser 2004), but because of the large amount of
influence, the likelihood of extremism is low. On the other
hand, agents with low connections are more likely to become
certain because of a lack of conflicting messages and are
unlikely to change their opinion (possibly towards the extreme)
as well as to be influenced by those who do. Therefore,
the only kind of agent vulnerable to extremism are those
who have less connections (and less likelihood of moderating
influence) but who are connected to other uncertain agents,
thereby increasing the likelihood of noise and movement of
their opinion outside of the moderate majority.

6.2. Results

As expected, the relaxation of the parameters from the
first two models allows for stable clusters in this iteration.
Namely, the amount of similarities required for agents to be
considered ingroup members could be lowered to less than half
of the repertoire length. Formerly, this would lead to consensus
inevitably, however, because of the added difference threshold,
this would be resisted. The difference threshold can also be

flexible, and is initialized at random between 0 and 1 for each
agent, which would have lead to consensus in Model 2. This
combination of these two models, then, successfully allows
for a relatively more realistic representation of identity and
certainty, while still maintaining stable clusters over time. This
is significant, because it suggests that adding variables on top
of each other can provide solutions to the Abelson Diversity
Problem without adding a disintegrating force.

The simulation gives rise to extremism, but by and large
only if there are agents which are initialized as extreme. This
would imply that a system can become extreme when an
extremist is inserted, but does not say anything about the
system being able to produce extremism. In order to test
this, agents were initialized with attitudes considered moderate
(between .2 and .8), and the resulting population of extremists
was found once the system arrived at equilibrium (Table 4).
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Fig. 15. Johnson factor for different values of λ (β = 1).

The system in itself, then, does not lead to extremism in any
meaningful way due to large pressures towards moderation
by the majority of agents. To push the system to its limits
and determine if there are conditions whereby polarization
or extremism can be produced with an initially moderate
population, another parameter was experimented with. Named
the Johnson factor, it is based on a theory by Donald Johnson
in his 1940 paper Confidence and the Expression of Opinion,
postulating that extreme attitudes tend to become confident
because they are able to reject more opinions which are farther
away from their own than those who hold more moderate
opinions.

To test this, the Johnson factor was included, which moder-
ates the certainty of agents on any broadcast (see (2)(5) Table
2). Instead of the confidence decreasing by εµ (µ is negative
here) in the event of an outgroup broadcast, certainty will
decrease by the Johnson factor j, which is defined by the
following equation:

j(x, x′) = β(2 ∗ e−λ(x−x
′)2 − 1) (6)

Where x is the agent’s attitude and x′ is the broadcasting
agent’s attitude, β is a scaling factor determining the magni-
tude of j and λ is a variable describing at what threshold of
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TABLE IV
10 RUN AVERAGES FOR DIFFERENT ATTITUDE RANGES

Initial
Attitude
Range

Initial
Extremist
Population

Final
Extremist
Population

Difference Final
Average
Extremist
Certainty

Initial
Mean/
Standard
Deviation

Final Mean/
Standard
Deviation

Difference

(1) 0-1 38.3 23.8 -14.5 0.80 0.495/
0.281

0.510/
0.215

+.015/-.066

(2) .2-.8 0.0 2.3 +2.3 0.27 0.493/
0.169

0.496/
0.124

+.003/-.045

(1) With initial extremists and (2) Without initial extremists (extremists as being defined by attitudes < .2
or > .8). (1) The population of extremists declines when there is an initial population of extremists, which
is evidence for the moderating trend produced by the design. However, some extremists are able to remain at
equilibrium, and their average certainty is high enough (.80) whereby noise will not destabilize the clusters. (2)
When there are no initial extremists, some will remain at equilibrium, however their average certainty (.27) is
low enough whereby noise will destabilize the clusters as the simulation continues. As the mean remains at
around .5 for both scenarios extremists are distributed on either end of the opinion spectrum so no extreme as
taken precedence, but the standard deviation does diminish slightly, also demonstrating the moderating pressures.

attitude difference there will be zero change in certainty (the
x-intercept in Figure 15).
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Fig. 16. Extremist population for values of λ. λ = 3 is the ideal value for
producing large amounts of extremists given β > µ.
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Fig. 17. Certainty of extremists for values of λ. For all values of β, 2 < λ < 5
allows for stable extremist groups.

Higher values of λ result in smaller differences being
required to increase confidence, and reaches a limit of about .1

difference (which is relatively small), in order for confidence
to be increased. Where λ = 0, µ remains unchanged and the
simulation runs as before. The resulting values for running
simulations with each value of λ can be seen in Table 4.

Figure 16 shows that the extremist population increases until
λ = 3 for all values of β which were tested. As λ gets larger
than 3, the difference required to increase certainty is much
smaller, and the certainty of the population rises proportionally
despite whether the agent’s opinion resides in the extremes.
For λ >= 5, this is about a difference of 1.5, meaning that
many agents will have a difference of opinion which is larger
than this. In these cases, certainty increases for all agents and
there is not enough uncertainty to produce the noise required
for agents to become extreme. Interestingly, larger values of
λ actually safeguard against extremism. As β goes towards
.0001 it is approaching the original µ, which means it has a
very small effect and results in small amounts of extremists
due to a slightly lower uncertainty.

While there are extremists for 1 < λ < 3, Figure 17 shows
that the average certainty is < .2 for all values of β. When λ <
3, the difference required for an increase in certainty is > .8
(Figure 15), which unless agents are on either extreme of the
spectrum, will have no positive effect on certainty (j > 0). In
this case, unless β = µ, the system becomes too uncertain and
will never reach equilibrium. For all values of β, the optimal
value of λ is 3. According to Figure 15, this is a difference
of at least .3 in order to increase confidence. Figure 18 shows
that all values of β will produce a large standard deviation at
λ = 3: .35 when the mean is about .5 at the start. That suggests
the average agent sits at .85 or .15, meaning there are very
few moderate agents in this scenario. The moderating forces of
the original are present when β approaches µ as the standard
deviation falls below zero.

7. DISCUSSION & CONCLUSION

The main questions of this study were, are the variables of
social identity and uncertainty able to affect social influence
and result in complex opinion dynamics (including extremism
and polarization) as observed in online social networks such as
Facebook? Furthermore, given the constraints of the Abelson
Diversity Puzzle, do stable opinion clusters form?
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Fig. 18. (left) standard deviation at equilibrium (right) difference between initial and final standard deviation.

Model 1 demonstrated that social identity is able to produce
stable opinion clusters as long as the amount of connections is
limited and the population is somewhat diverse. Model 2 did
successfully allow for certainty to be negotiated by ingroup
size, and therefore added a level of complexity to the rigidity
of the bounded confidence model. This supports the theory that
certainty is a negotiator of group dynamics, as is suggested
by the literature, and this basis for a model could be used
for further investigation of these concepts (see uncertainty
identity theory as described in [?] pages 943-45). Model 3
demonstrated that while clustering occurs, moderating forces
are strong, and extremism or polarization do not result from
the system alone. One option was experimented with to see
if extremism resulted, showing the virtues of the design of
Model 3 as a testing ground to isolate variables outside of
social influence and certainty. The aim of this research is not
to systematically test other theories, but it is hoped that the
results of this experiment suggests the potentials of the model
design.

Ultimately, given the Abelson Problem, these models
demonstrate that opinion distributions other than consensus
can exist in systems where everyone is connected. That is,
since Facebook is not a network where everyone agrees on
one opinion, these models are successful to the extent that
they were able to reproduce a myriad of opinions on a macro
level, while maintaining influence connections between groups
of agents. Because of this, social identity and certainty can be
considered possible explanations for the formation of social
connections, and for how people are influenced by others.

Therefore, these models can tentatively say that if Facebook
facilitated an open broadcast of opinions open to all members
of the network, it seems to have a moderating effect overall.
Encouraging open information exchange, where people are
exposed to many diverse opinions, could help to mitigate
information disorders, as has been observed in offline social
networks [?]. As the messages in these models are all weighted
equally, that is, no message is more persuasive than any other,
it is hard to extrapolate these results to include things like pro-
paganda. Considering these factors would be a fruitful starting
point in future research and could be possible contributors

in polarization and extremism, as well as other information
disorders.

There are several reasons why the design and results are
not completely descriptive of the effects of social influence
on Facebook. For example, Model 1 does not allow for
similarities between agents which are flexible and less than
half of the identity repertoire. This is due to the constraints of
opinion dynamic models with regard to the Abelson Diversity
Problem. Nevertheless, the attempts to reconcile this problem
were somewhat successful. The fact that Model 3 allowed for
the relaxation of both the bound of confidence principle and
the similarity threshold is very encouraging, and suggests that
the interaction of these factors is a fruitful starting point both
with regards to agent-based model design, and a possible factor
in swaying opinion dynamics in the real world.

A key future challenge for all three models is comparison
with real-world data. Indeed, the veracity of the models
themselves cannot be confirmed without this, even though on
an abstract level it can be concluded that they succeeded to
reproduce macro-level trends of opinion diversity (i.e. avoiding
consensus). A thorough collection of relevant data, either from
mining the Facebook API (which is limited due to privacy
restrictions) or by gathering it via an application, was beyond
the scope of this present study. Given these results, though,
follow up research focusing on empirical data and using the
modeling methods outlined in this paper would be beneficial
to further examining the results and moving forward with
more complex models. Nevertheless, this process of building
systems and combining them appears to be a sufficient method
for exploring the effects of the factors described here in
isolation, and could be used to test other possible interacting
variables in the psychology of attitude formation.
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