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ABSTRACT
Age estimation from facial imagery has been an active
research field in the domain of computer vision for
many years and various methods have been proposed
to encode facial features and map them to age. Those
facial feature encodings can be hand-crafted or deep-
learned, where the latter relies on Convolutional Neu-
ral Networks (CNN) which are able to automatically
learn image descriptors from labeled training data. In
this work, we present a comparison of different CNN
architectures that have previously been applied to the
task of age estimation. Furthermore,wepropose amulti-
step fine-tuning procedure during which we train the
models on a large number of training examples, while
overcoming the commonly faced issue of label noise
in large-scale aging datasets. Using this method, we
achieve competitive performance on the FG-NET-AD
and Adience benchmark datasets.

1 INTRODUCTION
The human face can be considered the main biometric fea-
ture used by humans to identify a person [25]. Besides that,
several important attributes may be instantly derived from
the human face, such as gender, ethnicity or age.
At the same time, more and more systems rely on the

automatic extraction of facial information. One could think
of face recognition and identification systems in modern
smartphones as one of the most prominent examples. These
systems encode facial features of their users into a unique
identifier used for authentication purposes. Such facial fea-
tures, however, can provide further information about a per-
son. More precisely, they can be linked to demographic at-
tributes. The amount of wrinkles on a face, for example, can
give information about a person’s age [28].
The present work presents a system for automatic age

estimation from facial imagery using Deep Convolutional
Neural Networks. Estimating age from facial imagery has
been a prominent task in the field of computer vision for
decades [8, 13, 17, 28, 39] and remains challenging. This is not
only because of individual differences in the aging process,
but also due to the complex computational tasks required to
perform such analysis on facial imagery. That is, given an
image as an input, the system has to 1) detect and locate a
face, 2) construct a representation of the facial features and
3) make the age prediction based on these encoded features.
Representing facial imagery has been approached in var-

ious ways and spans from using facial measurements [11]
or micro-patterns [1] to more complex methods such as us-
ing deep-learned facial image descriptors [29]. The latter

has proven especially useful for dealing with unconstrained
image data. This includes images that are taken under uncon-
trolled conditions, also referred to as in-the-wild imagery,
and stands in contrast to constrained imagery, where face
images have usually been taken under optimal conditions
and in frontal view [32]. Especially for real-world applica-
tions, it stands to reason that systems need to be capable to
appropriately deal with noise and variation in the input data.
In this light, we evaluate our system on constrained, but also
on unconstrained face image datasets.

Moreover, we make the following contributions:

• We compare multiple Convolutional Neural Network
architectures for their ability to represent facial aging
features.

• We propose a novel, multi-step network training pro-
cedure using most recent face image datasets.

• We test different classification and regression models
for their effectiveness onmapping facial image features
to human age.

• Benchmarking against several state-of-the-art meth-
ods, we achieve second-best performance on the FG-
NET Aging Database [34].

• We investigate the learning behavior of the Convolu-
tional Neural Network models and present a qualita-
tive assessment of the facial features relevant for age
estimation.

Possible applications for an automatic age estimation system
are manifold. Conceivable in this regard are for instance ac-
cess control mechanisms; i.e. checking a person’s age before
giving access to age-restricted areas, either in the virtual or
physical space. Another application could be in the field of
internet governance, including for example the detection of
underage persons in digital image or video content. Espe-
cially in such a context it is important that the age estimation
system can efficiently deal with unconstrained imagery as
previously explained. Furthermore, it has to be able to esti-
mate age across all age groups, and show a high recall when
it comes to detecting minors.
The paper is organized as follows. Firstly, we give an

overview of historical and current methods for representing
face imagery, thereby setting the context for our proposed
system (Chapter 2). Next, we provide a review of publicly
available aging datasets and the datasets used in this work
for model training and evaluation (Chapter 3). Chapter 4
provides information on feature encoding and the age es-
timation model. In the remaining chapters, experimental
results are presented and discussed.
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2 RELATEDWORK
In general, age estimation models are based on either hand-
crafted or automatically learned feature representations. That
means the face image has to be processed in such way that
relevant facial features are extracted, while this extraction
can be done manually, i.e. based on a predefined set of rules,
or automatically, i.e. based on a deep learning algorithm.
Subsequently, these features are used to fit statistical models
for age group classification or ordinal age estimation, respec-
tively. Furthermore, facial features can be divided into global
and local features, where the former describe facial texture
and shape and the latter refer to partial face regions such as
wrinkles, hair or eyes. Both global and local features need
to be considered for age estimation since they both give in-
formation about a person’s age. That is, facial shape mainly
changes during childhood and youth and only slightly during
adulthood [36]. This stage is instead characterized by texture
change, such as changes in skin color or elasticity [13]. An
effective age estimation system therefore needs to consider
both global and local features and their respective relevance
at different ages stages [3]. In the following sections, selected
methods for feature extraction and representation will be
presented, with special emphasis on deep learning-based
methods.

Hand-crafted Feature Representations
The first approach to representing face images in the con-
text of computational age estimation has been presented in
the form of Anthropometric Models [28]. These models are
mainly concerned with measurements or proportions of the
human face [11]. Kwon & Lobo [28] implemented such a
model by detecting facial features such as eyes, nose, mouth,
chin, top and sides of the face. Based on distance ratios be-
tween these landmarks, they were able to distinguish child
faces from those of adults and seniors. To refine the classifi-
cation, they further constructed a wrinkle model in which
they detected and measured wrinkle patterns, enabling them
to discriminate senior from child and adult faces. Fusing
these models resulted in a system capable of classifying fa-
cial images into three age classes, that is, as long as these
images are taken in frontal view, due to the sensitivity in
their geometrical computation method.
Another shortcoming of Anthropometric Models is their

focus on facial shape, while at the same time missing impor-
tant information gained from texture. In order to efficiently
detect texture variation, further descriptors have been intro-
duced, most notably Local Binary Patterns [1] and Biologi-
cally Inspired Features [19]. The idea of using Local Binary
Patterns for face description is based on the fact that faces
can be seen as a composition of micro-patterns. Thus, these
micro-patterns and their frequency of appearance can be

used to construct a global description of a facial image and
can furthermore be linked to age [18]. Biologically Inspired
Features, on the other hand, present a more sophisticated
representation of a facial image by first feeding it through
a layer of Gabor filters and then through a pooling layer,
where the pooling operation results in the model being more
robust to small variation in rotation or scale [19].

Another commonly used model for representing face im-
ages is the Active Appearance Model which represents a
combination of models of both face shape and (gray-level)
texture variation, that is the intensities of all pixels within
the target object or face [8]. While Active Appearance Mod-
els consider both texture and geometric information, they
also rely on a large number of training examples in the form
of face images annotated with facial landmarks. Furthermore,
dimensionality reduction leads to the loss of sensitive infor-
mation, as fine-grained facial features might be discarded in
that step [20].

With the availability of large scale age datasets, Age Man-
ifold has been introduced as another representation method
for face imagery [14]. Using this method, sequential patterns
in facial aging are represented in a low-dimensional mani-
fold. Age Manifolds can be considered an extension of the
Aging Pattern Subspace [17], in that they aim at finding a
common aging pattern rather than a specific pattern for an
individual person.
Besides method-specific shortcomings, there is another,

general disadvantage to manual feature extraction from fa-
cial imagery, as they all rely on images taken under con-
trolled conditions and therefore do not apply well to un-
constrained, in-the-wild face image data [47]. Furthermore,
making manual choices always requires domain-specific ex-
pert knowledge, i.e., on facial aging processes. Lastly, each
method tends to extract a specific kind of information from
the images at the expense of others. This might explain the
relatively strong performance of highly complex models that
use multiple feature representations in a combined manner
[30, 31].

Deep-learned Feature Representations
Given the restrictions of hand-crafted feature representa-
tions, it has been proposed to use Convolutional Neural
Networks (CNN) for facial image analysis. A CNN is a type
of artificial neural network that can learn representations
of the spatial structure of multi-channel images. Their very
large number of network parameters must be learned from
training examples, equivalent to the learning procedure as
understood in the context of Multilayer Perceptrons [41].
Historically, the lack of sufficient amounts of training data as
well as the absence of readily available computational power
has formed a barrier in creating models capable of complex
computing tasks such as object recognition. However, this
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Figure 1: Example of a convolutional operation.

Figure 2: Illustration of a convolutional layer.

has changed with the availability of Graphics Processing
Units and the introduction of a CNN capable of classifying
the 1.2 million high-resolution images in the 2012 ILSVRC
contest, while reaching superior performance to every pre-
vious method [27].

Convolutional Neural Networks perform convolutional
operations. This means, instead of learning separate weights
per input feature, they learn weights which are shared over a
local region. Hence, if the network is presentedwith an image
as an input matrix, it keeps the image’s spatial information
by not considering each pixel separately, but by taking into
account their spatial neighborhood. This operation, which
is illustrated in Figure 1, is carried out by kernels that move
over the input image and it is repeated for each pixel loca-
tion. The kernels can be viewed as feature detectors and are
learned by the network. Each kernel performs a different
kind of operation on the input image and thereby extracts
different information from the input image. Ultimately, a
set of feature maps is created in each network layer, and
their output is maximized when corresponding structures
are found in the input; see Figure 2 for a visual representation
of a convolutional layer.

As the number of convolutional layers increases, their out-
put is passed through nonlinear transfer functions. Further-
more, output maps are downsized using pooling techniques
before they are finally transformed into a one-dimensional
feature vector. This feature vector is fed into fully connected
layers which map the learned features to the desired output.

In the field of age estimation from facial imagery, CNN
models have shown significant improvement over previous
methods. For instance, the authors of [29] proposed a rel-
atively simple architecture that performed very efficiently
on age group classification from an unconstrained dataset.
Xing et al. [44] employed a deep multi-task which estimates
age based on simultaneously classified race and gender at-
tributes of the subject. In both cases, CNN models were
trained from scratch on the target task and dataset. However,
deep learning-based models usually require a large dataset
to learn appropriate feature representations and they usually
suffer from insufficient training data.
Against this background, it is not surprising that more

recent approaches applied transfer learning, where the CNN
learns image representations from large-scale datasets such
as Imagenet [33]. These image descriptors were shown to
have sufficient representational power to be applied in other
areas and even to fine-grained visual classification tasks,
where distinctive class features might be difficult to analyze.

In that context, Rothe et al. [40] proposed a solution using
a VGG-16 CNN pre-trained on a generic object recognition
task and deployed by the authors of [43] as a base model
which was then trained on a specialized age dataset. They
furthermore showed that the age can be efficiently estimated
as the expected value of all output activations.
Their approach has been extended and improved by An-

tipov et al. [2] who pre-trained their CNN model on a face
recognition and thus on a more related source task than
generic object recognition. They furthermore used label dis-
tributions as age encodings, as initially proposed by the au-
thors of [16], thereby further enhancing estimation accuracy.
Duan et al. [9] propose a rather complex three-level sys-

tem including feature extraction via different CNN models,
followed by feature fusion, age grouping via an extreme
learning machine (ELM) classifier to achieve a more narrow
age range and, lastly, age estimation via an ELM regres-
sor. Their CNN models were trained using different targets,
namely age, gender and race class, respectively. The main
idea is that age estimation improves if features related to age
are merged with those related to gender and race. All CNN
models were initialized with pre-learned parameters, similar
to those presented in the work of Rothe et al. [40].
Most recently, the idea of using pre-trained CNN mod-

els as global feature extractors for facial age estimation has
been taken up on by the Zhang et al. [47], who combined
Residual Network (ResNet) [22] as well as Residual Network
of Residual Network (RoR) [46] models trained on generic
object recognition tasks with a Long Short-Term Memory
unit to enhance the model’s ability to pick up fine-grained
visual cues related to age. Using this method, they achieved
state-of-the-art results on several benchmark datasets and
outperformed all previously proposed methods. However,
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their results show that implementing the attention mecha-
nism does not significantly improve the performance over
the same models without the Long Short-Term Memory unit,
shedding light onto the potential of transferring image de-
scriptors from pre-trained Residual Networks onto the age
estimation task.

Extending Previous Research
In the present work, we compare different CNN model ar-
chitectures and we furthermore present a novel, multi-step
training procedure for age estimation from facial images.
CNN models have been chosen to encode the image features,
as those, especially in combination with transfer learning,
have evidently demonstrated their effectiveness in the do-
main of age estimation from face imagery [2, 40, 46, 47].
While borrowing some parts of previously deployed systems,
we propose a refined methodology, as we employ models
pre-trained on recently introduced large-scale datasets from
the related field of face recognition and adapt them to the
age estimation task via a cascaded fine-tuning process.
More precisely, we employ ResNet-50, ResNet-50 with

Squeeze-and-Excitation blocks (SENet-50) as well as VGG-16
models [23]. These models are pre-trained on a face recogni-
tion or identification task using the large-scale face dataset
VGGFaces-2 which is the largest dataset of its kind and shows
a lot of variation in terms of pose, age or ethnicity, while
keeping label noise at a minimum [4]. The reported perfor-
mance on the face recognition task indicates sufficient rep-
resentational power and generalization ability, supporting
our assumption that these feature representations translate
well into the related domain of facial age estimation.

To the best of our knowledge, only Antipov et al. [2]
and Rodriguez et al. [38] have followed a comparable strat-
egy, as they used a VGG-16 CNN model pre-trained on
the VGGFaces face recognition dataset [35]. This dataset is,
however, significantly smaller than the recently introduced
VGGFaces-2, with 2.6M (VGGFaces) vs. 3.3M (VGGFaces-
2) face images and less variant in terms of identity, age or
pose. Besides that, Antipov et al. [2] fine-tune their model on
the IMDB-WIKI dataset [39] which, even after semi-manual
cleaning, can be subject to incorrect annotations. We ac-
count for this not only by relying on multiple data cleaning
steps, but also by applying a second fine-tuning step on a
high-quality aging dataset with noise-free labels. On the
other hand, Rodriguez et al. [38] fine-tune directly on the
target dataset, Adience, MORPH-II or IoG, while employing
an attention mechanism to pick up relevant aging features;
however, they do not evaluate their method on small-scale
datasets like FG-NET-AD and it is therefore not apparent
whether their approach generalizes well to small datasets in
the target domain.

While previous work mostly applied the VGG-16 model
to the task at hand, the authors of [47] achieve state-of-the-
art results on multiple benchmarks using RoR and ResNet
models pre-trained on generic object recognition tasks and
fine-tuned on a manually cleaned version of the IMDB-WIKI
dataset. In that light, we assume that a residual network
can potentially outperform VGG-16 when initialized with
parameters learned from a face recognition task and fine-
tuned on both high-quantity and high-quality aging datasets.
We therefore include residual networks into our analysis
and compare VGG-16 to the ResNet-50 as well as SENet-50
CNN models. The SENet-50 can be seen as an extension
of the ResNet-50, as it shows a similar base architecture,
but contains additional Squeeze-and-Excitation blocks [23].
Squeeze-and-Excitation networks havewon the 2017 ILSVRC
and have also been applied to face recognition, achieving
state-of-the-art results on various benchmarks [4].

3 DATA
We use multiple open-source datasets in the present work.
These can be categorized into training data, which is the
data we use to adapt our models to the age estimation task,
and benchmark data, which is the data we use to evaluate
model performance and compare our results to those from
other works. Before choosing the datasets to work with, we
conducted a review of available aging datasets and present an
overview in Table 1. Decision criteria for selecting training
datasets are: (i) Quantity of image samples, (ii) quality of
image labels and (iii) variance in the label space, which, in
our case, refers to a possibly large age range containing
children as well as adults and seniors. Benchmark datasets
were chosen based on (i) their appearance in related work,
(ii) variance in the label space and (iii) image conditions,
that is, whether they have been taken in a controlled or
uncontrolled (i.e., unconstrained) environment. The latter
bears significantly more challenges, as the model has to deal
with greater variance in terms of image properties, such as
lighting, pose, etc. and therefore allows us to draw better
conclusions on the generalization abilities of the model being
evaluated.

Training data
IMDB-Wiki. The IMDB-Wiki dataset is, to our best knowl-
edge, the largest, publicly available dataset used in the age
estimation domain [39]. Besides age labels, images also have
gender annotations. Originally, it contains 523,051 images
from more than 20,000 subjects, collected from the IMDB
and Wikipedia websites. From this joint dataset, we use the
larger IMDB subset containing 460,723 images. However, due
to the semi-automatic data collection process, the dataset
suffers from a lot of noise in the label space. In order to tackle
this problem, we apply multiple cleaning steps and end up
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Table 1: Comparison of open-source face aging datasets, sorted by year of publication.

Dataset Year Images Subjects Age range Age labels Unconstrained Noise-free labels
FG-NET-AD [34] 2002 1,002 82 0-69 Ordinal No Yes
MORPH-II [37] 2006 55,134 13,618 16-77 Ordinal No Yes
IoG [15] 2009 5,080 23,231 0-66+ Group labels Yes No
Adience [10] 2014 163,446 2,000 16-62 Group labels Yes No
CACD [5] 2014 163,446 2,000 16-62 Ordinal Yes No
IMDB-Wiki [39] 2015 523,051 20,284 0-100 Ordinal Yes No
AgeDB [32] 2017 16,488 568 1-101 Ordinal Yes Yes

with a final dataset size of 171,858 images. Those cleaning
measures are: Removing samples with age labels outside the
0-100 range, removing samples with a face score below 1.0 (as
determined by the face detector used when collecting the im-
ages), removing samples with more than one face per image
and lastly, removing samples with missing gender label. The
images are cropped around a face location with a 40%margin.

AgeDB. Age-DB represents the “first manually collected,
in-the-wild age database” and contains 16,488 facial images
with accurate and noise-free age labels [32]. As opposed
to other datasets, such as for instance CACD [5] or IMDB-
Wiki [39], Age-DB is a manually collected database and sup-
posedly the only database available providing images that
are both unconstrained and accurately labeled with ordinal,
real age values. In the present work, this dataset serves as
a second fine-tuning set which is motivated by the afore-
mentioned qualities as well as its relatively large sample size.
The images are cropped around the face location with a 40%
margin.

Benchmark data
FG-NET-AD. The FG-NET Aging Database is a relatively
small dataset that contains 1002 color and gray-scale images
of 82 subjects with ordinal age annotations [34]. Per individ-
ual there are on average 12 images, showing them at different
ages. Those ages range from 0 to 69 years. The dataset is
constrained, as the images are not taken "in the wild" but
under controlled conditions. That means, images only show
frontal portraits taken in neutral environments. Some images
in the database were collected from digital archives, while
others were collected by scanning paper photographs. De-
spite the controlled environment, diversity in head pose and
facial expression require a system with sufficient ability to
generalize over this variation. For evaluating age estimation
models on FG-NET-AD, the Leave One Person Out protocol
is common practice. This protocol represents a 82-fold cross
validation which we will also adapt to compare our method
to previous work. Example images can be viewed in Figure 3.

Adience. While FG-NET-AD uses numerical values as
image labels, Adience [10] provides 26,580 images together
with age group labels. More specifically, it divides subjects
into 8 age groups ranging from 0 to 60 years and older (0-2,
4-6, 8-12, 15-20, 25-32, 38-43, 48-53, 60-100). The images
show a total of 2,284 subjects and are, in contrast to FG-
NET-AD, collected "in the wild". This leads to great variation
in resolution, head pose and facial expression as well as
the occurrence of blur and obscured faces. The evaluation
protocol for this dataset suggests a five-fold cross-validation,
where splits have been made in such way that images of the
same subject do not occur in both training and test sets of
the same fold. Example images are displayed in Figure 4.
It should be noted that we end up with only 17,417 im-

ages after cleaning the dataset and removing those entries
with missing or non-usable, i.e. ordinal and out-of-range
age labels. It remains unclear to us how this problem has
been tackled in previous works, as those mostly report a
dataset size of 26,580 images with exactly 8 age group labels
[38, 40, 47]. This also stands in contrast to the number of
images which is reported in the original paper, namely 17,643
images distributed over the 8 age groups [10]. The authors
note that not all faces could be labeled for age; however, this
issue is not explicitly addressed in previous works. Besides
that, the creators of the Adience dataset provide the images
in two versions: in the first, images have only been cropped
around a face location. In the second, they have not only
been cropped, but also in-plane aligned. While this version
is reportedly used by Levi & Hassner [29], we could not find
information on the dataset versions used in other work we
reviewed. In the present work, the latter dataset version is
used.

Overall, we find these uncertainties important to report, as
discrepancies between dataset versions as well as data prepa-
ration methods might affect the results and therefore restrict
comparability between our and other presented methods.

Label Distribution. It should be noted that ideally we
would like to find similar distributions of age labels across
all datasets. However, as seen in Figure 5, age in IMDB tends



6

Figure 3: Example images from FG-NET-AD for one subject. Corresponding age labels are provided below.

Figure 4: Example images from Adience for multiple subjects. Corresponding age group labels are provided below.

Figure 5: Cumulative Distribution of face images with re-
spect to age for IMDB, AgeDB and FG-NET-AD.

to be slightly smaller than in AgeDB. FG-NET-AD centers
around the age of 20 and therefore gravitates towards an
even smaller average age than the aforementioned datasets.
Adience is not included in this Figure due to the class label-
ing; though, the age labels center around age group 25-32
and therefore falls close to the distribution in FG-NET-AD.
Moreover, distribution in Adience is not equally balanced
among age classes; see Figure 6 for more details.

4 METHODOLOGY
Image Feature Representation
We choose three CNN models pre-trained on a face recog-
nition task to encode information from the facial imagery.
These models are VGG-16, ResNet-50 and SENet-50 and have
been pre-trained on the VGGFaces-2 face dataset [4]. In the
following, wewill provide an overview of the selectedmodels

Figure 6: Distribution of face images with respect to age
group for Adience.

and the method used for applying them to the age estima-
tion task.

VGG-16. The VGG-16 model has been released in 2014,
when it was the runner-up at the ILSVRC [43]. In this net-
work architecture, input is passed through a stack of convo-
lutional layers with filter size set to 3×3. After each convo-
lutional layer block, the input size is reduced by applying
spatial pooling. This operation effectively halves the input
size, thereby counterbalancing the increase in model com-
plexity caused by a rising number of filters after each convo-
lutional layer block. Output of the final block is fed into a set
of fully connected layers which we set to have size 512 and
256, respectively. Lastly, the prediction is made by a softmax
layer which we change to have 91, 63, 8 or 3 output neurons,
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Figure 7: Schematic of the residual skip connection.

depending on the dataset (IMDB, FG-NET-AD, Adience or
modified Adience) the network is being trained on. VGG-16
is 16 layers deep and has 27,717,184 parameters.

ResNet-50. The ResNet-50 is a CNN model from the family
of Residual Networks which won the 2015 ILSVRC compe-
tition [22]. Prior to their introduction, increasing network
depth has frequently led to issues related to network train-
ing and often resulted in performance drops as well as high
computational expenses. To tackle these problems, Residual
Networks rely on skip connections, where the original input
to a convolutional layer block is added to its output, before
it is passed through a nonlinear transfer function. Thereby,
the output of early layers is largely maintained throughout
the network, which concurrently learns a residual mapping
between the inputs and outputs. Furthermore, it enables the
network to skip stacks of layers where weights gravitate
towards zero. In these cases, their output equals the input,
which allows the network to skip those layers during error
propagation. Using these skip connections, together with
performing dimensionality down- and up-sampling before
and after each residual block, arguably leads to reduced com-
putational expenses and more efficient network training. A
residual block is depicted in Figure 7. We leave the model
architecture unchanged, except for the final softmax layer
which we adapt to the label space of our target dataset, as
explained in the previous section. ResNet-50 is 50 layers deep
and has 23,867,786 parameters.

SENet-50. The SENet-50 is a ResNet-50 model equipped
with Squeeze-and-Excitation blocks [23]. The main idea be-
hind these blocks is to provide the network with access to
global information, as opposed to local information gathered
by each filter individually, and recalibrate filter responses
based on the importance assigned to each channel. To learn

the importance of each filter, they are first globally averaged,
resulting in a vector with size 1x1xC, where C is the number
of filters. Then, in order to enable the model to learn (pos-
sibly nonlinear) interaction between those scalar channel
descriptors, the input is passed through a ReLu function, fol-
lowed by a Sigmoid layer. Sigmoid is chosen here, as channel
relationships are considered to be non-mutually exclusive.
Lastly, fully connected layers are wrapped around the nonlin-
ear transfer function. These layers perform dimensionality
reduction (based on a reduction ratio r) before and dimen-
sionality increase after activation and thereby limit model
complexity while arguably improving generalization abil-
ities. Multiplying the output weights of the Sigmoid layer
with the corresponding feature map finally restores the orig-
inal input dimensions and moreover results in convolutional
layers that embody information on the importance of indi-
vidual channels in a global context. Figure 9 shows a visual
representation of the SE-ResNet module (i.e., a Squeeze-and-
Excitation module integrated into the ResNet architecture).
Again, we do not change the model architecture, except for
the final softmax layer, as explained earlier. SENet-50 is 50
layers deep and contains 26,296,944 parameters.

Transfer Learning. Given the large number of parameters
learned by these models and the relatively small size of the
dataset at hand, we do not train them from scratch, but apply
transfer learning, where the CNN learns image representa-
tions from large-scale datasets such as Imagenet [33].
More specifically, we encode image features using pre-

trained ResNet-50, SENet-50 and VGG models and use those
to train classifiers on different tasks within our target domain.
As Yosinski et al. [45] have shown, transferability of image
features is strongly dependent on the layer from which they
are taken and on whether the network is re-trained or fine-
tuned on data from the target domain. Most notably, they
have demonstrated that image descriptors tend to become
more specific with increasing network depth. Thus, the less
target and source domain are related, the more the represen-
tational power of the final layers decreases. This problem
can be worked against by fine-tuning the network, thereby
adapting it to the target domain.
We build on those findings by integrating multiple fine-

tuning steps during which we re-train the face recognition
models on the large-scale IMDB [39] (independent subset
of IMDB-WIKI) as well as the high-quality AgeDB aging
dataset [32] before applying them to the final benchmarks.
Intuitively, we thereby ensure that the CNN models are ex-
posed to (i) a large number of training examples, allowing
the model to pick up general feature representations and
(ii) a medium number of training examples with fully accu-
rate labeling, ensuring that model training is not constrained
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Figure 8: Illustration of the technical framework and different training modes.

Figure 9: Schematic of the SE-ResNet module. Input dimen-
sions are highlighted in red.

by noise in the data. Dataset details and specifications can
be found in section 3.

Training Procedures
We distinguish between three training modes, that is a) using
the model with pre-learned parameters and only re-train
classification layers, b) fine-tuning the full model (i.e., all
parameters unlocked) on the IDMB dataset and then on the
FG-NET-AD or Adience target dataset and lastly, c) fine-
tuning the full model on the IDMB dataset as well as the
AgeDB dataset and then on the target dataset. The general
setup as well as the different training modes are visualized
in Figure 8

For all training modes, the classification layer weights are
initialized using the Gaussian He initialization as proposed
by the authors of [21]. Furthermore, we use the ADAM opti-
mizer [26] as our default optimizer. Loss is calculated via the
categorical cross-entropy loss function, as the task at hand is
a multi-class, single label categorization. On the other hand,
batch size and learning rate settings differ between training
modes. That is, for each experiment we perform a grid search
across learning rates 0.1, 0.01, 0.001 and 0.0001 as well as
batch sizes 12, 32, 48 and 64. We test for each combination of
those hyper-parameters by training the model over 1 epoch
on the training set of IMDB, the training set of AgeDB, the
training sets of the first 6 folds of FG-NET-AD or the train-
ing set of the first fold of Adience, respectively, and select
the setup that achieves the best performance in terms of
validation loss.

In mode a), this method leads to a final learning rate of
0.001, with batch size fixed at 48. Classification layers are
trained over 20 epochs with ns ampl e s/batchsize iterations.

In training mode b), we randomly split IMDB and train on
80% of the dataset over 60 epochs with a learning rate of 0.01
for ResNet-50 and SENet-50 and 0.0001 for VGG-16. Batch
size is set to 32 for each model. We apply a learning rate
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schedule, halving the learning rate after 5 epochs without
improvement in terms of validation loss. To adapt the models
to the FG-NET Aging Database, we train ResNet-50 over 20
epochs with learning rate 0.001, SENet over 20 epochs with
learning rate 0.01 and VGG-16 over 20 epochs with learning
rate 0.0001. Batch size is set to 16 for each model. Here we
also apply learning rate schedule, but reduce patience to 3
epochs without improvement.

In training mode c), we only consider the best performing
model from the previous round and fine-tune the VGG-16 on
AgeDB over 30 epochs with learning rate 0.0001, using the
learning rate schedule with patience fixed at 3. Again, we
randomly split the dataset using a 80:20 ratio for training and
validation. Batch size is set to 32. The resulting model is then
applied to the FG-NET-AG as well as the Adience benchmark.
For FG-NET-AD, the same hyper-parameter setting applies
as in training mode b). On the other hand, we adjust batch
size to 32 when finally evaluating on Adience.

In order to account for potential learning biases and to en-
hance the robustness of the model, we augment our training
data by randomly rotating, shifting, cropping and flipping
each image in the given training set. Furthermore, we nor-
malize each image and set the input size to 224x224 in the
RGB color space.

Age Estimation Regression Model
Besides predicting age via an end-to-end system approach,
we also use the best performing CNN model as a feature ex-
tractor, where image features are fed into different regressors.
We choose this CNN model as the feature extractor, as we
assume it to return the most informative image descriptors.
In this experiment, we want to see if a regression model can
possibly outperform the softmax classification and expected
value method.

Features are extracted from the last convolutional layer,
whereas we only consider the global maximum of each fil-
ter map in order to reduce model complexity. We further
compare these features to (i) features extracted from the first
convolutional layer and (ii) features that have not been glob-
ally pooled, but flattened instead. That is to see, whether
generic image descriptors might also yield useful informa-
tion with regards to facial age and if we loose information
when pooling the feature maps.

We choose an automated machine learning approach, and
more specifically auto-sklearn [12], where the system is to
find and apply the optimal pre-processing methods as well as
find and fit the optimal estimators for a new dataset at hand.
The output of this system is an ensemble model, where pre-
dictions are made by multiple estimators and then weighted
based on each estimator’s performance.

Implementation Details
All implementations are made in Python 3.6 using Keras [7]
running on a Tensorflow back-end for training the CNN
models. Besides that, we use the auto-sklearn library [12] for
regression analysis. We configure auto-sklearn to run for a
total time limit of 12 hours and a maximum of 60 minutes for
a single call to the machine learning model; further settings
are fixed at default settings. Experiments run on a cluster
with 34 nodes, of which 26 are equipped with two Intel
Xeon E5-2683 CPUs and 94 GB RAM. Remaining nodes have
additional NVIDIA GeForce GTX 1080 Ti GPU with 11 GB
memory.
We use the CPU nodes for fitting the regression models

and the GPU nodes for CNN model training. Fine-tuning the
networks on the IMDB dataset took approximately 2 days
(with slight variation between networks), whereas training
on AgeDB could be done within around 4 hours. Finally,
time consumption for training and testing the models on
FG-NET-AD and Adience benchmarks could be drastically
reduced by running experiments on every fold in parallel.

5 RESULTS
Metrics
Model performance is measured by the Mean Absolute Error
(MAE) they produce. The MAE represents the sum of abso-
lute values of the residuals divided by the number of data
points and thus provides a natural measure of average esti-
mation error. Moreover, it was found suitable for the purpose
of this research which is an evaluation and inter-comparison
of different models and their performance errors. For each
experiment, we construct 95% confidence intervals around
the mean based on the standard deviation of the errors and
use these intervals to determine statistical significance. If
not explicitly stated differently, it means that we could not
find any statistical significance.

Since our CNNmodels are trained as classifiers, we cannot
straightforwardly calculate the MAE for those. Instead, we
calculate the expected value of all output activations, as pro-
posed by Rothe et al. [40], and thus arrive at the MAE. This
expected value is the dot-product of the softmax-normalized
probabilities in the output layer and the values of the output
neurons and can be expressed as:

aдe =
n∑
i=1

i ∗ ai (1)

where n is the number of neurons in the output layer and ai
is the activation (here, class probability in the softmax layer)
of output neuron i.
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Table 2: Previous results obtained on the FG-NET dataset.

Dataset Method MAE
FG-NET-AD Pre-trained (Imagenet) ResNet/RoR with LSTM attention mechanism [47] 2.39
FG-NET-AD Pre-trained (VGGFaces) VGG-16 with Label Distribution Age Encoding [2] 2.84
FG-NET-AD Pre-trained (Imagenet) VGG-16 with Expected Value [40] 3.09

Table 3: Previous results obtained on the Adience dataset.

Dataset Method Accuracy
Adience Pre-trained (Imagenet) ResNet/RoR with LSTM attention mechanism [47] 67.83%
Adience Pre-trained (Imagenet) VGG-16 with Expected Value [40] 64.00%
Adience Pre-trained (VGGFaces) VGG-16 with attention mechanism [38] 61.78%
Adience Shallow CNNs [29] 50.70%

Baselines
Several works have used FG-NET-AD and Adience as bench-
mark datasets. Their results are reported in form of the MAE
in case of FG-NET-AD and Accuracy for Adience and can be
found in Table 2 and 3. We use these results as baselines to
compare the efficiency of our method against. Though more
papers than the ones listed have benchmarked on FG-NET-
AD, such as the works of Chen et al. [6] or Hu et al. [24],
we only include those into our comparison that reportedly
followed the Leave One Person Out protocol. Besides that,
those are considered the closest to our approach in method-
ological terms. Consequently, papers that used Adience for
evaluation purposes, such as the works of Chen et al. [6]
or Duan et al. [9], have also been discarded if the standard
5-fold cross-validation protocol was not followed.

CNN Model Results
In the following section, experimental results are being pre-
sented. We do all experiments on FG-NET-AD and hold out
Adience until we reach the final setup. This way we ensure
to not overfit the model on the benchmark datasets and gain
more certainty over the general model performance across
different targets.

Age Estimation using pre-trained CNN models. In the first
setup, we only train a classifier on top of the pre-trained
face recognition model. Experimental results in form of the
MAE are shown in Table 4. Most interestingly, VGG-16 pro-
duces a lower average error than ResNet-50 and SENet-50,
with ResNet-50 showing the weakest performance. However,
SENet-50 and VGG-16 produce more error outliers, as de-
picted in Figure 10. This indicates that they might be more
sensitive to age-related facial features, but at the same time
do not generalize well across all instances of the test data,
i.e. subjects in the dataset.

Figure 10: MAE on FG-NET-AD for CNNmodels pre-trained
on face recognition.

Age Classification using fine-tuned CNNmodels. Next, mod-
els are fine-tuned on the IMDB dataset and then evaluated
on FG-NET-AD. Results can be found in Table 4. Overall,
we see the error decreasing for each model, with ResNet-50
showing the largest relative decrease of around 65%, thereby
achieving almost similar performance as SENet-50. Remark-
ably, ResNet-50 and SENet-50 now showmore outliers, while
the variance in errors produced by VGG-16 has reduced; see
Figure 11 for more details. VGG-16 again achieves the low-
est error from all three models. It is for this reason that we
perform all further experimentation on VGG-16 only, as we
consider it to be the most effective for the task (and data) at
hand.
The Effect of Cascaded Fine-tuning. In this setup, we fur-

ther fine-tune the VGG-16-Faces2 model on AgeDB. This
additional fine-tuning step reduces the error by 0.09 years
and thus achieves the best performance of all experimental
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Table 4: Experimental results obtained on FG-NET-AD using CNN models (i) pre-trained on face recognition (ii) fine-tuned
on IMDB only and (iii) fine-tuned on IMDB and AgeDB. Values printed in bold represent the lowest error achieved from all
experiments. Previous methods are attached below for direct comparison.

Model MAE MedianAE Upper Quartile Lower Quartile
ResNet-50-Faces2 12.28 12.02 14.43 10.18
SENet-50-Faces2 8.61 7.21 10.13 5.95
VGG-16-Faces2 4.78 4.24 5.54 3.06
ResNet-50-IMDB 4.33 3.46 5.12 2.71
SENet-50-IMDB 4.24 3.20 5.17 2.28
VGG-16-IMDB 2.77 2.34 3.47 1.54
VGG-16-IMDB-AgeDB 2.68 2.24 3.35 1.58
ResNet/RoR with LSTM attention mechanism [47] 2.39 - - -
VGG-16 with Label Distribution Age Encoding [2] 2.84 - - -
VGG-16 with Expected Value [40] 3.09 - - -

Figure 11: MAE on the 82 folds of FG-NET-AD for CNNmod-
els fine-tuned on (i) IMDB only and (ii) IMDB and AgeDB.
Dotted lines represent baseline results from [47] (Red), [38]
(Green) and [40] (Blue).

Figure 12: MAE on the 82 folds of FG-NET-AD for regression
models using different feature extractors.
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Table 5: Experimental results on FG-NET-AD obtained from
regression models. Columns represent the models used as
feature extractors.

MAE R2

VGG-16-Faces2 5.05 0.40
VGG-16-IMDB-AgeDB 3.98 0.45
VGG-16-Faces2 First Layer 9.68 -1.43
VGG-16-IMDB-AgeDB First Layer 9.53 -1.40
VGG-16-IMDB-AgeDB Flattened 9.98 -1.52

rounds, that is an MAE of 2.68. It furthermore achieves com-
petitive, i.e. second-best, results compared to the baselines
found in Table 2. See Table 4 and Figure 11 for compari-
son with previous modes. Interestingly, variance in error
reduces after fine-tuning on AgeDB which is mainly due to
improvements in the top error margin.

The CNN model fine-tuned on IMDB and AgeDB is lastly
applied to the Adience dataset to ensure we did not opti-
mize the models specifically towards FG-NET-AD. On this
benchmark, the model achieves an accuracy of 61.41±4.37%
and thus competitive results to the baselines presented in Ta-
ble 3. It furthermore achieves a 1-off-accuracy of 87.80±2.22%
which represents the proportion of predictions in which the
model selects a neighboring class of the true label. We again
point at the discrepancies in reported dataset statistics as
outlined in section 3 and therefore explicitly state that the
results reported in this work cannot be directly compared to
previous ones. They consequently only apply to the version
of the Adience dataset that we ended up with after applying
the previously explained pre-processing steps.

Regression Model Results
Lastly, we present the results, in this case the MAE as well
as R2 values, from fitting regression models on each of the
82 folds within FG-NET-AD in Table 5 and Figure 12 and we
make several interesting observations. First of all, features
extracted from the fine-tuned VGG-16 model seem to pro-
vide the most information to the estimators, though they
do not outperform the softmax classification/expected value
method. Secondly, the results obtained when extracting fea-
tures from the first convolutional layers of both the face
recognition and age estimation model are almost identical.
Possibly, this is because both networks rely on the same
general features in early layers. This finding is furthermore
in line with findings from Yosinksi et al. [45], who showed
that even random weights in early layers do not strongly
affect model performance, demonstrating that these repre-
sentations are entirely generic and not related to any specific
domain, even after extensive model training.

Interestingly, the worst performance is achieved when
extracting features without globally averaging the filtermaps.
This might be explained by the large number of features that
we end up with after flattening the convolutional layer. In
fact, this feature extraction mode results in a dataset with the
number of dimensions exceeding the number of observations
by a multiple.

6 DISCUSSION
Experimental results indicate that the proposed method ap-
plies well to the age estimation task. At the same time, they
raise several questions, such as:

• Which age group is the most difficult for the network
to make predictions about?

• What causes the outliers in prediction errors on the
FG-NET Aging Database?

• Which visual features are the most relevant for Age
Estimation and how do these differ from those relevant
for Face Recognition?

• How do activations differ across the different CNN
models we experimented on?

Child vs. Teenager vs. Adult Classification
To investigate the first question, that is, which age group
is the most challenging for the age estimation model, we
further experiment on a modified version in the Adience
dataset. More precisely, we merge age groups in such a way
that we end up with 3 (instead of 8) groups; these are: 0-12,
15-20 and 25-100. Hereby, we want to see (i) how well the
model can distinguish between the more general age groups
children, teenagers and adults and (ii) if there there is an age
group that poses a particular challenge to the model.
Overall, this model achieves an accuracy of 92.59%, that

is on fold 1 of the Adience dataset. A confusion matrix can be
found in Table 6. Most interestingly, we achieve the highest
precision and recall (0.95 and 0.98, respectively) for the "child
class", that is age group 0-12. In contrast, the model shows
the lowest performance for the "teenager class", spanning
over the age range from 15 to 20. However, this class is also
significantly underrepresented in the dataset, compared to
the merged age groups above and below this range, which
might impact results and model performance. Lastly, preci-
sion is found to be equally high for the "adult group" (25-100),
whereas recall slightly drops to 0.92.

Variance in Prediction Error
When looking at the distribution of error values per held
out subject in FG-NET-AD, we find that the model produces
significantly large errors for some of them, even though
their images do not show any suspicious characteristics that
might account for these deviations, at least to the naked eye.
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Table 6: Confusion matrix for 3-class age group prediction
on the Adience subset. Columns represent the predicted age
group, whereas rows show the true age group label.

0-12 15-20 25-100
0-12 1646 12 9
15-20 12 36 104
25-100 66 143 2362

Against this background, we hypothesize the source of error
to be found not in the image content, but in the distribution
of age labels.

In FG-NET-AD, we independently train the network on 81
subjects and evaluate on the remaining one. Since there are
multiple images per subject, showing them at different ages,
the model can perform most optimally if the distribution of
age labels in this holdout set matches the distribution of the
overall dataset, given that image descriptors are capturing
all relevant visual information.
However, we find that for some subjects, age label distri-

bution strongly differs from the overall dataset. As shown
in Figure 5, more than half of the images in FG-NET-AD are
labeled with ages below 20, while the upper regions of the
label space are only sparsely sampled. More precisely, for
age labels higher than 50 years, an average of 1.75 images
is provided per label. Hence, when holding out a fold that
contains samples drawn from this region, it is likely that
there are only very little or even no training examples for
the given class. In consequence, the model is then to make a
prediction for a class it has never been presented with during
training.

To further investigate this assumption, we select the 4 sub-
jects (2,3,4 and 5) producing the largest prediction error and
jointly use those as the test set, while training on all remain-
ing subjects. It should be noted that this experimental setup
results in a training set with only 10% of the age labels being
larger than 30, whereas more than 50% of the samples in the
test set are drawn from this region.
As seen in Figure 13, prediction errors spread out with

increasing age, confirming our hypothesis that large predic-
tion errors are mostly found within sparsely sampled label
space regions. In order to circumvent this issue, one could
introduce weighting into the model; however, we refrain
from this as the present work does not aim at optimizing the
model towards the FG-NET Aging Database and its unique
characteristics, but rather at finding the optimal feature rep-
resentation for facial age estimation in general. Moreover,
we assume the error to be reduced drastically, if all regions
in the label space are well sampled.

Figure 13: Confusion matrix for predictions of FG-NET-AD
subset containing the top-4 subjects producing the largest
prediction errors.

Class Activation Mapping
Lastly, we investigate the learning behavior of the CNN
models. That is, we are interested in (i) differences between
ResNet-50, SENet-50 and VGG-16 in terms of image (or fa-
cial) feature importance and (ii) the effects of fine-tuning
the networks away from face recognition and towards age
estimation.

To that end, we create Class Activation Maps as proposed
by the authors of [42]. These maps can be understood as a
visualization tool highlighting which regions of an image
are important for class discrimination and used by the CNN
to identify a certain class. In detail, this is done by average-
pooling the gradients of the softmax layer with respect to the
output of the last convolutional layer and multiplying these
pooled gradients with each channel in the feature map. Intu-
itively, we hereby amplify channel output values according
to their importance in making the class prediction. Feature
maps are then averaged per image region and their output
activations are plotted in a heat map. Lastly, this heat map is
projected on top of the original input image. It is due to the
CNN model’s black box character that we choose this rather
qualitative approach to investigate learning behavior and
feature importance. Generally, more systematic methods of
model diagnostics would be preferred.

We randomly select different images from the FG-NET Ag-
ing Database and create Class Activation Maps for those. An
example can be found in Figure 14. Two phenomena can be
observed in the Class Activation Maps. Firstly, when compar-
ing CNN models pre-trained on the VGGFaces-2 dataset, we
find their receptive fields to differ quite strongly in size. That
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Figure 14: Class ActivationMaps for different CNNarchitectures andmodel tasks.Top: Comparison betweenResNet-50, SENet-
50 and VGG-16 only trained on face recognition task. Bottom: Comparison between ResNet-50, SENet-50 and VGG-16 fine-
tuned on age estimation task.

is, for SENet-50, activations span the whole image, while they
focus on a much smaller section for VGG-16. This degree
of specialization might partially explain the relatively good
performance of VGG-16 in the first experimental round; see
Table 4 for reference.

Receptive fields of each model align after fine-tuning on
the age estimation task. That is, activations now center
around the eye/nose region and then diminish into immedi-
ate surroundings, indicating the importance of this region
for age estimation from facial images. Curiously, ResNet-
50, and especially SENet-50, very much focus on the eye
region, whereas VGG-16 also considers the nose and cheek
areas. This might possibly represent a learning bias in the
ResNet-50 and SENet-50models which, given their very large
number of parameters and the still relatively small size of
the used training data dataset, might be more likely to suffer
from overfitting to certain facial characteristics.

Study Limitations
In general, this study and its results are based upon very
specific data, as they only consider two aging datasets. This
leads to various consequences. First of all, findings are re-
stricted to these datasets and therefore cannot be generalized

to the age estimation task in general. Each of these datasets
has their own characteristics (sometimes unseen to the eye)
and it is not said that the model would generalize well to
any face image it gets to see. In fact, we performed further
experiments, in which we presented the model with FG-NET-
AD images without prior re-training on this dataset and got
results that were barely better than random predictions.
The generalization ability of the proposed system is fur-

thermore limited due to the fact that we cannot ensure that
all image data has been collected in a proper manner, as
there might have been systematic flaws in the data collection
process; for example, images of subjects at young ages in
FG-NET-AD tend to be in gray-scale, as those are mostly
scanned versions of old analog photographs. In that light, all
reported results or errors cannot be interpreted as general
prediction errors, but statistical errors specific to the dataset
at hand.

This also applies to the reported model performances. As
we drew from fixed sets of hyper-parameters, we cannot
view their errors as general performance measures for those
models, but as statistical errors produced under a specific set
of circumstances which do not only include model hyper-
parameters, but also the way in which the data was prepared;
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e.g., how face images were cropped and aligned. One could
only draw general conclusions after comparing additional
models under a greater range of different conditions. With
regard to hyper-parameters, this means that a more thor-
ough analysis of the different settings and their combina-
tions is needed before drawing general conclusions. In that
light, hyper-parameters do not only include dataset-specific
model configurations, e.g. learning rate or batch size, but also
superordinate settings dealing with inter-dependent hyper-
parameters, for example, the epoch ratio between different
fine-tuning steps.

7 CONCLUSION
Overall, we have shown that CNN models pre-trained on
face recognition transfer well onto the related age estimation
task. We furthermore have demonstrated that multiple fine-
tuning steps on both high-quantity and high-quality datasets
positively affects model performance. For that purpose, we
have initialized three CNN models, VGG-16, ResNet-50 and
SENet-50, pre-trained on a large-scale face recognition dataset
and have gradually fine-tuned them towards the age esti-
mation task. This method yields competitive results against
various state-of-the-art benchmarks. However, further ex-
perimentation is required in order to see if and how this
approach can be applied to other datasets or single images.
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