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Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

The current methods that exist in the field of Exploratory Landscape Analysis (ELA) orbit
around the continuous decision space and do not include the discrete decision space in the
general sense. Given the recent interest in the field of optimization in the discrete space and
the attempts to generate features that are problem specific, we believed that there is a need
to find feature set(s) are that unique for a general set of objective functions. In this thesis, we
attempted to finding such feature set(s) by proposing an adjustment to how a tool, flacco,
create a FeatureObject for the continuous space to make it function for the discrete decision
space. We used the Pseudo-Boolean Functions as our test functions to generate the features
from Cell Mapping angle features and Generalized Cell Mapping (GCM) features for different
approaches: minimum, mean and near. Then we attempted to predict the Expected Run Time
(ERT) and classify the best algorithm based on data obtained from IOHprofiler. We discovered
that there is indeed a potential to generate general features in the discrete decision space and
utilize them along with machine learning models to select the best algorithm, but not to
predict the ERT. The best model that we found was Multinomial Logistic Regression (MLR)
with reduced features and a tuned penalty C parameter.
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Chapter 1

Introduction

In the world of science, the problem of optimization have been occurring since scientist needed
to solve complex mathematical equations and problems in a way that is optimal. The methods
of optimization are widely used in various of fields such as engineering, physics, operations
research, bioinformatics, machine learning etc. Such hard problems are usually solved using
classic heuristic optimization approaches such as local search, which moves from a solution to
the others in an attempt to find the optimal solution from a set of candidate solutions. Two
of the most famous hard optimization problem are the traveling salesman and the boolean
satisfiability problem. Another approach to solve such problems is to use an Evolutionary
Algorithm (EA), which is a subset of evolutionary computation that is inspired by biological
evolution concepts such as mutation, recombination, reproduction and selection. These two
approaches can be applied to different fields of optimization such as continues, disrecete,
combinatorial search spaces and even mixed search spaces without/with constraints. Moreover,
the research community has been showing keen interest to create and improve new heuristic
optimization algorithms that can find an optimal solution to a problem or a set of problems
with the least amount of time e.g. run time. Furthermore, when time is of importance, the
velocity of an algorithm is determined by the best solution found given a constraint on run time.
In this thesis, we attempt to explore a way to characterize the decision space of a selected set
of Pseudo-Boolean functions using existing Exploratory Landscape Analysis (ELA) techniques
that we adapt to the aforementioned problems’ decision space. An overview of ELA is provided
in section 2.1.

1.1 Summary of Notation

X Input represented as a binary string

Y Objective function that evaluates the input x

F A feature set that contains many features f

f A feature within a feature set F

N Number of observations in a data set

D Continuous dimension (number of variables)

L Discrete dimension (length of a bit-string)

K Partition dimension
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M Number of cells per dimension D

1.2 Problem

The current techniques that exist in the field of Exploratory Landscape Analysis (ELA) and
general feature construction revolve around the continuous decision space and do not include
the discrete decision space in a general manner. Therefore, we define the problem to be
general feature construction of discrete decision space or in other words, features construction
to characterize the discrete decision space. A feature function takes in binary input(s) and
outputs a real number that corresponds to feature of the input. The mathematical notation is
formulated as follows:

f : {0, 1}L → R

We are interested in finding features set(s) F that is unique per objective function Y and can be
used to approximate the expected run time (ERT) and/or select the best performing algorithm
by utilizing various machine learning models. Figure 1.1 exhibits a bird-eye visualization of how
we approach solving the problem.

x1
x2
.
.
.
.
.
.
.
.
.
.
.
.

xN

Binary Strings
Input

Feature Set ML models
(Regression

or
Classification)

Predict ERT
or Select Best

Algorithm

Figure 1.1: The approach to be taken to solve the problem of characterizing the discrete
decision space and predict ERT or classify the best algorithm

1.3 Selected Pseudo-Boolean Functions

A Pseudo-Boolean function refers to a function of the form:

f : BL → R
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Where B = {0, 1} corresponds to the Boolean space, which means that the values are re-
stricted to 0 and 1. Furthermore, any Pseudo-Boolean function can be expressed uniquely as
a multi-linear polynomial as follows:

f(x) = a+
∑
i

aixi +
∑
i<j

aijxixj +
∑
i<j<k

aijkxixjxk + ...

The degree of the function is simply the length of bit string or as we denoted it as the discrete
dimension L. For the purpose of this thesis, we make use of the 23 Pseudo-Boolean functions
subject to maximization presented in [2] and the functions are:

1. OneMax

2. LeadingOnes

3. Harmonic

4. OneMax + W([n/2],1,1,id)

5. OneMax + W([0.9n],1,1,id)

6. OneMax + W([n], µ = 3,1,id)

7. OneMax + W([n],1, v = 4, id)

8. OneMax + W([n],1,1,r1)

9. OneMax + W([n],1,1,r2)

10. OneMax + W([n],1,1,r3)

11. LeadingOnes + W([n/2],1,1,id)

12. LeadingOnes + W([0.9n],1,1,id)

13. LeadingOnes + W([n], µ = 3,1,id)

14. LeadingOnes + W([n],1, v = 4, id)

15. LeadingOnes + W([n],1,1,r1)

16. LeadingOnes + W([n],1,1,r2)

17. LeadingOnes + W([n],1,1,r3)

18. LABS: Low Autocorrelation Binary Se-
quence

19. Ising-Ring

20. Ising-Torus

21. Ising-Triangular

22. MIVS: Maximum Independent Vertex
Set

23. N-Queens

1.4 Selected Optimization Algorithms

The aforementioned problems were endeavored to be solved using 11 different optimization
algorithms that are based on local search or evolutionary algorithms. The 11 algorithms are
further defined in [2] and are as follow:

1. (1+(λ, λ)) GA

2. (1+1) EA

3. Greedy Hill Climber (gHC)

4. (1+10) EAr/2,2r

5. (1+10) EA

6. (1+10) EALogNormal

7. (1+10) EANormal

8. (1+10) EAvar

9. Fast Genetic Algorithm (fGA)

10. ‘Vanilla’ Genetic Algorithm (vGA)

11. Randomized Local Search (RLS)

3



1.5 Research Questions

In this thesis, the main focus is to first find existing feature construction methods that are
suitable for the discrete decision space, apply them to a uniform random generated binary
input with different number of observations to each objective function. Second, use the gen-
erated features to approximate the ERT of each problem and/or classify the best performing
algorithm. This leads to the following research questions:

• Q1: Are there feature construction methods in the continuous space that are suitable
for the discrete space?

• Q2: How many sample points are needed to construct a reliable feature set?

• Q3: Can a selected feature set be general for any objective function?

• Q4: Is it more feasible to predict ERT or classify the best performing algorithm?

1.6 Outline

The structure of this thesis is as follows: Chapter 2 gives an overview about how the idea of
ELA began along with detailed explanation of flacco and the Cell Mapping feature sets (angle
and GCM) that are used to generate features. In Chapter 3, we explain the methodology we
followed to adapt the structure of flacco to generate features for the discrete decision space.
In addition, we explain the experiments’ setup for feature generation next to feature analysis
supported with plots for each feature set. In Chapter 4, we explain the data gathered, how its
split and what models are utilized for the regression and classification tasks. Furthermore, we
test the models used using Leave-One-Out Cross-validation (LOOCV) and we perform feature
selection and hyperparameter tuning to find the best model.
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Chapter 2

Related Work

2.1 Exploratory Landscape Analysis (ELA)

The history of Landscape Analysis (LA) began in the early 1990’s with “tunably rugged” fit-
ness landscape in [9], which is also referred to as The NK model. Two years after, the Fitness
Distance Correlation (FDC) was introduced in [8]. FDC measures the search difficulty of a
Genetic Algorithm (GA) and can be used to predict the performance of a GA on problems
with known global maxima. Epistasis came into the scene in 1997 to explore further how to
characterize GA-hardness as noted in [19]. Last but not least, before the evolution of ELA,
few other researchers developed ways to characterize the decision space such as information
content, dispersion metric and ruggedness, neutrality and smoothness in [21, 14, 15]. In 2011,
ELA emerged as a way to employ a number of techniques to gain knowledge about the property
of an unknown optimization problem with a special focus on the features that relate to the
performance of optimization algorithms [16]. The approaches presented aimed to characterize

Convexity

Global structure

Multimodality

Global to local
optima contrast

Plateaus

Levelset

y-Distribution

Local Search

Meta Model

Curvature

Separability

Variable Scaling

Basin size
homogeneity

Search space
homorgeneity

Figure 2.1: Relationship between high level features (white) and low level features (yellow)
that are standard ELA

the properties of continuous optimization problems then exploit the information to give rec-
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ommendations of the best suited algorithm. The Black-Box Optimization Benchmark (BBOB)
functions in [4] were used in almost every preceding paper. Furthermore, given the recent devel-
opment within this field of research, researchers have attempted and succeeded in developing
various methodologies for ELA in the continuous dimension. The main features that were used
were a set of high-level features [17] that were attained by experts i.e. (multimodality, global
structure, separability, variable scaling, search space homogeneity, basin-sizes, global to local
contrast and plateaus). Many researchers identified this set of high-level features to be ques-
tionable and therefore, low-level features were introduced in [16]. The aforementioned features
are grouped into six classes namely, measuring convexity and linearity (Convexity), measures
that are related to the distribution of the objective function values (y-Distribution), the rela-
tive position of an objective function value compared to the median of all values (Levelset),
estimating meta-models such as quadratic or linear regression (Meta-Model), local searches
that are conducted from the initial design points (Local Search) and represent the class of
curvature features by an approximation of the Hessian or the gradient (Curvature). There is
an assumed relationship between the high and low level features as exhibited in Figure 2.1.
Beyond those features, other notable approaches of feature construction were developed such
as the Fitness Landscape Analysis [20] and Cell Mapping [12]. In summary, all the approaches
in this research domain have been focused only on the continuous decision space. However,
a recent survey on automated algorithm selection noted that discrete decision space can be
characterized by generating problem specific features [11].

2.2 flacco

Following the various developments by researchers around the world, many tools and libraries
existed, but unfortunately, they were implemented using different programming languages such
as Python, Matlab and R. Therefore, the first version of the R-package flacco was released
combining many state of the art features in a way that is easy to use and compute by others. In
2017, the official documentation of flacco was published [10]. The package provides a collection
of the majority of the feature sets that were developed and introduced by other researchers.
Particularly, flacco computes 300+ different numerical landscape features distributed across
the following 17 feature sets: Low-level features or Initial ELA Features [17], Cell Mapping
(Angle, Convexity and Gradient Homogeneity) and Generalized Cell Mapping Features [12],
Barrier Tree Features [6, 3], Nearest Better Clustering Features [13], Information Content Fea-
tures [18, 21], Dispersion Features [14], and Miscellaneous Approaches (Basic, Linear Models,
Principal Components).

After screening and as an answer to Q1, two feature sets are relevant to our research namely,
Simple Cell Mapping (Angle) and Generalized Cell Mapping, which will be explained later.

2.2.1 FeatureObject

The FeatureObject is used as an input for all features computation. It serves as a way to
pre-process the data and the parameters associated in features computation. According to
an example of flacco, it takes in a continuous input from the uniform distribution of size
(N,D), a vector of evaluations Y of the input, the name of the objective function and vector
that contains the number of blocks where the length of the vector is D. The package creates
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the FeatureObject and outputs the following: (1) number of observations N , (2) number
of variables (continues dimension D), (3) upper and lower boundaries for each dimension in
D, (4) number of cells (blocks) per dimension (5) the total number of cells along with the
number of empty and non-empty cells and (6) the average number of observations per cell. In
addition, the FeatureObject contains a matrix that consists of the variables X (x1, x2, ..., xD),
the evaluation Y of each observation and the cell id that each observation is assigned to
and another matrix that contains the cell centers with the cell id it corresponds to. The
aforementioned matrices are used to compute the feature sets within flacco. To elaborate,
the cell ids are determined independently from the evaluation of the input. To calculate the
cell ids, the following is needed: (1) the continues input X, (2) the block width or the cell
size per dimension computed as upper−lower

blocks
, (3) N and D and (4) the cumulative product cp

of the vector of blocks with the value 1 being at the first position of the vector. The cell ids
are computed as follows:

1 for i in range(N):

2 for j in range(D):

3 cellID[j] = cp[j] * np.floor((X[i, j] - lower[j]) / blocksWidth[

j])

4 cellIDs[i] = int(np.sum(cellID - cp[np.arange(len(blocks))] * (X[i,:

D] == upper)))

In addition, the cell centers are computed by determining the coordinates of the center of
each cell. Therefore, the cell centers object will be of size (blocksD, D) and will be used to
determine the cell ids using the same way mentioned before.

2.3 Cell Mapping

The idea of Cell Mapping was first introduced in [7] and it is a useful approach to acknowledge
the global behaviour of nonlinear dynamic systems. The Cell Mapping approach discretizes the
decision space by dividing the state space to hypercubes. There are two Cell Mapping feature
sets namely, Simple Cell Mapping (SCM) and generalized cell mapping (GCM). Both feature
sets have been applied to optimal control problems [1] and SCM was used in multi-objective
optimization [5].

2.3.1 Simple Cell Mapping (Angle)

Using a pre-defined number of blocks (cells), the continuous decision space is discretized. SCM
calculates three different subsets of features i.e. Angle, Homogeneity and Convexity features
[12]. After examining the three aforementioned subsets, only the Angle features would serve
well in this research based on the expected behaviour of the objective functions mentioned
in section 1.3 and their known properties. The angle features extract information based on
the location of the best and worst available observation of a cell w.r.t. the corresponding cell
center where the distance used is the Euclidean distance as visualized in Figure 2.2.
The resulted 8 features are as follows:

1. Distance from the center to the best points (arithmetic mean and standard deviation)

2. Distance from the center to the worst points (arithmetic mean and standard deviation)

3. Angle between the best and worst point (arithmetic mean and standard deviation)

7



best point

worst point

angle

distance(center, best)

distance(center, worst)
center

Figure 2.2: Overview of the features extracted per cell in the simple cell mapping angle
features before being aggregated.

4. Best to worst point ratio (arithmetic mean and standard deviation)

Moreover, the best value of the angle is 180◦, which indicates that the best and worst points
are the furthest away from each other. Lastly, the best to worst ratio is calculated by taking the
difference between the best and worst objective value per cell (local best and local worst) and
dividing it by the biggest difference between the best and worst point across all cells (global
best and global worst).

2.3.2 Generalized Cell Mapping

Likewise SCM, GCM features are also based on the block-wise discretized decision space.
According to [12] GCM can be thought of three subsets where each subset uses exactly one
observation from each cell to represent it. Specifically, the minimum approach is represented
by the best point w.r.t the objective function whereas the mean approach takes the mean value
of the objective values in the cell. Apart from this, the near approach selects the objective
function value point that is closest to the center of the cell. It is explicitly noted in [12] that
in case of an empty cell, only the near approach is able to find a representative point in that
cell. Intuitively, GCM contains three subsets that each corresponds to a different approach.
This results in each cell being an absorbing Markov chain, which means that for each cell a
transition probability for going from one cell to one of its neighbouring cells is computed. The
transition probabilities can be grouped into a matrix P of order Nc × Nc where Nc is total
number of cells. Building on the transition probabilities, the cells are identified into:

• Attractor: an absorbing cell within a basin attraction

• Periodic: a cell that is infinitely visited (local optima)

• Transient: a cell that is not periodic

• Uncertain: a cell that is attracted by multiple attractors

Note that the focus of [12] was on periodic cells of order 1, i.e. Pii = 1, which corresponds to
the local optima candidates according to the paper. After computing the transition probability

8



matrix P , the canonical form (cf) is computed as follow: the states are renumbered such as the
transient states come first. If r absorbing states and t transient states are there (Nc = r+ t),
then the transition matrix follows the canonical form:

P =

(
I 0
R Q

)
Q is a t×t matrix, R is a nonzero t×r matrix, 0 is an r×t zero matrix and I is the r×r identity
matrix. Q is the matrix that gathers the probabilities of transitioning from a transient state
to another whereas matrix R describes the probability of moving from a transient state to an
absorbing state. Next, the fundamental matrix (fm) is computed that is N = (I −Q)−1 and
it is the inverse of the absorbing Markov chain matrix I −Q. The (i, j)-entry nij of N is the
expected number of times the chain is in state sj, given that it begins in state si. Only if i = j
the initial state is counted. Then the fundamental matrix is defined as fm = I +

∑∞
k=1Q

k

and holds the equation fm = N .
GCM generates 23 features per approach as follows:

1. Total number of attractors

2. Ratio of cells that are periodic

3. Ratio of cells that are transient (non-periodic)

4. Ratio of cells that are uncertain

5. Probabilities for reaching different basins of attractions (minimum, median, arithmetic
mean, maximum and standard deviation)

6. Basin sizes for certain cells (minimum, median, arithmetic mean, maximum, standard
deviation and sum)

7. Basin sizes for uncertain cells (minimum, median, arithmetic mean, maximum, standard
deviation and sum)

8. Number and probability of finding the attractor cell with the best objective function
value.

9



Chapter 3

Methodology and Experiments

3.1 Feature Object Creation: Adaption to The Dis-

crete Decision Space

Given that the design in Flacco [10] works only for continuous space, we introduce a few extra
parameters and adjustments to adapt to the discrete space. First, we denote the variables
L : the length of the bit string (Discrete Dimension), K : the partition dimension. Next, we
denote that the number of dimensions D is determined by the fraction L

K
rounded to the

nearest integer. The values of L and K are chosen based on the desirable design, which as
mentioned controls the dimension D. Moreover, M controls that number of cells per dimension
and it is used to create the blocks as M is repeated D times. Therefore, the total number of
blocks is MD. Second, the process of generating the data and preparing it for FeatureObject
creation is as follows: (1) a binary string matrix of size (N,L), (2) evaluate each full bit
string using the objective function to be maximized, (3) split each observation to K partitions
with taking in consideration the remainder bit strings to be added to the first partitions e.g.
L = 7, K = 3 will result in 2 partitions with 4 bit strings in the first partition and 3 bit strings
in the second partition, (4) intify the bit string in each k ∈ K and (5) normalize by dividing
the resulted integers by the maximum value of the integer that can be obtained as 2K

′ − 1
where K ′ is the maximum length of the bit strings across the dimension D. Following that,
the data is ready to be fed into the FeatureObject creation function.

10
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Figure 3.1: Example: FeatureObject creation steps

Figure 3.1 shows an example of how the FeatureObject is created. For this example, L = 15,
K = 7, M = 3 and Y is the LeadingOnes function. Following the explained steps before, The
continuous dimension D = L/K is equal to 2 rounded to the nearest integer. The bit string of
size 15 is split to two parts, 8 bit strings and 7 bit strings and then intified. Therefore, the value
K ′ that is used in normalization becomes 8. As a result, the intified bit strings are normalized
using a factor of 28 − 1 = 255. From here, the lower and upper bounds are attained and
fed into the FeatureObjectCreation function along with the number of cells per dimension D,
which in this case equals to 3. Finally, the FeatureObject that is used to calculate the feature
sets will contain a grid of 9 cells where each cell has an ID that is used to label the observations
that it falls into. Note that a cell can have 1, many or no observations as illustrated in the
figure.
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3.2 Experiments

3.2.1 Setup and Objective

As mentioned earlier, the data set is generated from a “discrete uniform” distribution with a
random seed: 123. Therefore, we generate a matrix of N observations where each observation
is an array of [0, 1]′s of length L. After creating the FeatureObject, we take into account
the non-empty cells only and calculate the desired feature set. We use different values of N :
100, 500, 1000, 2000 and 5000 and fix L = 100, M = 5, K = 50. The aforementioned
values are fixed as a result of multiple tries to insure that no empty cells are present in
the FeatureObject. This is implemented to avoid any errors when calculating the Generalized
Cell Mapping approaches as mentioned in subsection 2.3.2. Moreover, we generate Simple
Cell Mapping (Angle) and Generalized Cell Mapping (all approaches). We highlight that we
consider the 23 objective functions denoted by their function ids (f1− f23) to be completely
different and the main goal of the experiments is to conduct feature inspection that would
assist in determining if a feature or more indeed helps to distinguish an objective function.

3.2.2 The FeatureObject

The FeatureObject created for the different number of observations is approximately the same.
The only differences are the number of observations N , the upper and lower boundaries, cell
size per dimension and the average number of observations per cell. Our goal is to create a
FeatureObject that contains no empty cells to avoid any issues when generating the GCM
features.

Feature Objects
Number of Observations 1000
Number of Variables 2
Upper Boundary [0.99989969, 0.99851245]
Lower Boundary [0.00274544, 0.00018387]
Number of Cells per Dimension [5, 5]
Cell Size per Dimension [0.19943085, 0.19966572]Cell Size per Dimension [0.19943085, 0.19966572]
Numbe of cells
...... total 25
...... non-empty 25,100.0%
...... empty 0,0.0%
Average number of Observations per cell
...... total 40.0
...... non-empty 40.0...... non-empty 40.0

Figure 3.2: FeatureObject output example for N = 1000

Figure 3.2 displays an example for N = 1000 with the fixed variables that were mentioned
previously. The number of variables correspond to the continuous dimension D that it is
determined by the fraction L

K
where L = 100 and K = 50, Furthermore, the lower and upper

boundaries are normalized to be between 0 and 1 and the number of cells per dimension M is
5, which makes the total number of cell 25 given that MD = 52. Furthermore, the cell size per
dimension is determined by the equation upper−lower

blocks
. Last but not least, the average number of
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observations per cell is 40. This means that the observations were equally distributed among
the number of cells within the FeatureObject.

3.2.3 Simple Cell Mapping

We plot the feature values obtained per objective function with highlighting the variations of
the OneMax and the LeadingOnes problems. Figures 3.3, 3.4, 3.5, 3.6 and 3.7 exhibits the
plotted feature values for each of the 23 objective functions for different number of observations
N .
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Figure 3.3: CM Angle N = 100

N = 100, it is observable that the features c2wDistance (Mean & SD) and c2bDistance
(Mean & SD) do not show a high variance across the objective functions even though they
look visually different. In particular, the variance of the aforementioned features for the variants
of OneMax (f4− f10) and LeadingOnes (f11− f17) problems, exposed the lowest variance
value of 0.00001 where the highest variance value was 0.00009, which is lower compared
to b2w (Mean & SD) and angle (Mean & SD). However, we still consider them to expose
difference between the functions. However, the pair (f11, f12) had the same feature values
for each feature, which makes them indistinguishable.
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Figure 3.4: CM Angle N = 500

We would expect that increasing the number of samples would generate more stable results
and therefore, features would be more reliable that exhibits higher variance. N = 500, the c2b
and c2w features Mean and SD behaviour does not change as shown in Figure 3.4. However,
there is a slight increases in the minimum and maximum variance yielded for the variation of
the OneMax and LeadingOnes problems. The lowest variance is 0.00005 where the highest is
0.00017 for the four features of c2b and c2w. Importantly, increasing the number of samples
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Figure 3.5: CM Angle N = 1000

influenced having higher variance in the features generated in oppose to a small sample such
as 100. However, the two functions (f11, f12) were not unique for all feature values.
N = 1000 shows, as plotted in Figure 3.5, the consistency observed with generating 500
observations with a slight change in variance of the features c2bDistance and c2wDistance
(Mean & SD) for the groups in the shaded areas mentioned before. The minimum variance
is 0.00003 and the maximum variance is 0.00019. It should be noted that the variance of the
features did indeed decrease for few and increase for others. However, still the pair (f11, f12)
shred the same value for all feature values.
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Figure 3.6: CM Angle N = 2000

N = 2000 anticipated a slightly different behaviour of the feature values. More specifically,
some feature values increased where others decreased. Therefore, it was not an overall increase
or decrease in values. In the group of variations, the lowest variance of c2bDistance and
c2wDistance (Mean & SD) is 0.00002 and the highest is 0.00016 as shown in Figure 3.6.
Moreover, we observe that f11 and f12 were not unqiue for all feature values.
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Figure 3.7: CM Angle N = 5000
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N = 5000 observations, 50 times larger than the initial number of observations, the feature
values relatively differ than other feature values with a lower number of observations as visible
in Figure 3.7. It is worth to mention that there is a constant trend with the feature values of
b2wMean and b2wSD for f2. Moreover, the variance yielded for the two groups of problems
variations for the features c2bDistance and c2wDistance (Mean & SD) yielded the lowest
variance of 0.00003 while the highest variance was 0.0001. Furthermore, f11 and f12 shared
the same value for each feature.

Overall, we believe that the CM Angle feature exhibit visual and numerical difference despite
the low variance for different number of observations across the 23 functions. Obviously, the
angle (Mean & SD) feature values are variable for each of the problems and could be of
good use. However, the highest angleMean recorded across all number of observations for all
problems is ≈ 60◦, which means that the distance between the best and worst points from the
center is not as ideal as we want it (180◦). In addition f11 and f12 were not differentiated
by any feature for different number of observations.

3.2.4 Generalized Cell Mapping

As noted previously, the GCM method generates 23 features per approach: minimum, mean
and near. We construct two types of plots namely, a line plot which includes only the reported
mean value for features that are calculated based on different statistical measures and a scatter
plot of all features per approach that shows where features values were equal w.r.t each of the
functions. The goal is to again examine that the generated features are different or at least
some of the features are different for each of the approaches in order to recognize different
functions. It is worth to mention that flacco always sets the sum basin size for uncertain
cells to 1, which leads to a feature that is not unique for any problem. Therefore, we remove
this feature from GCM for all approaches and we end up with 22 features per approach in
order to avoid any issues with predictive modeling and classification tasks later on. In the
next paragraphs, we inspect the GCM features per approach for each number of observations
generated.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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Some GCM min Features for L = 100, K = 50, M = 5, N = 100
pCells
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Figure 3.8: GCM Minimum Approach N = 100

100 observations minimum approach shows that the selected features in Figure 3.8 do show
a general variance in the results for each of the objective functions. However, it is observable
that there are some features that had a constant value across a range of function ids or pairs.
For example, pcells shows an equal feature value for the pair (f4, f5).
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GCM min similar features for L = 100, K = 50, M = 5, N = 100

Figure 3.9: GCM Similar Features Minimum Approach N = 100

To analyze this further Figure 3.9, indicates where each of the features values are the same
w.r.t the function id. The colors in each column resembles which function ids have the same
value. Overall, most of the function values had a constant value, which makes them non-
distinctive to the 23 functions. It is worthy to note that the most unique feature values were
basinProb (min, median, max and standard deviation), basinUncertain std and bestAttreProb
while the worst feature were basinUncertain mean and bestAttrNumber with no unique values
or one unique value. Furthermore, the pair (f11, f12) were not different across all feature
values, which makes them unrecognizable whereas the most unique functions were f14 and
f17 with 14 unique features (64.3%).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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Figure 3.10: GCM Mean Approach N = 100.

100 observations mean approach feature values are different w.r.t the minimum approach
presented previously as seen in Figure 3.10. It is noticeable that the variance of the feature
values increased for few functions and decreased for others. To examine this further, Figure 3.11
stipulates that the most unique features were the min, median, max and standard deviation
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Figure 3.11: GCM Similar Features Mean Approach N = 100

of the basinProb feature where they were only not unique for the functions pair (f11, f12).
Moreover, basinCertain std and bestAttrProb were also among the most unique features. On
the other side, the worst features where no or at least one or two unique features were
basinCertain (min and median), basinUncertain (min, mean and median) and bestAttrNumber.
Furthermore, unlike the minimum approach the function pair (f11, f12) were distinguishable
by the basinCertain std feature whereas it was not across all other functions in the mean
approach. Also the most unique functions were f15 and f21 with 13 features (59%).
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Figure 3.12: GCM Near Approach N = 100

100 observations near approach feature values exhibits a higher variance for the selected fea-
tures than other approaches presented as presented in Figure 3.12. We notice that for f15 the
feature values collapse to top region and to the bottom region as well, which can indicate that
this function attained unique feature values. Figure 3.13 shows where the feature values were
constant for all the functions. Indeed, f15 was unique for all feature values (95.5%) except
for NumAttrNumber, which is the worst for all approaches as it does not distinguish any func-
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Figure 3.13: GCM Similar Features Near Approach N = 100

tions. The second worst feature in the near approach were basinCertain min and basinUncer-
tain mean. In opposition, the best features were basinProb (min, median, max and standard
deviation), basinCertain std and bestAttrProb. Moreover, the functions pair (f11, f12) had no
unique values at any feature values. Therefore, based on the provided analysis of 100 observa-
tions for all approaches, we can conclude the function pair (f11, f12) are not distinguishable
by any of the feature values. Next, we increase the number of observations and analyze the
trends.
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Figure 3.14: GCM Minimum Approach N = 500

500 observations minimum approach unveil a visual variance in the selected feature values in
Figure 3.14. From the plot, f15 and f16 had a constant value for each of the feature val-
ues reported. Again, we examine where the features values were constant w.r.t the functions
as shown in Figure 3.15. The most unique features were basinProb (min, median, max and
standard deviation) and bestAttrProb while the worst features were bestAttrNumber, basin-
Uncertain (mean and min), basinCertain min, num attr, pcells and tcells. Moreover, The most
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Figure 3.15: GCM Similar Features Minimum Approach N = 500

unique function was f8 with 14 features (63.3%) while the pair (f11, f12) shared the same
feature value for all features. Also the pair (f15, f16) had the same feature values expect for
the basinProb 5 features and bestAttrProb.
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Figure 3.16: GCM Mean Approach N = 500

500 observations mean approach shows some feature values collapsing to specific values as
displayed in Figure 3.16 in addition to a noticeable variance in the selected feature values.
The most unique feature values were basinProb (min, median, max and standard deviation)
and bestAttrProb as shown in Figure 3.17 while the worst features were basinCertain min
and basinUncertain mean. Once again the pair (f11, f12) had the same value for each of the
feature values and the most unique functions were f15 and f17 with 11 features (50%).
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Figure 3.17: GCM Similar Features Mean Approach N = 500
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Figure 3.18: GCM Near Approach N = 500

500 observations near approach shows the highest variance compared to other approaches
as exhibited in Figure 3.18. Moreover, the similarity trend is not as strong as the two other
approaches presented. The most unique feature values as shown in Figure 3.19 were basin-
Prob (min, median, max and standard deviation), basinUncertain std, basinCertain std and
bestAttrProb while the worst features were basinCertain min, basinUncertain (min and mean)
and bestAttrNumber. The function with the least similar features was f10 with 15 features
(68.2%) while the pair (f11, f12) had the same value for each of the feature values.
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GCM near similar features for L = 100, K = 50, M = 5, N = 500

Figure 3.19: GCM Similar Features Near Approach N = 500
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Figure 3.20: GCM Minimum Approach N = 1000

1000 observations minimum approach in Figure 3.20 displays a detectable change in the trend
of feature values for each function especially in terms of feature value variability. Even though
the variance is higher, this does not necessarily mean that the feature values are unique for all
functions. According to Figure 3.21, the worst features were bestAttrNumber, basinUncertain
(min and mean), basinCertain (min and max), pcells, tcells and num attr. whereas the most
unique feature values were basinProb (min, median, max and standard deviation), basinUncer-
tain std and bestAttrProb. Functions f11 and f12 were not assigned any unique feature values
where as the most unique function was f17 with 15 features (68.2%).
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Figure 3.21: GCM Similar Features Minimum Approach N = 1000
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Figure 3.22: GCM Mean Approach N = 1000

1000 observations mean approach in Figure 3.22 has a lower variance than the minimum ap-
proach. Therefore, we expect to have more constant feature values. based on Figure 3.23,
the most unique feature values were basinProb (min, median, max and standard deviation)
and bestAttrProb. On the other hand, the worst features were num attr, pcells, tcells, uncer-
tain, basinPorb mean, basinCertain (min, median, sum), basinUncertain (min and mean) and
bestAttrNumber. The most unique function was f20 with 13 features (59%) while functions
f11 and f12 had the same feature values for all features, which make them identical.
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Figure 3.23: GCM Similar Features Mean Approach N = 1000
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Figure 3.24: GCM Near Approach N = 1000

1000 observations near approach in Figure 3.24 has also a lower variance than the minimum
approach, but higher than the mean approach. Looking at Figure 3.25, the most unique
feature values were basinProb (min, median, max and standard deviation), basinUncertain std
and bestAttrProb. In contrast, the worst features were num attr, pcells, tcells , basinCertain
(min, median), basinUncertain mean and bestAttrNumber. The most alike functions were f11
and f12, which had the same feature values for all features and the most unique function is
f19 with 13 features (59%).
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Figure 3.25: GCM Similar Features Near Approach N = 1000
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Figure 3.26: GCM Minimum Approach N = 2000

2000 observations minimum approach discloses a good variability among feature values as
seen in Figure 3.26. Furthermore, a collapse for some feature values is obvious for functions
f2, f10, f15 and f16. Examining Figure 3.27, the most unique feature values were basinProb
(min, median, max and standard deviation) and bestAttrProb. Moreover, the worst features
were num attr, pcells, tcells , basinCertain (min, median, max), basinUncertain (min, mean
and max) and bestAttrNumber. The most different function is f17 with 14 unique features
(63.3%) while functions f11 and f12 had the same feature values for all features.
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Figure 3.27: GCM Similar Features Minimum Approach N = 2000
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Figure 3.28: GCM Mean Approach N = 2000

2000 observations mean approach in Figure 3.28 shows a lower variance than the minimum
approach with a collapse of feature values uncertain and bestAttrProb to the same value for
functions f2, f13 and f15. Furthermore, inspecting Figure 3.29 shows that f11 and f12 are
not unique for any feature values, but f14 and f15 were the most unique with 13 features
(59%). In addition, the worst features are num attr, pcells, tcells, basinProb mean, basinCer-
tain min, basinUncertain (min, mean) and bestAttrNumber whereas the best features were
basinProb (min, max and standard deviation) and bestAttrProb.
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Figure 3.29: GCM Similar Features Mean Approach N = 2000
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Figure 3.30: GCM Near Approach N = 2000

2000 observations near approach, see Figure 3.30, comes in the middle between the minimum
and mean approach in terms of variability. To investigate further, Figure 3.31 displays that the
most unique feature values where basinProb (min, median, max and standard deviation) and
bestAttrProb. At the same time, the worst features were basinUncertain (mean and max) and
bestAttrNumber. Furthermore, the function pair (f11, f12) did not have any unique feature
values whereas f10 is the most unique with 18 features (81.8%).
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Figure 3.31: GCM Similar Features Near Approach N = 2000
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Figure 3.32: GCM Minimum Approach N = 5000

5000 observations minimum approach comes with the highest variance of feature values as
show in Figure 3.32. There is a collapse of selected plotted values for f2. In addition a constant
trend specially for the LeadingOnes variations. To discuss this further, Figure 3.33 indicates
that f2 had 7 unique features (31.8%) and the most unique functions were f6 and f17 with
14 features (63.6%). Nevertheless, the pair (f11, f12) had no unique values for all feature
values. The most unique features were basinProb (min, median, max and standard deviation),
basinUncertain std and bestAttrProb while the worst features were bestAttrNumber, num attr,
pcells, tcells and basinUncertain mean.
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Figure 3.33: GCM Similar Features Minimum Approach N = 5000
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Figure 3.34: GCM Mean Approach N = 5000

5000 observations mean approach comes after the minimum approach in attained variance. A
collapse of feature values is present for f1, f5, f8 and a mild collapse for f13 and f15 as shown
in Figure 3.34. To confirm the uniqueness of the feature values w.r.t the functions, Figure 3.35
displays that the aforementioned functions that had the collapse were at most unique in 4
feature values (18.2%) while the most distinctive function is f7 with 11 features (50%). In
addition the pair (f11, f12) were not recognizable by any features. The worst features are
num attr, pcells, tcells, uncertain, basinCertain (min, median and max), basinUncertain (sum,
min, mean, median and max) and bestAttrNumber. On the other hand, the best features are
basinProb (min, max and standard deviation).
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Figure 3.35: GCM Similar Features Mean Approach N = 5000
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Figure 3.36: GCM Near Approach N = 5000

5000 observations near approach exhibits a low variance compared to other approaches and
there is no strong unique trend in Figure 3.36 except for a constant trend. Therefore, we
expect more constant values than other approaches. To explore this further, Figure 3.37 shows
that the most unique features are basinProb (min, median, max and standard deviation) and
bestAttrProb while the worst features are uncertain, basinCertain (min, mean, max and sum),
basinUncertain (min, mean, median and max) and bestAttrNumber. Last, the most unique
functions were f13 and f14 with 13 features (59%) whereas the pair (f11, f12) had not
unique values for all features.
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Figure 3.37: GCM Similar Features Near Approach N = 5000

Overall, within GCM is there no features that are distinctive for the objective functions per ap-
proach in general. However, we believe that combining features from different approaches would
help to create a set of features that is unique. It is worthy to mention that the most unique fea-
tures across all number of observations generated for the minimum and near approaches were
basinProb (min, median, max and standard deviation), bestAttrProb and basinUncertain std.
In addition, the mean approach gave the same best features without the basinUncertain std.
On the other hand, the worst features for the min appraoch were basinUncertain (min and
mean), bestAttrNumber, numAttr, pcells and tcells. Also the worst features for the mean ap-
proach were basinUncertain (min and mean), basinCertain (min and median), bestAttrNumber,
numAttr, pcells and tcells. Moreover, the worst features for the near approach were only bas-
inUncertain (min and mean) and bestAttrNumber. Therefore, We expect that least unique
features are gonna be discarded when performing feature selection, while the best features will
be retained.

In response to Q2, the CM Angle features manifest different features for all the 23 functions
except for f11, f12. In addition, the highest number of unique feature recorded across all
number of observations for the minimum approach was 68.2% (N = 1000), mean approach
59% (N = 100, 1000 and 2000) and near approach 95.5% (N = 100). So, when it comes
to GCM features, the number of sample points needed to construct a reliable feature set
varies per approach. Moreover, to answer Q3, while a combination of features can be used
to characterize the objective functions, the pair (f11, f12) were not proven to be different
as a result of the feature inspection conducted. Given that, we consider the aforementioned
functions to be the same.

30



Chapter 4

Modeling

Our main goal is to predict the Expected Run Time (ERT) or classify the best algorithm to
solve an optimization problem. The ERT and the labels that indicate the best algorithm are
attained from IOHprofiler [2] while the input that will be used is the generated features: SCM
(angle) and GCM all approach for all number of observations. In order to achieve this, we built
and experimented with various machine learning models. For the regression task, we decided
to build a Linear Regression (LR), LASSO and Random Forest Regression (RFR). Moreover,
for the classification task, we decided to build a Random Forest Classifier (RFC), Multinomial
Logistic Regression (MLR) and Supper-Vector Classifier with RBF Kernel (SVC). In addition,
we fix a random state (random state = 1) to make the models comparable if randomness is
applicable. Last, we perform two feature selection methods: 1) Recursive Feature Elimination
(Backward Elimination) with Leave-One-Out Cross-validation (LOOCV) using 50 Monte Carlo
simulations and filter out only the features that were selected at least 50% of the time 2) All
Relevant Feature Selection using Boruta algorithm. Last, we apply Hyperparamter Tunning
for the classification models using MiP-EGO [22]. All training and validation split of the data
is done using 5 random seeds: {19, 29, 52, 6, 67}. After fitting a model, the metrics on the
training, validation and LOOCV are averaged and reported with their standard deviation. We
note that the 50 runs of RFECV are conducted using 50 random splits of the data, but the
model fitting of the selected features afterwards is done with the 5 random seeds.

4.1 Data

As mentioned earlier, the data set is built using a combination of the generated features,
SCM (angle) and GCM (all approaches) along with the minimum ERT reported and the best
algorithm it corresponds to from the IOHprofiler. In total, we have 115 observations given that
we generated 5 different number of observations for the 23 functions; hence, 23 · 5 = 115. In
addition, we have 8 features from SCM (angle) and 22 · 3, so we have 74 features in total.
Then our data is a matrix of size (115x74). It is worthy to mention that we consider the ERT
value and the classification label to be the same for all different number of observations for
every problem. Moreover, we split the data set to a training (80%) and validation set (20%)
with the stratify option enabled in classification data to assure that the classes in the training
set are also in the validation set. Also, for some GCM features, the reported value is nan, so
we replace it with the value of 0.
After attaining the results from the IOHprofiler, we inspect the minimum ERT (response
variable) for the regression task and the distribution of the classes where each class is the

31



Minimum µ σ Max
96.636 1249806.932 2971889.401 10281859.0

Table 4.1: Minimum, Mean, Standard Deviation and Maximum of ERT in the data set.

best algorithm that scored the least ERT w.r.t each function. Given that we have a relatively
small number of observations and many features, we do not expect any regression model to
be reliable. This is also because after running a statistical summary, we discovered that there
is a very high standard deviation and a huge difference between the minimum and maximum
ERT within that response variable as shown in Table 4.1.
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Figure 4.1: Algorithm classes counts. Left: original algorithm classes counts with gHC.
Right: algorithm classes counts after removing gHC. Removing gHC results in more bal-
anced classes.

Proceeding to the classification labels, we note that the labels (best algorithms) were not
equally distributed, which can have a negative effect on classification models. Figure 4.1 left
displays the original classes counts obtained. It is observable that the classes are unbalanced.
gHC corresponds to 55 observations where the second highest (1+1) EA >0 is assigned to 15
observations. Therefore, we decided to remove the results of gHC and consider the algorithms
results again. The new classes distribution exhibited in Figure 4.1 right looks slightly better
and we have 8 classes in total. Therefore, we will continue with the aforementioned labels that
does not include gHC.

4.2 Models

4.2.1 Linear Regression

Linear regression is a standard method used for numerical predictions, and describes the re-
lationship between a response variable and a single or many explanatory ones. It is mainly
based on a linear approach which tries to calculate an optimal prediction line according to
the minimized mean squared error function. Y plays the role of response variable, and in this
case, it reflects the ERT values. Predicted values of linear models represent single points on
the regression line described by the following formula:

ŷ = α + βixi, i = 1, 2, 3, ..., p, ŷ ∈ R
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where α is the intercept of the regression line, and βi i = 1, 2..., p is the regression coefficient
of regressor xi. Intercept α represents the distance of the line from the origin in Cartesian
representation. In other words, α is the value of ŷ when all xi = 0, and coefficient βi is
the angle between the regression line and the y = 0 one. Therefore, linear regression model
outcome is the estimated average values of Gaussian distribution of Y given the xi regressors.
In addition, the Linear Regression model follows the assumptions that (1) Independence of
observations, (2) Normality of residuals, (3) No multicollinearity, (4) No autocorrelation and
(5) Homoscedasticity.

4.2.2 LASSO

LASSO is a type of Linear Regression that uses shrinkage to reduce model complexity and
prevent overfitting that is usually caused by Linear Regression. The meaning of shrinkage
is where the data are shrunk to a central point e.g. the mean. a LASSO model uses the
L1 regularization method, which adds a penalty λ that is equal to the absolute value of the
magnitude of the coefficients β. This particular type of regularization method results in smaller
models (fewer βs) and this is because that some coefficients can become zero. Therefore, these
coefficients are removed from the model. Furthermore, large penalties result in coefficients that
are closer to zero, which is optimal to produce simpler models.

4.2.3 Random Forests

Random Forests is method that depends on ensemble learning. This means that it operates by
creating multiple decision trees during training and outputs the class or the mean prediction
for regression. Intuitively, for each decision tree constructed during training the classification
or prediction is based on averaging the result of each decision tree. Therefore, it is suitable for
both classification and regression tasks. Moreover, it is known that Random Forests corrects
the prediction of each tree and therefore prevents overfitting the data. However, it comes with
a high variability in the results.

4.2.4 Multinomial Logistic Regression

The second classification model that we will use is Multinomial Logistic Regression. Unlike
Linear Regression, it does not have any particular assumptions that have to be met, and we
do not assume any specific distribution of the features (predictors). The response variable Y
has categories j = 1, 2, ..., C, where in this case, C = 8. Then the probability of an instance
being in class j is given by

πj = P (Yi = j), j = 1, 2, ..., C

Here, for C categories one of them is chosen to be the baseline category (one-vs-all). This
results in C − 1 regression equations that construct together the model. Furthermore, the
baseline category is the one to which all other categories are constant. When choosing the
first category as the baseline, the C − 1 regression equations are as follows:

log
πj(xi)

π1(xi)
= αj + xTi βj = αj +

∑
p

xipβpj, j = 2, 3, ..., C
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where αj is the intercept of class j, xTi is the feature vector of the ith instance and βj is
the vector of regression coefficients for class j. The baseline category intercept and vector of
coefficients are set to α1 = β1 = 0. As a result, the probability that instance i belongs to class
j is given by:

πj(xi) =
exp(αj + xTi βj)∑
h exp(αh = xTi βh)

Instance i is assigned to the class with the highest probability. In addition, it is important
to mentioned that we use the Limited-memory BFGS (lbfgs) optimization method as it is
recommended for multinomial cases and it uses the L2 regularization (LASSO) method by
default. The MLR model minimize the categorical cross-entropy given by:

L = − 1

n

n∑
i=1

∑
j

yijlog(πj(xi))

where n is the number of training instances.

4.2.5 Support-vector Machine

The last classification model we are using for training is Support-vector Machine (SVM). SVM
is a known to be a set of supervised learning methods that are used for classification, regression
and outliers detection. SVM follows the idea of creating a hyperplane or set of hyperplanes
in high dimensional space. Optimally, a sepration is achieved by the maximizing the distance
between the hyperplance and the nearest training data instance of any category, which is called
the functional margin (M). Therefore, the larger the margin, the lower error of the classifier.
In addition, it comes with many advantages such as effectiveness in high dimensional space,
high performance when it comes a higher number of dimensions that number of samples and
it is memory efficient. Here, we only use the Support-vector machine classifier. The margin
(M) optimization is given by:

max
β,α,M

M

subject to
yi(x

T
i β+α)

||β||
≥M, i = 1, 2, ...N

where N is the number of training instance and ||β|| is length of β. Furthermore, we employ
the Radial Basis Function (RBF) kernel trick to account for the non-linearity in the data. The
kernel trick maps the features to a larger set of features using a specific transformation. The
RBF transformation is given by:

K(x, x′) = exp−γ(||x− x′||2)

where γ is a positive real number greater than 0. Furthermore, sklearn uses a penalty term C,
which tells the model how much we want it to avoid missclassifying training points and it is
set to 1 by default.

34



4.3 Evaluation Metrics

To assist the precision of the ERT prediction, we use the Mean Absolute Percentage Error
(MAPE), which is defined as follows:

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣Yi − ŶiYi

∣∣∣∣∣
Where Y is the true value and Ŷ is the predicted value.
Moreover, to decide how good is a classifier, we employ F1 Score represented below:

F1 = 2 · precision · recall
(precision+ recall

Where precision is defined as:

true positive

true positive + false positive

and recall is defined as:

true positive

true positive + false negative

and the average is method is ‘micro’, which corresponds to calculating the metric globally by
counting the total number of true positives, false negatives and false positives.

4.4 Regression

In this section we train three regression models: Linear Regression (LR), LASSO and Random
Forest Regression (RFR). sklearn from Python is used and the models are fitted using the
default parameters. LR does not have any parameters while for LASSO α = 1 where it
corresponds to the penalty term and RFR parameters are: n estimator = 10, criterion=‘mse’,
max depth=None, min samples split=2, min samples leaf=1, bootstrap=True. We set the
parameter random state = 1 to fix the randomness for LASSO and RFR.

4.4.1 Initial Results

The initial results of the regression models on the training and validation set along with the
LOOCVMAPE are shown in Table 4.2. The results indeed confirm our early assumption that
regression models are not going to be able to predict the ERT given the high variance in the
response variable and the high average MAPE and its standard deviation. Despite the models’
inability to predict ERT, the best three models on average on the training set are RFRAll,
RFRCM and RFRGCMNear consecutively while the worst model is LRCM .
Moreover, the best three models on average on the LOOCVMAPE are RFRAll followed by
RFRCM and LRGCMNear whereas the worst model is LRAll. Last, the best three models on
average on the validation set are RFRGCMNear, RFRAll and RFRCM while the worst model
is LRAll. Even though the models are considered to be undesirable given the high MAPE, we
try to improve the results by selecting only the important features with the help of RFE with
LOOCV.
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Model Features Training LOOCVMAPE Validation

LR

All
181948.696

(± 20152.535)
753193.163

(± 119769.211)
1238065.634

(± 670461.188)

CM
351531.654

(± 29336.857)
383026.188

(± 32282.795)
460300.836

(± 70854.919)

GCM Min
315619.16

(± 35372.085)
408703.461

(± 53561.807)
567884.448

(± 130505.336)

GCM Mean
249040.518

(± 19655.667)
314633.983

(± 24432.279)
420487.194

(± 98723.155)

GCM Near
317394.2

(± 57095.725)
399686.464

(± 72557.713)
476835.39

(± 117448.522)

LASSO

All
241723.818

(± 41946.745)
707587.403

(± 136959.007)
1129156.168

(± 381637.456)

CM
351530.448

(± 29337.312)
383021.225

(± 32284.919)
460308.1

(± 70875.558)

GCM Min
304157.2

(± 39052.484)
376848.056

(± 54347.784)
594791.184

(± 150648.773)

GCM Mean
273771.054

(± 21999.491)
340161.139

(± 27885.073)
440324.036

(± 105329.615)

GCM Near
316707.702

(± 58610.734)
394635.368

(± 73646.52)
471729.502

(± 115251.923)

RFR

All
71712.444

(± 22390.347)
211332.591

(± 87499.35)
259737.146

(± 178651.908)

CM
86871.82

(± 30121.319)
265565.671

(± 54350.783)
308366.278

(± 201855.961)

GCM Min
109383.77

(± 35945.67)
311347.58

(± 59768.879)
379959.056

(± 261644.28)

GCM Mean
133154.536

(± 29876.665)
373071.715

(± 69514.567)
461900.47

(± 115465.968)

GCM Near
94939.916

(± 27825.076)
267367.257

(± 30142.615)
247846.666

(± 89039.101)

Table 4.2: Initial regression models results averaged over 5 runs. The reported values in
the brackets represent the standard deviation. Red color indicates the worst results in a
column overall, while green color indicates the best results in a column overall.

4.4.2 Feature Selection

After performing RFE with LOOCV for 50 runs, 50 random splits of the data set, only the
features that were selected at least 50% are chosen to fit the models. We notice that LRAll
did not have any features that passed the threshold. Furthermore, selecting less features did
not assist in reducing the MAPE in a way that makes any model reliable. Nevertheless, our
conclusions from features inspection in section 3.2 are confirmed that non-unique features were
unlikely to be selected during the process of feature selection. For example, Figure 4.2 exhibits
the number of times features were selected during RFE for RFRAll. None of the features that
we identify the be common were selected. In addition, the worst features, bestAttrNumber
for all GCM approaches, were selected the least. Therefore, only the “unique” features that
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minimizes the error were selected, so we optimally expect the MAPE to decrease with fewer
features.
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Figure 4.2: The number of times a feature was selected after 50 random runs of RFE-
LOOCV for RFRAll. The red line indicates the threshold, which is 50% and the number
features selected is 19.
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The results after feature selection along with the number of features selected are reported in
Table 4.3. The best three performing models on average on the training set are RFRAll 19
features, RFRGCMNear 5 features and RFRCM 5 features. We notice that RFRNear approach
with 5 features out of 22 managed to reduce MAPE on the training set by 34.75% and
RFRAll 19 features out of 74 also decreased the MAPE on the training by 11.2%. In addition,
reducing the features of RFRCM from 8 to 5 features, decreased MAPE on the training set by
21.57%. In addition, the worst performing model on the training set is LRGCMMin 2 features
and increased the MAPE by 4.15% on the training set.

Model Features
Features
Selected

Training LOOCVMAPE Validation

LR

All 0 - - -

CM 2
274558.646

(± 31894.672)
281837.252

(± 32881.076)
367106.354

(± 81369.547)

GCM Min 2
328988.828

(± 34719.288)
338642.171

(± 35760.297)
410764.606

(± 97506.439)

GCM Mean 7
301176.486

(± 40985.792)
325039.691

(± 43453.034)
557920.712

(± 86409.371)

GCM Near 3
261955.74

(± 30048.502)
279555.882

(± 32053.22)
300443.874

(± 40195.822)

LASSO

All 1
276795.28

(± 27911.836)
282599.822

(± 28577.329)
365159.966

(± 108641.684)

CM 2
274573.284

(± 31895.544)
281852.161

(± 32882.01)
367119.13

(± 81363.792)

GCM Min 1
319984.694

(± 34800.187)
326139.305

(± 35636.265)
384952.75

(± 100035.311)

GCM Mean 3
315916.968

(± 43651.664)
333783.471

(± 46053.184)
478075.734

(± 98121.519)

GCM Near 3
261964.298

(± 30048.862)
279564.155

(± 32053.532)
300460.372

(± 40198.615)

RFR

All 19
64107.596

(± 27065.059)
186360.078

(± 59335.248)
224892.94

(± 175759.484)

CM 5
69957.778

(± 28839.721)
208117.129

(± 59416.292)
264433.408

(± 208005.24)

GCM Min 9
128841.216

(± 56438.838)
307068.814

(± 41879.399)
394172.726

(± 215108.423)

GCM Mean 4
124125.93

(± 31883.823)
349327.364

(± 82942.648)
417657.68

(± 148736.529)

GCM Near 5
66833.732

(± 31898.19)
212238.211

(± 25484.527)
205009.628

(± 51283.695)

Table 4.3: Average results over 5 runs of RFE-LOOCV for regression models along with
the number of features selected at least 50%. The values in the brackets corresponds to
the standard deviation of MAPE. Red color indicates the worst results in a column, while
green color indicates the best results in a column overall. The number of features in All
is 74, CM is 8 and 22 features for each GCM approach.

Additionally, the best three models on average w.r.t the LOOCVMAPE are RFRAll 19 features,
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RFRCM 5 features and RFRGCMNear 5 features. The LOOCVMAPE decreased by 12.56% for
RFRAll as well as by 24.26% and 22.99% for RFRCM and RFRGCMNear respectively. On the
contrary, the LOOCVMAPE for the worst model, RFRGCMMean 4 features, decreased by 6.57%.
Last, the best three models on average on the validation set are RFRGCMNear 5 features,
RFRAll 19 features and RFRCM 5 features. The aforementioned models reduced LOOCVMAPE

by 18.92%, 14.38% and 15.34% correspondingly whereas the worst model LRGCMMean 3
features increased LOOCVMAPE by 28.09%.
To conclude, none of the regression models are considered to be trustworthy to predict the
ERT given the high variance in the response variable and the high MAPE values even after
feature selection. Given that, we do not perform any further experiments or modeling for
regression tasks and come to an end that ERT cannot be predict with the data generated.
Next, we attempt to classify the best performing algorithm.

4.5 Classification

In this section we fit three classification models: Random Forest Classifier (RFC), Multino-
mial Logistic Regression (MLR) and Supprt-vector Classifier with RBF Kernel (SVC). sklearn
from Python is used and the models are fitted using default parameters. The default param-
eters for RFR are: n estimators=10, criterion=‘gini’, max depth=None, min samples split=2,
min samples leaf=1, bootstrap=True. In addition, the default parameters for MLR are: penalty=‘l2’,
C=1.0, solver=‘lbfgs’, multi class=‘multinomial’ and for SVC C=1.0, γ=‘auto’, where auto
means that the value of γ is 1/num features. We fix the randomness of all the aforemen-
tioned models by setting random state = 1 to make them comparable.

4.5.1 Initial Results

The initial results of the classification models on the training and validation set along with the
LOOCVF1 are present in Table 4.4. From the table, RFCAll came in the first place followed
by RFCGCMNear and RFCCM on average. We expected the RFC to be the best model on the
training set since we do not limit the max depth of the tree. The reason is that we are going
for a flexible model to allow the decision trees within the model to explore more. However, we
observe an overfitting problem with RFC given the high F1 score compared to other models.
Also. the worst performing model on the training set on average is MLRGCMNear. If we to
ignore RFC models, the best model on the training set overall would be MLRAll. Proceeding
to the LOOCVF1, the top three models on average are MLRAll, SVCAll and RFCGCMMin while
the worst model is MLRGCMNear. Last, the highest scoring models on the validation set on
average are RFCGCMMin and SVCGCMMean followed by RFCAll and MLRAll. In addition, the
worst model on the validation set on average is MLRGCMNear. After inspecting the results,
the top three desirable models are RFCGCMMin, MLRAll and SVCAll given the scores obtained
on LOOCVF1 and validation set. In the next subsection, we perform feature selection using
RFE with LOOCV and Boruta.
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Models Features Training LOOCVF1 Validation

RFC

All 0.952 (± 0.009) 0.321 (± 0.041) 0.374 (± 0.066)
CM 0.937 (± 0.02) 0.313 (± 0.054) 0.287 (± 0.073)

GCM Min 0.935 (± 0.021) 0.346 (± 0.034) 0.383 (± 0.071)
GCM Mean 0.931 (± 0.023) 0.317 (± 0.045) 0.261 (± 0.069)
GCM Near 0.944 (± 0.021) 0.291 (± 0.026) 0.269 (± 0.099)

MLR

All 0.522 (± 0.047) 0.352 (± 0.024) 0.348 (± 0.031)
CM 0.341 (± 0.023) 0.265 (± 0.025) 0.261 (± 0.044)

GCM Min 0.328 (± 0.025) 0.272 (± 0.032) 0.278 (± 0.024)
GCM Mean 0.358 (± 0.03) 0.315 (± 0.031) 0.261 (± 0.075)
GCM Near 0.302 (± 0.036) 0.211 (± 0.012) 0.208 (± 0.064)

SVC

All 0.474 (± 0.03) 0.35 (± 0.026) 0.348 (± 0.061)
CM 0.55 (± 0.033) 0.239 (± 0.063) 0.278 (± 0.1)

GCM Min 0.357 (± 0.014) 0.315 (± 0.062) 0.304 (± 0.031)
GCM Mean 0.348 (± 0.023) 0.304 (± 0.067) 0.383 (± 0.048)
GCM Near 0.333 (± 0.017) 0.289 (± 0.022) 0.278 (± 0.05)

Table 4.4: Initial classification models results (F1 score micro) averaged over 5 runs. The
values in the brackets refer to the standard deviation. Red color indicates the worst results
in a column overall, while green color indicates the best results in a column overall.

4.5.2 Feature Selection

RFE-LOOCV

We run RFE with LOOCV for 50 runs and only choose the features that were selected at least
50%. We fit the models again over five runs with the selected features on the training and we
perform CV to estimate its predictive ability and compare it to the validation set evaluation.

Models Features
Features
Selected

Training LOOCVF1 Validation

RFC

All 50 0.95 (± 0.006) 0.313 (± 0.014) 0.287 (± 0.039)
CM 8 0.937 (± 0.02) 0.313 (± 0.054) 0.287 (± 0.073)

GCM Min 14 0.935 (± 0.008) 0.324 (± 0.046) 0.33 (± 0.079)
GCM Mean 15 0.93 (± 0.031) 0.311 (± 0.032) 0.278 (± 0.09)
GCM Near 16 0.939 (± 0.021) 0.3 (± 0.02) 0.296 (± 0.072)

MLR

All 67 0.515 (± 0.021) 0.357 (± 0.026) 0.348 (± 0.053)
CM 7 0.3 (± 0.029) 0.237 (± 0.021) 0.243 (± 0.039)

GCM Min 11 0.322 (± 0.026) 0.289 (± 0.029) 0.278 (± 0.024)
GCM Mean 11 0.374 (± 0.022) 0.282 (± 0.045) 0.339 (± 0.084)
GCM Near 4 0.274 (± 0.029) 0.237 (± 0.024) 0.226 (± 0.065)

Table 4.5: Averaged results over 5 runs of RFE-LOOCV for classification models along
with the number of features selected at least 50%. The values in the brackets indicate the
standard deviation. Red color indicates the worst results in a column, while green color
indicates the best results in a column overall. The number of features in All is 74, CM is
8 and 22 features for each GCM approach.
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Figure 4.3: The number of times a feature was selected after 50 runs of RFE-LOOCV
for MLRAll. The red line indicates the threshold, which is 50% and the number features
selected is 67.

Because SVC with RBF kernel does not return any coefficients in sklearn, it cannot be
used with RFE. Therefore, we only conduct RFE for RFC and MLR and the results are as
displayed in Table 4.5. We still believe that RFC is overfitting on the training set given the
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high F1 score present. In addition, an increase is noticed on the LOOCVF1, which we consider
a good sign. However, RFCCM selected all the CM features which results in the same result
obtained in Table 4.4. The best three models on average on the training set are RFCAll 50
features, RFCGCMNear 16 features and RFCCM 8 features while the worst model on average
is MLRGCMNear 4 features. All models with the exception of RFCCM 8 features decreased
the F1 score on the training set by no more than 0.5%, while the worst model decreased
F1 score by 9.72%. Moreover, the top models on average based on LOOCVF1 are MLRAll
67 features increasing by 1.41% followed by RFCGCMMin 14 features associated with 6.57%
decrease and third, RFCAll 50 features with 2.52% decrease and RFCCM 8 features with the
same value. The worst two models on average on LOOCVF1 are MLRGCMNear 4 features
even though the F1 score increased by 11.16% and MLRCM 7 features with a decreased score
of 11.16%. Furthermore, the best three performing models on average on the validation set
are MLRAll 67 features with no change in the score followed by MLRGCMMean with 26%
increase and RFCGCMMin 14 features with 14.87% decrease while the worst model on average
is MLRGCMNear 4 features despite the increase by 8.29%. Given that, we consider only MLRAll
with 67 features to be one of the best along with RFCGCMMin SVCAll from the initial results.
To analyze the MLRAll 67 feature more, Figure 4.3 displays the features that were chosen
after RFE-LOOCV. We notice that 13 out of the 17 features that we consider not unique were
selected more than 50%, but we do not see this as something problematic. This is because
although MLRAll training F1 reduced, it managed to increase the F1 score on CV and maintain
the same F1 score on the validation set.

Boruta

We conduct 5 random runs using the seeds with the Boruta algorithm that utilizes Random
Forest Classifier to find the features that are the most relevant to the classification tasks. We
set the parameters as follows: n estimators=‘auto’, random state=1, while for the estimator of
Boruta, RFC, we set the max depth=5 as recommended in the documentation. The purpose
of the 5 random seeds is for splitting the data. In addition, we only choose the features that
were selected at least 2 times out of 5 (majority voting). Moreover, We did experiment with
different parameters settings, but the same results were obtained. The results of the features
chosen after Boruta are in Table 4.6.

Features Features Selected

All

c2wDistanceMean, c2wDistanceSD, b2wSD
min basin prob max
mean basin prob min
mean bestAttrProb
near basin prob min

CM c2wDistanceMean, c2wDistanceSD, b2wSD

GCM Min
min basin prob min

min basin prob median
min basin prob max

GCM Mean mean basin prob min
GCM Near near basin prob min

Table 4.6: The features chosen after Boruta algorithm
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We notice that only 7 features were chosen when using all the 74 features and. Following
that, 3 features were chosen from CM and GCM Min, while only 1 feature was chosen for
both GCM Mean and GCM Near. We can easily observe the overlap with the features selected
from the full feature set and the subsets. In addition, the same features that were selected in
CM, GCM Mean and GCM Near are selected in All features, but only one feature from GCM
min, min basin prob max, was chosen. From here, we take the chosen features and we fit the
classification models again with the same settings as before and use CV. The results of the
models with the chosen features are shown in Table 4.7. The results shown indicate that none
of the models benefited from the features chosen on the validation set F1 score. The models
of MLR and SVC scored the worst on training, LOOCVF1 and validation. Therefore, we do
not consider any of the models to be desirable. From here, we conclude that the best three
models that match our criteria are: (1) SVCAll 74 features, LOOCVF1 = 0.350, validation =
0.348, (2) RFCGCMMin 22 features, LOOCVF1 = 0.346, validation = 0.383 and (3) MLRAll
67 features, LOOCVF1 = 0.357, validation = 0.348.

Models Features
Features
Selected

Training LOOCVF1 Validation

RFC

All 7 0.95 (± 0.021) 0.357 (± 0.012) 0.313 (± 0.094)
CM 3 0.941 (± 0.026) 0.309 (± 0.03) 0.313 (± 0.071)

GCM Min 3 0.939 (± 0.021) 0.354 (± 0.054) 0.278 (± 0.073)
GCM Mean 1 0.893 (± 0.021) 0.243 (± 0.038) 0.2 (± 0.073)
GCM Near 1 0.9 (± 0.025) 0.291 (± 0.021) 0.339 (± 0.057)

MLR

All 7 0.341 (± 0.013) 0.3 (± 0.018) 0.33 (± 0.039)
CM 3 0.261 (± 0.0) 0.259 (± 0.005) 0.261 (± 0.0)

GCM Min 3 0.344 (± 0.01) 0.317 (± 0.009) 0.313 (± 0.036)
GCM Mean 1 0.261 (± 0.0) 0.237 (± 0.02) 0.261 (± 0.0)
GCM Near 1 0.265 (± 0.017) 0.25 (± 0.0) 0.261 (± 0.0)

SVC

All 7 0.261 (± 0.0) 0.254 (± 0.01) 0.261 (± 0.0)
CM 3 0.261 (± 0.0) 0.261 (± 0.0) 0.261 (± 0.0)

GCM Min 3 0.289 (± 0.019) 0.219 (± 0.009) 0.217 (± 0.053)
GCM Mean 1 0.261 (± 0.0) 0.261 (± 0.0) 0.261 (± 0.0)
GCM Near 1 0.261 (± 0.0) 0.252 (± 0.005) 0.261 (± 0.0)

Table 4.7: Averaged results over 5 runs of Boruta for classification models along with the
number of features. The values in brackets corresponds to the standard deviation. Red
color indicates the worst results in a column, while green color indicates the best results
in a column overall. The number of features in All is 74, CM is 8 and 22 features for each
GCM approach.

To examine the predictive ability of the aforementioned models, the confusion matrices aver-
aged over 5 runs of the training predicted classes with the validation set predicted classes for
the models are displayed in Figures 4.4, 4.5 and 4.6. We do not notice concerning matters
except for the results on the validation set for SVC since it is biased towards classifying RLS
unlike MLR, which had the same score on validation set. Next we perform hyperparameter
tuning for the models in order to obtain a higher F1 score on LOOCVF1 and validation.
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Figure 4.4: Averaged confusion matrices over 5 runs of SVCAll model, Left: training set.
Right: validation set
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Figure 4.5: averaged confusion matrices over 5 runs of RFCGCMMin model, Left: training
set. Right: validation set
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Figure 4.6: Averaged confusion matrices over 5 runs of MLRAll 67 features model, Left:
training set. Right: validation set
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4.5.3 Hyperparameter Tuning

In this subsection we take the three models that we identify to be the best models namely,
SVCAll 74 features, MLRAll 67 features and RFCGCMMin 22 features, and utilize the Mixed
integer, Parallel - Efficient Global Optimization package or as referred to as MiP-EGO. MiP-
EGO is an optimization package that is used to optimize mixed integer optimization problems
and it uses a surrogate model (Random Forest), which corresponds to the EGO part and it
learned from the evaluations made in the process. We decided to use this package because
hyperparameter tuning is a time consuming process. The process begins with defining the
search space, which can be Continuous, Ordinal and/or Nominal. Then, a function to be
optimized is defined and in this case we aim to maximize the LOOCVF1 averaged for each
fold. Last, the maximum number of evaluations and iterations is set to 500. For the SVC model
we vary the penalty parameter C in a continuous space [1, 200] and the kernel parameter γ
in a continuous space [1, 50]. In addition, the same space is defined for the penalty parameter
C in MLR. Moreover, RFC hyperparameters are all defined in the Ordinal space and they
consist of n estimators ∈ [10, 500], max depth ∈ [5, 50], min samples leaf ∈ [2, 30]
min samples split ∈ [1, 20] and bootstrap ∈ [0, 1] where the bootstrap values corresponds
to True (1) and False (0).

Given that we run the hyperparameter tuning over 5 random runs using the seeds, we obtain
15 models where each 5 models correspond to one of the best models. After these models are
obtained, we running the fitting and prediction with LOOCV for 5 runs using the seeds and
the results are displayed in Table 4.8.
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Figure 4.7: Averaged confusion matrices over 5 runs of MLRAll model after HPT, Left:
training set. Right: validation set

The SVC model benefited the most on the training set across all parameters C and γ that
were selected reaching an average F1 score on the training of 0.961 with (± 0.009) deviation.
Furthermore, there was a decrease on the LOOCVF1 score even though it was the value to be
maximized. Although the decrease was small, the F1 scores on the validation does not make
any of parameters good enough as the F1 score on the validation set is 0.27 with (± 0.019)
deviation. Therefore, we would still choose the SVC model with the default parameters.
Proceeding to the RFC model, there is indeed a noticeable variation in the F1 score on the
training set on average unlike the LOOCVF1 scores, which also decreased. Again the results on
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Model Params Training LOOCVF1 Validation

RFCGCMMin

n estimators=493
max depth=22

min samples split=18
min samples leaf=18
bootstrap= False

0.402 (± 0.043) 0.33 (± 0.013) 0.313 (± 0.057)

n estimators=35
max depth=19

min samples split=14
min samples leaf=2
bootstrap=False

0.748 (± 0.031) 0.315 (± 0.037) 0.339 (± 0.036)

n estimators=72
max depth=11

min samples split=19
min samples leaf=12

bootstrap=False

0.502 (± 0.027) 0.302 (± 0.06) 0.295 (± 0.064)

n estimators=32
max depth=11

min samples split=19
min samples leaf=12

bootstrap=True

0.411 (± 0.031) 0.341 (± 0.033) 0.313 (± 0.036)

n estimators=251
max depth=21

min samples split=4
min samples leaf=2
bootstrap=False

0.937 (± 0.016) 0.339 (± 0.029) 0.33 (± 0.066)

SVCAll

C=64.087
γ=1.131

0.961 (± 0.012) 0.3 (± 0.009) 0.27 (± 0.019)

C=35.36
γ=5

0.961 (± 0.012) 0.279 (± 0.01) 0.27 (± 0.019)

C=162.393
γ=1.094

0.961 (± 0.012) 0.3 (± 0.009) 0.27 (± 0.019)

C=32.087
γ=1.839

0.961 (± 0.012) 0.3 (± 0.009) 0.27 (± 0.019)

C=199.789
γ=2.076

0.961 (± 0.012) 0.3 (± 0.009) 0.27 (± 0.019)

MLRAll

C=108.703 0.904 (± 0.028) 0.352 (± 0.025) 0.391 (± 0.107)
C=57.018 0.887 (± 0.035) 0.359 (± 0.025) 0.391 (± 0.092)
C=64.847 0.889 (± 0.032) 0.361 (± 0.026) 0.391 (± 0.097)
C=116.921 0.906 (± 0.032) 0.352 (± 0.025) 0.383 (± 0.117)
C=187.017 0.922 (± 0.025) 0.337 (± 0.03) 0.383 (± 0.117)

Table 4.8: Hyperparameter tuning results on the best three models found using MiP-EGO
for 5 runs. The values in the brackets report the standard deviation. Red color indicates
the worst results in a column, while green color indicates the best results in a column
overall

the validation set were not better than the use of default parameters. Given that, we would still
consider the RFC model with the default parameters to be better. Last, the MLR model did
witness a slight variation on the training set, but we do not consider it concerning. In addition,
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the MLR scores on LOOCVF1 were the best among other models and indeed the best on
the validation set with three models reaching 0.391 on average. From all the 15 models, we
would replace the MLRAll 67 features with C = 1 (default parameter) to the same model
where C = 57.018 given the high LOOCVF1 and validation set score. Furthermore, Figure 4.7
displays the confusion matrices averaged over 5 runs to classify the best algorithm using the
aforementioned hyperparameter. The confusion matrices show that the predictive ability on
both the training set and the validation set improved compared to the MLRAll model with the
default parameters.

4.6 Summary of Results

In this chapter we explained the data generated from feature generation and the ERT/labels
obtained from the IOHprofiler. To answer Q4, we experimented with various regression models
and concluded that predicting the ERT is not feasible at this points given the large deviation
within the ERT values and the high MAPE values. Furthermore, we attempted to decrease
the MAPE value by selecting features (RFE-LOOCV) and we came to the closure as before.
After that, we sought to classify (select) the best algorithm using different machine learning
models. In addition, feature selection (RFE-LOOCV and Boruta) and hyperparameter tuning
(MiP-EGO) were implemented and the best models evaluated using F1 score on average are
as follows:

1. MLRAll 67 features , C = 57.018, Training: 0.887, LOOCVF1: 0.359, Validation 0.391.

2. RFCGCMMin 22 features, default parameters, Training: 0.935, LOOCVF1: 0.346, Vali-
dation 0.383.

3. SVCAll 74 features, default parameters, Training: 0.474, LOOCVF1: 0.35, Validation
0.348.
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Chapter 5

Conclusion

Exploratory Landscape Analysis (ELA) has been developing since the early 1990’s as a way
to characterize optimization problems that are solved using classical heuristic optimization or
Evolutionary Algorithm (EA) approaches. Researchers did not attempt to only understand the
landscape of an optimization problem, but also attempted to use this characterization to find
the best algorithm or predict the performance of an algorithm. As described in section 2.1,
researchers developed many methods to discover the properties of continuous optimization
problems and recommend the best suited algorithm. Moreover, almost all ways are tested
against The Black-Box Optimization Benchmark (BBOB) functions. However, there does not
exist a general method to identify the properties in the discrete decision space, but methods
that are specific per optimization problem.

In Chapter 1, we defined our problem to be finding current feature extraction methods in the
continuous decision space and attempt to adapt it to the discrete decision space. In addition,
after generating the features we attempted to predict the Expected Run Time (ERT) or classify
the best performing algorithm where the results were obtained from the IOHprofiler. The
functions to be tested against were 23 Pseudo-Boolean Functions subject to maximization as
mentioned in section 1.3. In Chapter 2, we focused on a relatively new feature generation tool,
flacco, to find a method that is suitable. Indeed, Cell Mapping angle features and Generalized
Cell Mapping (GCM) for their different approaches were suitable. From here, we studied how
flacco generated the features in the continuous domain.

In Chapter 3, we proposed an adjustment to the creation of the FeatureObject in a way that
operates for binary input. Our feature inspect analysis indicated that the CM angle features
do produce different features for each of the functions for different number of observations.
Moreover, the GCM set for different approaches does not produce a complete feature set that is
unique, but rather some features can be selected from different approaches of GCM. Also, even
though we consider all the functions to be completely different, two functions (f11, f12) had
exactly the same feature values for all different methods, CM and GCM, across all functions
and number of observations.

In Chapter 4, we aimed to predict the ERT using three different regression models, Lin-
ear Regression (LR), LASSO and Random Forest Regression (RFR), and the Mean Absolute
Percentage Error (MAPE) as the evaluation metric. The models are fitted using 5 different
random defined seeds for data split and the results of the training, LOOCV and validation are
reported on average along with the standard deviation. Given the high standard deviation, the
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huge difference between the minimum and maximum values and the MAPE scores, the mod-
els were unable to predict the ERT and therefore not trustworthy. In addition, we attempted
to select important features using Recursive Feature Elimination (RFE) with Leave-One-Out
Cross-validation (LOOCV) by running it 50 random runs and choosing the features that were
selected at least 50% of the time. However, we came the same conclusion as initially stated.
Next, we sought to classify (select) the best algorithm using three different classification
models, Random Forest Classifier (RFC), Multinomial Logistic Regression (MLR) and Supper-
vector Classifier with ‘RBF’ kernel (SVC) and the F1 ‘micro’ score as the evaluation metric.
The models are fitted using 5 different random defined seeds for data split and the results of
the training, LOOCV and validation are reported on average along with the standard devia-
tion. We discovered that the highest F1 score on the validation set was 0.383 for RFC model
using GCM Min features. From here, we ran RFE-LOOCV and Boruta algorithm to find the
best subset of the features for each model. Given that, we found out that Boruta is of no
use and from RFE-LOOCV only MLR with all the features reduced to 67 out of 74 improved
performance on the LOOCVF1 and validation set. Afterwards, we moved to hyperparameter
tuning using MiP-EGO for the three best selected models: RFCGCMMin 22 features, SVCAll
74 features and MLRAll 67 features. The process of hyoerparameter tuning was also ran over 5
defined seeds and all the resulted models were evaluated. None of the models exhibited a better
performance except for MLRAll 67 features. From here, the best three models were MLRAll
67 features with the tuned C parameter (0.391 on validation set) followed by RFCGCMMin

(0.383 on validation set) and SVCAll 74 features (0.348 on validation set).

To conclude, there is a potential in generating features in the discrete decision space and
making use of them to classify the best performing algorithm. This is possible if the labels
are available as well as if the behaviour of the test functions is already known before hand.
This will help to match the expectation of the features generated and the known behaviour of
the functions. As for selecting the best algorithm, Multinomial Logistic Regression has proved
to be a good enough classifier given its high F1 score on the validation set and LOOCVF1.
Future work in this domain would include finding more feature generating approaches that are
relevant to the problems as well as growing the data set to include more functions along with
its labels as well as testing on other Pseudo-Boolean functions.
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