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Abstract

Polyglutamine (polyQ) diseases are a group of rare neurodegenerative diseases that are caused
by a protein with an expanded glutamine (Q) repeat. Although the mutation is known for
these diseases, the native function of the non-mutated proteins has not been fully elucidated for
most. This is also the case for many other polyQ proteins, although they seem to be important
in protein interactions. One of the methods to study protein functions is by analysing a
protein-protein interaction network. As the disease proteins cause a neurodegenerative disease,
the focus of this research is on brain tissue. Mouse (Mus musculus) brain cells are a common
source for protein-protein interaction data because there is more in vivo data available than in
human. However, some proteins that are polyQ in human are missing the polyQ domain in the
mouse orthologue, with only two disease polyQ proteins in human also being polyQ in mouse.
An interactionnetwork was constructed to find common topological and inter-actor functions
among polyQ proteins-, disease proteins- and human orthologs that are not themselves a polyQ
-protein. This research has shown that the disease proteins are more highly connected than
other groups and have a different functional enrichment profile. polyQ proteins have a higher
average degree than non-polyQ orthologues, but they in turn have higher centrality. Both
groups have very similar enrichment profiles, showing that both polyQ and polyQ orthologues
are important in the network and are involved in protein binding activities.
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1 Introduction

This section provides an introduction that explains some of the background information necessary
for this thesis. It shortly explains polyglutamine proteins, networks, the biological implications of
some of the topological results and clustering of the network.

1.1 polyQ protein

Polyglutamine (polyQ) diseases are a family of neurodegenerative diseases that involve a protein
with an expanded glutamine (CAG) repeat. To date, nine different polyQ diseases have been de-
scribed. The most common of these diseases is Huntington disease (HD) caused by a CAG expansion
in the HTT gene. The other eight diseases are: SCA1, SCA2, SCA6, SCA7, SCA17, Machado-
Joseph disease (SCA3), DR-PLA and spinal and bulbar muscular atrophy. The exact mechanisms
behind these diseases remains unknown. These diseases can have a severe effect on the health of a
patient. For example in Huntington disease, the expanded CAG segment, at least more than 36 glu-
tamines [Totzeck et al., 2017], leads to the production of extremely long Huntington proteins. These
proteins accumulate in neurons, disrupting their function, see Figure 1. This process mainly affects
the striatum and cerebral cortex. Another often occurring symptom is that with each new generation
that carries the disease HTT gene, the polyQ tract grows in size [McColgan and Tabrizi, 2018].
This is associated with the sign of symptoms in an earlier stage of life. Although there have been
many observations on the effects of the accumulated mutated Htt protein, relatively little is known
about the natural Htt function. It has been found to interact with many other proteins. Studying
these interactions, and those of related polyQ proteins may offer new insights into common functions.

Figure 1: Cartoon of the possible working of a polyQ protein

Polyglutamine proteins are proteins that contain a polyglutamine tract. In healthy individuals,
this polyQ tract can have a minimum of 8 out of 10 glutamines as described by [Totzeck et al.,
2017]. This glutamine is encoded by CAA and CAG codons. This minimal length should be enough
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for a polyQ tract to do its function but not be pathogenic. Still, according to the research of
Totzeck et al, even a small change in the polyQ tract can have a pathogenic effect. With Huntingtin
for example, a polyQ region of 34 glutamines is not pathogenic while a region of 36 glutamines
is pathogenic. Figure 1 shows how a polyQ tract can cause an aggregate of proteins that then
block the function of the protein as described by [Schaefer et al., 2012]. Cohen-Carmon and Eran
Meshorer [Cohen-Carmon and Meshorer, 2012] describe that disrupted chromatin regulates may
be directly involved with the pathophysiology of polyQ-related diseases. They describe that the
mutant Htt has a stronger interaction with CBP, which leads to a CBP depletion and thus to
hypoacetylation of histones.

1.2 Networks

To take a better look into the interactions between these disease proteins and the other proteins
we create a protein-protein interaction network, because these interactions can potentially show
cooperation between proteins that can drive a biological process [Robertson et al., 2011]. Proteins
such as Htt interact with other proteins in a manner that can be described like the interactions
in a social network. Just like the interactions between people can be visualized in an undirected
Facebook network, protein-protein interaction data can be used to create an undirected protein-
protein interaction (PPI) network.

1.2.1 Networks Topology

This undirected PPI network exists of nodes that represent protein and edges that represent
interactions between two proteins. Complete protein-protein interaction networks have been shown
to have scale-free like properties [Albert, 2005]. A network is scale free when the node-degree
distribution follows a power law. If the network is scale-free, mathematical properties can be used to
gain a new or better understanding of the protein’s functions. One of the properties of a scale-free
network is that they display the so-called small world property, which states that usually any two
nodes are an average of six nodes away from each other in the network.
With this scale-free property there are some topological properties that are important for the
description of PPI networks. For example the giant component in the network which is the largest
connected group of nodes. Another method of grouping nodes is by finding their first neighbours
(FN), which are al the nodes that are directly connected to the target node. The degree of a node is
the number of directly connected nodes to the target node [Dong and Horvath, 2007]. The average
shortest path, shortest path being the smallest distance between two nodes, indicates how closely
connected the network is, or how connected a node is. The network centralization, also degree
centralization, is an index of the connectivity distribution. The heterogeneity value, another network
description value, indicates if a network contains hub nodes.
Another important method for network description or analysis is centrality analysis. This can be
used to find out which protein in the network is the most important and why. There are different
forms of centrality: degree centrality, betweenness centrality and closeness centrality. While the
degree centrality gives a rough estimate of centrality because it is only a local measure, it still can
be used to identify hub proteins in networks [Yu et al., 2007].
The betweenness centrality is based on the number of shortest paths in the graph that pass through
the node [Yu et al., 2007]. The proteins in the network that have the highest betweenness are likely
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to be involved in a signal pathway and can even have a crucial function [Yu et al., 2007]. Yu et al
describe these proteins as bottleneck proteins in the network. According to Yu et al hubs are the
top 20% with the highest degree distribution and the bottlenecks in the network are the top 20%
of the nodes with the highest betweenness centrality value. Their findings also indicate that in PPI
networks the degree measurement is a better indicator of essentiality than betweenness, because a
PPI network is undirected. The closeness centrality measures the shortest paths from a particular
node to all nodes it can give an indication of how relevant a protein can be for the other proteins
in the network.

1.2.2 Clustering

Protein-protein interactions can be stable or transient [Nooren and Thornton, 2003]. Stable protein-
protein interactions form permanent interactions that fulfil a certain biological role. These stable
interactions are also called protein complexes. Transient protein-protein interactions are interactions
that only occur for a short period to fulfil a biological role and then move on. To find these
protein complexes community detection or clustering is used. There are specific protein-protein
interaction clustering algorithms that are focussed on biological networks. There are several options
for clustering biological networks like, MCODE, SR-MCL, DME, NeMo, etc.

The algorithm used in this research to find clusters (densely connected regions in the network that
indicate protein complexes) is Molecular Complex Detection (MCODE) [Bader and Hogue, 2003].
The MCODE algorithm is a heuristic-based algorithm that operates in three phases [Bhowmick
and Seah, 2016]: (1) vertex weighting, (2) complex prediction and (3) post-processing. In the first
phase the nodes are weighted based on the local network density value using the highest k-core of
the node neighbourhood. Besides the calculation of the k-core (minimum amount of degrees), the
density of the neighbourhood is calculated and taken into the weighing. The second phase predicts
molecular complexes using the node weights (calculated in the previous phase) in a greedy seed and
extend manner. The seed gets expanded until a user specified threshold (vertex weight percentage)
is reached. In the third and final stage the complexes are pruned and so called fluffed (extra nodes,
not from the cluster are added) if necessary. Complexes can be filtered out if they do not meet
a minimum node amount. After these steps the complexes are scored and ranked based on their
density. In general, the clustering algorithm takes as an input the entire giant component and then
finds densely-connected regions in this network. The algorithm outputs all the clusters that it could
identify. There is no overlap between the clusters [Lin et al., 2007].

1.3 Related work

Over the last 10 years a lot of research about the function of polyQ protein has been done. In this
section research that has a similar subject or method to this study will be discussed.
A study by [Tourette et al., 2014] looks into Huntington disease by creating a protein-protein inter-
action network. They study the network by analysing the network statistics, functional enrichment,
and clustering. They start with a network based on the Htt-interacting proteins that are from an
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earlier research that described a Y2H screen using Htt as bait. This resulted in 102 high confidence
interactions with Htt. They then added the first inter-actors of these 102 inter-actors to form the
HD-net network. After this they compared the network to a random network of proteins gathered
from de Human Protein Resource Database (HPRD).
For the network topology analysis, they calculated the shortest path with Matlab package: MATLAB
BGL. HD-net had a shortest path of 18.25. This network centred around Htt has 3235 interactions
with 2141 proteins. All network metrics were based on the largest subgraph of HD-net. For the
functional annotation of the network a total data set and subgroups of primary and secondary
partners of Htt were analysed using Ingenuity Pathway Knowledge Base. For the functional analysis
they used a p value of 0.01. The enrichment data indicated that Htt is involved in membrane
dynamics, cell attachment and motility.

Another study by Schaefer et al analyses the function of CAG (Q) repeats in PPI networks in
different species (total of 11) [Schaefer et al., 2012]. The interactions are not studied in a network
but as a list of interactions and enrichment data. The human protein-protein interactions are from
the HIPPIE database and the interactions from the other species are from the BioGRID database.
They specified polyQ protein with a minimum length of 10 Q’s with a maximum of one mismatch.
The results relevant for this research is the finding that polyQ proteins are probably stabilizing
protein-protein interactions through changes in their structural form. This alteration probably leads
to the protein aggregation that is lethal in the disease varieties.

1.4 Problem statement and research question

Even though there has been a lot of research into the workings of the disease variants of the proteins,
a lot still remains unknown about the workings of regular poly-Q protein. With this research we
hope to find some new insights into the workings of poly-Q protein by studying the differences or
commonalties between inter-actors in disease and normal variants. Because all the disease proteins
have a neurological impact, only brain proteins will be studies to limit the amount of proteins. Since
there is far more information about protein-protein interactions in the brain in mouse databases
than there is in human databases, the choice was made to limit the research to mouse PPI data.
This can be summarized using the following research statement (RS) and three research questions
(RQ).

RS: Investigate the similarities and differences between polyQ protein-protein interactions in Mus
musculus brain to find common inter-actor functions in normal and disease states.

To further address the research statement, it is best to divide it into individual research questions.
The first method that is used to find commonalities is to look for common functional signatures in
polyQ inter-actors. These polyQ inter-actors show can show the biological function of the included
proteins. When looking for the polyQ inter-actors the following RQ1A can be asked.

RQ1 A: What are the common functional signatures in polyQ inter-actors in the network?

4



A part of the disease proteins in mice does not fit the polyQ protein criteria as mentioned in [Totzeck
et al., 2017]. Only Tbp and Ar classify as a polyQ protein. The other disease proteins are only a
polyQ protein in transgenic induced mice. This means that the possibility of a difference between
these proteins should be explored.

RQ1 B: What are the differences between inter-actors of mouse polyQ proteins and mouse
orthologues of human polyQ proteins that are not themselves polyQ proteins?

If any common inter-actors are found among the polyQ proteins, the next step is to find out if
these common inter-actors or their mathematical properties differ from the normal polyQ proteins.

RQ 2: How do the polyQ disease protein inter-actors differ from ones not associated with disease?

To try and find answers to these questions, a protein-protein interaction network is created with
mouse brain data from MGI’s MouseMine database [Motenko et al., 2015]. These proteins are then
imported into Cytoscape using the StringDB plugin. StringDB retrieves all the possible interactions
above a certain threshold and turns them into a network in Cytoscape. This network was then
analysed using functional enrichment (STRINGDB enrichment), statistical analysis, clustering, and
network descriptions.

1.5 Thesis Overview

Section 1 gives a introduction to this research by explaining the basic principles needed. Section 2
provides an overview of the used materials and methods in this thesis. Section 3 is used to give an
overview of the results. In section 4 the results of this thesis are discussed, and the conclusion will
be given in section 5.
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2 Materials and Methods

The aim of this section is to provide a background in order to give a full understanding of the used
techniques and tools in this research. The subsections explain the concepts and implementation of
all the different processes.

2.1 Data gathering and cleaning

To gather all mouse brain proteins, as described in RS 1.4 MouseMine.org was used. This is an
online data warehouse created to provide MGI mouse data using the InterMine framework [Motenko
et al., 2015]. This online application has an interface where you can filter all the mouse protein on
different values, among which is expression tissue. When filtering on brain tissue, several types of
tissue, like brain, cerebellum, cerebral cortex, midbrain, etc... are returned. This list of proteins
is then downloaded as an .tsv file. This file contained a lot of duplicate data, because some of
the proteins are expressed in multiple tissues, a small python script was used to remove duplicate
proteins in the file. The script filtered on doubles based on the MGI:ID instance. The resulting file
contained 9646 unique proteins.
There was then one issue of mapping. The STRINGDB tool that was used to import the PPI data
into Cytoscape, see Figure 2, did not accept MGI symbols or MGI ID’s as input but needs the
input to be EnsemblProtein ID or Ensembl Gene ID. Some identifiers were not mapped to other
identifiers. The optimal mapping strategy was between MgI-Symbol and Ensembl-protein ID. This
resulted in the largest amount of nodes (9156 out of 9646) compared to the other possibilities.
A more compact and understandable view of this process is shown in Figure 2 where the entire
process to eventually create the network in Cytoscape is visualized.
The mapping process was done using the Ensembl BIOMART tool [Kinsella et al., 2011]. This tool
allows to map different ID’s to other ID’s or ortholog ID’s. This list of Ensembl protein ID’s was
then used to create the network.
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Figure 2: This workflow shows the data cleaning and gathering process and how the final network
was created. The green coloured rectangles are the ”source” resources for the network. The hexagons
are actions performed on the data and the red coloured rectangle is the final network.

2.2 Network Creation

This subsection explains the process of how the network was created using Cytoscape and various
other tools. First a brief concept of the process is given.

2.2.1 Concepts

The list of brain proteins from MGI is the source for the unique nodes in the network that is to
be created. This list of brainproteins does not contain any information about the interactions. To
build the network, all the different interactions, or edges, between the nodes should be identified.
The most used source for this is StringDB [von Mering et al., 2005].
StringDB is a database that contains a collection of protein-protein interactions from different
species that are quality controlled. The interactions are from high-throughput experimental data,
databases and literature and from predictions. Databases that are used as source for the StringDB
provide different types of evidence. PPI databases, such as BioGRID, MINT, DIP. Pathway
databases, such as KEGG and reactome. Literature evidence from PubMed and genome resources
from ENSEMBL/swissprot. Databases like COG provide phylogenetic evidence. The GeneOntology
(GO) database is used by the StringApp as a source for enrichment data.

All these databases and their evidence channels are combined into a matter that integrates the
probability from all these different channels into an evidence score. The list that follows contains
all the proteins and the proteins they interact with, allong with other data gathered by string. The
nodes now have besides their name data like, protein sequence, species, tissue expression score and
more. The edges contain data on the different types of evidence and the score that they gained for
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this evidence as well as the total evidence score. This list of protein interactions with all of the
meta-data can then be visualized.

2.2.2 Implementation

The application that is used to visualize and analyse the network in this research is Cytoscape.
Cytoscape is an open source software platform for visualizing protein interaction networks and
biological pathways and combining these networks with annotations, gene expression profiles and
other types of data [Shannon et al., 2003]. The version of Cytoscape used in this research is
3.7.2. The Cytoscape environment also allows for the installation of plugins using the build in
Appstore. These plugins add new functionalities that range from algorithm layout to enrichment.
The plugins that are used in this research are: StringApp (version: 1.5.5) [Doncheva et al., 2019],
YfilesLayourAlgorithm (version: 1.1) [YWorks, 2020] and MCODE (version 1.6.1) [Bader and Hogue,
2003]. StringApp is the most critical plugin for this research.
StringApp is a plugin that acts as an API for the above mentioned StringDB. To import the list of
brain proteins from MGI, StringApp was used. When importing proteins into Cytoscape using the
stringApp, the user can specify a cut-off-score that specifies the minimum amount of evidence for an
interaction between proteins. Alongside the proteins and their interactions stringApp imports the
additional data from StringDB. The list of brain proteins described in section 2.1 passed through
the StringApp plugin using the protein query option with a cut-off-score of 0.7 and specified on Mus
musculus. The cut-off-score of 0.7 was chosen to guarantee interactions with a high confidence [von
Mering et al., 2005]. The giant component of the resulting network was then exported to a separate
network file.

2.3 Clustering

Another step in the nework creation was the clustering process. The networks giant component
(GC), that that was identified while creating the network as described in the previous subsection 2.2
was clustered to find possible protein complexes using the MCODE algorithm. For the MCODE
algorithm the parameters used were: k-score 3, node score cut-off of 0.3 and a degree cut-off of
3. These values are slightly increased compared to the standard values but are chosen after doing
tests with different values and finding that these parameter values resulted in the clusters with the
larger number of clusters with a minimum size of 3.

2.4 Network Enrichment

To answer the research-questions and research statement polyQ protein and disease proteins have
to be identified in the network. This subsection explains the process of how disease proteins, polyQ
proteins and the orthologs that are not a polyQ protein themselves (polyQO) were identified using
Cytoscape and it’s plugins. First a brief concept of the process is given.

2.4.1 Concepts

Identification of the disease protein follows out of identifying them by their protein name and
labelling them. The polyQ protein were can be identified on the protein sequence that gets imported
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from the StringDB. Because polyQ have a minimum of 8 out of 10 Q’s on a domain, regular
expression can be used on a basic filtering to identify all the different variants of that 10 amino
acid long sequence.
Besides the disease proteins and the polyQ proteins the ortholog proteins still had to be identified
(process is shown in Figure 3. To identify these proteins, different methods were used to ensure
that all human polyQ orthologs were found. The polyQ2.0 database is a database that consists off
all human polyQ proteins. The database contains the 9 disease proteins, 105 reviewed non-disease
proteins and 146 unreviewed proteins. The unreviewed proteins are protein that have not been
experimentally confirmed yet.

Figure 3: This Figure shows the control process for the ortholog proteins in the network. The green
coloured rectangles are the input for the workflow. The hexagons are actions performed on the data
and the red coloured rectangle is the end product.

To identify the mouse orthologs for the reviewed proteins was a more straightforward task. This was
completed using Ensembl’s BIOMART tool. ENSEMBL maintains a list of accepted orthologues for
model organism species that can be used to map the UniprotID’s to EnsemblProteinIDs. To find
the mouse orthologs of the unreviewed protein NCBI’s protein BLAST [Madden et al., 1996] variant
BLASTP was used. The Uniprot ID’s from the polyQ2.0 database had to be converted to FASTA
format using the uniprotmapping tool to prepare for the BLASTP process. The protein BLAST
was performed using the default settings (Db: Non-redundant protein sequences, BLASTP, 100
Max target sequences, Exp. treshold: 10, Word size: 6, Matrix: BLOSUM62, Gap Costs: Existence:
11 Extension: 1), but limited the BLASTP to mouse proteins. The resulting output file from this
BLASTP contained several types of identifiers that had to be mapped to EnsemblProteinID. As a
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final check to minimize loss of information in the mapping process. All protein identified in the
network were mapped to their human ortholog, and then compared to the PolyQ2.0 database by
converting the human orthologs to a Uniprot ID. The proteins in the polyQ2.0 database were then
added to the complete list of mouse ortholog EnsemblProteinID’s (converted using BIOMART).
The resulting list was then filtered for duplicate proteins and contained all unique polyQO proteins.
After this first neighbour networks can be created of all the identified subgroups by adding all the
direct inter actors of a target node into a subgroup.

2.4.2 Implementation

To identify the disease proteins, the Cytoscape select tool was used to filter on the DisplayName
instance from the node’s table. The disease proteins were then marked using the style options
that Cytoscape offers. The same Cytoscape filtering was used for the polyQ protein. This filtering
was done using a simplified form of Java regular expressions to mark all proteins in the network
that have at least a polyQ trac of 10 with an allowed mismatch of 2 [Totzeck et al., 2017]. These
proteins were again styled using the provided Cytoscape tool. The orthologs identified using the
method described in Figure 3 were then identified in the network and again marked. Using the
select tool the disease proteins were selected and with the built in First-Neighbours tool, the FN
of these proteins were identified. Separate FN networks for each individual disease protein and
one with all the disease proteins selected and their common FNs were created. Besides the disease
protein subnetworks, there was a subnetwork created for all the polyQ protein in the GC and their
common FN, and finally there was a subnetwork created for all the polyQO protein and their FN.

2.5 Network Topology

The network topology of all the subnetworks was calculated using the in Cytoscape build in
NetworkAnalyzer Tool. The mean and median degrees of the polyQ, disease protein and ortholog
groups in the GC were computed by exporting the network tables to Excel. The hub proteins and
bottleneck proteins described in section 1 was calculated by using the select tool to find the marges
that resulted in highest 20% of the total amount of proteins in the giant component.

2.6 Functional Enrichment

This subsection describes the concepts and implementation to functionally enrich the network. This
is necessary to find out what possible function the proteins or subnetworks in the network have.

2.6.1 Concepts

For this step another layer of data is put over the network to be able to analyse the possible
protein functions. In this case it is data from the GeneOntology (GO) database [Ashburner et al.,
2000] [Consortium, 2019]. The GO database contains a unified “language“ to describe the function,
processes, and cellular processes in biology. This processes have different ID’s or terms that are
linked to certain protein. To enrich the network the proteinID’s of the nodes in the network are
linked with the proteinID’s of the different GO-terms. The results is a network that can show
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the possible function or process of every node in the network. This then has to be visualized in a
manner that all the different GO-terms can be compared and analysed.

2.6.2 Implementation

Besides importing interactions and other protein data, the StringApp enables enrichment analysis
over string networks that is calculated from GO annotation for networks with a maximum size
around 1000 nodes. All the subnetworks were were functionally enriched with StringApp that uses
a hypegeometric test with a significance value of 0.05. This tool enriches the network with different
forms of functional enrichment terms. The enrichment process is visualized in Figure 4. All the
enrichment data for the networks was exported to a csv file in order to get them to other tools for
visualization. The GO terms for processes and functions were then with their respective p-values
exported to the online REVIGO. REVIGO [Supek et al., 2011] is a tool that is able to visualise
GO-terms in a lot of different manners (bubble plots, word clouds, tree-map, etc.) to make them
more interpretable for the human eye then the StringApp allows.

Figure 4: The enrichment process of the subclusters, in this example for GO processes. The green
coloured rectangles are the “start-files“ for the workflow. The hexagons are actions performed on
the data and the red coloured rectangle is the end product.

To make the enrichment data even more interpretable the REVIGO-treemap output (.csv) is put
through another tool called CirGO to visualise the data in more interpretable pie charts with the
most common processes or functions. These pie charts order the GO-terms based on their GO
hierarchy. All the terms with the highest GO hierarchy are shown in the legend. The charts were
then compared to check for commonalities between them.
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3 Results

In this section the results of this research are shown. In the subsection, network, the general results
of the network are discussed. The clustering subsection shows the clusters that were found. The
network topology results off all the different subnetworks are shown in the next subsection. The
last subsection shows all the results for the functional enrichment.

3.1 Network

The network totals 9168 nodes and 128904 interactions in this network. The GC that is 7582 nodes
and 128809 interactions. Because all disease proteins are present in the GC, the rest of the results
are based on the GC, see Figure 5. After filtering for polyQ proteins using the definition mentioned
in the introduction 1 81 polyQ protein were identified in the network. Out of those 81 proteins,
only 2 disease protein were identified as polyQ protein in Mus musculus, Ar and Tbp. The process
of finding orthologs as described in Figure 3 started with a total of 260 human polyQ proteins.
For the 114 reviewed and 146 unreviewed protein 157 mouse orthologs were found. Out of the 157
mouse orthologs 36 were identified in the network. Out of these 36, 12 turned out to be polyQO
protein. The disease protein were checked using blast and seven were classified as a polyQO as wel.

Figure 5: Giant component. The green nodes in the network are polyQO (19), the largest hexagons
are disease proteins (9) and the red coloured nodes are polyQ protein (81).
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3.2 Clustering

The MCODE clustering resulted in 85 clusters but not each of clusters had proteins that were of
interest. The clusters that had either a disease protein, a polyQ protein or a Ortholog were marked
as interesting. This resulted in the 15 clusters that are shown in the appendix Table 12. Cluster
4, 8 and 64 were chosen for their polyQ protein to continue with the enrichment process, besides
these, clusters 7, 22 and 73 were chosen because they contain a polyQO. As can be seen in Table 12
there are not a lot of clusters that have polyQ protein and most of them only contain 1 polyQ. The
three clusters that contain DP only have an average of 2 DP.

3.3 Network Topology

This section looks to analyse the various networks using their topological properties. The average
number of neighbours in the GC is 33.69 neighbours and a network density of 0.004 as can be seen
in Table 1. The GC of the network has a centralization of 0.083 and an average shortest path (path
length) of 3.713) as shown in Table 1. This is a bigger pathlength than the one found in the FN
networks but can be explained when looking at the shortest path distribution that is shown in
Figure 6b.

Large Network DP Ortholog !Q polyQ FN
#Nodes 7582 309 374 1529
clustering coefficient 0.45 0.58 0.51 0.62
Diameter 11 5 6 9
Radius 6 3 1 5
Centralization 0.08 0.32 0.20 0.23
Shortest paths 57479142 95172 137276 2336312
Path length 3.71 2.54 2.83 2.84
avg. #eighbours 33.98 25.07 15.94 58.15
Network Density 0.00 0.08 0.04 0.04
Heterogenity 1.35 0.84 0.85 0.90

Table 1: Table shows the different topological results for the FN networks of the disease protein
(DP), polyQ and polyQO

The degree distribution of the GC is shown in Figure 6a, the mean degree or avg. number of
neighbours of the GC is 33.978. The other values in Table 1 show that besides the GC, the polyQ
FN network is much larger than the other FN networks and has a higher clustering coefficient and
average number of neighbours (58.15).
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(a) Degree Distribution (b) Shortest path distribution

Figure 6: (a)The degree distribution in the GC. (b)The shortest path distribution of the GC.

Using the values calculated by the NetworkAnalyzer tool, the average and mean values of degree,
Betweenness centrality, Closeness centrality were calculated for the three most important subgroups
in the GC. The degree values can be seen in Table 2 and the results for betweenness centrality and
closeness centrality can be found in the same table.

Degree
Mean Median Variance

DP 40 19 1468
PolyQ 32 13 2019
PolyQO 23 17 556
GC 34 15 2117

Betweeness
Mean Median Variance

DP 1.41E-04 1.41E-04 1.35E-06
PolyQ 1.36E-04 1.41E-04 1.33E-06
PolyQO 1.00E-06 1.00E-06 1.65E-06
GC 1.44E-04 1.44E-04 1.85E-06

Closeness
Mean Median Variance

DP 2.91E-01 2.91E-01 9.26E-04
PolyQ 2.79E-01 2.80E-01 1.43E-03
PolyQO 2.76E-01 2.76E-01 1.42E-03
GC 2.01E-01 2.01E-01 1.52E-03

Table 2: Median, mean and variance of the degree, betweenness- and closeness-centrality in three
different subgroups of the GC.

To compare the different polyQ protein, disease protein and the polyQO, the mean and median of
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the Degree, betweenness and closeness was calculated. The betweenness values can be found in
Table 2. This table shows that the disease proteins have the highest mean and median betweenness
centrality.
The Closeness centrality is shown in Table 2, this table shows again that the disease proteins are
have the highest mean and median closeness centrality compared to the other functions. The order
based on the mean stays the same between the two tables. The mean and median degree are shown
in Table 2. In this graph the disease proteins have the highest mean and median. The polyQ protein
have a lower median degree value then the mean value of the network.
Figure 7 shows the hub and bottleneck proteins in the network defined as the top 20% of the
respective degree distribution and betweenness as described by [Yu et al., 2007]. The degree
boundaries that approach 20% (1516 proteins) best are between 57 neighbours and 662 neighbours
which leads to 1515 nodes. This definition of hub proteins makes it so that two of the disease
proteins have a hub function, respectively Tbp and AR. For the betweenness centrality the boundary
values were 4.045E-4 and 0.065, which resulted in 1516 nodes with 4 disease proteins. The disease
proteins that can be marked as bottleneck proteins are: Ar, Tbp, Htt and Atxn7. Of the polyQ
proteins 15 of them are hubproteins and 18 are bottleneck proteins. The polyQO have 2 hubproteins
and 5 bottleneck proteins.

(a) Hubproteins (b) Bottleneck proteins

Figure 7: (a) Hub proteins in the GC. The green dots in the network represent hub proteins. The
square formed nodes are disease proteins. (b) This graph shows the bottleneck proteins in the GC
with betweenness centrality value between 4.1E-4 and 0.064.

To analyse the disease proteins, their different topological values were analysed in the GC and
FN-networks. The network in the Figure shows how the disease proteins interact with each other in
the GC shown in Figure 8. The Figure shows that most of the disease proteins are interconnected,
only AR is not interacting with one of the disease proteins. The protein that is connected to the
most disease proteins is Atxn7, it is connected to seven of the different disease proteins.
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Figure 8: This network shows the interactions between the different disease proteins in the giant
component.

In Table 3 the betweenness, closeness and degree of disease proteins in the GC are shown. The
table shows that Tbp and Ar are the proteins with the highest degree among the disease proteins.
Tbp has besides the high degree also the highest betweenness value. Ar, has the highest closeness
value. Atn1, has the lowest betweenness, closeness and degree of all the disease proteins.

Ar 90 3.50E-03 3.57E-01
Atn1 5 5.58E-06 2.64E-01
Atxn1 10 2.97E-04 2.73E-01
Atxn2 19 2.05E-04 2.82E-01
Atxn3 14 1.54E-04 3.07E-01
Atxn7 17 6.80E-04 3.06E-01
Cacna1a 33 3.12E-04 2.95E-01
Htt 53 2.28E-03 3.45E-01
Tbp 122 1.93E-03 3.30E-01

Table 3: The 9 different disease proteins and their Betweenness centrality, closeness-centrality and
degree value in the GC

The 9 different disease proteins were also analysed in their combined FN network. This network is
shown in Figure 9. The FN networks of each of the different disease proteins are represented with
their networks statistics in Table 10.
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Figure 9: First neigbours network. The green nodes in the network are polyQO (8), The largest
hexagons are disease proteins (9) and the red coloured nodes are polyQ protein (11).

The size of the FN-networks of course only differs by 1 from the degree values that the disease
protein has in the GC. All the networks have a similar network diameter and network radius. The
network with the highest mean degree (number of neighbours) is the Tbp network.
The chosen clusters: 4, 7, 8, 22, 64 and 73 were also analysed with NetworkAnalyzer, the results
are in the appendix Table 12. Cluster 4 has 480 nodes, 7 has 273 nodes, 8 has 205 nodes, 22 has 47
nodes, 64 has 19 nodes and cluster 73 has 20 nodes.

3.4 Enrichment

The enrichment and analysis were done with two types of enrichment. Gene Ontology functions
and Gene ontology process. The first enrichment was on the three different FN networks polyQ,
disease protein and polyQO.
The GO Process data is shown in the appendix Figure 10. The biggest term of the polyQFN network
is the positive regulation of cellular processes (43.3%). The biggest term of the Disease Protein
FN is the negative regulation of insulin-like growth factor receptor signalling pathway (44.3%) and
the biggest term of the polyQO network is positive regulation of the cellular process, 39.2%. The
commonalities between these enriched networks are shown in appendix Table 8.

Go process term polyQ PolyQO DP
positive regulation of the cellular process X X
cellular process X X
biosynthesis X X
biological regulation X X
multicellular organismal process X X X
developmental process X X

Table 4: GO process term enrichment for the FN networks of: polyQ, polyQO and DP. The X’s
show if a network is enriched with the according GO term. Only the terms that appeared in at
least two networks are shown.
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Between the polyQ proteins and the polyQO there are several overlaps. The overlap with the
highest expression being: positive regulation of the cellular process. polyQ and polyQO have most
of their processes in common. The disease protein FN only has multicellular organismal process in
common with both of networks.

The GO function enrichment (shown in appendix, see Figure 14) resulted with transcription regula-
tory region DNA binding (35.7%) as the biggest term for the polyQO. transcription factor binding,
34.5% was the biggest for the polyQ protein network. voltage-gated calcium channel activity (33.%)
was the biggest term for the disease protein. The commonalities between these enriched networks
are shown in Table 9.

Go function term polyQ PolyQO DP
transcription regulatory DNA binding X X
transcription factor binding X X
protein binding X X X
transcription factor activity X X
sequence specific DNA binding X X
chromatin binding X X
zinch ion binding X X
transcription cofactor activity X X
macromolecular complex binding X X
binding X X X
Volted-gated calcium channel activity X X

Table 5: GO function term enrichment of the FN networks for: polyQ, polyQO and DP. The X’s in
the table show which network is enriched with which term. Only the terms that appeared in at
least two networks are shown.

The polyQ proteins and the polyQO have both in a large amount transcription regulatory DNA
binding in common. The disease protein network does not have a lot in common with polyQ or
polyQO.
After this enrichment, the subnetworks of the disease proteins were enriched to see if there are
commonalities between them. The CirGO diagrams of this enrichment are shown in the appendix,
see Figure 11 and Figure 12. The most represented GO terms in these networks:

• Atxn1: Negative regulation of insulin-like growth factor receptor signalling pathway (43.4%)

• Atxn2: Regulation of mRNA metabolism (68%)

• Atxn3: ERAD pathway (69.7%)

• Atxn7: Positive regulation of nucleic acid-templated transcription (32.8%)

• Atn1: Negative regulation of insulin-like growth factor receptor signaling pathway (36.4%)

• Htt: Regulation of cell death (49%)
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• Cacna1a: Regulation of ion transmembrane transport (44%)

• Ar: Negative regulation of cellular process (54.2%)

• Tbp: Transcription from RNA polymerase II promotor (65.6%)

Some of the disease proteins (Atxn2, Atxn3, Ar and Tbp) have one GO-term that takes up more
then 50% of their processes. The commonalities between these enriched networks are shown in
Table 6.

GO process term Atxn1 Atxn2 Atxn3 Atxn7 Atn1 Htt Cacna1a Ar Tbp
oganic cyclic compound
metabolism

X X

protein deubiquitination X X
social behavour X X
behavior X X X X X X
nervous system develop-
ment

X X

intracellular transport X X
locomotory behaviour X X X
response to stimulus X X
multi-organism process X X X
primary metabolism X X
cellular process X X
localization X X X
multicellular organismal
process

X X

developmental process X X
negative regulation of in-
sulin like growth factor
signalling pathway

X X

neuron apoptotic process X X

Table 6: This table shows the GO process terms from the disease protein FN networks. The network
is enriched with the term when there is an X present. Only the terms that appeared in at least two
networks are shown.

Besides the direct commonalities there are some terms that have to do with nervous tissue develop-
ment, synapse organization or brain tissue development that all have involved with the brain as an
organ. The proteins that have this as a term are: Htt, Cacna1a Atxn1 and Atxn2.

When enriching the networks with GO function instead of process all networks were enriched
except for the Atn1-FN network because the network is very small and does not contain enough
information for enrichment analysis. The CirGO diagrams of this enrichment are shown in appendix
Figure 15 and Figure 16. The most represented GO terms in these networks:
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• Atxn1: protein binding (45.9%)

• Atxn2: mRNA binding (72.9%)

• Atxn3: BAT3 complex binding (64.9%)

• Atxn7: enzyme binding (29.6%)

• Htt: enzyme binding (46.7%)

• Cacna1a: voltage-gated calcium channel activity (33%)

• Ar: protein domain specific binding (38.7%)

• Tbp: transcription regulatory region binding (39.3%)

The commonalities between these enriched networks are shown in Table 7.

GO function term Atxn1 Atxn2 Atxn3 Atxn7 Htt Cacna1a Ar Tbp
protein binding X X X X X X X
protein C-terminus bind-
ing

X X

binding X X X X X X X X
chromatin binding X X X X
enzyme binding X X
transcription coactivator
activity

X X

drug binding X X
macromolecular complex
binding

X X

Table 7: GO function terms for the disease protein FN networks. The X’s in the table show if the
GO term is present in the network. Only the terms that appeared in at least two networks are
shown.

Table 7 shows that all of the disease proteins have binding as a common term. And that all except
for Ar have protein binding as a common term.
The clusters 4, 7, 8, 22, 64 and 73 were also enriched with GO process and GO function. The
CirGO diagrams of this enrichment are shown in the appendix Figure 13. The most represented
GO process terms in these networks:

• Cluster 4: Negative regulation of macromolecule metabolism (56.8%)

• Cluster 7: Regulation of localization (44.6%)

• Cluster 8: Regulation of TOR signalling (63.1%)

• Cluster 22: Regulation of signal transduction (61.4%)
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• Cluster 64: Negative regulation of cellular metabolism (53.1%)

• Cluster 73: Spliceosomal snRNP assembly (50.1%)

The commonalities between these enriched networks are shown in Table 8.

GO process term Cl. 4 Cl. 7 Cl. 8 Cl. 22 Cl. 64 Cl. 73
Response to stimulus X X X
Cellular process X X X X X
primary metabolism X X
nitrogen compound
metabolism

X X

metabolism X X
signaling X X
cell communication X X
biological regulation X X X
cellular pcomponent orga-
nization or biogenesis

X X X

Table 8: GO process terms for the selected clusters. The network is enriched with the term when
there is an X present. Only the terms that appeared in at least two networks are shown.

Table 8 shows that besides cellular process the clusters do not have any enrichment that is shared
among more then half of them.
The CirGO diagrams of the GO function terms are shown in appendix Figure 17. The most
represented GO function terms in these networks:

• Cluster 4: Transcription factor binding (31.0%)

• Cluster 7: Ephrin receptor binding (25.6%)

• Cluster 8: Microtubule binding (27.5%)

• Cluster 22: Enzyme binding (29.3%)

• Cluster 64: NADP-retinol dehydrogenase activity (26.9%)

• Cluster 73: Chaperone binding (44.5%)

The commonalities between these enriched networks are shown in Table 9.
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GO function term Cl. 4 Cl. 7 Cl. 8 Cl. 22 Cl. 64 Cl. 73
oxidoreductase activity X X
catalytic activity X X
protein binding X X X X X
binding X X X X X
transcription factor ac-
tivity, sequence-specific
DNA binding

X X

macromolecular complex
binding

X X X X

chromatin binding X X X
transferase activity X X X
molecular transducer ac-
tivity

X X

hydrolase activity X X
zinc ion binding X X
transcrip cofactor activ-
ity

X X

Table 9: GO function terms for the selected clusters. The network is enriched with the term when
there is an X present. Only the terms that appeared in at least two networks are shown.

The clusters shown in Table 9 show that they just like, the disease protein networks, have protein
binding and binding as a common term. The percentages from appendix Figure 17 show that only
Cluster 8, 22 and 73 have protein binding as a highly ranked common term.
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4 Discussion

The results of the topological analysis indicate that brain proteins are quite highly connected. In the
entire network there is one giant component that contains almost 80% of all nodes. Besides the high
amount of interactions, the component has a large amount of edges as well. The GC’s degree distri-
bution indicates a power-law just like the shortest path distribution shows an almost “small-world“
effect which may indicate a “scale-free ness“ of the GC. This strengthens the other topological results.

There are 81 polyQ proteins in the GC which is only a small amount of the proteins present in
the GC. But beside this they do have a betweenness- and closeness-centrality that is on average
higher than that of the GC. Which may indicate that they have a slightly more important role in
the network. This indication is contradicted by the degree, where the polyQ have a lower median
and average degree than that of the GC. The hubprotein and bottleneck protein results show that
out of the 81 polyQ protein 15 (19%) are hubprotein and 18 (22%) are bottleneck proteins. These
results strengthen the implication that the polyQ protein have an important role in the network.

The enrichment analysis of the polyQ FN network shows that the polyQ protein and their neigh-
bours are active in a lot of different processes and functions, with the most common GO-process
being the positive regulation of the cellular process and the most common GO-function being the
transcription factor binding. A lot of the polyQ GO-functions show some form of binding function.

The polyQO are represented by 12 regular proteins and 7 DP in the GC. The topological analysis
shows that their betweenness- and closeness-centrality are higher than the average of the network
and the polyQ protein. Which may indicate that they have a slightly more important role in the
network than the polyQ. Although the large proportion of disease proteins in this group may skew
these findings (as disease proteins polyQ and PolyQO appear to be a distinct group). The mean
degree shows the polyQO with a lower degree than the GC and the polyQ whereas the median
shows the polyQO above the polyQ and the GC. Two (11%) of the polyQO are classified as a
hubprotein and 5 (26%) as a bottleneckprotein. Which implicates the important role as bottleneck
protein of the polyQO.

Enrichment of the polyQO indicates that most of the polyQO protein have process of positive
regulation of cellular processes as the most common GO-process. The most common GO-function
being transcription regulatory region DNA binding. A lot of the polyQO GO-functions show some
form of binding function

Comparing the topological results of the polyQ and the polyQO shows that the polyQO have
a higher betweenness and closeness than the polyQ. When considering the degree values, the
difference should be based on the median values. The median values of the degree are too far off the
mean values which indicates outliers in the data. The closeness, betweenness and degree (median)
considered together implies that the polyQO have a more important function in the network than
the polyQ. The large proportion of disease proteins in this group may affect these results. But a
higher percentage of the polyQ protein can be labeled as hubprotein compared to polyQO. The
polyQO have more bottleneckproteins
The enrichment results show that the polyQ and the polyQO have a lot of common terms. This over-
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lap is over most of the enriched terms. The polyQ protein have 12 enriched main GO-functions, 10
of these are in common with the GO-functions of the polyQO. The GO-process terms have a smaller
overlap with about 6 out of the 12 for polyQ and 6 out of the 10 for polyQO. These results sug-
gest that the polyQO protein in the network have a similar function in brain tissue as polyQ protein.

The results of the disease proteins show that two (Ar and Tbp) out of the nine are classified as
a polyQ protein, the other seven disease protein are polyQO. Figure 8 shows that all except Ar
have some sort of interaction among each other, this close interaction is not seen more generally in
polyQ proteins. The topological analysis of the disease proteins shows that their betweenness- and
closeness-centrality measured by mean and median is much higher compared to the other subgroups.
The DP also have the highest mean and median degree. This demonstrates the important role of
the DP in the network.
According to the hub- and bottleneck protein analysis the DP have 2 hubproteins and 4 bottleneck
proteins. The 2 hubproteins being the only polyQ proteins (Ar and Tbp). Which may suggest that
the polyQ domain has a part in this.

The enrichment analysis shows that Htt is involved in the GO-process regulation of cell death and
the GO-function enzyme binding. The indication that Htt is involved in membrane dynamics, cell
attachment and motility as shown by [Schaefer et al., 2012] is not found in the enrichment of Htt.
This may be because protein annotation has changed since 2012, there is also more knowledge
abhout Htt PPI.
The FN network of all the DP together do not show an overlap with the polyQ or polyQO networks
other than the GO-functions binding and protein binding. The GO-function term that was the most
expressed term, voltage-gated calcium channel activity and the GO-process term is the negative
regulation of insulin-like growth factor receptor signalling pathway. These enrichment results, taken
together with the fact that the disease proteins are highly interconnected, indicate a more specific
set of functions that are disrupted in polyQ diseases.
The enrichment results of the FN networks of the individual DP shows that there is only one
GO-process shared by most of them and that is behaviour. Atxn1 and Atn1 also have a lot of
GO-processes in common, which may indicate that they are closely related. As expected of brain
proteins, the results show a lot of terms that are involved with the brain as an organ.
The GO-function results show that all of the DP have a binding role and all even have a protein-
binding function. AR is not labeled as protein-binding, this is probably due to an error in the
REVIGO or CirGO, protein domain specic binding, the function of Ar is a subterm of protein
binding, which is a subterm of binding. This indicates the protein-binding function, that is de-
scribed [Totzeck et al., 2017] to be a possible function of polyQ regions.
Another commonality between Atxn1, Atxn7, Htt and Tbp is chromatin binding which is a pro-
posed connection between polyQ proteins as described by [Cohen-Carmon and Meshorer, 2012].
This conflicts with the claim of the paper because only Tbp is a polyQ protein out of these 4 proteins.

The clustering results show that there are not a lot of polyQ or disease proteins packed together in
clusters or even present in clusters. There are only 3 clusters with DP and 12 clusters with polyQ
with an average of 2 polyQ per clusters. Because there is no cluster with a lot of polyQ or polyQO
proteins, the conclusion can be made that the polyQ and polyQO are dispersed in the network.
These reasons may indicate a less important role in protein-protein interactions for polyQ regions
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than assumed so far. If the polyQ region would have a big influence on protein-protein interactions,
a lot of clusters with polyQ protein would be expected.
The functional enrichment of clusters with polyQO or DP show that these clusters do have protein-
binding and binding as a common GO-function term and Cellular process as a GO-process. Except
for this the enrichment does not show big common terms.

The research interactions from StringDB are from different evidence sources and not only from
experimentally sourced interactions. The evidence for the interactions can also be from ortholog
proteins. This means that not every interaction shown in the network is sure to be in mouse brain
proteins. It could even mean that annotation is compared about polyQs (in mouse) with other
polyQs (in human). But due to the different evidence scores that are combined and the high cut-off
score, the interactions can be used in for the predictions/indications made in this study. This is
also true for the GO annotations. A further study where only mouse-derived annotation and no
sequence similarity results may show some differences.
It is beyond the scope of this study to make a conclusion about the polyQ protein functions. The
PPI network cannot provide direct evidence for individual polyQ protein functions, but patterns
across the network indicate binding is important. The fact that the polyQOs also show binding
functions indicate that it is not necessarily the polyQ domain that confers the binding function.
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5 Conclusion

In order to investigate the research-statement several research-questions were proposed. By analysing
common functional signatures in polyQ proteins, this thesis has found that polyQ share a lot of
different GO-processes and GO-functions. The biggest GO-process being: positive regulation of
cellular processes and GO-function: transcription factor binding.
The differences between inter-actors of mouse polyQ proteins and mouse orthologs of human polyQ
proteins that are not polyQ proteins (polyQO) turned out to be small. The main difference being
that polyQO have a more important role in the network based on their network topology. The
enrichment results were almost identical for GO-function and very similar on GO-process.
To answer the third question polyQ disease protein enrichment were compared to ones not associated
with disease. The enrichment results show that the DP really stand out from the rest of the protein.
They do not have a lot of GO-functions or GO-processes in common. The GO-functions that they
have in common have protein binding and binding as a common GO-function and multicellular
organismal process as GO-process. These are to be expected from protein that have a possible pro-
tein binding function. This assumption that they have this role is strengthened by their topological
analysis. The DP have a very high degree, closeness and betweeness value compared to the polyQ
protein and the regular network protein.

This research aimed to find similarities and differences between polyQ protein-protein interactions
in Mus musculus brain to find common inter-actor functions in normal and disease states using
network analysis and functional enrichment of the network. This research has shown that the
disease protein and regular polyQ protein are more connected than normal polyQ protein and have
a very different enrichment profile.
The current state of polyQ research leaves a lot of possibilities to be researched. For example, this
research could be redone by comparing the results to a network containing only experimentally
confirmed mouse interactions accompanied by an experimental study that compares the interactions
in the brain between the polyQO and brain proteins and polyQ proteins and brain proteins. This
would make sure that the interactions found are all real mouse interactions and not from orthologs.

Another good addition to the study of polyQ proteins could be a comparative study that compares
polyQ proteins in different PPI networks across different species. This could lead to new insights
in the functions and processes that polyQ proteins are involved in. To add to this information it
could be useful to compare human polyQO and polyQ protein functions and processes in the other
species. This researches could provide extra data for the results found in this paper.
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7 Appendix

Tbp Ar Cacna1a Htt Atn1 Atxn1 Atxn2 Atxn3 Atxn7
#Nodes 123 91 34 54 6 11 20 15 18
clustering coefficient 0.75 0.64 0.81 0.70 0.77 0.43 0.62 0.72 0.81
Diameter 2 2 2 2 2 2 2 2 2
Radius 1 1 1 1 1 1 1 1 1
Centralization 0.73 0.85 0.64 0.89 0.40 0.82 0.90 0.78 0.77
Shortest paths 15006 8190 1122 2862 30 110 380 210 306
Path length 1.72 1.83 1.60 1.68 1.27 1.67 1.81 1.68 1.68
avg. #neighbours 34.20 15.32 13.06 7.44 3.67 3.27 3.70 4.53 5.44
Network Density 0.28 0.17 0.40 0.14 0.73 0.33 0.20 0.32 0.32
Heterogenity 0.63 0.78 0.65 0.96 0.34 0.82 1.03 0.68 0.65

Table 10: Results of the topological analysis from the first-neighbour networks of the individual
disease proteins
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Network Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 7 Cl. 8 Cl. 22
Number of Nodes 7582 272 231 480 291 273 205 47
Disease Protein 9 0 0 1 0 0 2 0
polyQ 81 1 1 9 4 3 4 1
Ortholog 53 0 0 3 1 1 4 1
Cl. ing coefficient 0.45 0.97 0.93 0.85 0.86 0.85 0.87 0.82
Diameter 11 4 4 6 8 12 12 11
Radius 6 2 2 3 5 6 6 6
Centralization 0.08 0.26 0.22 0.11 0.09 0.08 0.10 0.19
Shortest paths 57479142 73712 53130 229920 84390 74256 41820 2153
Path length 3.71 2.27 2.34 3.26 3.80 5.26 4.89 4.88
Avg. # neighbours 33.98 70.40 42.04 36.83 20.82 13.12 11.80 6.72
Network Density 0.00 0.26 0.18 0.08 0.07 0.05 0.06 0.15
Heterogenity 1.35 0.17 0.26 0.31 0.57 0.49 0.43 0.65

Cl. 24 Cl. 25 Cl. 41 Cl. 43 Cl. 47 Cl. 64 Cl. 73 Cl. 77
Number of Nodes 118 33 7 103 70 19 20 16
Disease Protein 0 0 0 0 0 3 0 0
polyQ 1 1 1 1 1 0 1 1
Ortholog 0 0 0 0 1 0 1 1
Cl. ing coefficient 0.67 0.76 0.83 0.71 0.71 0.69 0.70 0.50
Diameter 15 7 3 19 15 8 7 8
Radius 8 4 2 10 8 4 4 4
Centralization 0.07 0.12 0.23 0.07 0.07 0.20 0.20 0.20
Shortest paths 13806 1056 42 10506 4830 342 380 240
Path length 6.76 3.46 1.38 7.97 6.82 3.49 3.24 3.70
Avg. # neighbours 6.02 5.46 4.00 4.51 4.06 3.79 3.60 3.38
Network Density 0.05 0.17 0.67 0.04 0.06 0.21 0.19 0.23
Heterogenity 0.52 0.39 0.33 0.38 0.43 0.44 0.44 0.47

Table 11: The different generated clusters and their topological values. The values of the Network
(giant component) are included for comparison
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Cl. Dis. Prot. polyQ prot. Orthologs
Cl. 2 - Aak1 -
Cl. 3 - Numa1 -
Cl. 4 Tbp Tbp, Ncoa6, Kmt2c,

Ncor1, Rpa1, Crebbp,
Ccnk, Ncoa3, Kmt2d

Kmt2d, Crebbp, Ncoa

Cl. 5 - Med15, Ncor2, Phf21a,
Med12

med15

Cl. 7 - Arid1a, Phc1, Smarca2 arid1b
Cl. 8 Cacna1a, Ar Lin7a, Nr3c1, Mef2a, Ar Ar, Mef2a, Cacna1a,

Lin7a
Cl. 22 - Kat6a Mga
Cl. 24 - Clock -
Cl. 25 - Sry -
Cl. 41 - Mkl1 -
Cl. 43 - Gls -
Cl. 47 - Amotl1 Amotl1
Cl. 64 Atxn3, Atxn1, Atn1 -
Cl. 73 - Abcf1 Pou5f1
Cl. 77 - Cdx2 Cdx2

Table 12: The different disease proteins/orthologs that are present in the clusters.
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(a) polyQ

(b) PolyQO

(c) Disease Proteins

Figure 10: The CirGO GO process enrichment of the FN networks for the DP, polyQ and polyQO
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(a) Atxn1 (b) Atxn2

(c) Atxn3 (d) Atxn7

Figure 11: The CirGO GO process enrichment of 4 of the different disease protein’s first neighbour
networks.
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(a) Htt (b) Tbp

(c) Ar (d) Cacna1a

(e) Atn1

Figure 12: The CirGO GO process enrichment of 5 of the different disease protein’s first neighbour
networks.
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(a) Cluster 4 (b) Cluster 7

(c) Cluster 8 (d) Cluster 22

(e) Cluster 64 (f) Cluster 73

Figure 13: The CirGO GO process enrichment of the clusters
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(a) polyQ

(b) PolyQO

(c) Disease Proteins

Figure 14: The CirGO GO function enrichment of the FN networks for the DP, polyQ and polyQO
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(a) Atxn1 (b) Atxn2

(c) Atxn3 (d) Atxn7

Figure 15: The CirGO GO function enrichment of 4 of the different disease protein’s first neighbour
networks.
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(a) Htt (b) Tbp

(c) Ar (d) Cacna1a

Figure 16: Thhe GO function enrichment of 4 of the different disease protein’s first neighbour
networks. Atn1 is not shown in this enrichment, because the FN network of Atn1 did not contain
any GO function.
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(a) Cluster 4 (b) Cluster 7

(c) Cluster 8 (d) Cluster 22

(e) Cluster 64 (f) Cluster 73

Figure 17: The CirGO GO function enrichment of the clusters
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