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Abstract

Many people travel by car in the Netherlands, this leads to traffic jams. The amount and length of traffic jams

differ for each day. These differences could be due to various factors, like whether or not it is a holiday period

or what the weather is like. This thesis will be about testing those factors and using them to predict traffic jams

to answer the following research questions. The first research question is How much influence do the following

factors have on traffic jam length in the Netherlands: time, holiday periods and the weather? and the second one is

How precise can we predict traffic jam length on the Dutch highways by using the factors: time, holiday periods and the

weather?. The influence of these factors is tested with hypothesis testing and feature selection. For predicting

the traffic jams multiple regression algorithms are used. First a baseline is constructed based on related work.

Next, a regression model is built on the hypothesis testing results. Then three types of regression are used

(linear regression, regression trees and a neural network) and compared to each other, before and after feature

selection has been used. The conclusion is that there was an decrease of 30% in regard to the RMSE score for

the mean when using the regression tree. The regression tree algorithms scored the best of all the algorithms.

Another conclusion is that time and holiday periods have the greatest influence on traffic jam length.
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Chapter 1

Introduction

More than half of the Dutch adults own a car [Acea19] and many of them use those cars to get to their work.

Because work times are the same for many people, there will be traffic jams just before and after work. There

may also be other factors which impact traffic jams which may help to predict them. A problem with current

traffic jam prediction models is that they are not precise enough, it could be that adding those other factors

will make a more precise model.

But why study traffic jams? Because traffic jams have negative consequences for the environment. They increase

local air pollution and contribute to global warming due to increased carbon dioxide emissions. On a personal

level, time is also wasted that could have been spent more productively and some parts of the car could break

down earlier due to a driving style that requires more braking and accelerating [ALKADI14]. Since the mid

1950s there have been studies about traffic [Helbing01], but the underlying factors for a traffic jam are still

poorly understood. Multiple papers, [Nagel13] & [Orosz09] , give insight in how traffic jams form but they

do not give insight in why or when they form. If there is a better understanding of the factors that have an

influence on traffic jams in the Netherlands, these consequences can be reduced.

1.1 The problem

The problem with existing traffic jam prediction models is that they are not precise enough, so the usefulness

of these models is limited. The difficulties for predicting traffic jams are that traffic peaks are highly volatile.

The traffic intensity on the road differs day by day. By using hypothesis testing we will try to show the factors

and their impact on the traffic jams and help explain why the length of the traffic jams differ day by day.

Another difficulty is that it is possible that over time the use of the highway changes and that the highways are

changed or maintained almost constantly, thus resulting in inconsistencies in the results. This could also result

in a model that will perform well on the test data, but not so well on new data were there is no maintenance.

A way to try to avoid this difficulty, which is used in this thesis, is to use a large time period to prevent
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a temporary ’blocked’ highway changing the overall picture. However, this does not take into account the

changes that are made to the roads. If for example at the start of the data the road is a two lane highway with

loads of traffic jams and after some road works it becomes a four lane highway with far fewer traffic jams, the

models will not be able to take this into account.

The specific problem that this thesis tries to solve is, if by adding weather and holiday data we can get an

improved model compared to an existing traffic jam prediction model.

1.2 Research questions

There are a lot of reasons why traffic jams exist at a particular date and particular time, some people blame

the weather, others the time of day and some people also accuse the holidays. However, it is not clear what the

decisive factor is or if it is a combination of factors. This research is partly about finding that out and the first

question to help with that is:

How much influence do the following factors have on traffic jam length in the Netherlands: time, holiday periods and the

weather?

Just knowing what influences the traffic jam length is not sufficient, but using those factors and predicting

what the traffic jam length will be, is more useful for the drivers, police and Rijkswaterstaat. This is why the

second research question is stated as:

How precise can we predict traffic jam length on the Dutch highways by using the factors: time, holiday periods and the

weather?

1.3 Hypotheses

We expect that when the data is complete, when the weather and holiday data has no missing or incomplete

data, our model with added weather and holiday factors will be more precise than an existing traffic jam

prediction model without those factors.

The second hypothesis is that the time of day has the most influence on traffic jam length, followed by the

weather, and that holiday periods have the least influence on the traffic jam length. It is thought that time has

the most influence due to the rush hour, which is in our belief an important factor for traffic jams. The weather

is expected to be the next most important, because it is shown that in America the weather has a big influence

on the traffic [USDO15]. The holiday periods should also have an influence, but less than the other factors,

because even though fewer people will travel to their work there will be additional holiday traffic, which we

think will mostly even each other out.
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1.4 Thesis Contribution

The novelty of this thesis is that for the Netherlands, according to the literature review for this thesis, the

influence of weather on traffic has not been properly studied. Furthermore, the Netherlands has a high traffic

density in comparison to other countries [CBS15], so the results of studies in other countries will not completely

apply to the Netherlands. Another novelty is that we study traffic jams, while most other researches study

traffic flow or travel time and use smaller time periods while we use a time period of an hour. In short:

1. We study the topic of the influence of weather on traffic, which according to the literature review for this

thesis, has not been properly studied for the Netherlands.

2. We study traffic jams, while most other researches study traffic flow or travel time.

3. We use a larger time interval than most other studies.

4. We developed methods to test important factors for traffic jam length.

1.5 Thesis Overview

This chapter contained the introduction, Chapter 2 discusses related work. Chapter 3 explains the methodology

used for the experiments, while Chapter 4 details the outline of the experiments and the results of those

experiments. Finally Chapter 6 concludes this thesis.
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Chapter 2

Related Work

Two of the more commonly used ways to build a regression model, for this kind of problem, are machine

learning and time series based model building. Both methods have their advantages and disadvantages.

2.1 Machine Learning

Machine learning is the science of getting the computers to learn from data and information and have them

act on it [Emerj19]. So for this thesis we want a model to learn to predict traffic jams by giving it traffic and

weather data. The biggest advantage of machine learning is that it enables you to learn from a large volume of

data and discover trends and patterns that would not be easy to discover for a human. Also machine learning

models keep improving themselves accuracy and efficiency wise when they gain experience, to let them make

better decisions. A disadvantage is that if the data is biased or incomplete the model will also be incomplete

and make predictions that will not necessarily be correct. We think that this will not be a big problem for this

thesis, because we use a large training set.

Machine learning is already used in some researches in the Netherlands to predict travel time, [Zeng13]

and [Lint06]. These studies used neural network to network to predict short term travel time with a fairly high

accuracy. These studies show that neural networks are an interesting avenue to explore for traffic predictions

in the Netherlands. The methods they used can not be implemented for this thesis, because they had the travel

times from earlier on the road as inputs and the logic for their models was specific to predict travel times.

In [Nikovski05], the authors have tested how well linear regression, a neural network and a regression tree

predict travel time for short term predictions. They used as predictor the previous travel times with their

corresponding time and date. The authors observed that linear regression gave the best and most stable results.

The neural network was behaving erratic, one run having the same error score as the linear regression model

while the next run scoring was worse. The regression tree had a worse error score than the linear regression

model. Their data was collected with 5 minute intervals, this is a difference with this thesis because the data

here is collected with intervals of an hour. Another difference with this thesis is that they used only the travel
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times with the corresponding time and date while this thesis uses also other factors as predictors, such as

weather factors and if it is a holiday. In this thesis these regression methods will be implemented and compared

to see if we get the same observations as the authors of [Nikovski05] and to see if by adding weather features

we get better results. So the results of [Nikovski05] will be the baseline to compare our results with.

2.2 Time series

Time series models are predictive models that use time as the independent variable and then a value y, in

our case traffic jam length. The output from such a model is the value y for a particularly time. A lot of time

series models are used to predict the traffic flow [Ermagun18]. These models only predict the flow and not

if there is a traffic jam or the length of it. In 1999 there were already studies where they used time series

forecasting to predict the traffic flow [Williams99]. In [Jia17] the authors used time series forecasting methods

to forecast the amount of traffic on a road around Beijing. They not only compared normal forecasting methods

but also forecasting methods with a rainfall impact. Their conclusion was that the time series forecasting

models with rainfall impact performed better than the models without the rainfall impact. Also in [Gosh09]

multivariate time series forecasting was used to predict the traffic conditions in Dublin. The results they had

were promising, but this forecasting model has only added value if the time period is around 15 minutes. The

advantage of time series models is that they are great to identify seasonality and use this to help forecast. A

disadvantage is that the models become more inaccurate how farther in the future they have to predict. In this

thesis time series models will not be used, because there are a lot of missing instances in the data, when we

plot the data over time. This makes it really difficult to predict accurately with a time series model.
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Chapter 3

Methodology

To test if we get a more precise model by adding weather and holiday data, we have to do experiments. The

experiments are performed according to the steps in Figure 3.1. Firstly, the data is collected in hourly intervals

from multiple data sources, the weather data comes from the KNMI and the traffic data from Rijkswaterstaat.

This data is online and for free available. Secondly, the data is preprocessed. Then a baseline will be constructed

based on [Nikovski05] to compare our models with, this is a model without weather data, because then we

can see if by adding the data we can make models that are more precise. The models that we compare the

baseline with are then constructed, V1 is a self constructed regression model based on hypothesis testing

done with T-tests, V2 are three standard regression models with all the features and V3 are the same three

regression models as V2, but with selected features. Both V1 and V3 test which features are important, but the

difference is that V1 only tests features based on literature or common beliefs and also shows their effect, while

V3 tests all the features and ranks them on importance. Then the V1, V2 and V3 models will be compared to

the baseline to determine their usefulness.
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Figure 3.1: Research steps with corresponding names for the regression models implementations
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3.1 Hypothesis testing

The following hypotheses will be used to give insight in how the factors influence the traffic jam length. We

will compare the average traffic jam length of two groups for which one factor is different. Then we will

determine if the means are statistically significantly different from each other and if so in what way. This is

done because it will tell us what the influence of a factor is for; in this case the traffic jams in the time period

2012-2016, but also, for the whole population, the traffic jams after this time period.

To test the hypotheses, hypothesis testing will be done. Because the Hi
0 are all in the format µi

1 = µi
2, where i

is the number of the hypothesis, we test if µi
1 − µi

2 = 0. Thus the tests were done according to the formula:

t =
(ȳ2 − ȳ1)− 0

se

se =

√
s2

1
n1

+
s2

2
n2

And the confidence interval was constructed using the formula:

ȳ2 − ȳ1 ± 1.96(se)

where the 1.96 means a 95% confidence interval. So that we can say, with 95% certainty, what the interval is

that the difference between the two groups will be in for the population.

This is essentially a test to measure if the means of two different groups are the same [Agresti14]. Where ȳ1

and ȳ2 are the means of respectively group 1 and group 2. The standard deviations of each group are s1 or s2.

And the number of instances in a group 1 is n1 and for group 2 is that n2. se stands for the standard error. t,

the test statistic, is the number of standard errors that the means differ from each other. The bigger this is, the

greater the evidence against Hi
0.

Many offices begin their day around 8 am and end their work day around 5 pm and according to [Hilbers06]

traffic jams consist mainly of commuters traveling to or from work. Therefore, it is expected that during those

times there is an increase in traffic jam length. Thus, the first hypothesis is:

H1: Does the rush hour have an effect on traffic jam length?

Let µ1
1 be the average traffic jam length per hour outside the rush hour, where rush hour means the hours: {7,

8, 9, 16, 17, 18, 19}. And let µ1
2 be the average traffic jam length per hour during the rush hour.

H1
0 : µ1

1 = µ1
2

H1
a : µ1

1 6= µ1
2

Most people do not work in the weekends so it would be expected that it is less busy on the highways during
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those days. Therefore, it would not be busy during the rush hour either, this gives the second and third

hypotheses:

H2: Does the weekend have an effect on traffic jam length?

Let µ2
1 be the average traffic jam length per hour on a weekday and let µ2

2 be the average traffic jam length per

hour in the weekends.

H02 : µ2
1 = µ2

2

Ha2 : µ2
1 6= µ2

2

H3: Does the rush hour in the weekend have an effect on traffic jam length?

Let µ3
1 be the average traffic jam length per hour in the weekends outside the rush hour and let µ3

2 be the

average traffic jam length per hour in the weekends during the rush hour.

H03 : µ3
1 = µ3

2

Ha3 : µ3
1 6= µ3

2

In holiday periods many people will not have to travel to work so the fourth hypothesis is:

H4: Do holiday periods have an effect on traffic jam length?

Let µ4
1 be the average traffic jam length per hour in a nonholiday period and let µ4

2 be the average traffic jam

length per hour in a holiday period.

H04 : µ4
1 = µ4

2

Ha4 : µ4
1 6= µ4

2

According to the US department of Transportation traffic jams have three main sources, traffic−influencing

events, traffic demand and transportation infrastructure [USDO15]. The traffic−influencing events include bad

weather and is said that 15% of US traffic congestions come from this bad weather. So we would expect that in

the Netherlands, traffic jams are also influenced by bad weather. When it rains the roads are more slippery,
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thus the likelihood of accidents is higher. Therefore, more traffic jams are expected:

H5: Does rain have an effect on traffic jam length?

Let µ5
1 be the average traffic jam length per hour while it does not rain and let µ5

2 be the average traffic jam

length per hour while it rains.

H05 : µ5
1 = µ5

2

Ha5 : µ5
1 6= µ5

2

When the sun shines or the temperature is high, people will be more inclined to take an alternative transporta-

tion method instead of the car. This results in less traffic on the highways and gives the sixth and seventh

hypotheses:

H6: Does the amount of sunshine have an effect on traffic jam length?

Let µ6
1 be the average traffic jam length per hour when there is no sunshine and let µ6

2 be the average traffic

jam length per hour when there is sunshine.

H06 : µ6
1 = µ6

2

Ha6 : µ6
1 6= µ6

2

H7: Does the temperature have an effect on the traffic jam length?

Let µ7
1 be the average traffic jam length per hour when the temperature is below average and let µ7

2 be the

average traffic jam length per hour when the temperature is above the average of the data set.

H07 : µ7
1 = µ7

2

Ha7 : µ7
1 6= µ7

2

.
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V1 Regression model

The results from the hypothesis testing are used to help build a regression model. This is done because the

results from the hypothesis testing give an indication of the influence of a factor on the traffic jam length. For

example the traffic jam length during the rush hour is on average greater than for the other hours. So for this

model we assume that the traffic jam length during the rush hour is longer than when it is not a rush hour.

We also assume that for the same circumstances the traffic jam length is the same. The approach for this model

was invented. For all the hypotheses except H3 a rule was defined:

1. If the alternative hypothesis is accepted, go to the next step, else do not use the hypothesis in the model.

2. Use least square estimate to estimate the coefficient for the hypothesis.

The reason that H3 did not get included in the algorithm is that the combination of the rules for H1 and H2

should already include H3. H3 is still tested, because it was thought to be interesting to see if this combination

would hold. The rules are defined with the assumption that the traffic jam length increases or decreases with

the found coefficient from the least square estimate. We do not use the values found with the hypothesis

testing, because these values have to much noise from the other hypotheses in them. So we start the algorithm

with a starting value, the average traffic jam length. Then we use the rules to predict the traffic jam lengths.

This is the initial run. After this initial run, the algorithm is run again with a slightly different starting value to

try to optimize the algorithm. After the optimizing the fitted algorithm is run on unseen data, to validate the

results.

In formula this algorithm can be presented as:

E[y] = α + β1H1 + β2H2 + β4H4 + β5H5 + β6H6 + β7H7

Where E[y] is the prediction for this instance, α is the starting value, the intercept and βi is the coefficient of

the ith hypothesis and Hi is whether or not we should reduce or increase the prediction in regard to the ith

hypothesis for this instance.

3.2 Regression

Regression is the process of predicting a numeric quantity. In this case we want to predict traffic jam length,

a numeric value, so regression is a way to do this. Regression can be implemented using different methods.

Three of those methods will be used in this paper: regression by using a neural network, linear regression and

a regression tree. These three methods are used because in [Nikovski05] they used the same methods so we

can compare the results they got with our own results for the V2 and V3 models.
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3.2.1 Linear regression

Linear regression is the simplest of the three regression methods used in this research, but has as drawback

that it is less flexible. It is a very static method. The idea of it is to represent the class as a linear function of the

variables with their determined weights [Witten11]. It predicts a variable, the dependent variable, by using

another variable, the independent variable. This is done by making a linear function with the formula:

E[y] = β1 ∗ i1 + β2 ∗ i2 + β3 ∗ i3 + ... + βn ∗ in

Where E[y] is expected value for the dependent variable, βi is the coefficient for the ith independent variable

and ii is the ith independent variable.

3.2.2 Regression tree

A regression tree has instead of a classification in the leaf node a number that represents the average value

of the instances that reach that leaf, we mean true or false or if we tried to predict a categorical variable one

of its categories with classification . For problems that have different types of variables, a regression tree is

more accurate for most of the time due to the fact that it can represent data in multiple ways. For example if a

dataset with a boolean variable A plus a few more variables, reacts completely different on the independent

variables when A = true then if A = f alse, a simple linear model would have trouble to cope with this, but in

a regression tree it would simply be a split. The downside of a regression tree instead of a linear model is that

it is more difficult to understand when the size gets larger. [Witten11]

3.2.3 Neural network

A neural network consists of layers of nodes, the perceptrons, which get weighted inputs and have an activation

function in it. If the weighted inputs activate the function, the perceptron fires to the next layer of nodes or the

output. In case of regression, the neural network gives a numeric value as outcome instead of 0 or 1 . This

numeric value is made up from the outputs of the last layer of perceptrons. Of the three models used this

one is the least understandable due to the many nodes, which all have many inputs with different weights,

thus making it difficult to understand how the value is determined. The upside of this method is that neural

networks have a high tolerance to noisy data, so if the data is noisy the neural network should have the best

predictions. [Aalst16]

3.3 Feature selection

Feature selection is used to remove the irrelevant features from the data and make the models perform and

train better. It reduces the number of dimensions while keeping the loss of information as small as possible.

12



It has three main purposes, it reduces the training time, it reduces the chance of overfitting the model and

most importantly it is used to remove irrelevant features such that the model is not based on those features.

This is done because a model that is based on irrelevant features will be less accurate. Two feature selection

algorithms will be used in this thesis, the algorithms ’mutual information regression’ and ’f regression’. Both

algorithms are of the Univariate feature selection kind. An Univariate feature selection algorithm examines

each feature individually to determine the strength of the relationship between it and the dependent variable.

The Univariate feature selection algorithms are in general good in gaining an understanding of the data. Both

algorithms find the best features based on statistical tests and rank them. This will give an overview of the

influence of the factors and help to answer the first research question.

3.3.1 F regression

F regression, also called f regressor, is a test used to score the features. This is done by performing Univariate

linear regression tests. It is a linear model for the testing of each feature. This is done in two steps. In the first

step is for every feature and target the correlation computed. Secondly, the correlation is converted to a F-score

and then a p-value. This method in regard to mutual info regression only estimates the linear dependency

between two variables, while mutual info regression can capture more kinds of statistical dependencies. The

upside of using f regressor is that it computes faster than mutual info regression. The downside is that it only

finds linear dependencies. [Sklearnf18]

3.3.2 Mutual information regression

Mutual info regression is a test that estimates the mutual information for a continuous target variable. Mutual

information is the measure of the dependency between two variables. It can also be expressed as the amount of

information one can get about one variable from observing another variable. The mutual information can not

be negative and also not be greater than one, which means you can get all the information for the dependent

variable from the independent variable. If the two variables have no relationship the mutual information

value will be zero, while a higher value means a higher dependency. The values are computed by using

non-parametric methods based on the entropy estimation from k-nearest neighbours distances. The benefit of

using this method in regard to f regressor is that it gives a better insight into the dependency of two variables,

but at the cost of using more time. This time can be slightly reduced by using fewer neighbours to compute

the dependencies. [Sklearnm18]
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Chapter 4

Evaluation

4.1 Experiment setup

We want to test if the added weather and holiday data help us construct models that have a smaller error

and explain more of the variance than the already existing models. This is done by first collecting and

preproccessing the data and then making a baseline model. After that we make a model based on the results

from the hypothesis testing, which is the V1 model. The V2 model consist of three separate models:

1. DecisionTreeRegressor, an algorithm that makes a regression tree.

2. MLPRegressor, an algorithm that builds a neural network with a numeric value as output.

3. LinearRegression, an algorithm that makes a linear function from the input variables.

For the V2 models, parameters are selected and used to make the models. These same parameters will be used

in the V3 models, which are the same three models as the V2 models but the input data is different as that the

input data depends on the results from the feature selection. After the V1, V2 and V3 models are constructed

they are compared to the baseline. All the models are constructed and run four times, because some of the

models use a random initialization and by running them four times the randomness will be reduced.

4.1.1 Error metrics

To compare the accuracy of the constructed models we need to have error metrics. We have chosen the

following two metrics, the first is the root mean square error(RMSE) and the second is R2. RMSE is the

standard deviation of the prediction errors. It has the formula:

RMSE =

√
(p− y)2
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Where p is the predicted value and y is the real value. The benefit of the RMSE is that it gives an absolute fit

instead of a relative fit.

The second scoring function is the R2 scoring function. R2 is defined as 1 − U/V where U and V are

respectively:

U = ∑
i
(yi − pi)

2

V = ∑
i
(yi − ymean)

2

yi is the real value for y on the ith row, pi is the predicted value for the same row and ymean is the mean of all

the real values. The R2 has at best a score of 1 which is perfect predictions for all the values, a score of zero

means that the value predicted is always as good as just using the mean of y. If R2 has a score of 0, the model

has no added value. R2 was chosen because we can immediately see if the model has added value and with

RMSE we can then determine what the exact added value is.

4.1.2 Data collection

The data used for the experiments is extracted from different sources. All the data is from the time period

01-01-2012 to 31-12-2016. The traffic data comes from the public accessible records of the Dutch agency

Rijkswaterstaat [Rijkswaterstaat18], a slightly simplified example of the traffic data is shown in Table 4.1. This

data is collected with the online web application of Rijkswaterstaat.

Date Hm Start time End time Heaviness Average length Duration Day Province Route
20160102 35.2 1314 1514 422.267 3499.931 120.65 4 6 A1

20160102 60.8 1400 1416 41.183 2429.695 16.95 4 6 A12

Table 4.1: Example of traffic jam data, source Rijkswaterstaat

The Date is the date of the traffic jam in the format yyyymmdd. Hm is the highway location marker where

the traffic jam started. The Start and End time are the times that the traffic jam started and ended. Average

length is the total length of the traffic jam divided by the duration. Duration is how long the traffic jam lasted.

Heaviness is the combination of the factors length and duration, see Table 4.4. Day is the day of the week that

the traffic jam started. Province is the province where the traffic jam started and Route is the highway where

the traffic jam originated.

The weather data comes from public data from the Dutch weather institute, the KNMI [KNMI18]. They provide

the data per weather station on their website. Per Dutch province, one weather station that has no missing data

has been used to provide the information. A list of those stations with their corresponding province is shown

in Table 4.2. One thing to bear in mind is that in Table 4.2 the number 12 is missing. This is done to match the

province numbers used by the traffic data. These numbers are the same numbers as used in Table 4.2.
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Nr Station Province

1 Lauwersoog Groningen

2 Leeuwarden Friesland

3 Hoogeveen Drenthe

4 Twenthe Overijsel

5 Deelen Gelderland

6 De Bilt Utrecht

7 Schiphol Noord-Holland

8 Voorschoten Zuid-Holland

9 Vlissingen Zeeland

10 Eindhoven Brabant

11 Valkenburg Limburg

13 Marknesse Flevoland

Table 4.2: Used weather stations with corresponding provinces

All the weather data that is used is shown in Table 4.3.

Code Definition
Station The weather station the data is from
YYYYMMDD The date where YYYY is the year, MM the month and DD the day
HH Hour that is measured, HH = 5 means the time starting 4 AM till 5 AM

DD Wind direction in degrees, coming from the north is 360 degrees and
270 degrees means the wind is coming from the west

FH Average windspeed in the timeframe, measured in 0,1 m/s
FF Average windspeed in the last ten minutes, measured in 0,1 m/s
FX Maximal windspeed in the timeframe, measured in 0,1 m/s
T Average temperature at 1,5 metres above the ground measured in 0,1 degrees Celcius

T10N Minimum temperature at 10 centimetres from the ground in the last 6 hours,
measured in 0,1 degrees Celcius

SQ Duration of sunshine in the timeframe, measured in 0,1 hours
Q Global radiation in the timeframe, measured in 0,1 J/cm2

DR Duration of rain in the timeframe, measured in 0,1 hours
RH Amount of rain in the timeframe, measured in 0,1 mm
P Average airpressure in the timeframe, measured in 0,1 hPa
VV Visibility in timeframe, measured in 0,1 km
N How strong is the cloud cover, 0 no clover and 9 means that the upper air is invisible
U Relative moisture in % at 1,5 metres above the ground
M Fog, 0 = no fog, 1 = fog in the timeframe
R Rain, 0 = no rain, 1 = rain in the timeframe
S Snow, 0 = no snow, 1 = snow in the timeframe
O Thunderstorm, 0 = no thunderstorm, 1 = thunderstorm in the timeframe
Y Icing, 0 = no icing, 1 = icing in the timeframe

Table 4.3: Used weather data, source KNMI

All information regarding the School holidays came from the Internet. [Landen18] The instance is classified as

in a holiday when at least one of the Dutch school regions has a school holiday for the primary and secondary

schools.
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4.1.3 Data preprocessing

To make the data compatible and do the experiments, the weather data and traffic data needed to be combined.

First the unused variables were deleted from the traffic data, such that only the information in Table 4.4

remained. The variables Duration, Average length and Heaviness are numeric variables. The Day and Province

are categorical variables where for the Day 0 means Monday, 1 means Tuesday and so on till 6 means Sunday.

For Province the numbers corresponded with the number in Table 4.2. The Starting hour is an ordinal variable

where value 1 means 1 AM and 2 is 2 AM so so on, until 23 which means 23 PM.

Code Definition
Date The date of the start of the traffic jam
Day Which day of the week the traffic jam started, 0 = Monday, 1 = Tuesday , etc
Duration The duration of the traffic jam in hours
Average length The average length of the traffic jam in metres
Starting hour At which hour the traffic jam formed
Heaviness Combined factor of duration and average length. Duration * average length = Heaviness
Province The province where the start of the traffic jam is located

Table 4.4: Traffic jam data after removal of unused variables

First the unused variables were removed from the traffic data; next the data was grouped and summed by

date, starting hour and province such that for every day and all the hours that there was a traffic jam there

was an entry to use in the experiments. Then the summed traffic data was combined with the holiday data,

such that for every date there is a boolean variable that indicates whether or not it is a holiday. The weather

data was then prepared for merging. The only thing that needed to change was that the weather data did not

have a province. With the use of Table 4.2 that was easily solved, by replacing the station number with its

corresponding province and changing the name of the station to its province. If the weather variable HH has

value 4, it means the time starting at 3 AM until 4 AM, while if the traffic variable Starting hour has value 4 it

means 4 AM until 5 AM. Thus the value 4 for HH corresponds with the value 3 for Starting hour, therefore all

the HH values were decreased by 1 to match with the Starting hours, then the name HH was also changed to

Starting hour to make the join easier. The weather and traffic data were then joined on Date, Starting hour and

Province which resulted in Table 4.5. Then the Date was removed from the joined data, to not give the instance

an unique identifier, the combination of the Date and the starting hour.

Table 4.5: Combined data after preprocessing
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4.1.4 Overview of the data

The Figures 4.1 to 4.6 give a quick overview of the data. They were all constructed in a very similar way. First

of all the traffic data that was in the format of Table 4.5, was grouped by Weekday and starting hour and taken

the mean of. Then the Figures 4.3 and 4.4 were constructed to show the average traffic jam length and duration

for the whole period for every hour and each day. Then the holiday variable was used and the other figures

were constructed to see the difference between a normal week and a holiday week. If for example a traffic jam

started at 11 AM and had a duration of two hours with a length of 6 kilometres, the length and duration were

only used for the 11 AM starting hour even tough the traffic jam also existed at 12 PM.

If we take a look at Figure 4.3 it shows for every day two peaks of traffic jam length between six am and nine

am and also between four pm and six pm. This could mean that the rush hour definition used in 3.1 could

be too narrow in the morning and too broad in the afternoon. Figures 4.1 and 4.2 use a completely different

scale, this would suggest that in holiday periods there are fewer traffic jams, Section 4.1.6 will explore this

observation further.
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Figure 4.1: Traffic jam length in non holiday period Figure 4.2: Traffic jam length in holiday period

Figure 4.3: Traffic jam length over all periods Figure 4.4: Traffic jam duration over all periods

Figure 4.5: Traffic jam duration in non holiday period Figure 4.6: Traffic jam duration in holiday period
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4.1.5 Baseline model

According to the research in [Nikovski05], three baseline regression models are built. The models are built

twice, once on just the data for the province Noord-Holland and the other run is done on the whole data

set. This is done because the V1 model is based only on the data from Noord-Holland and by making the

baseline with the same data set we are then able to compare them. The input for the baseline models are

only the time of day and the traffic jam length for that hour. The models are then tested in two ways, first

data is split randomly in 10% testing data and 90% training data and then the models are built on this data.

This method will give us a very optimistic result, because we overfit the data. It is possible that we predict

for a point in time while we have trained with data points that are from further along. Secondly, the data is

split more according to the research from [Nikovski05], where the first 12 months are training and the next 2

months are testing data. Here the first 4 years are used as training data and the last year is used as testing

data. This second method will give us more realistic results, while the first method gives us optimistic results

to compare them with.

4.1.6 V1 Hypothesis testing

All the hypothesis tests were done only on the biggest province, Noord-Holland with 14878 instances of the

70171 total instances. An instance is a data entry with the date, the time and the traffic jam length per province.

The average traffic jam length per province is very variable per province so doing it this way gives a test with

less noise than doing it on all the data. By using Python the mean, standard deviation and occurrence of every

hypothesis was found.

H1: Does the rush hour have an effect on traffic jam length?

Let µ1
1 be the average traffic jam length per hour outside the rush hours, where rush hours are the hours:

{7, 8, 9, 16, 17, 18, 19}. And let µ1
2 be the average traffic jam length per hour during the rush hours.

H1
0 : µ1

1 = µ1
2, H1

a : µ1
1 6= µ1

2

The mean, standard deviation and number of instances for these circumstances are:

• ȳ1
1 = 6819.12 metres

• ȳ1
2 = 22675.917 metres

• s1
1 = 7076.874

• s1
2 = 24774.214

• n1
1 = 6961

• n1
2 = 7917

se =

√
7076.8742

6961
+

24774.2142

7917
= 291.066

20



t =
22675.917− 6819.12

291.066
= 54.48

The n1
1 and n1

2 are really big. Therefore, t = 54.48 is enormous which gives a P-value that is 0 with more than

five decimal places. Thus we can reject the H1
0 and accept H1

a The confidence interval is:

Upperbound = 22675.917− 6819.12 + 291.067 ∗ 1.96 = 16427.286 metres

Lowerbound = 22675.917− 6819.12− 291.067 ∗ 1.96 = 15286.31 metres

Thus on average in rush hours the traffic jam length per hour is 15 to 16 kilometres higher than in the normal

hours.

H2: Does the weekend have an effect on traffic jam length?

Let µ2
1 be the average traffic jam length per hour on a weekday and let µ2

2 be the average traffic jam length per

hour in the weekends. H2
0 : µ2

1 = µ2
2, H2

a : µ2
1 6= µ2

2

The mean, standard deviation and number of instances are:

• ȳ2
1 = 15721.557 metres

• ȳ2
2 = 13383.196 metres

• s2
1 = 20212.598

• s2
2 = 20610.037

• n2
1 = 11922

• n2
2 = 2956

This gives a standard error of 421.862 and a t-score of -5.54. This results in a 95% confidence interval of

[-1511.512, -3165.21]. n2
1 and n2

2 are big. Therefore, the t-score of -5.54 gives a P-value that is 0 with more than

five decimal places. Thus, we reject H2
0 and we accept H2

a . With the confidence interval we derive that in the

weekends the average traffic jam length per hour is smaller than the average traffic jam length per hour for a

weekday.

H3: Does the rush hour in the weekend have an effect on traffic jam length

Let µ3
1 be the average traffic jam length per hour in the weekends outside the rush hour and let µ3

2 be the

average traffic jam length per hour in the weekends during the rush hour. H3
0 : µ3

1 = µ3
2, H3

a : µ3
1 6= µ3

2

The mean, standard deviation and number of instances are:

• ȳ3
1 = 6047.653 metres

• ȳ3
2 = 21921.640 metres

• s3
1 = 5533.917

21



• s3
2 = 27354.646

• n3
1 = 1590

• n3
2 = 1366

This gives a standard error of 753.025 and a t-score of 21.08. This results in a 95% confidence interval of

[17349.917, 14398.06]. n3
1 and n3

2 are big. Therefore the t-score of 21.08 gives a P-value that is 0 with more than

five decimals. Thus, we reject H3
0 and we accept H3

a . With the confidence interval it is derived that for the rush

hour in the weekend the average traffic jam length per hour is greater than for the hours outside the rush hour.

H4: Do holiday periods have an effect on traffic jam length?

Let µ4
1 be the average traffic jam length per hour in a nonholiday period and let µ4

2 be the average traffic jam

length per hour in a holiday periods. H4
0 : µ4

1 = µ4
2, H4

a : µ4
1 6= µ4

2

The mean, standard deviation and number of instances are:

• ȳ4
1 = 16824.823 metres

• ȳ4
2 = 8781.172 metres

• s4
1 = 21551.290

• s4
2 = 12102.255

• n4
1 = 11978

• n4
2 = 2900

This gives a standard error of 298.800 and a t-score of -26.92. This results in a 95% confidence interval of

[-7458.005, -8629.297]. n4
1 and n4

2 are big. Therefore, the t-score of -26.92 gives a P-value that is 0 with more

than five decimal places. Thus we reject H4
0 and accept H4

a . With the confidence interval we derive that the

average traffic jam per hour in a holiday period is lower than in a nonholiday period.

H5: Does rain have an effect on traffic jam length?

Let µ5
1 be the average traffic jam length per hour while it does not rain and let µ5

2 be the average traffic jam

length per hour while it rains. H5
0 : µ5

1 = µ5
2, H5

a : µ5
1 6= µ5

2

Rain is defined as when the value RH, see Table 4.3, is bigger than 0.

The mean, standard deviation and number of instances are:

• ȳ5
1 = 14745.798 metres

• ȳ5
2 = 18647.871 metres

• s5
1 = 19632.900

• s5
2 = 24080.376
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• n5
1 = 12929

• n5
2 = 1949

This gives a standard error of 572.129 and a t-score of 6.820. This results in a 95% confidence interval of

[5023.446, 2780.700]. n5
1 and n5

2 are big. Therefore the t-score of 6.820 gives a P-value that is 0 with more than

five decimal places. Thus, we reject H5
0 and accept H5

a . The confidence interval shows that the traffic jam length

for an hour is greater when it rains than for an hour when it does not rain.

H6: Does the amount of sunshine have an effect on traffic jam length?

Let µ6
1 be the average traffic jam length per hour when there is no sunshine and let µ6

2 be the average traffic

jam length per hour when there is sunshine. H6
0 : µ6

1 = µ6
2, H6

a : µ6
1 6= µ6

2

Sunshine is defined when the value SQ is bigger than 0.

The mean, standard deviation and number of instances are:

• ȳ6
1 = 16836.530 metres

• ȳ6
2 = 13669.311 metres

• s6
1 = 22178.784

• s6
2 = 18109.438

• n6
1 = 7458

• n6
2 = 7420

This gives a standard error of 331.895 and a t-score of -9.54. This results in a 95% confidence interval of

[-2516.705, -3817.733]. n6
1 and n6

2 are big. Therefore, the t-score of -9.54 gives a P-value that is 0 with more than

five decimal places. Thus, we reject H6
0 and accept H6

a . With the confidence interval we derive that the traffic

jam length is on average greater when there is no sunshine then when there is sunshine.

H7: Does the temperature have an effect on the traffic jam length?

Let µ7
1 be the average traffic jam length per hour when the temperature is below average and let µ7

2 be the

average traffic jam length per hour when the temperature is above average. H7
0 : µ7

1 = µ7
2, H7

a : µ7
1 6= µ7

2

The average temperature is determined by taking the mean of the T feature, this gives a T value of 122.4 or an

average temperature of 12.24
◦c.

The mean, standard deviation and number of instances are:

• ȳ7
1 = 17342.071 metres

• ȳ7
2 = 13242.400 metres

• s7
1 = 22058.810

• s7
2 = 18246.536
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• n7
1 = 7311

• n7
2 = 8567

This gives a standard error of 332.497 and a t-score of -12.33. This results in a 95% confidence interval of

[-3447.976, -4751.366]. n7
1 and n7

2 are big. Therefore, the t-score of -12.33 gives a P-value that is 0 with more than

five decimal places. Thus, we reject H7
0 and accept the alternative hypothesis. The confidence interval shows

that the traffic jam length is less when the temperature is above average compared to when it is below average.

4.1.7 Least square estimate

The results from the hypothesis testing give an indication what the influence from the hypotheses is on traffic

jam length, but only for a single hypothesis, they do not have taken into account what the relation between the

hypotheses is. That is why a least square estimate is also used for the same hypotheses, except H3, because H3

is a combination of two hypotheses itself. The results from the least square estimation are shown in Table 4.6.

The meaning for the table is for example that for H1, does the rush hour have an effect on traffic jam length,

the traffic jam length goes up by 13254 metres when it is a rush hour. The bias term is the intercept.

Hypothesis Least square estimate
H1 13254

H2 -1250

H4 -5646

H5 4398

H6 -137

H7 -1230

Bias 8318

Table 4.6: The least square estimate for the hypotheses

4.1.8 Parameter selection for V2

Just as for the baseline three algorithms are used.

1. DecisionTreeRegressor, an algorithm that makes a regression tree.

2. MLPRegressor, an algorithm that builds a neural network with a numeric value as output.

3. LinearRegression, an algorithm that makes a linear function from the input variables.

The DecisionTreeRegressor is implemented with the default settings except for the max depth. The max depth

is set to 10 to achieve the best result, see Figure 4.7. It was decided to use this algorithm for its ability to

represent data in multiple ways and by being the only regression tree in Sklearn [Sklearn19]. Sklearn is a free

machine learning library for Python, which includes algorithms for classification, clustering and regression. It

is used because, it has algorithms which are easy to implement and is free to use.
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Figure 4.7: RMSE score for DecisionTreeRegressor on test data with corresponding maximum depth

The MLPRegressor is implemented with mostly the default settings, except for the hidden layer size. The

hidden layer size is increased from one layer of one hundred perceptrons to three hidden layers of one hundred

perceptrons each. This was done because it improved the test results of the early test runs. The MLPRegressor

was chosen due to the amount of noise in the data, which originated partly from the gathering of traffic data.

The LinearRegression algorithm was implemented with only the default settings. It was chosen because the

features of the algorithm are easily analysed.

Due to not only running nominal variables it is expected that the LinearRegression algorithm scores lower

than the other two.

4.1.9 V3

To reduce the number of features and thereby reducing the noise in the data, feature selection is used. The

selected features will then be used in the three prediction algorithms used in chapter 4.1.8 and scored by

RMSE. The used feature selection algorithms are:

1. F regression

2. Mutual information regression

These algorithms were used because they were the only algorithms suited in Sklearn for regression while

doing feature selection. The six best features are then used to build regression models. The ten best ranked

features from the F regression are shown in Table 4.7. The six highest ranked features are used to make the

models. Therefore, these features were used for the regression models. The scores of the Mutual information

regression are shown in Table 4.8. The differences between the six best scoring features from F regression
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and Mutual information regression are quite big, for example the two highest scoring features from Mutual

information regression are not even in the highest ten of the F regression.

Rank Name
1 holiday
2 Q
3 U
4 T
5 T10

6 DR
7 VV
8 Day
9 SQ

10 R

Table 4.7: Ten highest ranked features for the F regression. Ranked from highest to lowest

Name Mutual information Name Mutual information
Hour 0.175 R 0.002

Province 0.105 DD 0.002

Q 0.029 S 0.001

holiday 0.025 SQ 0.000

T 0.019 M 0.000

Day 0.011 Y 0.000

VV 0.010 U 0.000

T10 0.008 N 0.000

DR 0.006 FX 0.000

O 0.005 FH 0.000

P 0.005 FF 0.000

RH 0.003

Table 4.8: Estimated mutual information per feature in regard to average traffic jam length
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4.2 Results

4.2.1 Baseline results

The results of these baseline models are shown in Table 4.9. This table shows the results when run on the

Noord-Holland data set, Table 4.10 shows the result for the whole data set. A baseline to compare the scores

to is the RMSE score for the mean. If the RMSE is lower than RMSE score for the mean, then the model has

added value. When we look at the results from Noord-Holland where the last year is the test data, we see

that only the DecisionTreeRegressor predicts better than the mean. This does not correspond to the results

of the other article, where the LinearRegression model scored better than the other two models and all the

models scored better than the mean. An explanation for this phenomenon could be that they used smaller time

periods and their models were based on only a few time periods earlier, for example the prediction for 8 am

was based on the data for 7:55 am and 7:50 am. Here the prediction is based on all the earlier data. When we

look at the randomly split data we see that all the models score better than the mean baseline of 20312 metres,

but just as the other split only the DecisionTreeRegressor explains any of the variance in the data. The last year

as testing data run scores worse than the run where the data is randomly split. This is logical, because when

we randomly split the data the results are too optimistic and the last year as test data gives a more realistic

picture. If we look at the results for the whole data set they are mostly the same as for the Noord-Holland

build, the biggest difference is that all the models perform slightly worse compared to the mean.

LinearRegression MLPRegressor DecisionTreeRegressor Mean

Random split RMSE 20023 19315 17674 20312

R2
0.00 0.01 0.24 0.00

Last year as
test data

RMSE 27669 27654 24163 27476

R2 -0.07 -0.07 0.18 0.00

Table 4.9: Baseline for Noord-Holland

LinearRegression MLPRegressor DecisionTreeRegressor Mean

Random Split RMSE 27244 26614 24919 27291

R2
0.00 0.05 0.16 0.00

Last year as
test data

RMSE 34474 34427 31430 34438

R2 -0.04 -0.04 0.13 0.00

Table 4.10: Baseline for whole data set
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4.2.2 V1 results

The results for the V1 model are shown in Figures 4.8 and 4.9. In Figure 4.8 the data is split with the last

year as testing data for Noord-Holland. Then we get an RMSE score of 25099. This means that on average the

prediction has an error of 25099 metres. If we use the simplest prediction algorithm (the mean) then we get a

RMSE score of 27476. This means that we got an error decrease of 8.7%. This regression model decreased the

average error by almost 9%, which is quite promising for further research and means that it added value.

The regression model has a R2 score of 0.118 when the last year is used as test data, this means that almost

12% of the variance in the data is explained by this regression model. The V1 model therefore, explains more

than a ninth of the variance in the data, so the model gives an insight in how much the tested factors influence

traffic jam length and how precise these factors can predict traffic jam length when they are combined.

When we look at the Figure 4.8 we see that the model does not totally predict the extend of the peaks and

valleys, it does not correctly predict the height of the peaks.

When the data is randomly split we get as result the Figure 4.9. The RMSE score for this model is 18561, thus

on average the prediction has an error of 18561 meters. The simplest prediction has for this data set a RMSE

score of 20321. This means that the error is decreased by 8.7%. This regression model decreased the average

error by almost 9%, which is quite promising for further research and means that it has some added value.

The R2 score is 0.169 when we split the data randomly, so we explain more of the variance of the data then

when we use the last year as test data. Figure 4.9 can just like Figure 4.8 not predict the extend of the peaks

and valleys.
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Figure 4.8: Result of V1 for Noord-Holland with last year as test data

Figure 4.9: Result of V1 for Noord-Holland with data randomly split
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4.2.3 V2 results

The result for the V2 models are shown in Table 4.11. It shows that the DecisionTreeRegressor easily outscores

the other two algorithms. The scores for each algorithm are shown in Table 4.11, the MLPRegressor and

LinearRegression MLPRegressor DecisionTreeRegressor Mean

Random Split RMSE 26233 25504 19197 27291

R2
0.07 0.12 0.50 0.00

Last year as
test data

RMSE 33327 32738 26866 34438

R2
0.02 0.06 0.37 0.00

Table 4.11: Results of V2 models for whole data set

LinearRegression Algorithms have only little to no added value, but the DecisionTreeRegressor explains 50%

of the variance in the data and predicts moderately accurate for the random split. Even with the last year as

test data split, the DecisionTreeRegressor still explains 37% of the variance. For the LinearRegression this score

was partly expected due to the use of not only numeric values, but also categorical values. The linear function

is fitted to a non linear relation, which helps to explain the lower score.

The RMSE scores in Table 4.11 are derived in the same fashion as the average R2 score, the average over four

runs. If we compare these average scores with the mean we find that for MLPRegressor and LinearRegression

the gain is only around four to six percent, but for the DesicionTreeRegressor the gain is 30% which is quite a

good decrease in the overall error.

Figures 4.10, 4.11 and 4.12 give the hundred first predictions and their corresponding real value of the three

algorithms. The first hundred were used because the graph became unreadable when using more instances.

Interesting to note is that the LinearRegression algorithm and MLPRegressor are quite stationary. They move a

bit around the mean and follow the real values slightly, but the DecisionTreeRegressor moves way more with

the real predictions.

The three algorithms were then also tested on the same data set as for the hypothesis testing in Section 4.1.6.

The scores are presented in Table 4.12. The RMSE score of 17267 for the DecisionTreeRegressor is better than

the RMSE score of The MLPRegressor and the LinearRegression algorithms, respectively 19836 and 19537.

In regard to the R2 score the same pattern showed itself. The DecisionTreeRegressor had a score of 0.30, the

LinearRegression algorithm had a score of 0.12 and the MLPRegressor had a score of 0.09. When we look at

the scores for the last year as test data, we see that the RMSE scores are a lot closer and that the algorithms

explain almost none of the variance.

LinearRegression MLPRegressor DecisionTreeRegressor Mean

Random Split RMSE 19836 19537 17267 20312

R2
0.12 0.09 0.30 0.00

Last year as
test data

RMSE 26352 26159 25313 27476

R2
0.03 0.04 0.10 0.00

Table 4.12: Results of V2 models for Noord-Holland
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Figure 4.10: The 100 first predictions of the LinearRegression algorithm and their real values

Figure 4.11: The 100 first predictions of the MLPRegressor algorithm and their real values

Figure 4.12: The 100 first predictions of the DesicionTreeRegressor algorithm and their real values
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4.2.4 V3 results

The results of the V3 models are shown in Table 4.13. If we compare the F regression result with the results

in Table 4.11, it shows that this method of feature selection did not improve the results of the models. In the

case of the DecisionTreeRegressor it made the model a lot worse, which is logical because the F regression

algorithm looks only at linear relation while the DecisionTreeRegressor is more versatile.

If we look at the RMSE results of Mutual information regression, see Table 4.13. The most important find is that

the results of the MLPRegressor are 16%, with mutual information >= 0.025, or 12% with a mutual information

of >= 0.01 better than the original results, see Table 4.11. Also the results from the DecisionTreeRegressor

are where they were in the original model. The mutual information regression helps to reduce the number of

features while the models lost almost no important information and the MLPRegressor functioned even better

due to the fact that it lost some noise. Table 4.14 shows the RMSE results for the models when only applied

for the province Noord-Holland. Here the algorithms run with slightly different features, because for the F

regression the duration of the rain was ranked less important for the smaller dataset and replaced with the

day of the week. While for the Mutual information regression we obviously had to take the province out of the

features, because it has only one value left. These results follow the same trend as the results in Table 4.13,

except for the DecisionTreeRegressor when the Mutual information threshold is >=0.025. There the results

improved in comparison to the higher threshold instead of getting worse as in Table 4.13. A possible explanation

is that in Noord-Holland the DecionTreeRegressor is more influenced by the top four scoring features than the

whole data set. The results from the models with the features selected with Mutual information regression

and a threshold >=0.025 were the best scoring. Therefore, these results will be used to compare with the other

implementations in Section 4.3. Table 4.15 shows the RMSE results for the models when we do not use a

random 10% as test data, but instead the last year as test data. Here also the DecisionTreeRegressor outscores

the other two algorithms and the MLPRegressor and the DecisionTreeRegressor have the best score when

we used Mutual information regression with a threshold >=0.025, this is why these results were also used

in Section 4.3. The last Table 4.14 shows the RMSE results for the Noord-Holland subset of the data where

the last year is used as test data. Here we see that only the DecisionTreeRegressor scores significantly better

than the other algorithms for the Mutual information selections. We can also note that for this smaller dataset

the F regression has a lower error than the Mutual inormation selections for the MLPRegressor. Figures 4.13,

4.14 and 4.15 show the first 100 predictions for the algorithms after using mutual information regression.

If we compare the figures with each other the biggest difference is that while the MLPRegressor and the

DecisionTreeRegressor follow roughly the real value, the LinearRegression algorithm stays around the mean.

If we compare Figure 4.15 with Figure 4.10 they show the same pattern, both centered around the mean and

no big movements. Also Figure 4.14 and Figure 4.12 show the same kind of movement, which the RMSE score

would suggest. But when we compare Figure 4.13 with Figure 4.11, there is a great deal of difference and

the biggest difference is that the predictions are not as much centered around the mean. The fact that the

predictions also follow roughly the trend of the real values means that the RMSE has improved quite a bit.
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Mutual information Mutual information F regression
Treshold >=0.01 >=0.025

LinearRegression 26125 26728 26435

MLPRegressor 22761 21852 26281

DecisionTreeRegressor 19417 20329 26405

Table 4.13: RMSE scores for V3 models with corresponding feature selection method with the data random split

Mutual information Mutual information F regression
Treshold >=0.01 >=0.025

LinearRegression 19700 19492 20306

MLPRegressor 19620 18180 19996

DecisionTreeRegressor 17935 17307 21177

Table 4.14: RMSE scores for V3 models with corresponding feature selection method for the province Noord-Holland with
the data random split

Mutual information Mutual information F regression
Treshold >=0.01 >=0.025

LinearRegression 33816 33830 33625

MLPRegressor 32126 30967 33555

DecisionTreeRegressor 26669 26190 33829

Table 4.15: RMSE scores for V3 models with corresponding feature selection method with the last year as test data

Mutual information Mutual information F regression
Treshold >=0.01 >=0.025

LinearRegression 26917 27053 26368

MLPRegressor 27316 26962 26283

DecisionTreeRegressor 24867 24069 26711

Table 4.16: RMSE scores for V3 models with corresponding feature selection method for the province Noord-Holland with
last year as test data
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Figure 4.13: The 100 first predictions of the MLPRegressor algorithm and their real values after using mutual information
feature selection

Figure 4.14: The 100 first predictions of the DecisionTreeRegressor algorithm and their real values after using mutual
information feature selection

Figure 4.15: The 100 first predictions of the LinearRegression algorithm and their real values after using mutual information
feature selection
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4.3 Comparison of the models

When we look at the results for all the methods used for the province Noord-Holland in Table 4.17, the

first conclusion is that all implementations score better than the mean, thus all models had added value.

The second conclusion is that all the implementations of the DecisionTreeRegressor outscore all the other

algorithms. Thirdly, the V1 model outscores the LinearRegression models and MLPRegressor models most of

the time, except for the V3 version of the MLPRegressor. When we look at the results for the whole data set

in Table 4.20. Both the V2 and V3 score better than the baseline models. The most precise model for traffic

jam prediction is according to this research the DecisionTreeRegressor. And all implementations scored better

than the mean. When we look at the result in graph form, Figures 4.16 and 4.17, the biggest conclusion is that

when we look at a smaller part of the data set all the DecisionTreeRegressor models score almost the same and

outscore all the models. When we look at the whole data set it is easy to see that the V2 DecisionTreeRegressor

outscores all the other models by quite a margin and the baseline DecisionTreeRegressor scores a whole lot

worse than the V2 and V3 implementations of the decision tree. When we look at the results of the data

where the last year was used as test data, then we see the same pattern as for the randomly split data. Here

also the DecisionTreeRegressor outscores all the other implementations. Interesting to note is that for the

results of the Noord-Holland subset the V2 DecisionTreeRegressor scores worse than the V1 model and the

DecisiontreeRegressor implementations of the Baseline and V3 models, while for the randomly split data the

V2 DecisionTreeRegressor scored better. Another observation we can make is that for the whole dataset the

V3 DecisionTreeRegressor scores the best when we use the last year as test data, while if we split the data

randomly the V2 DecisionTreeRegressor scores the best. The improvement compared to the mean for the best

model over the whole dataset for both splits is around the same, around 25%.

Mean
V1 18561

20321
LinearRegression MLPRegressor DecisionTreeRegressor

Baseline 20023 19315 17674

V2 19836 19537 17267

V3 19492 18180 17307

Table 4.17: Results of all the regression models for the province Noord-Holland with the data randomly split

LinearRegression MLPRegressor DecisionTreeRegressor Mean
Baseline 27244 26614 24919

27291V2 26233 25504 19197

V3 26727 21852 20329

Table 4.18: Results of all the regression models for the whole data set with the data randomly split

Mean
V1 25099

27476
LinearRegression MLPRegressor DecisionTreeRegressor

Baseline 27669 27654 24163

V2 26352 26159 25313

V3 27053 26962 24069

Table 4.19: Results of all the regression models for the province Noord-Holland with the last year as test data
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LinearRegression MLPRegressor DecisionTreeRegressor Mean
Baseline 34474 34427 31430

34438V2 33327 32738 26866

V3 33830 30967 26190

Table 4.20: Results of all the regression models for the whole data set with the last year as test data
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Figure 4.16: RMSE score in metres for the methods for the province Noord-Holland

Figure 4.17: RMSE score in metres for the methods for the whole dataset

37



Chapter 5

Discussion

There are some limitations for this research. First of all, the time period that is used is large. This has as

advantage that when a road is blocked for a small part of the time period, that it does not influence the results

much and the overall image is correct. The downside is that when the road changes, for example the number

of lanes becomes more, the used models will not be able to take this into account. So if there are fewer traffic

jams due to road changes, the models will predict accurately, they will predict that there are more traffic jams

than there are and have a higher error. A way how this could have been done different is by taking a smaller

time period. A change in the highway would then not have mattered, because such a change takes quite a bit

of time. Therefore with a small time period, the before and after situation of the highway will not be in the

same data set, only one of the situations will be in a data set. So the models will predict better for the roads

where the situation changes over the long term.

Another limitation is that the models give the same weight to all data points, the data from one day before the

test data is just as important as the data from three years before. The advantage is that the model gives a good

overall image, so when the data is stable over the long term, then the results will be fairly accurate. But the

disadvantage is that when the data is not stable, that the results will not be as accurate. Traffic data is not very

stable data, in the Netherlands the length of the traffic jams grows by the year. There are also made quite a lot

of changes to the roads, which leads to different traffic situations and differences in the data. Giving weight to

more recent data will help to take these changes into account. Using a small time period will make giving

weight to the more recent instances redundant, because the changes that will be taken into account with the

added weight will not exist for a small time period.
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Chapter 6

Conclusions

To answer the first research question :How much influence the following factors traffic jam length in the Netherlands:

time, holiday periods and the weather?. We use the information from Section 4.1.6 and Section 4.1.9. It is shown

there that time and holiday are great influences on the traffic jam length. In Section 4.1.6 we can see that

during rush hour the average traffic jam length increases by around 16 kilometres. This section also showed

that the average traffic jam length decreases by around 8 kilometres during holidays. The weather factors

also have influence on the traffic jam length but not to the same extent, if it rained the traffic jam length was

only around 4 kilometres greater than when it was not raining. This was not as predicted with the general

hypothesis, where it was expected that the weather would have more influence than the holiday periods.

The second question: How precise can we predict traffic jam length on the Dutch highways by using the factors:

time, holiday periods and the weather? is answered in Sections 4.2.2, 4.2.3 and 4.2.4. By using the V2 or V3

LinearRegression models on this data set where the data is randomly split we can not predict the traffic jams

precisely, but the V1 model can predict traffic jams slightly better. Its RMSE scores is 5% better than the score of

the best scoring LinearRegression algorithm, the V3 LinearRegression model. However the V3 MLPRegressor

can predict traffic jams more accurately, it has an increase of 16% for its accuracy score. In this case none

of the algorithms can predict as accurately as the V2 DecisionTreeRegressor, not even the V3 MLPRegressor.

Even when we take only the data for Noord-Holland when it is randomly split, the V2 DecisionTreeRegressor

outperforms all the other implementations as shown in Section 4.3. However when we use the last year as test

data, we see that for Noord-Holland the V3 DecisionTreeRegressor scores the best, but barely better than the

Baseline model so the added value for the subset of the data is great. However, when we look at the whole

data set we see that the V3 DecisionTreeRegressor scores much better than the Baseline model. According to

the general hypothesis we could predict the data more precisely than the existing models when the data is

complete, this is the case for when we look at the whole data set, but not when we look at a subset of the data.
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6.1 Further research

For further research, the LinearRegression models could be optimised by making smaller data sets from only 1

province, 1 hour and 1 day to eliminate the categorical data and noise from the inputs, but for that the data

set used needs to be bigger. Also not covered in this research is if the snow that already is on the road has

influence on the traffic jam length. For the V1 model more factors can be inserted or use it to process other

provinces to make it better and more versatile. Lastly the change over time is not researched, if possibly the

influence of the factors is different in 2012 than it is for 2016. This could be an interesting and important factor

to research.
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