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Abstract

In the field of type theory, the current technique of constructing subtypes has
been proven to be restrictive when it comes to recursive structures, such as
most coinductive types (coTs). In this thesis, a new technique of assembling
subtypes, of coinductive types especially, is introduced. This technique allows
these subcoinductive types (ScoTs) to be built from the ground up without needing
to specify a coT as supertype in advance and can be related to a coT later by
creating an embedding.
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1 Introduction

Type theory is a an area of computer science and logic that was conceived in order to
circumvent some of the paradoxes known to set theory. Today, type systems are used
in several ways. Programming languages, for example, use type systems to detect type
mismatch at compile time, usually caused by small mistakes made by the program-
mer [Geu]. The main way in which type theory differs from set theory, is that the terms
cannot be introduced without specifying their type. The resulting hierarchy of these
types prevents circular propositions and avoids, for instance, Russell’s Paradox. However,
type theory comes with some downsides as well. Working with constructive type theory,
some axioms (law of the excluded middle) and proof techniques (proof by contradiction)
are not viable anymore. Furthermore, the elaborate syntax can make understanding
underlying concepts difficult at times, making constructive type theory challenging to
work with. Nonetheless, axioms can be added when needed and the existence of proof
assistants helping to catch mistakes, remedy these problem partially.

Type theory has close links to type checking systems used in programming languages,
which enforce well behaved programs. Most data structures can be easily captured by
algebraic techniques, but for some structures this has proven to be strenuous. Especially
dynamical structures undergoing incessant change turned out impossible to express in
an algebraic structure. However, systems that are based on some kind of state, can be
described by coalgebraic structures such as coinductive types. Coinductive types (coTs)
are defined by the observations that can be made on them. Such observations can be
compared as extracting some information from a (dynamical) system along with the
system moving to the next state.

Due to the recursive nature of most coinductive types, constructing subtypes in the
manner currently known to type theory exhibits limitations. These current subtypes
are inhabited by dependent pairs. These pairs consist of a term of a certain type and
a proof of this term holding to a certain predicate. To avoid cardinality problems, the
said predicates have to conform to limiting rules. Furthermore, this construction forces
recursive predicates to be written in an iterative way, which may be impossible for some
forms of recursion.

The aim of this thesis is to answer the question: what is a suitable syntax for subtypes of
coinductive types? Definitions and techniques will be introduced describing a new way
of constructing subtypes, specifically for coinductive types. Tools from both category
theory and type theory will be used to accomplish this task, where categorical concepts
will be translated into type theoretical concepts. In contrast to the current technique,
these subcoinductive types (ScoTs) will not be built out of an existing coT, but will
be built from the ground up. After constructing a ScoT, it can be related to a coT by
constructing an embedding from the ScoT into the coT being the ScoT’s supertype.
This thesis is roughly split up into two parts. The first part consists of preliminaries
(Chapter 2) and the second part outlines new theory (Chapter 3) and a comparison of
this new theory to the existing theory (Chapter 4). The preliminaries act as a reference
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to some concepts of type theory, category theory and coinduction, which are used in
the rest of the thesis. Readers well versed in category theory and type theory can skip
Chapter 2 and refer back to it when needed.

2



2 Homotopy Type Theory, Category Theory and

Coinduction

2.1 Homotopy Type Theory

Homotopy type theory 1 can be seen as an alternative to set theory in the formalisation
of mathematics. The main addition of homotopy type theory to general (Martin-Löf)
type theory is that types can viewed as spaces in homotopy theory. Whereas (homo-
topy) type theory itself is made up of rules instead of axioms, univalent type theory
is homotopy type theory with one added axiom: univalence. This axiom states that
identity is equivalent to equivalence [Esc18], roughly speaking. In this thesis, however, uni-
valance will not be used, so the theory we are working in is regular homotopy type theory.

(Homotopy) type theory is concerned with types inhabited by terms, which from a
homotopical perspective can be regarded as points in spaces. When introducting a term
x of type X, this is written as x : X, as one would write x ∈ X in set theory. Terms
cannot be introduced without specifying their type, which is one aspect distinguishing
type theory from set theory. Furthermore, in the type theory used in this thesis, terms
belong to exactly one type, provided that all free variables are equipped with a type. In
set theory, elements are allowed to be contained in many different sets, which is not the
case for terms and types in the type theory used here.
Another difference between type theory and set theory is that type theory is necessarily
constructive, which can be implemented by requiring that a proof of a theorem is given as
a terminating program. Types can be regarded as theorems or propositions, with finding
a term (or ‘witness’) of this type being the equivalent of finding a proof for the theorem
the type represents. This interpretation is called the Curry-Howard correspondence.
Since types are capable of having multiple terms, these proofs contain more information
about the theorem than just the statement of it being ‘true’ or ‘false’.

2.1.1 Introducing New Types

The introduction of a new type in type theory in general follows a certain pattern [Pro13].
A new type is defined by:

• Formation rules : how to form new types of this kind.

• Introduction rules : how to construct terms.

• Elimination rules : how to use terms.

• Computation rules : how the elimination rules act on the introduction rules.

For the types being discussed in this chapter, some of these rules are remarked upon.
However, most of them are not discussed. The interested reader is referred to [Pro13],

1This whole section on homotopy type theory is mainly based on and closely follows Chapter 1
of [Pro13]. For sections 2.1.5 and 2.1.9, Chapters 2 and 3 have also bee consulted respectively.
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Chapter 1.

2.1.2 Definitional and Propositional Equality

Two notions of equality exists in homotopy type theory. The first is definitional equality
(≡). Definitional equality cannot be proven or negated; terms are definitionally equal
simply if they are defined to be equal. Terms (or types) which are definitionally equal
may be substituted for each other.

It is however desirable to be able to prove that terms are equal even if they are
not defined as equal, hence the second equality: propositional equality (=). Whereas
definitional equality of x, y : X, x ≡ y is on the same level in the hierarchy of higher
inductive types as the judgement z : X, propositional equality operates on a higher level.
Propositional equality is provable, which in homotopy type theory means finding a term
for the proposition x = y, making x = y a new type. From a homotopical perspective,
any witness p : (x = y) can be regarded as a path between points x and y in space
X. There may be multiple paths between these points, which is to say there can be
multiple proofs of x and y being equal. Additionally, it is possible to construct paths
between paths, and again paths between those paths and so forth, giving rise to higher
inductive types. One equality type is used extensively and has therefore been given a
name: reflexivity. For a term x : X, reflexivity of x is of the following type:

reflX x : x =X x

These equalities can interact in the following way. Say there is a proof p : (x = y)
and by definition y ≡ z, then p is also a proof for x = z, insomuch that y can be
substituted for z due to the definitional equality.

2.1.3 Universes

Types with terms, which are not types themselves, are called ‘small types’. However,
there also exist types of which the terms are again types. These types are called universes
U .

There exist different ways to relate universes to each other. One would be a cumulative
approach (’Russel style’):

U0 : U1 : U2 : . . . .

The main downside is losing uniqueness of type for each term. A possible solution
would be ‘Tarski style’ universes, where terms of smaller universes are mapped to bigger
universes in a unique way. Since these problems do not affect us directly in this thesis,
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we will not go into the technical details. Furthermore, because the place in the hierarchy
of the used universe is not relevant in the theory discussed, the notation X : Ty has
been chosen to denote term X is a type itself. Ty does, in fact, mean the same thing as
U . The only thing that is relevant in this thesis is that the uniqueness of type for terms
is kept. The interested reader is referred to [Pro13], Notes of Chapter 1.

2.1.4 Function Types, Type Families and Π−Types

In set theory, functions are defined as functional relations. However, in type theory, they
are a primitive concept. Formation of a function type is a follows. Given X, Y : Ty, a new
type X → Y of functions can be formed. Functions are introduced using λ−abstraction.
Say we want to define a function f : X → Y which uses a variable x : X. This can be
written as:

f :≡ λ(x : X).Φ

where Φ is expression which may contain x : X.
Functions are eliminated by function application and computation is defined for x′ : X
as:

f(x′) :≡ Φ′

where Φ′ is the expression for which all instances of x are substituted by instances of x′.

Maps do not restrict to small types, one can also make to, or from, universes. A
map mapping terms inhabiting a small type to types inhabiting a universe is called a
type family. Take for instance type family Y :

Y : X → Ty.

For function f : X → Y , the codomain Y is constant. It is nonetheless possible, with
some type family, to define a function where the type of the codomain varies. Let
Y : X → Ty again be a type family. Define a type of dependent functions as:

∏
x:X

Y (x)

This type family Y can contain free variables in the same way a non-dependent function
can. If Y is a constant type family, then a function f :

∏
x:X Y reverts back to a ‘regular’

function with a constant domain.

Note that the type theoretic operation of taking a product type over all terms of
X (

∏
x:X) can be regarded as the type theoretical version of the logical operation of

‘for all’ terms of X (∀x ∈ X). This can be recognised as follows: dependent function
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∏
x:X Y (x) gives a term of Y (x) : Ty for every term x of X. Due to the ‘propositions as

types’ view, this term can be seen as a proof of the truth of Y (x). Since for every term
x of X such a proof of Y (x) exists, one can infer Y being true for all terms x of X.

2.1.5 Homotopies

Definition 2.1. Let Y : X → Ty be a type family and f, g :
∏

x:X Y (x) be dependent
functions over this family. Homotopy f ∼ g is a dependent function of type:

f ∼ g :≡
∏
x:X

(f(x) = g(x)).

In set theory, (after translating the Πx:X into ∀x ∈ X) this would be enough to conclude
f = g. However, in (homotopy) type theory, this is not necessarily true. Two functions
f and g could be defined differently, but give the same output, which in (Martin Löf)
type theory does not make them equal. In other words: a path between all the outputs
of the functions does not imply there is a path between the functions. To make these
functions equal in type theory, an extra axiom has to be introduced called function
extensionality:

funext :
(∏
x:X

(f(x) = g(x))
)
→ (f = g).

Function extensionality follows from univalence. In this thesis, the univalence axiom will
not be adopted, as it did not appear to be required in the theory developed in Chapter
3. Consequently, function extentionality will not hold. The homotopical interpretation,
however, will be utilised in Section 3.5.

2.1.6 Product Types and Σ−Types

The product type X × Y is formed from types X, Y : Ty. Terms are introduced by
taking x : X and y : Y , making a pair 〈x, y〉 : X ×Y . In order to access one of the terms
in a pair, projections

πL : X × Y → X

πR : X × Y → Y

are the elimination rules of this type, where πL returns the left term and πR returns
the right term. Tuples containing more than two terms also have projections, usually
denoted as π0, π1, π2, . . . πn−1 where each projection returns the (n− 1)th term. In this
thesis, counting starts from 0, but since this is not the case across all the literature, L
and R are used for pairs to avoid confusion.

Similar to dependent functions, it is possible to define a type of dependent pairs,
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or Σ−types. For Σ−types the type of the second term of the pair depends on the first
term of the pair. In other words, for a type family Y : X → Ty, a type of dependent
pairs is written as: ∑

x:X

Y (x),

where pairs 〈x, y〉 :
∑

x;X Y (x) are constructed out of terms x : X and y : Y (x).
Just as with product types, elimination is given by projections, one of which is a
dependent projection.

πL :
(∑
x:X

Y (x)
)
→ X

πR :
∏

w:
∑
x:X Y (x)

Y (πL(w))

Again, for Y a constant family: X × Y =
∑

x:X Y

Like the operation for depenedent functions, the type theoretic operation for tak-
ing a dependent pair for some term x of X (

∑
x:X) also has a corresponding logical

operation. In this case, the operation is the ‘exists’ for x of X operation (∃x ∈ X). This
can be seen in the following way. A proof of

∑
x:X Y (x) needs only one pair 〈x, y〉, with

y a term of Y (x), which means there has to be at least one term x of X for which there
exists a proof for Y (x). In other words, there exists a term x of X such that Y (x) is
true.

2.1.7 Currying

Something that has not been discussed yet is functions taking multiple variables, or
functions with a product type as its domain. Such a function f : X × Y → Z can be
defined as:

f(〈x, y〉) :≡ g (x) (y)

where g : X → Y → Z (right associative) is function taking a variable of type X and
returning another function only dependent a variable of type Y . This can be generalised
to n-tuples, where the process of each step taking one variable and returning a function
dependent on n−1 variables is called currying. Due to the lack of ambiguity, parentheses
are often omitted, meaning g can be written in the following way:

g (x) (y) :≡ g x y.

This notation is left associative, meaning g x is applied first, returning another function
taking only y as variable.
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2.1.8 Coproduct Types

With types X, Y : Ty, a new type can be formed: the coproduct type X + Y . With
x : X, y : Y , term [x, y] : X + Y can be introduced. This coproduct type can be related
to the disjoint union in set theory. There are two maps into the coproduct type

κL : X → X + Y

κR : Y → X + Y.

These maps can be regarded as ‘inclusion maps’. The coproduct type can be seen as a
sort of dual to the product type, since it is defined by maps into the coproduct, whereas
product are defined by maps going out of the product (projections).

Coproduct types also come with a useful elimination principle, which is of type:

el+ : (X → Z)→ (Y → Z)→ (X + Y → Z).

Elimination takes two maps as arguments and returns a map which domain is the
coproduct of the domains of its argument. Now both introduction and elimination are
defined, it is possible to specify computation. Map em+ returns the image of the first
argument if X is inhabited and the image of the second argument if Y is inhabited. Let
f : X → Z, g : Y → Z be existing maps. Elimination on these maps is defined thus
defined as follows.

el+(κL x) :≡ f(x)

el+(κR y) :≡ g(y)

2.1.9 Contractibility

There are some special types for which all terms are considered to be the same. These
types are said to be contractible.

Definition 2.2. Type X is contractible if there exists a term x : X, such that for all
y : X, x = y holds.

If one regards type X as a proposition, contractibility would mean all proofs of this propo-
sition can be equated. Types which act as sets can be defined using this contractibility.

Definition 2.3. Type X is a set if for all x, y : X and all paths p, q : x = y, p = q
holds.

Even though sets are easier to work with, in this thesis we will stick to regular types
which are not necessarily sets. The notion of contractibility, however, will be used when
examining an alternative definition of subtype in Chapter 4.
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2.1.10 Types 0, 1 and 2

The three types 0, 1 and 2 are all important to type theory and will be used extensively
throughout this thesis. Therefore, a short description will be given of each.

The empty type 0 is the type without inhabitants. It is the neutral element of the
coproduct.

The unit type 1 is the type with one term, namely ? : 1. ? can be regarded as the empty
product. Every contractible type is logically equivalent to 1 [Pro13].

The type of booleans 2 has to terms: 02 and 12 (usually simply written as 0 and 1
if the type is clear from context). This type can be regarded as the coproduct of unit
types: 1 + 1.
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2.2 Category Theory

In this thesis, we will mostly be working with type theory, however, there is a close
connection between type theory and category theory [LS88] 2. Some concepts are more
comprehensible if looked at through a categorical lens, which makes it useful to very
briefly introduce the basic concepts in order to provide a better explanation for some
concepts later on.

2.2.1 Categories and Functors

Category theory and type theory are closely linked. For most of this thesis, we will make
use of categorical interpretations due to their clarity. In this section, basic categorical
definitions are given.

Definition 2.4. A category C is a collection of objects ob(C ) together with for each
X, Y ∈ ob(C ) a collection of arrows/morphisms C (X, Y ) between X and Y . These
objects and morphims obey the following properties:

• For each X, Y and Z, a composition function:

◦ : C (X, Y )× C (Y, Z)→ C (X,Z)

(f, g) 7→ g ◦ f

• For each X ∈ ob(C ), there is the identity on X:

1X ∈ C (X,X).

Sometimes the identity written as idX or simply id if the object is clear from the
context.

• For each f ∈ C (X, Y ), we have identity laws :

f ◦ 1X = f = 1Y ◦ f

• For each f ∈ C (X, Y ), g ∈ C (Y, Z) and h ∈ C (Z,W ), we have associativity :

h ◦ (g ◦ f) = (h ◦ g) ◦ f

To clarify this definition, some examples are provided using familiar structures.

2Definitions from Sections 2.2.1 and 2.2.3 are based on [Lei14] and definitions in Section 2.2.2 is
based on [Jac99], Chapter 1.
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Example 2.1. E is the category of sets. Class ob(E ) contains all sets and the class
of morphisms consists of functions between those sets. Formally, this is to say for all
X,X ′ ∈ ob(E ), E (X,X ′) is the class of all functions with domain X and codomain X ′.
It is easy to check there is an identity for all X ∈ ob(E ) following the identity laws.
Moreover, function composition and associativity are also easily shown. This is omitted
since it is not very interesting to write out in full here.

Example 2.2. G is a category of groups. Class ob(G ) contains all groups and the class
of morphisms consists of group homomorphisms between those groups. Formally, this is
to say for all X,X ′ ∈ ob(G ), G (X,X ′) is the class of all group homomorphisms from X
to X ′.

Example 2.3. O is a category of topological spaces. Class ob(O) contains all topological
spaces and the class of morphisms consists of continuous maps between those topological
spaces. Formally, this is to say for all X,X ′ ∈ ob(O), G (X,X ′) is the class of all
continuous functions from X to X ′.

Example 2.4. T is a category of types. Class ob(T ) contains all types and the class
of morphisms consists of maps between those types. Formally, this is to say for all
X,X ′ ∈ ob(T ), G (X,X ′) is the class of all functions with domain X and codomain X ′.
Note due to the lack of function extensionality, some technical difficulties arise when
trying to precisely define this category. Because these technicalities do not matter for the
scope of this thesis, readers interested in the details are referred to [Jac99], chapter 2.

There is also the possibility of constructing maps between categories, by mapping both
the objects and the arrows.

Definition 2.5. Let C and D be categories. A functor F : C → D is a map between
categories with:

• A map between objects :
F : ob(C )→ ob(D)

X 7→ F (X)

• For each X, Y ∈ ob(C ) a map between arrows :

F : C (X, Y )→ D(F (X), F (Y ))

f 7→ F (f),

satisfying the following identities:

• For X ∈ ob(C ):
F (1X) = 1F (X)
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• For f ∈ C (X, Y ), g ∈ C (Y, Z):

F (g ◦ f) = F (g) ◦ F (f).

Example 2.5. For categories G and E , the map F : G → E mapping a group to its
underlying set is a functor. It is easily checked that identity and associativity still hold
after application of F .

Definition 2.6. A small category is a category for which its objects and morphisms
are contained in proper sets instead of in classes.

2.2.2 Fibrations and Substitution Functors

One can think of fibrations in an informal manner as a way to index one category over
another. Fibrations give rise to substitution functors, a concept that will be useful later
in this thesis.

Definition 2.7. A morphism f : X → Y is Cartesian over, or a Cartesian lifting
of, u : I → J in C if both p(f) = u and every g : Z → Y in D for which p(g) = u ◦ w
holds for some w : p(Z) → I, uniquely determines a h : Z → X in D above w with
f ◦ h = g.

Definition 2.8. A functor p : D → C is a fibration if for every Y ∈ ob(D) and
u : I → p(Y ) in C (I, p(Y )), there is a Cartesian morphism f : X → Y in D(X, Y )
above u.

Due to the technicality of these definitions, it might be useful to examine them in terms
of the diagram in Figure 1 below.

Figure 1: The diagrams belonging to p being a fibration.
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Assume there exists some fibration p : D → C . This means one can now say something
useful about the fibres of D .

Definition 2.9. Fibre DI = p−1(I) over I (for category D), is a category with X ∈
ob(DI) if X ∈ ob(D) and p(X) = I. Furthermore, f ∈ DI(X, Y ) if f ∈ D(X, Y ) and
p(f) = 1I in C .

The fibration p comes with a Cartesian lifting f : X → Y over u : I → p(Z) (in
C (I, p(Y ))) for all X, Y ∈ ob(D). Using the Axiom of Choice, one can now choose a
specific lifting for each u : I → p(Z), which will be noted as:

u(f) : u∗(X)→ X

With such a specific lifting for each X ∈ ob(D) , it it is possible to determine the
following functor between fibres of D as shown below.

u∗ : DJ → DI

Definition 2.10. Let u : I → J be a morphism in C . Furthermore, let u(X) : u∗(X)→
X be a Cartesian lifting with for fibres DJ and DI of D : X ∈ ob(Dj) and u∗(X) ∈ ob(DI).
Let f : X → Y be another morphism in C . Functor u∗ : DJ → DI is called a
substitution functor, which makes the diagram in D commute.

Figure 2: Diagram over D with substitution functor u∗.

Example 2.6. Let’s look at a possible definition of the category of predicates P used in
[Jac99]. Class ob(P) contains pairs 〈I,X〉, where X is a type family indexed over I and
can thus be seen as a predicate. i : I is a free variable in X. For 〈I,X〉, 〈J, Y 〉 ∈ ob(P),
a morphism is a apair of maps 〈u, v〉 with types u : I → J and v :

∏
i:I X(i)→ Y (u(i))..
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The functor p : P → E defined as 〈I,X〉 7→ I, sending a predicate to the underlying type
is an example of a fibration. This fibration gives for each u : I → J rise to substitution
functor u∗ : PJ →PI .

In this thesis, however, type theory is used, which means this useful substitution functor
cannot be used directly. In type theory, predicates are defined as being of type:

Pred :
∑
X:Ty

X → Ty.

Due to the lack of function extensionality and the lack of functor axioms, the map

p : Pred→ Ty

cannot be proven to be a fibration. The concept of the substitution functor, however,
will be used. In the case of type theory, this substitution map (as it is not a functor)
will be defined explicitly where needed.

Example 2.7. Let

f : X → Y

be a map between types X, Y : Ty. One can explicitly define the substitution map:

f ∗ : PredY → PredX

f ∗ P :≡ λx.P (f x).

This substitution map, inspired by the concept of the substitution functor in category
theory, will prove to be convenient in defining a coiteration principle in Section 3.2 and
defining bisimulation in Section 3.4.

2.2.3 Limits

In mathematics, the term limit is often associated with some kind of ‘finality’ of an
object, like is the case for limits in analysis. For categories, a limit is something with
just enough structure to say something relevant about a diagram, without unnecessary
structure getting in the way.
To make this precise, some definitions are needed. Consider a ‘diagram’ for some
category, which is to say a graphical representation of objects and morphisms between
them. Take for example a category D with D1, D2, D3 ∈ ob(D), d12 ∈ D(D1, D3) and
d13 ∈ D(D2, D3) (the identities are left out for the sake of clarity). The graphical
representation of this category is shown below in Figure 3.

14



Figure 3: A graphical representation of category D .

One can imagine the general shape of this graphical respresentation, without specifying
specific objects and morphisms to be:

.

Figure 4: The general shape of the category D .

This is a useful way to think about the concept informally, but for it to be useful a small
category needs to be chosen to take the place of this generalised shape. The idea is that
this small category has objects which can be placed on the dots of Figure 4 in a way
that the morphisms still hold. With this idea of a generalised shape, diagrams, cones
and limits can be defined formally.

Definition 2.11. Let C be a category and I be a a small category. A functor

D : I → C

is called a diagram over shape I .
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Definition 2.12. Let C be a category and D : I → C be a diagram. An object
C ∈ ob(C ) together with a family

(fI : C → D(I))I∈I

is called a cone if for all maps u : I → J the diagram below commutes.

Figure 5: A cone of object C and family (fI : C → D(I))I∈I .

Definition 2.13. A cone

(pI : L→ D(I))I∈I

is a limit of D if there exists for each cone

(fI : C → D(I))I∈I

a map

f : C → L

such that for all I ∈ I , this f satisfies :

pI ◦ f = fI .

To clarify these definitions, the diagram below will be put into context.
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Figure 6: Object L and family (pI : L→ D(I))I∈I together are a limit of D.

A cone C has certain information about diagram D. Every such cone factors through a
‘universal cone’ of L, which can be seen as having all the necessary information about
diagram D. Since these are very abstract concepts (like most concepts in category theory),
two examples are discussed in short for clarification. Those familiar with category theory
may already have recognised the limit over the shape of Figure 4 to be a pullback.

Example 2.8. Let for some category C , X, Y ∈ ob(C ). A product P, together with its
projections pL : P → X, pR : P → X is a limit over the category containing only objects
X and Y (without any morphisms between them).

Example 2.9. Let R be the category of rings. The ring of p-adic numbers Zp is a
limit [Sut13] over the diagram:

· · · → Z/(p3)→ Z/(p2)→ Z/(p).

In Chapter 3 Zp will be shown to be in fact a subcoinductive type.
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2.3 (Co)Induction and (Co)Inductive Types

In mathematics, induction is a familiar concept, but the dual concept of coinduction is
less heard of 3. Induction in type theory describes in which way terms of a(n inductive)
type can be analysed, whereas coinduction describes how terms of a (coinductive) type
are introduced. The proof techniques of induction and coinduction make use of the
specific structure of inductive and coinductive objects respectively. Inductive types are
defined by their constructors, which specify how to build an inductive object. Coin-
ductive types, on the other hand, are defined by their observations, which specify how
a coinductive type is broken down. The duality of these concepts mentioned before,
is in categorical sense. In this section, inductive and conductive type will therefore
be examined from a categorical perspective. Inductive and coinductive objects will be
considered in general by regarding initial algebras and final coalgebras over any category.

2.3.1 Inductive Types

The concept of induction is familiar to all mathematicians. The proof method of
mathematical induction, especially, is often used in the whole of mathematics. In
mathematical induction, the initiality of the natural numbers is used. Here, general
inductive types are defined as being initial algebras over an endofunctor in a general
category. To make this an inductive type specifically, one only needs to choose the
mentioned category to be the category of types T .

Definition 2.14. For a category C , an algebra over an endofunctor F : C → C , is a
pair (X, l), where X is an object of category C and l : F (X)→ X a morphism.

Definition 2.15. An algebra is initial if for any algebra (Y, l′), there is a unique
morphism f : X → Y which makes the following diagram commute:

Figure 7: Initial algebra (X, l)

3This section is based on [JR97]
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To clarify this definition, an example is used which is very familiar: the natural numbers
N. Note for the rest of this thesis, it is considered that 0 is s natural number.

Example 2.10. The natural numbers N ∈ ob(E ) (including 0) are a classic example of
an initial algebra.
Let null : 1→ N and succ : N→ N be the constructors of N, where morphism null can
be seen as the base term 0 and succ is the map which maps a natural number to its
successor. Then (N, [null, succ]) forms an algebra when defining for all X ∈ ob(E ) the
endofunctor F : E → E in the following way:

F (X) :≡ 1 +X, F (f) :≡ id + f.

Where in this case id is the identity morphism on 1. Let (Y, [nl, s]), with nl : 1→ Y, s :
Y → Y , be another algebra.
We define f : N→ Y as:

f(null) :≡ nl, f(succ(n)) :≡ s(f(n))

The defined f and F make the diagram below commute.

Figure 8: Natural numbers

The uniqueness of f is fairly easy to check for the category of sets E (assume there
is another map g with the same properties and show this is in fact the same map
as f [JR97]). Uniqueness also follows for the category of types T when T is defined
carefully, making N an inductive type. However, as mentioned before, the technicalities
of formally defining this category in the right way is beyond the scope of this thesis.

19



2.3.2 Coinductive Types

Coinductive types differ from inductive types, as they are defined by observations
on terms, instead of constructors on terms. The categories of inductive objects and
coinductive objects are, in fact, each other’s dual. This duality states the objects in the
diagram remain, but the sources and the targets of the morphisms switch.

Definition 2.16. For a category C a coalgebra over an endofunctor F : C → C , is a
pair (X, o) where X is an object of category C and o : X → F (X) a morphism.

Definition 2.17. A coalgebra is final if for any coalgebra (Y, o′) there is a unique
morphism g : Y → X which makes the following diagram commute.

Figure 9: Final coalgebra (X, o)

Comparing the the diagrams in Figures 7 and 9, the main difference between them is
that the arrows are pointing in the reverse direction.

Definition 2.18. Every category C has a dual category Cop where ob(C ) = ob(C op)
and for all X, Y ∈ ob(C ), we have C (X, Y ) = C op(Y,X) [Lei14].

This definition makes precise what it means for inductive and coinductive objects to be
each others dual. An inductive object in C is a coinductive object in C op and vice versa.
The standard example for coinductive types is the type of streams over some type A.
A stream over A can be seen as an infinite list of terms of A. On this stream, written
as Aω, two observations can be made: head : Aω → A giving the first term of the list
and tail : Aω → Aω giving the rest of the list, excluding the first term (the ‘system’ in
the next ‘state’). The example of the type of (ascending) streams of natural numbers,
consisting of terms of the form (n, n+ 1, n+ 2, . . . ) : Nω for any n : N, will be elaborated
below.
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Example 2.11. Let E be the category of sets. The set of streams of natural numbers
Nω ∈ ob(E ) is an example of a coinductive object.
Let head : Nω → N and tail : Nω → Nω be observations of Nω, where head gives the
first term of the stream and tail gives the stream without the first term. It is clear
(Nω, (head, tail)) is a coalgebra for the endofunctor F : E → E defined as:

F (X) :≡ N×X, F (g) :≡ id× g

Where id is the identity morphism of N. Let (Y, (h, t)) be another coalgebra. We will
look at the specific case where Y = N.
We define g : N→ Nω by coiteration, which means g returns an infinite tuple of numbers
increasing with one every step, starting at the number n which g takes as an argument.

g(n) :≡ (n, n+ 1, n+ 2, . . . )

Functions h and t as:
h(n) := n

t(n) := n+ 1

F and g defined above make the diagram below commute. Uniqueness of g is again easily
derived in E and can also be shown when defining T carefully. Working in category T
would make this final coalgebra a coinductive type.

Figure 10: Streams of natural numbers
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3 Subcoinductive Types

3.1 Examples

Before defining subcoinductive types (ScoTs) formally, it might be useful to look at
some examples which will fit this definition. The properties of these ScoTs are described
informally and will be elaborated at several points later on in this chapter. There will
be five examples which will be used throughout this chapter to illustrate concepts such
as coiteration, computation, bisimilarity and coinduction.

3.1.1 One-after-zero Boolean Streams

Take for example the type of Boolean streams where every zero is followed by a one,
written as 2ω0,1. Streams over type A are infinite lists of terms of A. In this case, where
A :≡ 2, one gets Boolean streams which are streams of ones and zeros.

2ω0,1 : Ty, 〈h, t〉 : 2ω0,1 → 2× 2ω0,1, op :
∏
x:2ω0,1

h x = 0→ h (t x) = 1

This type is a subtype of the coinductive type (coT) of Boolean streams 2ω. A type is
a subtype of another type, if an embedding can be given in a natural way. This will
be elaborated in Section 3.6. The type of Boolean streams is formed by the following
observation.

2ω : Ty, 〈head, tail〉 : 2ω → 2× 2ω

Like in set theory, an injective function from the subtype to its supertype (a coT of
which the ScoT is a subtype) is desired. Take a map ι, which maps terms of 2ω0,1 to the
corresponding terms in 2ω, which is of the following type.

ι : 2ω0,1 → 2ω

Informally, ι maps a term of a ScoT to the ‘equivalent’ term of a coT. The precise
definition of such a map is given by coiteration, described in Section 3.2. To prove
injectivity of such a ι, it needs to be shown that ι x = ι y implies x = y for all x, y : 2ω0,1.
Take terms x, y : 2ω0,1 and suppose ι x = ι y. Streams are infinitely constructed, so
proving them to be equal poses a greater difficulty compared to finitely constructed
structures. It is however possible to prove terms to be bisimilar, which in our definition
of ScoTs (Section 3.3) will imply equality. In this case the following can be written for
all x, y : 2ω0,1 for which ι x = ι y holds.

h x = head (ι x) = head (ι y) = h y

ι (t x) = tail (ι x) = tail (ι y) = ι (t y).
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Note this is not enough to imply x = y and thus prove injectivity of ι. However, this
can be remedied by constructing a relation between x and y which equates the heads
and relates the tails recursively. Relating the tails is saying the heads of these tails
are equal and the tails of the tails are again related, and so on. Such relations will be
defined and illustrated in Section 3.4. Since relating two streams is not quite the same,
ι will not exactly be an injection, but an embedding. This embedding is constructed by
coiteration on the observation on data of the one-after-zero Boolean streams. Section
3.2 will address coiteration and Section 3.6 will address this embedding.

3.1.2 Pairs of Natural Numbers with an Even Sum

Another example of a ScoT would be the type of pairs of natural numbers, for which
the separate elements of the pairs sum up to an even number. This ScoT is written as
(N× N)e.

(N× N)e : Ty, 〈πl, πr〉 : (N× N)e → N× N, op :
∏

x:(N×N)e

∑
m:N

πl x+ πr x = m+m

This type is a subtype of the product type (that can be defined coinductively) over the
natural numbers N×N, which has the usual left and right projections one is used to for
products, namely

πleft : N× N→ N

πright : N× N→ N.

Again, an injective function ι from the subtype to the supertype is desired.

ι : (N× N)e → N× N

Let for x, y : (N × N)e, ι x = ι y. For all such x, y : (N × N)e, the following equalities
hold:

πl x = πleft (ι x) = πleft (ι y) = πl y

πr x = πright (ι x) = πright (ι y) = πr y,

Note there is a big difference between (N×N)e and 2ω0,1. (N×N)e is not defined recursively,
so injectivity can be shown directly. The equations above imply, since x = 〈πl x, πr x〉
and that y = 〈πl y, πr y〉, ι is injective.

23



3.1.3 Non-terminating Computations

The type of computations over N, written as DN, is a coT with one observation [Bas17].
Informally, this observation either returns a natural number when terminating, or
continues looping by returning another computation. This behaviour of either terminating
or continuing, but not both, can be captured by defining an observation into the coproduct

N + DN.

The coT DN is formed by this one observation.

DN : Ty, step : DN→ N + DN

Now take the type of non-terminating computations, written as D∞N. These computa-
tions will loop forever.

D∞N : Ty, st : D∞N→ N + D∞N, op :
∏

x:D∞N

∑
d:D∞N

st x = κR d

The ScoT of non-terminating computations is a subtype of the coT of computations
by constructing an embedding between them. Like for the other examples, this will be
shown later in this chapter.

3.1.4 P -adic Numbers

Let p be a prime number and

pk : Z/(pk+1)→ Z/(pk)

pk x :≡ x mod pk

be a map. The ScoT of p-adic numbers, written as Zp is formed in the following way.

Zp : Ty, πn : Zp →
∏
n:N

Z/(pn). op :
∏
x:Zp

∏
k:N

πk x = pk ◦ πk+1 x

This is a subtype of
∏

n:N Z/(pn), which can be understood in the following way. An
n-tuple z :

∏
n:N Z/(pn) can be constructed where every subsequent term in the tuple

‘adds information’ about the p-adic number. In other words, for w : Zp the following
holds.

z = 〈w mod p0, w mod p1, w mod p2, . . . 〉 = 〈π0 w, π1 w, π2 w, . . . 〉
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Again, a map ι can be made:

ι : Zp →
∏
n:N

Z/(pn)

which can be shown to be injective. Let again for x, y : Zp, ι x = ι y. For all such
x, y : Zp and for all k : N:

πk x = πk (ι x) = πk (ι y) = πk y

which shows Zp is a subtype of
∏

n:N Z/(pn). Note again, by the lack of recursion,
injectivity can be shown directly. .

3.1.5 Full Binary Non-well-founded Trees

Non-well-founded trees, or M-types, are trees representing infinite data structures
[BAS15]. Non-well-founded trees are the dual of well-founded trees, or W-types [Pro13].
Among W-types are inductive types such as the natural numbers, whereas among
M-types are coinductive types such as streams. These two examples of natural numbers
and streams both have the property that each node in the tree only sprouts one branch.
Full binary non-well-founded trees are characterised by the property of having exactly
two branches sprouting out of each node.

Let A : Ty, B : A→ Ty. Take the type of full binary non-well-founded trees, written
as MAB2, is formed in the following way.

MAB2 : Ty, i : MAB2 →
∑
a:A

(B a→MAB2), op :
∏

x:MAB2

B (πL (i x)) = 2

Terms a : A represent the nodes of the tree and type B a represents the ‘branching
factor’ for each node a. The type of full binary non-well-founded trees is a subtype of
the type of non-well-founded trees, formed as follows.

MAB : Ty, in : MAB →
∑
a:A

(B a→MAB)

An embedding can be constructed between these types, which will be elaborated in
Section 3.6.
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3.2 Towards a General Syntax for Subcoinductive Types

As discussed in Section 2.1.1, there is a certain pattern to introducing a new type. In
this section, rules for formation, introduction, elimination and computation will we
given. Together, these rules will define a ScoT. Before it is possible to describe these
rules, the coiteration steps for data and predicates, respectively, need to be specified.

First, a mapping F : Ty → Ty needs to be defined for every (S)coT. This map-
ping has functor-like properties, like for every map f : X → Y between types X and
Y , there exists a term F f . These terms are called monotonicity witnesses [MP08].
Furthermore, for reasons that will become apparent in Section 3.6, F needs to hold to
the following functor-like rules:

F : Ty → Ty

F f : F X → F Y

F◦ :
∏

X,Y,Z:Ty

∏
f :X→Y

∏
g:Y→Z

F (g ◦ f) = F g ◦ F f

Fid :
∏
X:Ty

F idX = id (F X)

A map F abiding to these rules will from this point be called a type-functor.
For recursion to be possible, F X may contain type X as a free variable.

Example 3.1. Throughout this section, ScoT 2ω0,1 will be used to illustrate introduced
definitions at various points. In this case, F is defined as

F X :≡ 2×X.

Note that due to X being contained in the type 2 × X, F X can be fed into itself
recursively. One can write, for example:

F (F (F X))) = 2× 2× 2×X.

This type functor F makes it possible to coiterate over the objects of a ScoT. However,
for ScoTs it is also required to be able to coiterate over predicates. For this we first
define two new types, one relating to coalgebras and one relating to predicates over F X
for some type X.

coAlg(F,X) :≡ X → F X

PredFX :≡ F X → Ty

The type coAlg is a function type which sends terms of type X to terms of types F X.
Informally, such a function can be viewed as taking a coiterative step in type X. The
type PredFX is a function type which sends terms of F X to types. Such a type can
informally be interpreted as having a witness for a predicate over a term of F X. Having
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this witness shows that there is proof of the truth of PredFX(x) for a term x of F X,
or in other words, the predicate holds for x.
The aim is to have a certain predicate to be true for every term of the given coalgebra.
In type theoretic terms this results in a map of the following type.

G :
∏
X:Ty

coAlg(F,X)→ PredFX

Example 3.2. For ScoT 2ω0.1, map G is defined as

G :
∏
X:Ty

(X → 2×X)→ Pred2×X

(G X d) (y) :≡ πL y = 0→ πL (d (πR y)) = 1.

Note this G describes the core of what this predicate expresses, independent of which type
term y belongs to and what coalgebra d does. If one feeds type 2ω0,1 and its observation
〈h, t〉 into this G, it results in the predicate that of the first term of the stream is a zero,
the second should be a one.

(G 2ω0,1 〈h, t〉) (〈h, t〉(y)) :≡ πL(〈h, t〉(y)) = 0→ πL (d (πR ( (〈h, t〉(y)))))

= (h y = 0→ πL (d (t y)) = 1)

= (h y = 0→ h (t y) = 1)

The examples discussed in Section 3.1 exhibit a general pattern. ScoTs are formed with
observations on both their data and their predicates separately. Furthermore, these
ScoTs can be related to their supertype by relating the observations of the ScoTs to
observations of the coT via a mapping. Note that in the examples of Section 3.1, the
observations of the subtype and the supertype are indeed very similar.

A subcoinductive type ν(F,G) is formed by the type functor F and dependent map
G described above and result in a ScoT together with its observations on data and
predicates od and op respectively.

F : Ty → Ty G :
∏

X:Ty coAlg(F,X)→ PredFX

ν(F,G) : Ty od : ν(F,G)→ F (ν(F,G)) op :
∏

x:ν(F,G)(G ν(F,G) od) (od x)
Fν(F,G)

Example 3.3. ScoT 2ω0,1 is formed by the following formation rule

F : Ty → Ty G :
∏

X:Ty(X → 2×X)→ Pred2×X

2ω0,1 : Ty 〈h, t〉 : 2ω0,1 → 2× 2ω0,1 op :
∏

x:2ω0,1
h x = 0→ h (t x) = 1

F2ω0,1
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Here, h denotes the map which returns the first term of a given stream and t denotes
the map which provides the given stream with the first term removed. The predicate op

states that for all streams of 2ω0,1, if the first term is a zero, then the term following this
zero is a one. Note that since t returns another stream in 2ω0,1, this predicate is checked
recursively over the whole stream.

Inhabitants of coTs are introduced by coiteration. Coiteration can be thought of, in a
categorical sense, as the map from a coalgebra into a final coalgebra.
For general coTs, the only thing requiring specification is what happens to terms under
application of observation and the coiteration scheme. For ScoTs, however, what happens
to its predicates needs to be specified also.
For coiteration of data, the coiteration principle for general coTs [Bas18] only has to be
modified slightly.

Coiteration for a coinductive type ν(F ) is defined, given some type X and an
observation on X, d :≡ 〈d1, d2, . . . dn〉, by the following scheme:

X : Ty d : X → FX

coiterν(F ) d : X → ν(F ).
Iν(F )

Example 3.4. For coT 2ω, a supertype of ScoT 2ω0,1, coiteration is given by

X : Ty d : X → 2×X
coiter2ω d : X → 2ω.

I2ω

Coiteration states that given some type X and a (recursive) observation on X, a map
into ν(F ) can be made which is dependent on observation d, namely coiterν(F ) d. For
coiteration of data of ScoTs, coiteration on coTs can be borrowed. However, for a
complete definition of coiteration on ScoTs, one needs to find a way to define coiteration
on predicates as well. Using map G, general coiteration on ScoTs can be given by:

X : Ty d : X → FX q :
∏

x:X(G X d) (d x)

coiterν(F,G)d q : X → ν(F,G)

X : Ty d : X → FX q :
∏

x:X(G X d) (d x)

coiter
ν(F,G)
Pred :

∏
x:X(G X d) (d x)→ (G ν(F,G) od) (od (coiterν(F,G)d q (x)))

Coiteration for the data and the predicates are defined by separate maps, but they are
both conclusions of the same prerequisites.
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Example 3.5. For ScoT 2ω0,1, coiteration can be given by

X : Ty d :≡ 〈d1, d2〉 : X → 2×X q :
∏

x:X d1 x = 0→ d1 d2 x = 1

coiter2ω0,1 d q : X → 2ω0,1

X : Ty d :≡ 〈d1, d2〉 : X → 2×X q :
∏

x:X d1 x = 0→ d1 d2 x = 1

coiter
2ω0,1
Pred d q :

∏
x:X(d1 x = 0→ d1 d2 x = 1)→

(h (coiter2ω0,1 d q (x)) = 0→ h t (coiter2ω0,1 d q (x)) = 1)

Note that at the moment map G takes an argument in F X. For a definition of coiteration,
it would be preferable if G took an argument in X and to make d a part of the map
instead of the argument. This would make the definition of q more straightforward. This
modification can be made easily by noticing that for maps

d : X → FX,

od : ν(F,G)→ F (ν(F,G))

and
coiterν(F,G) d q : X → ν(F,G)

it is possible to explicitly define substitution maps (see example 2.7):

d∗ : PredFX → PredX ,

od
∗ : PredF (ν(F,G)) → Predν(F,G)

and
(coiterν(F,G) d q)∗ : Predν(F,G) → PredX

respectively. These substitution functors can be used to rewrite G.

(G X d) (d x) = d∗ (G X d) x

(G ν(F,G) od) (od ((coiterν(F,G) d q) x)) = od
∗ (G ν(F,G) od)((coiterν(F,G) d q) x)

= (coiterν(F,G) d q)∗(od
∗(G ν(F,G) od))) x

Example 3.6. For ScoT 2ω0,1, coiteration is given by

X : Ty d :≡ 〈d1, d2〉 : X → 2×X

q :
∏

x:X d
∗(λy : 2×X.πL y = 0→ πL (d (πR y))) = 1) x

coiter2ω0,1 d q : X → 2ω0,1, 〈h, t〉 : 2ω0,1 → 2× 2ω0,1
I2ω0,1
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X : Ty d :≡ 〈d1, d2〉 : X → 2×X

q :
∏

x:X d
∗(λy : 2×X.πL y = 0→ πL (d (πR y))) = 1) x

coiter
2ω0,1
Pred d q :

∏
x:X d

∗(λy : 2×X.πL y = 0→ πL (d (πR y)) = 1)) x→
I2ω0,1

(coiter2ω0,1 d q)∗〈h, t〉∗(λy : 2× 2ω0,1.πL y = 0→ πL (d (πR y)) = 1)) x.

Note that only the types of the coiteration maps are provided by coiteration, what
these maps actually do is not clear yet. The specification of the actual behaviour of the
coiteration maps will be given by computation rules. In Section 2.1.1, it is mentioned
that computation rules specify how elimination acts on the introduction rules. In the
case of (S)coTs, elimination is given by observation(s) od (and op). The computation
rules for data and predicates respectively is as follows:

od (coiterν(F,G) d q x) :≡ F (coiterν(F,G) d q) (d x)

coiter
ν(F,G)
Pred d q x :≡ op (coiterν(F,G) d q x).

Example 3.7. For ScoT 2ω0,1, the computation rules are defined as follows:

〈h, t〉(coiter2ω0,1 d q x) :≡ 〈h(coiter2ω0,1 d q x), t(coiter2ω0,1 d q x)〉

coiter
2ω0,1
Pred d q x (q x) :≡ h (coiter2ω0,1 d q x) = 0→ h (t (coiter2ω0,1 d q x)) = 1.

What this computation states is that data is still part of the ScoT after the coiteration
step and that after a term of ScoT has gone through coiteration, the given predicate
still holds on this term after the mapping.
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3.3 General Syntax

The combination of the rules for formation, introduction, elimination and computation,
discussed in Section 3.2 give a complete definition of the new type called a subcoinductive
type.

Definition 3.1. A subcoinductive type is defined by its rules of formation

F : Ty → Ty G :
∏

x:X coAlg(F,X)→ PredFX

ν(F,G) : Ty od : ν(F,G)→ F (ν(F,G)) op :
∏

x:ν(F,G) od
∗(G ν(F,G) od) x

Fν(F,G)
,

rules of elimination of type

od : ν(F,G)→ F (ν(F,G))

op :
∏

x:ν(F,G)

op
∗(G ν(F,G) od) x,

rules of coiteration

X : Ty d : X → FX q :
∏

x:X d
∗(G X d) x

coiterν(F,G)d q : X → ν(F,G)
Iν(F,G)

X : Ty d : X → FX q :
∏

x:X d
∗(G X d) x

coiter
ν(F,G)
Pred d q :

∏
x:X d

∗(G X d) x→ (coiterν(F,G) d q)∗(od
∗(G ν(F,G) od)) x

Iν(F,G)

and rules of computation

od (coiterν(F,G) d q x) :≡ F (coiterν(F,G) d q) (d x)

coiter
ν(F,G)
Pred d q x (q x) :≡ op (coiterν(F,G) d q x).

All the components of this definition will be illustrated on the examples of Section 3.1.

3.3.1 One-after-zero Boolean Streams

Since this type was used as the illustrative example throughout Section 3.2, only a brief
overview will be provided.
ScoT 2ω0,1 is formed by the observation consisting of taking the head and tail of the a
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Boolean stream and the predicate that every zero in the stream should be followed by a
one.

F : Ty → Ty G :
∏

X:Ty(X → 2×X)→ Pred2×X

2ω0,1 : Ty 〈h, t〉 : 2ω0,1 → 2× 2ω0,1 op :
∏

x:2ω0,1
h x = 0→ h (t x) = 1

F2ω0,1

Here:

F X :≡ 2×X

(G X d)(y) :≡ πL y = 0→ πL (d (πR y))) = 1.

and the rules of elimination are of type

〈h, t〉 : 2ω0,1 → 2× 2ω0,1

op :
∏
x:2ω0,1

h x = 0→ h (t x) = 1.

Coiteration is given by

X : Ty d :≡ 〈d1, d2〉 : X → 2×X

q :
∏

x:X d
∗(λy : 2×X.πL y = 0→ πL (d (πR y)) = 1) x

coiter2ω0,1 d q : X → 2ω0,1, 〈h, t〉 : 2ω0,1 → 2× 2ω0,1
I2ω0,1

X : Ty d :≡ 〈d1, d2〉 : X → 2×X

q :
∏

x:X d
∗(λy : 2×X.πL y = 0→ πL (d (πR y))) = 1) x

coiter
2ω0,1
Pred d q :

∏
x:X(d∗(λy : 2×X.πL y = 0→ πL (d (πR y))) = 1)) x→

I2ω0,1

(coiter2ω0,1 d q)∗(〈h, t〉∗(λy : 2× 2ω0,1.πL y = 0→ πL (d (πR y)) = 1))) x.

The only thing left to define is the way observations 〈h, t〉 and d act on coiteration. This
is expressed by its computation rules.

〈h, t〉(coiter2ω0,1 d q x) :≡ 〈h(coiter2ω0,1 d q x), t(coiter2ω0,1 d q x)〉

coiter
2ω0,1
Pred d q x (q x) :≡ h (coiter2ω0,1 d q x) = 0→ h (t (coiter2ω0,1 d q x)) = 1
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3.3.2 Pairs of Natural Numbers with an Even Sum

ScoT (N × N)e is formed by two projections mapping the left and right terms of the
pairs onto a natural number. The predicate on the data of this ScoT, is that the outputs
of these projections must sum up to an even natural number. Since sums are easier
to define than products in type N [Pro13], the choice has been made to write m+m
instead of 2m.

F : Ty → Ty G :
∏

x:X(X → N× N)→ (N× N→ Ty)

(N× N)e : Ty 〈πl, πr〉 : (N× N)e → N× N
F(N×N)e

op :
∏

x:(N×N)e

∑
m:N πl x+ πr x = m+m

Here:

F X :≡ N× N

(G X d) (y) :≡
∑
m:N

πL y + πR y = m+m,

with elimination rules of type:

〈πl, πr〉 : (N× N)e → N× N

op :
∏

x:(N×N)e

∑
m:N

πl x+ πr x = m+m.

Coiteration for (N× N)e is given by:

X : Ty d :≡ 〈d1, d2〉 : X → N× N

q :
∏

x:X d
∗(λy : N× N.

∑
m:N πL y + πR y = m+m) x

coiter(N×N)e d q : X → (N× N)e, 〈πl, πr〉 : (N× N)e → N× N
I(N×N)e

X : Ty d :≡ 〈d1, d2〉 : X → N× N

q :
∏

x:X d
∗(λy : N× N.

∑
m:N πL y + πR y = m+m) x

coiter
(N×N)e
Pred d q :

∏
x:X d

∗(λy : N× N.
∑

m:N πL y + πR y = m+m) x→
I(N×N)e

(coiter(N×N)e d q)∗(〈πl, πr〉∗(λy : N× N.
∑

m:N πL y + πR y = m+m)) x,

which makes our computation rules look like:

〈πl, πr〉 (coiter(N×N)e d q x) :≡ 〈πl (coiter(N×N)e d q x), πr(coiter
(N×N)e d q x)〉

(coiter
(N×N)e
Pred d q x (q x)) :≡

∑
m:N

πL (coiter(N×N)e d q x) + πR (coiter(N×N)e d q x) = m+m.
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3.3.3 Non-terminating Computations

ScoT D∞N is formed by one observation which takes a step in the computation. This
step either returns the output of the computation, which in this case is a natural number,
or it keeps looping by returning a new computation. The observation on predicates
states that a computation of type D∞N will be looping forever.

F : Ty → Ty G :
∏

x:X(X → N +X)→ (N +X → Ty)

D∞N : Ty st : D∞N→ N + D∞N op :
∏

x:D∞N

∑
w:D∞N st x = κR w

FD∞N

Here:
F X :≡ N +X

(G X d)(y) =
∑

w:D∞N

y = κR w,

with elimination rules of type :

st : D∞N→ N + D∞

op :
∏

x:D∞N

∑
w:D∞N

st x = κR w.

Coiteration for D∞N is given by:

X : Ty d : X → N +X q :
∏

x:X d
∗(λy : N +X.

∑
w:D∞N y = κr w) x

coiterD∞Nd q : X → D∞N, st : D∞N→ N + D∞N
ID∞N

X : Ty d : X → N +X q :
∏

x:X d
∗(λy : N +X.

∑
w:D∞N y = κr w) x

coiterD∞N
Pred d q :

∏
x:X d

∗(λy : N +X.
∑

w:D∞N y = κr w) x→
ID∞N

(coiterD∞N d q)∗(st∗(λy : N + D∞N.
∑

w:D∞N y = κr w)) x,

which makes our computation rules look like:

st(coiterD∞N d q x) :≡ st(coiterD∞N d q x)

coiterD∞N
Pred d q x (q x) :≡

∑
w:D∞N

(coiterD∞N d q x) = κR w

It is clear that specifying the first coiteration step here is not necessary, since od consists
of only one observation. It is written anyway, to keep consistency between the different
examples.
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3.3.4 P -adic Numbers

ScoT Zp is formed by one observation mapping a p-adic number to an infinite tuple,
where every consecutive number in the tuple is a more precise approximation of the
mentioned p-adic number. The predicate on this ScoT states that the nth approximation
in this list is the same as the (n− 1)th approximation modulo pn.

F : Ty → Ty G :
∏

x:X(X →
∏

n:N Z/(pn))→ (
∏

n:N Z/(pn)→ Ty)

Zp : Ty πn : Zp →
∏

n:N Z/(pn) op :
∏

x:Zp

∏
k:N πk x = pk ◦ πk+1 x.

FZp

Here:

F X :≡
∏
n:N

Z/(pn)

(G X d)(y) :≡
∏
k:N

πk y = pk ◦ πk+1 y,

with elimination rules of type:

πn : Zp →
∏
n:N

Z/(pn)

op :
∏
x:Zp

∏
k:N

πk x = pk ◦ πk+1 x

Coiteration for Zp is given by:

X : Ty d : X →
∏

n:N Z/(pn)

q :
∏

x:X d
∗(λy :

∏
n:N Zp.

∏
k:N πk y = pk ◦ πk+1 y) x

coiterZpd q : X → Zp, πn : Zp →
∏

n:N Z/(pn)
IZp

X : Ty d : X →
∏

n:N Z/(pn)

q :
∏

x:X d
∗(λy :

∏
n:N Zp.

∏
k:N πk y = pk ◦ πk+1 y) x

coiter
Zp
Pred d q :

∏
x:X d

∗(λy :
∏

n:N Zp.
∏

k:N πk y = pk ◦ πk+1 y) x→
IZp

(coiterZp d q)∗(π∗n(λy :
∏

n:N .
∏

k:N πk y = pk ◦ πk+1 y)) x,

which makes our computation rules look like:

πn(coiterZp d q x) :≡ πn(coiterZp d q x)

(coiter
Zp
Pred d q x (q x)) :≡

∏
k:N

πk (coiterZp d q x) = pk ◦ πk (coiterZp d q x)
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3.3.5 Full Binary Non-well-founded Trees

ScoT MAB2 is formed by the observation that for each node, a map from each branch
coming from said node to a new tree is made. The observation on predicates tells us
that the number of branches needs to be 2, always.

F : Ty → Ty G :
∏

x:X(X →
∑

a:A(B a→ X))→ (
∑

a:A(B a→ X)→ Ty)

MAB2 : Ty i : MAB2 →
∑

a:A(B a→MAB2)
FMAB2

op :
∏

x:MAB2
B (πL (i x)) = 2

Here:
F X :≡

∑
a:A

(B a→ X)

(G X d)(y) :≡ B(πL(y)) = 2,

with elimination rules of type:

i : MAB2 →
∑
a:A

(B a→MAB2)

op :
∏

x:MAB2

B (πL (i x)) = 2

Coiteration for MAB2 is given by:

X : Ty d : X →
∑

a:A(B a→ X)

q :
∏

x:X d
∗(λy :

∑
a:A(B a→ X).B(πL(y)) = 2) x

coiterMAB2d q : X →MAB2, i : MAB2 →
∑

a:A(B a→MAB2)
IMAB2

X : Ty d : X →
∑

a:A(B a→ X)

q :
∏

x:X d
∗(λy :

∑
a:A(B a→ X).B(πL(y)) = 2) x

coiterMAB2
Pred d q :

∏
x:X d

∗(λy :
∑

a:A(B a→ X).B(πL(y)) = 2) x→
IMAB2

(coiterMAB2 d q)∗(i∗(λy :
∑

a:A(B a→MAB2).B(πL(y)) = 2)) x,

which makes our computation rules look like:

i(coiterMAB2 d q x) :≡ i(coiterMAB2 d q x)

(coiterMAB2
Pred d q x (q x)) :≡

∏
x:MAB2

B (πL (i ((coiterMAB2 d q) x))) = 2.
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3.4 Bisimilarity

Due to their infinite construction, it is difficult to directly determine whether or not
two (S)coTs are equal. Nevertheless, to be able to compare (S)coTs, a concept called
bisimulation is borrowed from the field of transition systems. Two terms of a (S)coT are
to be called bisimilar if a bisimulation can be made between them. Such a bisimulation
is a relation between (S)coTs relating their behaviour to each other. First, one needs a
type-theoretic definition of a relation.

Definition 3.2. The type of relations RX on type X is defined as

RX :≡ X → X → Ty.

In order to make this relation a bisimulation, the relation has ‘survive’ the coiteration
step. One way of achieving this is relating the relation before the application of d and
after the application of d. This can be done by something called relation lifting.

Definition 3.3. A lifting of a type functor F to another type functor F , is defined as
a dependent map

F :
∏
X:Ty

RX → RFX .

For this thesis, it is required to supply such a lifting together with the functor F of the
ScoT being introduced. For many functors, there are techniques to construct such a
lifting [Sta11]. However, these existing techniques do not readily apply to type theory.
The conception of such a technique is beyond the scope of this thesis.

Using map d : X → F X, the following substitution map can be defined

d# : RFX → RX

d# R :≡ λx.λy.R (d x) (d y)

due to which the following statements can be equated.

F ν(F,G) R (d x) (d y) = d# (F ν(F,G) R) x y

Note

d# ◦ (F X) : RX → RX

were F is independent of the coalgebra d.
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Definition 3.4. Define a map which takes as arguments two relations on the same
X : Ty and returns another type. Note this can be seen as defining a relation on two
relations over X.

v : RX → RX → Ty

R v S :≡
∏
x,y:X

R x y → S x y

R : Rν(F,G) is a bisimulation if there exists a term b of the following type

b : R v d#(F ν(F,G) R).

Define Bisim(X,d) : Ty, with (X, d) a coalgebra, as the type containing pairs of a relation
over X and the proof of this relation being a bisimulation.

Bisim(X,d) :≡
∑
R:RX

R v d#(F ν(F,G) R)

This F will be provided for the examples in Section 3.1 and for 2ω0,1, a specific example
for a bisimulation will be provided.

Example 3.8. For ScoT 2ω0,1, with F X :≡ 2×X, F is given by:

F :
∏
X:Ty

RX → R2×X

F X R u v :≡ 〈πL u = πL v,R (πR u) (πR v)〉

Let us look at two streams u and v of 2ω0,1, which are defined differently. u is defined by
coiteration, such that:

h u :≡ 0

h (t u) :≡ 1

t (t u) :≡ u

v will be a stream which is made out of combining two other streams x and y of 2ω0,1,
where

head x :≡ 0

tail x :≡ x

head y :≡ 1

tail y :≡ y.
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Note that x can be seen as the stream of only ones and y can be seen as the stream of
only zeros. Now the following relation is defined.

S x y :≡
∏
n:N

head (tailn x) = 0→ head (tailn y) = 1

Furthermore, with this relation S, a function zip can be defined. This function alternates
in taking terms of two streams forms a new stream.

zip :
∏

x,y:2ω0,1

S x y → 2ω0,1

h (zip x y p) :≡ head x

h (t (zip x y p)) ≡ head y

t (t (zip x y p)) :≡ zip (tail x) (tail y) (λ n.p (n+ 1)).

Now, v is defined as
v :≡ zip x y (λ n.refl2ω)

These streams u, v : 2ω0,1 can now be related by the following relation.

R u v :≡ (h u = h v) × (h (t u) = h (t v)) × (t (t u) = u) × (t (t v) = v)

To prove this is a bisimulationm it needs to be shown that∏
u,v:2ω0,1

R u v → 〈πL u = πL v,R (πR u) (πR v)

This will be illustrated briefly. The left part of R u v, already ensures h u = h v. The
right part shows that the heads of the tails are again equal, and that the tails of the tails
are again related, so R (t u) (t v)) holds.

Example 3.9. For (N× N)e, with F X :≡ N× N, F is given by:

F :
∏
X:Ty

RX → RN×N

F X R u v :≡ 〈πl u = πl v, πr u = πr v〉

Example 3.10. For D∞N, with F X :≡ N +X, F is given by:

F :
∏
x:Ty

RX → RN+X

Since a relation on a coproduct is required, elimination and computation of coproducts
(see Section 2.1.8) need to be used. First, the following maps are defined:
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f : N→ N +X → Ty

f n :≡ el+ (λm.n = m) (λx.0)

g : X → N +X → Ty

g x :≡ el+ (λn.0) (λy.R x y)

Map f enforces relation between computations only if they return the same natural
number upon termination and map g enforces relation between computation only if
both computations loop the same number of times. With these maps, elimination and
computation for coproducts can be used again to define the desired lifting.

F X R u v :≡ (el+ f g) u v

Example 3.11. For Zp, with F X :≡
∏

n:N Z/(pn), F is given by:

F :
∏
x:Ty

RX → R∏
n:N Z/(pn)

F X R u v :≡
∏
n:N

πn u = πn v

Example 3.12. For MAB2, with F X :≡
∑

a:A(B a→ X), F is given by:

F :
∏
x:Ty

RX → R∑
a:A(B a→X)

F X R u v :≡ (πL (i (u)) = πL (i (v))) × R (πR i (u) (B (πL (i (u))))) (πR (i (v)) (B (πL (i (v))))).

It would be useful to add some concept that describes the ‘largest’ bisimulation on some
ScoT. In set theory, this would be done by defining every bisimulation to be included in
the largest bisimulation. In type theory, however, proofs of inclusion can differ. Instead,
the definition of bisimilarity is formulated in terms of finality of coalgebras.

Definition 3.5. Bisimilarity is a final coalgebra over a type functor of type

od
# ◦ (F ν(F,G)) : Rν(F,G) → Rν(F,G).

Note this definition makes bisimilarity a coinductive type.
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3.5 Coinduction principle

In order to avoid the requirement for ScoTs to be coTs themselves directly, another
requirement is added called coinduction. Coinduction requires every bisimulation is a
bisimilarity, implying uniqueness of coiteration.

Definition 3.6. Let Bisim(ν(F,G),od) be the type of bisimulations (as defined in section
3.4) on some ScoT ν(F,G). Coinduction is defined by the dependent map:

coind :
∏

R:Bisim(ν(F,G),od)

πL R v =

Note this requirement states that there exists a map from any bisimulation on a ScoT
to bisimilarity. With the assumption of coinduction, coiteration will be shown to be
unique for two examples from section 3.1. One example with a recursive structure and
one without.

Example 3.13. Let f :≡ coiter2ω0,1 d q : X → 2ω0,1 and f ′ : X → 2ω0,1 both be coalgebra
morphisms. This means:

h (f x) = d1 x, t (f x) = f (d2 x)

h (f ′ x) = d1 x, t (f ′ x) = f ′ (d2 x).

Take the following relation on 2ω0,1.

R u v :≡
∑
x:X

(u = f x) × (v = f ′ x)

Evidently, R (f x) (f ′ x) holds, since

〈X, refl2ω0,1 , refl2ω0,1〉 : R (f x) (f ′ x)

is a proof of that particular statement. For elaboration on refl2ω0,1, see Section 2.1.2.
Furthermore, R is a bisimulation. Recall

d# (F 2ω0,1 R) u v = (F 2ω0,1 R) (d u) (d v)

= 〈πL (d u) = πL (d v), R (πR (d u)) (πR (d v))〉

= 〈h u = h v,R (t u) (t v)〉

The proof for this is in finding a term for proposition:
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πR Bisim(2ω0,1,〈h,t〉) R ≡
∏

u,v:2ω0,1

R u v → h u = h v × R (t u) (t v)〉

It is already established f and f ′ are homomorphisms, which means the following terms
exist:

homh,d
f :

∏
x:X

h (f x) = d1 x

homh,d
f ′ :

∏
x:X

h (f ′ x) = d1 x

homt,d
f :

∏
x:X

t (f x) = f (d2 x)

homt,d
f ′ :

∏
x:X

t (f ′ x) = f ′ (d2 x)

which leads to the definition of the map

r (f x) (f ′ x) (〈X, refl2ω0,1 , refl2ω0,1〉) :≡ 〈p1, p2〉

with:

p1 :≡ (homh,d
f ) ◦ (homh,d

f ′ )−1

p2 :≡ 〈d2 X, homt,d
f , hom

t,d
f ′ 〉.

and

〈R, 〈p1, p2〉〉 : Bisim(2ω0,1,od)
R.

This can be seen as follows, p1 shows for all x : X:

h (f x) = d1 x = h (f ′ x)

and p2 shows for all x : X:

t (f x) = f (d2 x)

t (f ′ x) = f ′ (d2 x)

which proves:

R (t (f x)) (t (f ′ x))

with:

R : d2 X → d2 X → Ty.
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Since f x and f ′x are bisimular for all x : X, coinduction states:

∏
x:X

f x = f ′ x

which implies:

f ∼ f ′.

This states coiteration is unique up to homotopy.

Example 3.14. Let f :≡ coiter(N×N)e d q : X → (N × N)e and f ′ : X → (N × N)e be
coalgebra morphisms. Take again the relation:

R u v :≡
∑
x:X

(u = f x) × (v = f ′ x),

with the proof for R (f x) (f ′ x) given by 〈X, refl(N×N)e , refl(N×N)e〉. To show R is a
bismulation, the following term has to be constructed.

r : πR(Bisim(N×N)e R)

This term is given by:

r (f x) (f ′ x) (〈X, refl(N×N)e , refl(N×N)e〉) :≡ 〈p1, p2〉

with :

p1 :≡ (homπl,d
f ) ◦ (homπl,d

f ′ )−1

p2 :≡ (homπr,d
f ) ◦ (homπr,d

f ′ )−1

and

homπl,d
f :

∏
x:X

πl (f x) = d1 x

homπl,d
f ′ :

∏
x:X

πl (f ′ x) = d1 x

homπr,d
f :

∏
x:X

πr (f x) = d2 x

homπr,d
f ′ :

∏
x:X

πr (f ′ x) = d2 x
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following from the fact f and f ′ are homomorphisms. Because for all x : X, f x and
f ′ x are bisimular, by coinduction it can be concluded that:

f ∼ f ′,

which makes coiteration unique up to homotopy.

For the rest of the examples, a proof will not be provided, since they are long and all use
the same principle. All the proofs boil down to defining the specific relation on ν(F,G):

R u v :≡
∑
x:X

(u = f x) × (v = f ′ x)

and proving this relation to be a bisimulation. The generality of this technique makes it
easy to apply to other ScoTs.
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3.6 Embedding

The properties described in sections above do make ScoTs types with special properties,
but they are not yet subtypes. The only part that has not been addressed is the ’sub’
part. For a ScoT to really be a subtype of a coT, one needs to be able to construct an
embedding between the first and the second, analogous to how an injective map can be
constructed between subsets and their supersets.
It is desired for the defined ScoT to be the final subobject (with reference to its
predicates) of a coT, in the same way a coT is a final coalgebra.

Theorem 3.1. Let Ty be the category of types.
Let

F : Ty → Ty

be a type functor and

G :
∏
x:X

(X → F X)→ (F X → Ty)

be a dependent function mapping a coalgebra to a predicate on F X.
Furthermore, let ν(F,G) : Ty be a ScoT and ν(F ) : Ty be a coT. By coiteration on od,
the following embedding can be made of type:

em : ν(F,G)→ ν(F ).

This embedding is unique by coinduction. Let X : Ty be some type with d : X → F X
and q :

∏
x:X d

∗(G X d) x.
Then for every coalgebra morphism

fc : X → ν(F )

there is an unique coalgebra morphism

fs : X → ν(F,G)

for which

fc = em ◦ fs

holds, making the diagram below commute.
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Figure 11: Commuting diagram, embedding relation a ScoT and a coT

This diagram has a familiar form. It may look like ν(F,G) together with morphism em
forms a limit (see Section 2.2.3) over the shape containing only ν(F ), but this is not the
case. The limit over a shape with only one object it the object itself.

Proof. Let ν(F,G) : Ty and od : ν(F,G) → F (ν(F,G)). By coiteration on od there
exists a coalgebra morphism:

em : ν(F,G)→ ν(F ).

By coinduction, this map em is unique.

Let X : Ty and d : X → F X. By coiteration there exists a coalgebra morphism:

fc : X → ν(F ).

By coinduction, fc is unique.

Let X : Ty and d : X → F X. By coiteration there exists a morphism:

fs : X → ν(F,G).

By coinduction, fs is unique.

The theorem can be proven by proving the diagram below commutes.
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Figure 12: Diagram which if commutes, proves Theorem 3.1.

1. This square commutes because the way fs is constructed by coiteration on d,
making fs a homomorphism.

2. This square commutes because the way em is constructed by coiteration on od,
making em a homorphism.

The combination of these first and second squares also makes em ◦ fs a ho-
momorphism.

3. This triangle commutes because of the functor properties F has (see Section 3.2).

The outer edges of the diagram make fc a homorphism, namely

od
′ ◦ fc = F (em ◦ fs) ◦ d = F (fc) ◦ d

4. Coinduction holds for ν(F ), so it has to be the case that

fc = em ◦ fs.

Note because one is using coinduction on coTs, not ScoTs, this is an actual
equation, not a homotopy. This means this last triangle also commutes (up to
homotopy) and the theorem holds for ScoTs.
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4 Comparison to Σ-Types over Truncated Proposi-

tions

The concept of subtypes is not a new one. As is to be expected, other definitions
of subtypes already exist. One of these definitions involves Σ-types over truncated
propositions. In summary, terms of these subtypes are pairs consisting of first a term of
its supertype and second a proof the predicate (or proposition) that the first term fulfils.

4.1 Alternative Subtypes

In set theory, a subset B ⊆ A could be defined as all the elements of A which satisfy a
certain condition. In type theory, there is a similar construction.
Subtype B of A : Ty could be defined as the Σ-type

∑
a:A P (a) where P : A→ U is a

type family. This would mean B contains terms 〈a, pa〉 for those a : A which meet the
predicate described by P , so pa : P (a).

Example 4.1. Let Prime : Ty be the type of prime numbers [Fri14]. Let Np be the type
of natural numbers which can be written as the sum of two primes. This subtype of N
can be written as the following Σ-type:

Np :≡
∑
n:N

∑
p,q:Prime

p+ q = n.

This example shows some flaws in the way subtypes are defined at present. For any
a : A , the type P (a) could have more than one inhabitant, giving more than one term
in B for the corresponding term in A. This could result in subtypes having a cardinality
greater than their supertype, a property undesired for a definition of a subtype.

4.2 Mere Propositions and Propositional Truncation

In type theory, wherein types can be seen as propositions or theorems, a proof is able to
contain more information than just the theorem being ‘true’ or ‘false’. To work with
type theory, as one would with classical logic, it might be tempting to define a type
P to be ‘true’ when it has an inhabitant and ’false’ if it does not. However, this leads
to contradiction [Pro13]. A better way to achieve this, is defining all types of P to be
‘equal’, enforcing proof irrelevance. This means the specific term proving P used, does
not matter.

Definition 4.1. Type P is a mere proposition if for all x, y : P , x = y. In other
words, type

∏
x,y:P (x = y) has an inhabitant. Note this makes every mere proposition

contractible (see Section 2.1.9).
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It seems that requiring the type family P in section 4.1 to be a mere proposition would
be a solution to the cardinality problem. This would, however, restrict many possible
subtypes from being real subtypes. Instead of requiring P to be a mere proposition to
begin with, it could be ‘transformed’ into a mere proposition, keeping the information
of ‘having an inhabitant’, but forgetting all additional information about the specific
inhabitants. This can be done using propositional truncation [Pro13].

Definition 4.2. Let P : Ty be a type. The propositional truncation ‖P‖ of P is
built by two constructors and one elimination rule:

• For every p : P there is a |p| : ‖P‖.

• For every q, r : ‖P‖, q = r holds

• For f : X → Y , there is an induced g : ‖X‖ → Y , such that for all x : X:
g(‖x‖) ≡ f(x).

4.3 Definition Subtype using Σ-Types

With propositional truncation, a definition for subtypes can be given with the desired
properties.

Definition 4.3. Type B : Ty subtype of A : Ty is defined as the dependent pair:

B :≡
∑
a:A

‖P (a)‖

Where P : A→ U is a type family and ‖P‖ its propositional truncation.

Since for every a : A, ‖P (a)‖ is a mere proposition, every b : B has exactly one
correspondent in A.

Example 4.2. We revisit the previous example, subtype Np of N:

Np :≡
∑
n:N

∑
p,q:Prime

p+ q = n.

Note that both:

〈10, 〈5, 5〉〉 : Np

and

〈10, 〈3, 7〉〉 : Np,
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which is a problem. If instead Np is defined as:

Np :≡
∑
n:N

∥∥∥ ∑
p,q:Prime

p+ q = n
∥∥∥,

there would only be one pair of the form

〈10, p10〉 : Np

with some p10 : ‖P (10)‖. It does not matter ’which’ term of ‖P (10)‖ since for |〈5, 5〉|, |〈3, 7〉| :
‖P (10)‖ the following holds: |〈5, 5〉| = |〈3, 7〉|.

4.4 Comparison

With an existing definition for subtypes, it may seem superfluous to make another one
just for coTs. The definition from Chapter 3, however, lends itself better to recursive
structures, which is very useful for coTs. Moreover, in the definition of Chapter 3, ScoTs
are built from the ground up, not from its supertype. This lends more flexibility, since
the supertype does not have to be specified in advance.

Below, most of the examples from Section 3.1 will be written as Σ−types over truncated
propositions, to illustrate the usefulness of the definition of Chapter 3.

Example 4.3. Consider ScoT 2ω0,1. This could also be written as:

2ω0,1 :≡
∑
x:2ω

∥∥∥∏
n:N

head tailn x = 0→ head tailn+1 x = 1
∥∥∥

Note that the proposition in this case already is a mere proposition, so truncation is not
actually needed, but it is kept there to be consistent with the definition.

Example 4.4. Consider ScoT (N×N)e. Since this ScoT is not recursive, the alternative
formulation works pretty well.

(N× N)e :≡
∑
x:N×N

∥∥∥∑
m:N

πL x+ πR x = m+m
∥∥∥

Note that again, the propositional truncation here is unnecessary because∑
m:N πL x+ πR x = m+m is also already a mere proposition.
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Example 4.5. Consider the ScoT D∞N. Defining this ScoT is again harder in the
alliterative way, since it does not lend itself well for recursion.

D∞N :≡
∑
x:DN

∥∥∥∏
n:N

∑
y:DN

y = (κr step)n x
∥∥∥

Example 4.6. Consider the ScoT MAB2. Since the recursion for trees is more compli-
cated than the recursion in the previous examples, we will first work out a few steps:

1. B(πL(in(x))) = 2

2. B((πL(in((πR(in(x)))(B(πL(in(x)))))))) = 2

3. B((πL(in((πR(in((πR(in(x))))(B(πL(in(x))))))(B(πL(in((πR(in(x)))
(B(πL(in(x)))))))))))) = 2

Note that in every step, x is replaced by (πR (i(x)))(B(πL(i(x)))). This means at step n,
the equation contains 2n x’s, as is to be expected when ‘building’ a (full) binary tree. This
growth of the number of variables on which recursion takes place makes this example
different from the others, where every x ‘produces’ at most one other x. This is also
the reason why reworking this type to a non-recursive form is very hard, maybe even
impossible, which makes the

∑
-definition of subtypes unsuitable.

The last example presents the necessity of the new subtype definition for coTs. Recursion
is present in most coTs and may get too complicated to write in an iterative way, making
it impossible to write subtypes as a Σ-type over a truncated proposition.
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5 Conclusion and Discussion

In this thesis, a new technique for constructing subtypes for coTs was introduced and
shown to be more useful for dealing with recursion compared to the technique already
known. Furthermore, useful categorical concepts, such as substitution functors, have
been translated into type theoretical concepts.

First, a general syntax for ScoTs was conceived, being ScoTs are types defined by
their observations and the predicates on their terms. Furthermore, part of the general
pattern of introducing a new type was followed, as rules for introduction, elimination and
computation were introduced. Bisimilation and bisimilarity have been formulated and
a coinduction principle has been provided, which states bisimulation in ScoTs implies
equality. A theorem was formulated making embedding of ScoTs into coTs precise,
where the ScoT together with this embedding form a limit over the coT acting as the
supertype. Finally, these new ScoTs where compared to conventional subtypes over coTs
and it has been shown ScoTs are more suitable in describing subtypes for coTs since
they are better equipped to deal with recursion.

There are some ways in which this theory can be improved. At the moment, nei-
ther observation or computation on predicates is formulated recursively regardless of
the recursive nature of the ScoT for which these conditions hold. It would be interesting
to reformulate these conditions in a way that the recursive nature of the ScoT shines
through.
Furthermore, every new subtype has to be supplied with a lifting F for the given functor
F (Section 3.4). For future work, it would be interesting to extend this theory by
developing a technique which gives such a lifting F for any given type functor F .
Finally, the current technique only allows ScoTs to be subtypes of coTs over the same
coalgebra. The current definition does not allow, for example, an appropriate embedding
between 2ω0,1 and 3ω. Extending the definition of ScoTs with some transformation map
allowing these kinds of embeddings would be an interesting addition to the theory.
Another thing to look into would be limits, more specifically equalisers, in the category
of types. We suspect that a ScoT, together with an embedding into a coT can act as an
equaliser.
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du Lac, 2017.

[Bas18] Henning Basold. Mixed Inductive-Coinductive Reasoning. PhD thesis, Radboud
Universiteit Nijmegen, 2018.
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