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Abstract

For the infamous security breach Heartbleed, it has post factum been shown that the vulnerability could have

been found by a fuzzer. A fuzzer is a helpful tool for the discovery of bugs in a program. A mutation-based

fuzzer generates random input (commonly called fuzz) in an attempt to cause the program to crash. This

thesis describes the design process of a framework that can insert a vulnerability into a C or C++ program

during compilation. We use this framework to generate executables to target with a fuzzer. By fuzzing these

executables we determine if and how the number of example files influences the effectiveness of the AFL

fuzzer. The vulnerability injection framework is built upon the LLVM framework and provides two compiler

passes, one to analyse the many possible injected errors and another to insert one of these errors. The results

show that, in general for AFL, more example files do not necessarily lead to a higher code coverage. The

composition of the example set – diversity of features within the example files – has a great influence on the

fuzzing capabilities. The results suggest that a limited set of example files can lead to the same coverage as a

larger set. This means that a potential balance can be found between the costs related to a higher number of

example files and the quality of those example files versus the gain in the fuzzer’s effectiveness.
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Chapter 1

Introduction

Over the years, fuzzers have proven their worth in the field of software development. A fuzzer is a helpful tool

for the discovery of bugs in a program. A fuzzer generates a lot of fuzz (input) in attempts to find a (set of)

inputs that causes the program to crash.

The well-known fuzzer American Fuzzy Lop (AFL) has been used to improve several open-source projects,

among others, Mozilla Firefox, OpenSSL, GnuPG and the iOS kernel [Lop]. For the infamous security breach

Heartbleed, it has post factum been shown that the vulnerability could have been found by a fuzzer [Whe14].

From this we can take there is a good reason to use fuzzers to test software for (security-relevant) bugs.

Background information on fuzzers is provided in Chapter 2.

An important factor in the effectiveness of a fuzzer is the way fuzz is generated. Mutation-based fuzzing is one

of the most common ways to generate fuzz. It utilizes a set of example inputs, and alters them incrementally,

thus staying close to a valid input-format without complicated (and thereby costly) alterations that aim to

be close to a given structure. An unknown factor in mutation-based fuzzing is the influence the number of

example inputs has on the process of generating fuzz.

It can be desirable to know the influence of the example set size on the fuzzing process, because fuzzing is an

intensive operation which costs both time and resources and any optimizations could be beneficial. In this

project we have created a tool that inserts a vulnerability during the compilation of a C or C++ program. This

allows us to create “fuzzable” binaries which we know to contain a vulnerability. The tool we have built serves

as a device that first and foremost simplifies the process of generating a fuzzable target and furthermore

assists in setting up simultaneous fuzzing runs against different example sets. The guaranteed presence of a

vulnerability is created by compiling a regular program, and inserting a vulnerability during compile time.

The tool leaves it up to the user to analyse the fuzzers’ outputs, and make the comparison of their performance.

Our tool only supplies convenience to the process.

The vulnerability-insertion framework will be used to generate ample fuzzable binaries in order to find out

if the example set size has any influence on the effectiveness of the AFL fuzzer. We measure the fuzzer’s
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effectiveness by its ability to find the vulnerability and by its line and path coverage.

1.1 Contributions

• A tool that can insert a vulnerability in C or C++ programs.

• Using this tool, we show the influence of example set size on the number of paths found, amount of

code covered and ability to find a vulnerability with AFL.

1.2 Thesis Overview

This thesis starts with a discussion of related work, showcasing the necessity of this research, followed by some

background definitions, recommended for the reader unfamiliar with the subjects of fuzzers or compilers. The

approach, design and implementations will be discussed next, leaving the experiments and the conclusions as

the closing chapters of this paper.

This bachelor thesis was written at the Leiden Institute of Advanced Computer Science (LIACS) under

supervision of Dr. E. van der Kouwe and Dr. K. Rietveld. The compiler plugin was created in a team setting

with V. den Hamer [Ham] and V. van Rijn [Rij]. The author of this thesis is mainly responsible for:

• Embedding the compilation of Bash into the framework, including the instrumentation for AFL

• Implementing the UnsafeC class of vulnerabilities

• Creating a ‘sandbox’ for Bash – this ended up unused

• Implementing the vulnerability selection algorithm, including seed parameter

• Bugfix: integer size in Off-by-N vulnerability class

• Bugfix: reimplementation of alloca instruction replacement

• Embedding the compilation of libpng into the framework, including the instrumentation for AFL

• Configuring AFL to run in parallel
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Chapter 2

Background

This chapter discusses the subjects of compilers, vulnerabilities and fuzzing, in order to refresh the reader’s

knowledge on these subjects.

2.1 Compiler

A compiler is a tool that converts a high(er) level programming language into machine code. This process is

usually divided into a few stages, which we can divide in three groups: the front end and the back end, which

are optionally intermediated by a set of compiler passes (usually optimization). The front end usually consists

of the lexical, syntax and semantic analyser, after which a code generator translates the analysed input to an

intermediate representation (IR). We will not work within the earlier stages of compiling (front end), but rather

work with the stages of optimization and assembly. Intermediate representation is a machine-independent

format from which the compiler back end can generate machine-dependent code. As the IR is a standardized

format, independent of the initial programming language, it is a good place to analyse for and implement

potential optimizations. These optimizations are often implemented in a ‘compiler pass’. In a compiler pass,

the IR is processed in a single pass from beginning to end, rendering a new IR for an optional subsequent pass

or the back end. A small sample of intermediate representation is given in Figure 2.1.

Many different compilers are freely available. For the C / C++ programming languages, the most well-known

compilers are the GCC compiler [gnu] and the Clang compiler. The Clang compiler is part of the LLVM

compiler framework [llva]. Within the Clang compiler it is possible to introduce your own compiler passes.

In this research, we have taken advantage of this option in Clang to add a compiler pass containing our

vulnerability insertion functionality.

%76 = phi i64 [ %93, %91 ], [ 0, %73 ]

%77 = icmp slt i64 %76, %74

br i1 %77, label %78, label %94

Figure 2.1: An example of LLVM intermediate representation
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%76 = phi i64 [ %93, %91 ], [ 0, %73 ]

%77 = add i64 %74, 1

%78 = icmp slt i64 %76, %77

br i1 %78, label %78, label %94

Figure 2.2: The example code from Figure 2.1, modified to include an off-by-one error (additional instruction shown in red)

2.2 Vulnerabilities

During the development of a program, flaws in the design or formulation of the code can introduce unintended

errors, commonly known as bugs. In an obvious case, a bug will cause a notable malfunction in the program

and will be noticed by the developer. In some cases a bug will not always cause a huge transgression, but is

only triggered under certain conditions. Vulnerabilities are those kinds of bugs that are present in software

that can lead to misuse. Examples of misuse of a program are: access to data that should be restricted, the

altering of the program’s functionality, the denial of the program’s use by others, or the altering of the data

that should have been restricted. Some bugs are not to be considered a vulnerability: they may lead to (visual)

non-conformities with respect to the program’s requirements, but cannot be misused.

In C or C++, many different types of bugs can accidentally be created. Some of the most prevalent will be

used in the work described in this thesis. An example of a common error – also applied in this research – is

the so called ‘off-by-n’ error. An example of an off-by-n error is a mismatch between the intended number

of iterations and the actual number of iterations of a loop, or when there is a difference between the size of

allocated memory and necessary memory. When too little memory is allocated, a program will crash when

attempting to write beyond the allocated memory area. When a loop iterates over an array, the program will

crash when it attempts to read or write beyond the length of said array. Figure 2.2 shows the introduction of

an off-by-one error in the IR shown in Figure 2.1. It increases the loop boundary by one, presumably causing

the program to read or write beyond allocated space.

2.3 Fuzzing

A fuzzer is a powerful tool commonly used in the field of application security and software testing. The

ultimate goal of a fuzzer is to find bugs in applications. It achieves this by ‘fuzzing’. The process of fuzzing is

repeatedly running said application and feeding it random, unexpected or invalid input (also called ‘fuzz’).

The fuzzer changes the fuzz every iteration, thereby hoping to find a class of inputs that causes the program

to crash or fail built-in assertions. The fuzz created every new iteration is often not chosen randomly. The

first iteration is usually based on one or more ‘valid’ input samples often called seeds. Iterations thereafter

are based on the iteration before it, carefully edited in the right place in order to hit other parts of the target

program, increasing the code coverage.
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2.3.1 Grey Box Fuzzing

A naive implementation of a fuzzer would just generate random input and feed it to its target program, this is

commonly called a black-box fuzzer. A black-box fuzzer does not employ methods to incrementally improve

its fuzz. Grey box fuzzing is a common fuzzing strategy as it is relatively easy to set up and is quite an

improvement performance-wise. Without analysing the entirety of the source code, a grey-box fuzzer tries to

gather information on the impact a test case has on the targeted program. Metrics such as code coverage or

execution time can be used to determine promising inputs. Gathering code coverage metrics can be done by

for instance running the program within an emulator such as QEMU [QEM], or by inserting instrumentations

during the compilation of the program. These instrumentations serve as markers from which, when triggered

during the execution of the program, the fuzzer can determine the execution path the input has led to. When a

new execution path is found, the input that generated this path is marked as ‘interesting’ and the fuzzer will

be more likely to base new fuzz on that input.

2.3.2 Code Coverage

The percentage of a program’s entire source code that has been executed in a collection of runs is commonly

called ‘Code Coverage’. Code coverage is an important measure for fuzzers. Since a vulnerability can be

hidden anywhere, a fuzzer needs to execute as much as possible of the program’s code. A fuzzer aims to have

an aggregate code coverage of one hundred percent because every uncovered statement might still trigger

undesired behavior. Having a code coverage of one hundred percent does not mean the fuzzer is ‘finished’

with fuzzing. This is because having all statements executed does not guarantee the program is bug-free.

Take for example the malloc call, which requests the operating system that a certain amount of memory be

allocated. If the amount of memory requested exceeds the limit, no memory is allocated and a null pointer

is returned. If the returned null pointer is used, this results in a segmentation fault. In this example, if the

amount of memory requested is in some way dependent on the input, the statement might be covered, but the

vulnerability not found.

2.3.3 Path Coverage

There are many different ways to measure code coverage, each with another strategy. The AFL fuzzer, which is

the fuzzer used in the research described in this thesis, gathers information from its instrumentation markers,

from which path coverage can be deduced. Path coverage is a form of code coverage wherein the flow of

the program is recorded. The flow is the order in which statements within the program are executed. An

example would be a ‘for’ loop that is executed one, two and three times corresponding to three different paths.

Information on how the AFL fuzzer gathers its path coverage with help of instrumentation can be found in

Chapter 1 of the white paper on the fuzzer [lca].

2.3.4 Line Coverage

Another way of measuring code coverage is ‘Line Coverage’. During the run of a program, the number of

lines that are executed are kept track of. The line coverage is the percentage of the number of lines of the
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original source code that are executed at least once during the run of the program. If all lines of the program

are executed, 100% line coverage is reached.
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Chapter 3

Related Work

The word ‘fuzz’ was coined first in 1988 by Prof. B. Miller, in a University of Wisconsin class project [Mil].

Fuzzing originally started without any example, simply by generating a never-ending stream of inputs.

After thirty years of maturing, the field of fuzzing has gotten more sophisticated. Over the years several

improvements have been introduced, among which fuzzers tracking code coverage [Lop], static analysis

tools [SZ18] and machine learning based fuzz generators [GPS17].

A fuzzer, at its core, is a crude tool. As mentioned in the previous paragraph, many different enhancements

have been created to optimize the process. A great example of an enhancement of the process is a project

named CollAFL [GZQ+
18]. Gan et al. investigated the way AFL tracks code coverage during fuzzing runs and

enhanced that tracking by solving a hash collision issue and introducing three new seed selection policies.

Seed selection policies try to determine which seeds or fuzz are the most promising to use as a base for the

generation of further fuzz that with a higher chance of finding new paths. Gan et al. have devised three new

seed selection policies for the AFL fuzzer namely: memory-access guided, untouched-branch guided and

untouched-descendant guided. The hash collision part is a purely technical enhancement. By ensuring unique

identifiers for all basic blocks, a more exact code coverage can be achieved. The seed selection policies on the

other hand, are configurations to choose from by the person employing the fuzzer. The seed selection policy

may be regarded as a parameter for the fuzzer, a way to influence the process.

Where the CollAFL project focused on an algorithm to select seeds (in combination with already-found paths

that appear to be promising), other projects focused on the creation of seeds [GPS17] [GMH+
18]. These seeds

are example inputs from which subsequent fuzz is generated. The creation of effective fuzz is especially

difficult for targets that have a complex input structure such as PNG or PDF files.

Cheng et al. describe a machine-learning tool that optimizes the covered basic blocks and execution paths by

learning from the fuzz created by AFL [CZZ+
19]. The evaluation of their framework uncovered a 23% increase

in the number of basic blocks covered and a 32% increase of execution paths in comparison to the original

seeds.
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In 2018, R. Gopinath et al. devised a tool for the derivation of an input grammar for a given program [GMH+
18].

The generated files were intended to be used as seeds for grey-box fuzzers. Gopinath et al. determined that it

was “possible to determine an input language from a given program alone, without requiring input samples”

[GMH+
18]. They concluded that their precise targeting of feature and feature combinations performed much

better than standard mutation based fuzzers.

The projects reported in these papers focused on the generation of high-quality seeds. What all these papers

fail to consider is the effect the number of seeds has on the performance of a fuzzer. Therefore the research

described in this thesis focuses on the effect the number of seeds has on the path and line coverage of the

fuzzer. If this effect is known, a trade-off can be made between the efficiency and the accuracy of a fuzzer.

Just as in the papers by Gopinath et al. and Cheng et al., this research considers seeds as a parameters of the

fuzzing project. We used code coverage as a measure for the effectiveness of the fuzzer as was done with the

CollAFL project [GZQ+
18]. However, in contrast to the research described above, the focus of the research in

this thesis initially lies on the quantity of the input files, rather than the quality.
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Chapter 4

Overview

In order to investigate the efficiency of a fuzzer, we wanted to generate target programs which are known to

have a vulnerability. Creating such a target would previously require taking an existing program’s source code,

altering it by purposefully introducing a vulnerability, and compiling it. This process is an intensive task and

if it were to be performed repeatedly, it would take a lot of time and effort to do this manually. Automating

this process would enable a user to create many different ‘fuzzable’ executables in a short period of time

with considerably less effort. We have chosen to implement this process within the existing LLVM compiler

framework [llva]. This has led the authors to the following requirements: the vulnerability insertion framework

must be able to take a program’s source code, written in C or C++, then analyse for all possible places to make

an alteration. When all possible modifications are found, one of them must be chosen and performed.

The vulnerability insertion framework is divided in roughly three sections, as depicted in the dashed box within

Figure 4.1. Part one is the compiler front-end, this converts the source code to an intermediate representation

(IR) format, as described in Section 2.1. This part of the framework is unaltered from the LLVM compiler

framework, it is used as such in the research described in this thesis.

In part two, the compiler passes take the IR and work within this format, analysing and altering it. The

four compiler passes we utilize are, in order, a ‘dump’ pass, an analysis pass, the modification pass and

finally another dump pass. The purpose of the analysis pass is to gather information on the structure of

the program. This information will later be used in the modification pass. The analysis pass leaves the IR

Compiler framework

Front-end Our "Analysis" and
"Modify" passes Back-end

IR IR
Source code Executable

Figure 4.1: An overview of the vulnerability insertion framework.
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unaltered. The modification pass runs through the source code, marking all possible locations for vulnerability

insertions. Some vulnerabilities, such as ‘use-after-free’ and ‘off-by-one’ for loops are identified with help of the

information gathered in the analysis pass. Passes one and four, the dump passes, were originally introduced

for debugging purposes. In the final version, the last dump pass enables us to take the dumped IR and insert

AFL instrumentation. More details concerning the specifics of the AFL instrumentation are described in Section

6.4.

The third part of the framework is the conversion from the IR format to an executable format. In a regular

compiler this would just consist of the back-end but in the research described in this thesis, this is where

we included the instrumentation necessary for the AFL fuzzer. As mentioned in the previous paragraph,

the last compiler pass dumps all IR. In order to create an instrumented executable from this IR dump, the

LLVM assembler turns it into bitcode and the AFL clang-wrapper adds instrumentation to this bitcode file

and generates an executable.

4.1 Generating the Executable

The compiler front-end is responsible for converting the source code to intermediate representation. In the

framework we built upon [VDKNG17] Clang 4 was used, we continued with this version. When invoked with

the -flto flag, Clang employs link-time optimization. This ensures all IR will be accumulated before calling

upon the compiler passes. This is intended, otherwise the compiler passes would run more than once. The

modification pass introduced in this thesis marks and inserts the following types of vulnerabilities:

1. OffByN: loops, strncopy, fgets,strncat

2. Allocation: alloca, malloc

3. Temporal: use after free

4. UnsafeC: strncpy, strtol

5. FormatStrings: printf

The modification pass takes the list of possible modifications, selects one of them and then introduces the

vulnerability in the selected location, taking care to update references from the original result to the new result

wherever applicable. The vulnerability selected for modification is picked based on a random number generator.

Without input, this results in a random vulnerability. A parameter is introduced called ‘INTEGER SEED’ with

which the user can replicate a given vulnerability.

When all compiler passes are finished, the LLVM assembler is fed with the IR from which it creates a bitcode

file including the modifications by the passes. When working with AFL, instrumentation is added by supplying

the bitcode file to the afl-clang wrapper. This renders the instrumented executable.
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4.2 The Fuzzer

When the vulnerability insertion framework has done its job, the fuzzer takes the executable, takes an

assortment of predefined inputs for the target and starts fuzzing. When the process is stopped by the user, the

fuzzer has accumulated a file or folder containing the details of the run. Common details entail the number

of crashes, the number of unique crashes and the number of paths discovered. We aimed to compare three

different sizes of example sets on the number of paths found. Thus, employing the framework, we will generate

three identical executables and fuzz them against different sizes of example sets. After we have set up the

framework within three identical (virtual) machines, we let each of them generate the same executable by

using the ‘INTEGER SEED’ parameter. With the generated executables all three machines start fuzzing. The

only difference being that every machine has a different size of example set.

11



Chapter 5

Design

While designing our framework various parameters were to be taken into consideration. We wanted to supply

the AFL fuzzer with an executable of which we knew it contained an exploitable bug. This way we aimed to

mimic a ‘real life’ scenario of a fuzzing project.

5.1 Compiler Passes

The first and foremost step in the project was to create a compiler that was able to analyse the program

and insert a vulnerability. We chose to adopt the LLVM framework. The LLVM project is an open-source

collection of compiler-related technologies. The framework also contains an interface that allows us to write

our own compiler passes. During these passes we can add, alter, and/or remove code. The framework helps to

determine what to do by providing various analytic functionalities. Examples of these helpful functionalities

are the construction of Dominator Trees and the provision of Loop information.

We created an LLVM compiler pass we called ‘Strategic Analysis’, which iterates over all instructions found in

the IR. When an instruction is an instance of a function call, the pass marks the instruction as ‘modifiable’

when it is one of the instructions for which we have implemented a vulnerability (see Section 5.2). Next to this,

it also analyses the dominator tree for all functions in the module. When a loop is found in the dominator tree,

it is added to the list of loops, which will later be useful in the analysis of possible off-by-n targets.

5.2 Considering Possible Vulnerabilities

The next step concerned research on which type of vulnerabilities we could insert. We wanted to generate

vulnerabilities that were easy to construct from a ‘real-life’ program. We chose to do this because it would

mimic the kind of bugs a human programmer could insert by accident. Based on the overview by Szekeres,

Laszlo et al. [SPWS14] and on the possibilities within the LLVM framework, we decided to start with memory

allocation errors and off-by-one errors. Memory allocation errors can occur when during memory allocation

the allocated size is too small for its intended purpose. The error never occurs immediately, but only when
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attempts are undertaken to use memory outside the allocated boundaries. To introduce such an error, our

compiler pass purposely reduces the intended allocation size when it encounters an allocation instruction.

Off-by-one errors happen whenever some loop iterates one (or more) times too few or too many. These

errors can be easily introduced by increasing or decreasing the boundary check on some operations or loops.

Examples of eligible operations are the strncpy function, or the iteration over array elements. In case the

number of characters copied by strncpy were to be increased to a number larger than the length of the string,

an attempted read at unallocated memory may trigger an error.

5.3 Fuzzing

After we implemented some vulnerability-inserting functionality into the compiler, we needed to create a

script to feed the finished binary to the fuzzer. Since probably a large number of runs would be required,

we automated the process of setting up the environment and preparing the fuzzing. We chose AFL as the

first fuzzer to implement. This is mostly because AFL supplies different fuzzing options, including black-box,

emulated and instrumented fuzzing. We decided to use instrumented fuzzing based on the relative simplicity

to set it up. We could not instrument the already created executable. In order to add instrumentation we had

to take a few steps back in the compilation process. Right after our modification compiler pass, we triggered

a dump pass that writes all the IR into a file. When the compiler pipeline has completed successfully, we

assembled the generated IR file into a bitcode file, which can be instrumented and turned into an executable

by the afl-clang tool.

5.3.1 Fuzzing Target

The first target we implemented was GNU Bash. We considered Bash to be a good candidate because it is easy

to compile and it basically revolves around input. Fuzzers often need an example input, based on which they

will create subsequent fuzz. The GNU Bash project comes with a large number of tests. These tests are scripts,

designed to test the correct operation of the shell. We intended to use (a subset of) these test cases as a basis

for the example files we supply to a fuzzing run. During the fuzzing of Bash, we encountered problems, see

Section 6.5.

The problems encountered with Bash made us switch to targeting the libpng library [lib]. The libpng library is

the official PNG reference library. The libpng library enables users to read from and write to the PNG file

format, and apply modifications to the image within. A great argument for using this library as a fuzzing

target is the fact that the main element of the library is a parser, the eminent place for a program to digest its

input. Libpng, just like GNU Bash, basically revolves around input.
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Chapter 6

Implementation

The vulnerability injection framework described in this thesis was built upon an existing project which

employed the LLVM framework. This existing project already provided a script for the download and

compilation of all tools necessary to compile LLVM 4.0 and added an easily extendable way to add compiler

passes. Another helpful aspect of the existing framework is that the list of ‘targets’, i.e. the programs that

needed to be compiled, is easily extended with a new target. We received access to this base framework

[HJP+
16] [VDKNG17] from our supervisor Dr. E. van der Kouwe.

6.1 Compiler Pass

The compiler pass is built as a C++ class deriving from the ModulePass class, this is one of the ways the

LLVM framework is open for extension. The LLVM documentation was a great help in the creation of

the compiler passes [llvc]. The declaration of our ‘Modify’ pass can be found in Figure 6.1. By overrid-

ing the getAnalysisUsage method, we can add the constraint that our analysis pass, implemented in the

StrategicAnalysis class, should have been called before this pass is run. The overridden method runOnModule

is called with a Module parameter, this parameter contains the Intermediate Representation for the program

currently being compiled in an object structure that we can work with.

s t r u c t Modify : public ModulePass {
s t a t i c char ID ;
Modify ( ) : ModulePass ( ID ) {}
v i r t u a l bool runOnModule ( Module &M) ;
v i r t u a l void getAnalysisUsage ( AnalysisUsage &AU) const ;

} ;
void Modify : : getAnalysisUsage ( AnalysisUsage &AU) const {

AU. addRequired<S t r a t e g i c A n a l y s i s > ( ) ;
}

Figure 6.1: An example of LLVM Intermediate Representation
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std : : vector<InjectableMemoryError∗> InjectableMemoryErrors ;

InjectableMemoryError ∗ offByN = OffByN : : analyseOffByN ( t a r g e t I n s t r u c t i o n , loops ) ;
i f ( offByN != n u l l p t r )

InjectableMemoryErrors . emplace back ( offByN ) ;

Figure 6.2: The analysis pass checks if an instruction could be manipulated to an off-by-n vulnerability

c l a s s InjectableMemoryError {
public :
/ / I n j e c t s t h e memory e r r o r
v i r t u a l void modify ( ) = 0 ;
/ / Return a s t r i n g how an i n s t r u c t i o n was m o d i f i e d
/ / Return t h e main e r r o r t y p e eg . o f f b y o n e , u n s a f e c e t c .
/ / Used f o r l o g g i n g t o a f i l e
v i r t u a l std : : s t r i n g getMainErrorType ( ) = 0 ;
/ / Return t h e s p e c i f i c t y p e o f memory e r r o r eg . s t rncp y , p r i n t f e t c .
v i r t u a l std : : s t r i n g getSecondaryErrorType ( ) = 0 ;
/ / Returns t h e o r i g i n a l i n s t r u c t i o n so t h a t an u s e r can c h e c k i f
/ / two or more memory e r r o r s p o i n t t o t h e same i n s t r u c t i o n
v i r t u a l llvm : : I n s t r u c t i o n ∗ r e t u r n T a r g e t I n s t r u c t i o n ( ) = 0 ;

. . .

Figure 6.3: The InjectableMemoryError class serves as an abstraction for modifiable instructions

6.1.1 Analysis Pass

The analysis pass’ responsibility is the gathering of possible vulnerability insertions. First it gathers information

on loops within the module and it creates a Dominator Tree (credits: V. van Rijn) [Rij]. Then, when the loop

information and Dominator Trees are gathered, it starts looping over all instructions. For every implemented

vulnerability class it checks if the instruction could be mutated to trigger that vulnerability and if so, it adds

the instruction to the list of possible vulnerabilities. An example of this step can be seen for the OffByN class

in Figure 6.2. When all instructions have been analysed, the pass finishes.

6.1.2 Modification Pass

All vulnerability-specific classes we have included in our framework derive from the abstract class

InjectableMemoryError we have created, see Figure 6.3. All classes that derive from the

InjectableMemoryError class, like OffByN and UnsafeC, implement the modify method. This method is

specific to the different vulnerabilities. In Figure 6.4 it is shown how the UnsafeC class takes the original

instruction, and replaces it with an older, deprecated version of that instruction. These older functions, from

the ato* class (e.g. atoi, atol), may trigger undefined behavior in case of overflow. These can therefore be

considered a vulnerability.
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/ / Get t h e t y p e s o f t h e d e s t and s r c .
ArrayRef<Type ∗> params = { o r i g i n a l F u n c t i o n C a l l−>getOperand(0)−>getType ( ) } ;
/ / C r e a t e a f u n c t i o n t y p e us ing t h e t y p e s o f d e s t , s r c en t h e r e t u r n t y p e
FunctionType∗ funcType = FunctionType : : get ( returnType , params , f a l s e ) ;
/ / f i n d t h e f u n c t i o n t h a t r e p l a c e s t h e t a r g e t
targetName = replacementPair . f i r s t ;
/ / C r e a t e t h e new f u n c t i o n
Constant∗ c a s t C a l l = M−>getOrInser tFunct ion (

S t r ingRef ( replacementPair . second ) ,
funcType ,
s t rCastFunct ion−>g e t A t t r i b u t e s ( ) ) ;

i f ( Function∗ newFunction = dyn cast<Function >( c a s t C a l l ) ) {
Value∗ s t r = o r i g i n a l F u n c t i o n C a l l−>getOperand ( 0 ) ;

ArrayRef<Value ∗> castOperands = { s t r } ;
IRBuilder<> i n s t r b u i l d e r ( o r i g i n a l F u n c t i o n C a l l ) ;

C a l l I n s t ∗ c a s t C a l l = i n s t r b u i l d e r . CreateCal l ( newFunction , castOperands ) ;

replaceAllUsages ( o r i g i n a l F u n c t i o n C a l l , c a s t C a l l ) ;

modif iedFunctionCall = c a s t C a l l ;

}

Figure 6.4: The unsafeC class takes a function call, and replaces it with another, transferring the arguments

6.1.3 Bug fixing Vulnerability Classes

As for any software development project, the vulnerability injection framework needed some inevitable bug

fixing. As attributed in the contributions section, the author of this thesis was responsible for bug fixing the

alloca injection and for fixing an assumption that all integer types were specific to a function. The original

alloca modification implementation gave no problems while compiling Bash, but when compiling the new

target libpng, the compilation crashed. During alloca modification, the original instruction needs to be

replaced by the new version, using half the original allocation size. In order to replace such a function call,

the framework checks all ‘users’ of the original instruction, and replaces their usage of the old instruction

with the new instruction. The problem was that, when accessing a property within one of the the allocated

objects through an array index, the LLVM framework uses a concept they call GetElementPtrInst or ‘Get

Element Pointer Instruction’ in order to find the location of the property accessed [llvb]. Figure 6.5 shows

how the AllocationAlloca class manages to replace these types of usages. Another problem that arose when

compiling libpng was that some of our vulnerability classes used predefined integer sizes in their modifications.

Libpng made use of different integer sizes, and so we were forced to revisit all modifications where integer

sizes, mostly fixed on 32 bits, were assumed.
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void A l l o c a t i o n A l l o c a : : replaceAllUsagesForAllocA (
I n s t r u c t i o n ∗ o r i g I n s t , A l l o c a I n s t ∗ newAlloca )

{
std : : vector<Use∗> vec ;
for ( auto& use : o r i g I n s t−>uses ( ) ) {

vec . emplace back(&use ) ;
}

for ( Use∗ use : vec ){
User∗ user = use−>getUser ( ) ;
user−>dump ( ) ;
i f ( auto g e p i n s t = dyn cast<GetElementPtrInst >( user ) )
{

gep inst−>setSourceElementType ( newAlloca−>getAllocatedType ( ) ) ;
user−>setOperand ( use−>getOperandNo ( ) , newAlloca ) ;

} e lse {
user−>replaceUsesOfWith ( o r i g I n s t , newAlloca ) ;

}
}

o r i g I n s t−>eraseFromParent ( ) ;
}

Figure 6.5: The AllocationAlloca class replaces its original usages with the updated instruction.

6.2 Vulnerability Selection

At the start of the project, our goal was to create an option in the framework that would allow the user to

direct the insertion of a given vulnerability at a specific location. Due to time constraints we were forced to

lower the bar on this functionality. The modification pass now picks a vulnerability at random from the list of

possible mutations that were gathered in the analysis pass we created. The process can be steered by the use

of the ‘INTEGER SEED’ environment variable, which simply seeds the random number generator. This allows

for the reproducibility of vulnerability insertions.

6.3 Compiling Bash

Compiling Bash is usually as easy as running ./configure followed by make. In our case, we needed to alter

this process due to the necessity of adding AFL instrumentation. Before the compilation, autoconf performs

checks on the correct behavior of the compiler. If we were to include our modification passes during this

check, the assertions of the configure script would fail, and we would be unable to compile further. We solved

this problem by creating a check on the presence of an environment variable, which we declared during the

configuration stage. Another problem was the fact that we want our passes to run only during the final linking.

Generally, programs are compiled in separate chunks called object files (simplified). These object files are

then gathered in a linking stage, creating the final executable. During the creation of these object files we do

not want to insert our vulnerability, since then overall, we would have run our passes more than once. To

overcome this problem, we created a ’wrapper’ around the compiler, a small script that calls the real compiler.

If certain arguments are given to this wrapper, it adds the command-line arguments that trigger our passes.

17



export NEW AFL PATH=$ (mktemp −d )
cp −r $AFL PATH/∗ $NEW AFL PATH/.
cp −r $PATHROOT/ t e s t c a s e s $NEW AFL PATH
mkdir −p $NEW AFL PATH/output−bash
cp bash $NEW AFL PATH/bash
sudo chown −R t e s t u s e r : t e s t u s e r $NEW AFL PATH
sudo −u t e s t u s e r bash <<EOF
f i n i s h ( ) {

echo ”Fuzz d e t a i l s in : $NEW AFL PATH/output−bash”
}
t rap f i n i s h e x i t
cd
export AFL PATH=$NEW AFL PATH
$NEW AFL PATH/ a f l−fuzz − i $NEW AFL PATH/ t e s t c a s e s /bash −o \

$NEW AFL PATH/output−bash\ $NEW AFL PATH/bash”
EOF

Figure 6.6: A shell script for the creation of a sandboxed environment to fuzz Bash in.

6.4 Instrumenting for AFL

AFL’s instrumented mode requires an executable that has been instrumented during compile time. This proved

to be a challenge, because the afl-clang compiler, although wrapping correctly around the compiler, calls its

own assembler. This created the problem that the modification was not performed. We solved this by calling

the afl-clang wrapper manually after the modified bitcode has been created.

6.5 Fuzzing Bash

Early tests with AFL and Bash have shown a slight complication while fuzzing Bash. Bash commands can

be followed by the > sign, which should then be followed by a filename. This diverts the standard output of

the command to the file given. This phenomenon led to the entire working directory of the fuzzer and/or

home directory of the user being filled up with nonsense files. This led us to the solution to run the fuzzer as a

dedicated user with close-to-none privileges in a temporary folder. Figure 6.6 shows the script that sets up this

‘sandbox’. It starts by creating a temporary folder, after which it copies all necessary files to this folder. When

all required files are present in this folder, all permissions of this folder are assigned to a new user called

‘testuser’. A new shell is opened for this user in which the AFL fuzzing run is initiated.

6.6 Libpng

As libpng is a library, we needed to write a small ‘entry program’ or wrapper that we can supply input to.

Since the source code of libpng also includes a small program called ‘pngtest’, we decided to use this tool as

our fuzzing target. Pngtest uses libpng to read a PNG file and confirms or denies its correctness. The program

reads a file called ‘pngtest.png’ from the current working directory. This did not work well together with

our plan to fuzz in parallel, as is explained further in the next section. Luckily, the program also accepts a

command-line argument for an alternative file path to read from.
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Figure 6.7: An afl-plot graph on the first fuzzer run with the largest set of example files

fuzzers/ a f l / a f l−fuzz − i $ t e s t c a s e p a t h −o $outputpath −f pngtest1 . png \
−M fuzzer1 −− $pngtestpath −−s t r i c t @@ > tmpout1 . a f l &

s leep 60 # −− Allow t h e ma s t e r i n s t a n c e t o l o o k through t h e g i v e n t e s t c a s e s

fuzzers/ a f l / a f l−fuzz − i $ t e s t c a s e p a t h −o $outputpath −f pngtest2 . png \
−S fuzzer2 −− $pngtestpath −−s t r i c t @@ > tmpout2 . a f l &

fuzzers/ a f l / a f l−fuzz − i $ t e s t c a s e p a t h −o $outputpath −f pngtest3 . png \
−S fuzzer3 −− $pngtestpath −−s t r i c t @@ > tmpout3 . a f l &

Figure 6.8: Bash script launching three instances of AFL.

During the implementation of Bash’ AFL instrumentation and compilation, a number of challenges were

encountered and overcome, see Section 6.3. This gave us a head start in the implementation of libpng’s AFL

instrumentation and compilation. As explained in Section 5.3, the dump file we created after our vulnerability

insertion was used to feed the LLVM-assembler, which generated a bitcode file. Thereafter, the afl-clang

wrapper transpiled the bitcode file to an instrumented executable.

6.7 Fuzzing Results

The AFL fuzzer keeps track of fuzzing metrics during runs and supplies an extra tool called afl-plot. After a

fuzzer run, afl-plot can generate a graph including some statistics. Figure 6.7 is such a plot, created from the

first fuzzer run with the largest set of example files. It shows a growth in the number of paths found during

the fuzzing run of ten hours. AFL also shows the number of its ‘pending paths’ which are the paths it has

discovered with which it wants to investigate further. Its ‘pending favs’ are the number of its favorite fuzz

files, with which it hopes to discover more paths.

The afl-plot program creates its plot by reading the plot data file in the fuzzer’s output directory. The final

data points in these files are used in Chapter 7 to describe the effect of different sizes of test sets on the number

of paths found after 10 hours of fuzzing.
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print ( ”Randomising ” + s t r ( n u m b e r o f t e s t f i l e s ) + ” f i l e s ” )

d i r e c t o r y = os . fsencode ( dir + ” s c r i p t i e 0 1 ” )
a l l t e s t f i l e s = os . l i s t d i r ( d i r e c t o r y )
random indexes = random . sample ( range ( 0 , len ( a l l t e s t f i l e s ) ) , n u m b e r o f t e s t f i l e s )

for x in random indexes :
f i lename = os . fsdecode ( a l l t e s t f i l e s [ x ] )
copy2 ( dir + ” s c r i p t i e 0 1 /” + filename , dir + sys . argv [ 1 ] + ”/” + fi lename )

Figure 6.9: Randomly selecting a number of test files from the set of all possible files.

6.8 Gathering line coverage

In order to gather line coverage on the fuzzer runs we adopted the use of afl-cov [mra], a freely available

line coverage generator for the AFL fuzzer. After the fuzzer has been stopped, we start afl-cov, giving it

a reference to the fuzzer’s output folder. Then, afl-cov takes all generated fuzz and feeds it through an

unedited version of pngtest. During these runs of pngtest, afl-cov accumulates all line coverage and then

generates a report on the fuzzing run. This report is used in Chapter 7 to describe the results of our fuzzing

experiments.

6.9 Parallel Fuzzing

In order to utilize the full potential of the machines running our fuzzer setup, we decided to employ AFL’s

parallel-fuzzing option. This option lets the users start several AFL processes, marking one of them as ‘master’.

The fuzzers communicate found paths and promising inputs through a shared directory. Figure 6.8 shows how

AFL’s parallel fuzzing routine is set up for the experiments done in this research. In Figure 6.8 three instances

of afl-fuzz are started, their output directed to a temporary log file. The first instance receives the -M flag,

indicating this is the master instance. It gets 60 seconds to read through and test all example files, a directory

of which is indicated by the $testcasepath variable. After 60 seconds, two more instances are started with

the flag -S indicating they will be run in slave mode. All three fuzzers share a common ‘working directory’,

indicated by the $outputpath variable. The last variable, $pngtestpath, contains the location of our target

program.

6.10 Randomizing Test Sets

In Section 7.4.2, another set of fuzzing runs is described. These runs were designed to contain a different set of

files each. Twenty different sets, each containing ten example files had to be created at random given the set

of 91 possible files, as gathered in Chapter 7. In order to randomize these subsets, the author wrote a small

script, as can be seen in Figure 6.9. This same script has been used to randomly select twenty example files for

individual testing.
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Chapter 7

Experiments

Three different experiments will be performed in order to study the effect the example set size has on

the effectiveness of the AFL fuzzer. First, we performed a series of fuzzer runs on different vulnerabilities,

deliberately inserted by use of the vulnerability insertion framework described in previous chapters. Each

vulnerability was fuzzed three times with example sets of different sizes. The different set sizes are: one PNG

file, ten PNG files and one hundred PNG files. In order to create a significant distinction between groups, a

factor 10 difference in size was chosen. Only three groups were considered, to represent a small, a medium and

a large example set. The largest set is a strict super set of both the medium and small sets, and the medium set

is a strict super set of the small set. We attempted to supply diversity in the medium and large example sets

by employing files of different sizes, and files that utilize different features of the PNG standard. Secondly, we

created twenty new vulnerabilities on which we each fuzzed with an example set size of 10 and once with a set

size of one. In contrast to the first experiment, the sets we used were not fixed. Every vulnerability was fuzzed

with a randomized set of example files pooled from the original set of the first experiment. This experiment

was performed to see if the content of the example files would have an influence on the results of the fuzzing

run. Finally, we repeated the first five successful fuzzing runs from Experiment 1, but this time we disabled

the Cyclic Redundancy Check (CRC) contained in our subject under test. This experiment is carried out to

study the influence of CRC on the results of the fuzzing runs.

The experiments will be performed on Digital Ocean droplets in their AMS3 data center. Each Virtual Machine

has access to three virtual CPUs and one gigabyte of RAM. CPU specifications are ‘Intel(R) Xeon(R) Gold 6140

CPU @ 2.30GHz’. After installing the LLVM vulnerability insertion framework we worked on, a shell script

will be started manually. This script will start the compilation of libpng with a provided seed. When finished

it will start three parallel instances of the AFL fuzzer as explained in Section 6.9. The fuzzers are automatically

stopped after fuzzing for 10 wall-clock hours and their results are saved.
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Figure 7.1: The different file sizes present in the example sets

7.1 Example Set Gathering and Diversity

In order to show the impact of the size of an example set on the fuzzing process, we needed to assemble test

sets of different sizes. We employed an online search engine’s filter ability to search for PNG files only. In

order to introduce diversity into the different sets of example files, different PNG features were considered

when gathering the files. We tried to gather PNG files of different size (resolution as well as file size), with or

without transparency, with or without gamma correction, and with or without text. These are also features that

correspond to some of the 18 different chunk types of the PNG standard such as tRNS, gAMA and iTXt [ABB].

The exact image resolution of the used files, along with an indication of their spread over the different example

sets is provided in Appendix A. The different file sizes of the PNG files and their distribution over the three

initial example sets of the first experiment is shown graphically in Figure 7.1. The presence or absence of

textual, gamma and transparency chunks in the different PNG files within the example sets of experiment 1 is

shown graphically in Figure 7.2, which gives an indication of the diversity of features within the example sets.

These figures were created after the experiments, hence they count 91 files instead of 100, as is explained in

Section 7.3.

In the second experiment, the example files used in each fuzzing run are a random subset of the large set of 91

files. These sets were generated as described in Section 6.10.
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Figure 7.2: The number of PNG files that include a gAMA,tEXt,zTXt,iTXt or tRNS chunk within the example sets. The
number shown in the graph indicates the number of files that do not have the specified feature.

7.2 Analysis approach

During each run, AFL keeps track of statistics. Most specifically, the number of crashes and the number of

paths found are recorded. These two metrics can be gathered immediately after the fuzzer has been stopped.

Afterwards, we employed ‘afl-cov’ (see Section 6.8) to gather specifics on line coverage, and whether the line

containing the vulnerability has been executed or not. In order to assess the effectiveness of a fuzzing run,

consideration of the line coverage percentage is of more importance than the number of paths covered. A

larger number of paths found does not necessarily imply that a larger part of the program has been executed,

whereas the line coverage percentage represents the actual share of the program that has been covered. The use

of ‘afl-cov’ also enabled us to investigate the specific locations where the vulnerabilities were injected. From

this investigation, the number of times the fuzzer executed the line containing the vulnerability is recorded

(number of hits). The absolute number of hits is unimportant in most cases. It is more important to know if

the line has been executed at all. Furthermore, a hit does not imply that the vulnerability has been found.

If the injection always leads to a crash a hit will have triggered it, whereas for instance vulnerabilities that

merely leak memory will need a more sophisticated setup to be found. In case of a memory leak, running the

subject under test within ‘Valgrind’ [Val] would be a good way to actually find the vulnerability. Though the

line coverage percentage may be more important than the number of paths explored, we still look into both

metrics. Combining them gives a broader view on the performance of the fuzzer and since the number of

paths found can directly be taken from AFL’s output, these could quite easily be analysed. The line coverage

serves both as a check to see if the conclusions drawn from the path coverage are valid and as a more precise

23



0

2

4

6

8

10

12

14

30
1-

32
5

32
6-

35
0

35
1-

37
5

37
6-

40
0

40
1-

42
5

42
6-

45
0

45
1-

47
5

47
6-

50
0

50
1-

52
5

52
6-

55
0

55
1-

57
5

57
6-

60
0

60
1-

62
5

62
6-

65
0

65
1-

67
5

67
6-

70
0

70
1-

72
5

72
6-

75
0

75
1-

77
5

77
6-

80
0

80
1-

82
5

82
6-

85
0

85
1-

87
5

87
6-

90
0

90
1-

92
5

91  files 10 files 1 file

N
um

be
r o

f r
un

s

Number of paths

Figure 7.3: The number of runs that resulted in a number of paths grouped by the different test file sets

analysis of the performance of the fuzzer.

7.3 Run time problems

When the first three machines were ready to start the first fuzzer run, the machine with the largest example

set could not start fuzzing because AFL claimed that the target program took too long (+100 ms) to process a

given example file. Removing nine of the one hundred example files within the largest set seemed to resolve

this problem. This led to a large example set of 91 files, with which we continued for the subsequent fuzzer

runs.

7.4 Results

In the first experiment 26 fuzzing runs on different vulnerabilities have been performed on three example sets

with different sizes. In a second set of runs, it was investigated whether the example set composition affected

the outcome of the number of paths found. Finally, a third experiment was conducted, in which we optimized

the conditions of the fuzzing runs.

7.4.1 Effect of example set size

The 26 binaries with different vulnerabilities that we created were each fuzzed for 10 wall-clock hours with

the three different sets of example files. First we will discuss the results of the path coverage for these runs,
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followed by the line coverage analysis. The number of paths found in each fuzzing experiment are collected in

Appendix B, Table B.1. The vulnerabilities inserted in runs 3 and 7 were too disruptive in the process and

triggered a crash for every one of the example files. The result was that AFL did not process these target

programs, and we were forced to start the next fuzzer run with another vulnerability. The different number of

paths found for the remaining fuzzer runs is also depicted in Figure 7.3. This figure clearly shows that the

three sets do not overlap in the number of paths found.

To determine the significance of the difference in the number of paths found for the different example sets,

we conducted a one-way Analysis of Variance (ANOVA). We gathered 24 data points for all three groups

of example files, leading to a total of 72 data points considered in the ANOVA. The test shows a significant

difference between the groups for the average number of paths discovered (F = 2191.5, p =< .00001). In order

to check what groups showed a significant difference, an Ad-Hoc Least Significant Difference (LSD) test was

performed. The LSD test shows that the average number of paths found for each group differs significantly.

The group with 91 files has a higher average number of paths found than the group with 10 files, and the

group with 10 files has a higher average number of paths found than the group with 1 file.

As described in Section 7.2, line coverage percentage is the more significant metric to consider. The line

coverage percentages for the first experiment are shown in Appendix B, Table B.3. The example set of size

one shows line coverage between 15.9% and 17.6% with an average of 16.1% and a standard deviation of 0.3

percentage point. The example set of ten files shows line coverages between 27.8% and 28.1% with an average

of 28.0% and a standard deviation of 0.1 percentage point and the example set of 91 files shows line coverages

between 29.7% and 30.0% with an average of 29.8% and a standard deviation of 0.1 percentage point. Another

Analysis of Variance (ANOVA) has shown that the difference in the numbers of these groups are significant

(F = 32401.5, p =< .00001).

For each fuzzing run the number of times the line containing the vulnerability was executed is tabulated in

Appendix B, Table B.2. As can be seen from this table, only seven of the injected vulnerabilities have been hit by

AFL: runs number 2, 6, 14, 15, 20, 22, 23. The set containing only one example file reached significantly fewer

of the injected vulnerabilities. These results show that it might not be sufficient to only provide the fuzzer

with one example file. However, only one example file has been used; the use of another file with different

features can lead to totally different results. By using only one example file in this experiment, we actually

tested the quality of that specific file as an example input. In Section 7.4.2 the use of different input files is

discussed further. In our experiments, the example set sizes of 91 and 10 both hit the same vulnerabilities.

The results described in this section show that the number of example files has an effect on both the number

of paths the AFL fuzzer discovers and the line coverage percentage. Specifically, our results show that a larger

example file set leads to an increase in both the number of paths found and line coverage percentage. The

different nature of path coverage and line coverage explains the larger growth in the number of paths found

relative to the growth in line coverage percentage. Additional path coverage does not have to cause new lines

of source code being covered. However, the growth in these metrics from the example set of size 10 to size 91

is rather small. Only seven of the fuzzer runs actually hit the line containing the inserted vulnerability.
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Figure 7.4: The number of runs that resulted in a number of paths grouped by the different test file sets.
Please be aware that every run contained a different set of test files

The possible causes of the fact that certain vulnerabilities are not reached at all, as well as the possible reasons

AFL did not mark the reached vulnerabilities as crashes is discussed in Section 7.5.

7.4.2 Effect of set composition

The results from the first experiment have been gathered using specific sets of 91, 10 and 1 example files. In

order to investigate whether the results are biased due to the selection of files, forty additional fuzzing runs

were performed using sets comprising of 1 or 10 example files that were randomly selected from the super set

of 91 example files (see Section 6.10). Inadvertently, the runs in this second experiment were run against a

different set of vulnerabilities when compared to the first set of fuzzing runs. This means that two parameters

are changed with respect to the first experiment. The results of these runs can be found in Appendix C, Table

C.1. These numbers are visualized in Figure 7.4.

With the original set of 1 example file – the results described in the previous section – the number of paths

found ranges between 308 and 420 with an average of 365. Using twenty different single example files, these

numbers range from 194 to 595 with an average of 335 paths found. Similarly, for the original set of 10

example files, the number of paths found ranges between 672 and 751 with an average of 700. Using the twenty

randomly generated sets of 10 example files, these numbers range from 477 to 806, with an average of 641.

The ranges of the numbers of paths found in these runs are visualized in Figures 7.3 and 7.4. These numbers

suggest that the characteristics of files themselves indeed influence the number of paths the fuzzer can find.

The line coverage percentages of these runs are shown graphically in Figure 7.5. This figure clearly shows the

great inconsistency between example file sets with the same size, suggesting that the contents of these files
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Figure 7.5: Average line coverage percentages and their standard deviations, of experiments one and two

matter more than their numbers.

The line coverage percentages for this second experiment are shown in Appendix C, Table C.3. The example set

of size one shows line coverage between 14.1% and 20.5% with an average of 17.0% and a standard deviation

of 2.4 percentage point. The example set of ten files shows line coverages between 22.0% and 28.6% with an

average of 25.0% and a standard deviation of 2.5 percentage point. Another Analysis of Variance (ANOVA)

has shown that the difference in the numbers of these groups are significant (F = 106.8, p =< .00001).

For each fuzzing run the number of times the line containing the vulnerability was executed is tabulated in

Appendix C, Table C.2. As can be seen from this table, only five of the injected vulnerabilities have been hit by

AFL: runs number 3, 8, 9, 18, 19. The set containing only one example file reached significantly fewer of the

injected vulnerabilities.

The results described in this section show that the composition of the example file set indeed influences the

effectiveness of the fuzzer. Clearly, a larger deviation of the line coverage percentages can be observed with

different compositions of example sets.

7.4.3 Disabling the CRC

A Cyclic Redundancy Check (CRC) is a technique commonly used to assure the consistency of data in e.g.

binary data files and digital network transmissions. The PNG standard includes this CRC to make sure that the
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data saved in a PNG file has not been corrupted. A fuzzer creates fuzz by modifying, inserting, or removing

data from an example file. Since a fuzzer is not aware of the presence of a CRC, the generated file will most

likely seem corrupted. In the experiments described above, we fuzzed the pngtest program without removing

this CRC functionality. This probably influenced the effectiveness of the fuzzer, and thereby the results of

our experiments, because pngtest discards a PNG file that does not pass the CRC, whereas a valid PNG is

processed with a wide range of library functions. The CRC could be an explanation for the low number of

vulnerabilities that have been hit in the experiments described in previous sections. By removing the CRC, the

files generated by the fuzzer will not be intercepted by the CRC upfront, meaning that a larger share of the

generated files is run through the entirety of the test program, likely increasing code coverage and number of

vulnerabilities that are hit.

In order to validate the results described in the previous section, the first five successful experiments on the

three example sets with different sizes were repeated with the CRC disabled. The results are provided in

Appendix D, tables D.1, D.2 and D.3.

Comparing the results of the runs with and without the CRC enabled, a number of differences can be observed.

For one, the number of paths found increased significantly for all three set sizes. The line coverage also

increased for all sets, with five to six percentage points. Most notably, without the CRC, runs four and five

show that the fuzzer has passed the line containing the vulnerability, where this did not happen when the CRC

was still active. Be aware that a firm conclusion cannot be drawn, since the limited number of five experiments

might bias the outcome.

7.5 Discussion

The aim of the research described in this thesis was to find out whether the example set size would have an

influence on the effectiveness of the AFL fuzzer. We measured the fuzzer’s effectiveness by its ability to find

the vulnerability and by its line and path coverage. From the results described in Section 7.4 some general

observations can be described. The inserted vulnerability does not have an influence on the line and path

coverage reached by AFL, because the vulnerability does not play a role in the execution path a certain input

takes within the target program.

From the results of Section 7.4, it is apparent that many of the injected vulnerabilities were not reached for any

of the given example sets, irrespective of the presence of CRC. This can be due to the fact that the injected

function was not used by our target program. This could technically happen, since we injected a library

(libpng) with a vulnerability, and if our target program (pngtest) happens to not use a function in this library,

that function would never be reached in our fuzzing runs. A second (more likely) reason could be that the

fuzzer has never generated the input that would lead the execution path to pass the injected vulnerability.

For two of the three experiments, the reason our vulnerability was not hit could also be due to the CRC

intercepting the generated fuzz before critical parts of the library would be executed.

According to the line coverage reports, some vulnerabilities were in fact reached by the fuzzer. However, with
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while ( i i n < PNG MAX ERROR TEXT−1 && error message [ i i n ] != ’ \0 ’ )
b u f f e r [ i o u t ++] = error message [ i i n ++] ;

/∗ i i n < PNG MAX ERROR TEXT, so t h e f o l l o w i n g i s s a f e : ∗ /
b u f f e r [ i o u t ] = ’ \0 ’ ;

Figure 7.6: libpng, pngerror.c: png format buffer()

none of the runs the fuzzer encountered a crash of the target program, which could be due to two reasons. For

one, not all types of vulnerabilities cause the program to crash. A memory leak – caused by any of the alloca

injections from Section 7.4 – could simply result in some undefined behavior without a segmentation fault.

In order to catch these types of bugs, we could have fuzzed our target program within e.g. Valgrind, which

returns a positive exit status when it encounters a memory leak, causing the fuzzer to mark the execution

as failed. A second reason that the fuzzer did not mark the injected change in the program can be because

the alteration we made did not create an actual vulnerability. Two of the fuzzer runs in Section 7.4 reached

vulnerabilities that were not of the alloca type. When we looked into these injected vulnerabilities, we noticed

that one was actually impossible to trigger (Table D.2, run #4 – strncpy) and the other highly unlikely to

be triggered (Table C.2, run #3 – offbyn:loop). This is due to the nature of the vulnerabilities injected in

these runs. The strncpy injection swaps the usage of the strncpy function call with the strcpy call. In some

cases this might lead to a buffer overflow but in this particular injection the source string was a constant and

thus had a fixed length, which fitted the destination. As described in Section 2.2, the offbyn:loop injection

increases the loop guard with one. In this particular case, this is still highly unlikely to trigger undefined

behavior. Looking at the code in Figure 7.6, it is apparent that if we were to increase the guard in the first

condition of the while loop, the final write to buffer would be out of bounds. However, the while loop

contains a second condition which most likely causes the loop to break before the guard in the first condition

is reached.

The question remains why some vulnerabilities were not reached by the fuzzer at all. Consider run #4 from

Table B.2. We know this vulnerability can actually be reached, as demonstrated by run #4, Table D.2. Possible

reasons why this vulnerability was not reached in experiment one are described above, although the fact that

the same vulnerability actually was reached in the third experiment suggests that the CRC prevented the

fuzzer from reaching the vulnerability in the first experiment. Runs #9, #13 and #21 fuzzed a version of libpng

whereby a vulnerability was inserted within the png write pCAL method. As none of our example files contain

the pCAL chunk type, it is clear that the fuzzer would not be able to locate this vulnerability in such short

time, although theoretically it would be possible to reach the line containing the vulnerability.

Looking at the results from the second experiment, it is clear that a diverse composition of the example file set

has a larger influence on the line coverage and path coverage than the size of the example file set. Whereas line

coverage for the example file set of size one ranges from 14.1% to 22.2%, the example set containing 10 files

results in a line coverage of 20.2% to 28.6%. This seams to indicate that the quality of the input file is more

important than the number of input files.
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Chapter 8

Conclusion

This thesis aimed to work out the effect the example set size has on the effectiveness of the AFL fuzzer,

specifically whether it would benefit the total path and line coverage as well as its ability to locate an injected

vulnerability. By creating two compiler passes within a framework around the Clang compiler, we were able to

insert vulnerabilities into the existing libpng library. The vulnerable programs could then be used as targets in

several series of fuzzer runs. In the first experiment 26 fuzzing runs were performed using three example sets,

each with a different number of files. These experiments showed an increase in both path coverage and line

coverage with increasing example set sizes. Based on initial results, it appeared that the use of an example

set containing only one file is generally not sufficient to effectively locate the vulnerability. However, we later

showed that the use of different single-file example sets provided different results, meaning that the quality of

the file has a large influence on the effectiveness of the fuzzer.

As these initial experiments were all run with fixed sets of example files, a second set of experiments was

carried out using randomized example sets, as to lower the probability that our previous results were biased by

a specific file. The results from these runs indeed show that the composition of an example file set influences

the effectiveness of a fuzzer; it appears that a diverse composition of the example file set has a larger influence

on the line coverage and path coverage than the size of the example file set. Nevertheless, the example sets

containing 10 files appear to have higher chances of reaching the vulnerability when compared to example

sets containing one file.

Inadvertently, in the first two experiments the CRC was not disabled in our target program, leading to our

results showing an underrepresentation of the fuzzer’s capabilities. Thus, finally, we performed a set of runs –

again, with three example set sizes – in which the CRC in the target program was disabled. This led to higher

code coverage metrics for both line and path coverage. Whereas in the initial experiments, without the CRC

only two of the five vulnerabilities were located, four out of five vulnerabilities were reached in the runs with

CRC disabled.

A larger example set size generally leads to larger path and line coverage, although not linearly with the

number of files: the use of example sets containing 91 or 10 files did not lead to large differences in line and
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path coverage. This appears also the case when the CRC is disabled. Both sets (91 and 10) located the same

vulnerabilities.

Based on the first experiment described in this thesis, it may be concluded that an example set with a limited

set of files may be sufficient to locate vulnerabilities. However experiment 2 shows that the quality of the files

in the example set have a more significant influence on the effectiveness of the fuzzer. Putting the costs of

gathering, and fuzzing with, a large number of example files against the benefits of the higher code coverage

reached by the fuzzer, one could deduce an optimal number of input files provided one takes into consideration

the diversity within the input files.

8.1 Future Work

The research described in this thesis considers the quantity of seed files, whereas other papers investigate the

optimal quality of seed files. The quality of seed files is indeed important, as can be seen from the higher

outliers in the results displayed in Appendix C, table C.1 (e.g. entries 2 and 15). However, also the quantity

of seed files in the example set can be optimized. One should try to find a good balance between the two,

benefitting of both the low effort of inserting many seed files and the fuzzing capabilities of specially-crafted

seed files.

The third experiment in this thesis showed that the original methodology was flawed. Fuzzing a program that

includes a CRC is ineffective when compared to the same fuzzing run without this check. Future research

should take care to disable CRC in their target program before fuzzing. Additionally, in order to register

memory leaks within the fuzzing process, one could consider running the target program within Valgrind,

although this might slow down the fuzzing process due to overhead.

The fuzzing runs in this thesis have taken exactly 10 hours each. The impact of this parameter on the results is

not considered in this thesis. If all three sizes of example sets were for example given 100 hours of fuzzing

time, would the average number of paths be closer together, would they be further apart? This question might

be worth investigating in future research.
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18] Rahul Gopinath, Björn Mathis, Mathias Höschele, Alexander Kampmann, and Andreas Zeller.

Sample-free learning of input grammars for comprehensive software fuzzing. arXiv preprint

arXiv:1810.08289, 2018.

[gnu] The gnu compiler collection. https://gcc.gnu.org/. Accessed: 2019-07-07.

[GPS17] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning for input

fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software

Engineering, pages 50–59. IEEE Press, 2017.

[GZQ+
18] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and Zuoning Chen.

Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on Security and Privacy (SP), pages 679–696.

IEEE, 2018.

[Ham] V. den Hamer. Hiding in plain sight: How location affects memory error detectability by fuzzers.

Thesis Bachelor Informatica, Leiden University, 2019.

[HJP+
16] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Herbert Bos, and Erik

Van Der Kouwe. Typesan: Practical type confusion detection. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pages 517–528. ACM, 2016.

[lca] lcamtuf. Technical “whitepaper” for afl-fuzz. http://lcamtuf.coredump.cx/afl/technical_

details.txt. Accessed: 2019-07-07.

[lib] libpng. libpng, the official png reference library. http://www.libpng.org/pub/png/libpng.html.

Accessed: 2019-06-25.

[llva] The llvm compiler infrastructure. http://llvm.org/. Accessed: 2019-07-07.

32



[llvb] The often misunderstood gep instruction. https://www.llvm.org/docs/GetElementPtr.html#

introduction. Accessed: 2019-07-11.

[llvc] Writing an llvm pass. https://www.llvm.org/docs/WritingAnLLVMPass.html. Accessed: 2019-

07-11.

[Lop] American Fuzzy Lop. Afl bug-o-rama trophy case. http://lcamtuf.coredump.cx/afl/#bugs.

Accessed: 2019-05-25.

[Mil] Prof. Barton Miller. How the term ’fuzz’ was coined. http://pages.cs.wisc.edu/~bart/fuzz/

Foreword1.html. Accessed: 2019-05-25.

[mra] mrash. afl-cov - afl fuzzing code coverage. https://github.com/mrash/afl-cov. Accessed:

2019-09-08.

[QEM] QEMU. Qemu, the fast processor emulator. http://qemu.org/. Accessed: 2019-05-25.

[Rij] V. van Rijn. Quantifying fuzzer performance on spatial and temporal memory errors. Thesis

Bachelor Informatica, Leiden University, 2018.

[SPWS14] Laszlo Szekeres, Mathias Payer, Lenx Tao Wei, and R Sekar. Eternal war in memory. IEEE Security

& Privacy, 12(3):45–53, 2014.

[SZ18] Maksim O. Shudrak and Vyacheslav Zolotarev. Improving fuzzing using software complexity

metrics. CoRR, abs/1807.01838, 2018.

[Val] Valgrind. Valgrind - system for debugging and profiling linux programs. http://valgrind.org/.

Accessed: 2019-09-14.

[VDKNG17] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuffrida. Dangsan: Scalable use-after-free

detection. In Proceedings of the Twelfth European Conference on Computer Systems, pages 405–419.

ACM, 2017.

[Whe14] David A Wheeler. Preventing heartbleed. IEEE Computer, 47(8):80–83, 2014.

33



Appendix A

Resolutions of Used PNG Files

Table A.1: The resolutions for every image in the test sets.

File nr. Resolution File nr. Resolution File nr. Resolution
1 105x105 32 512x512 62 917x612

2 194x260 33 550x580 63 924x720

3 200x200 34 563x329 64 960x371

4 218x231 35 586x300 65 960x380

5 220x220 36 596x411 66 960x422

6 245x205 37 600x320 67 960x480

7 250x250 38 600x700 68 992x992

8 255x221 39 613x399 69 1000x350

9 256x256 40 619x420 70 1024x576

10 256x256 41 620x221 71 1024x768

11 259x195 42 625x420 72 1024x1193

12 260x600 43 638x359 73 1024x1240

13 266x279 44 640x360 74 1026x913

14 299x600 45 640x480 75 1142x704

15 300x210 46 678x600 76 1191x460

16 300x300 47 725x457 77 1200x800

17 300x300 48 727x436 78 1240x1600

18 302x128 49 728x380 79 1280x820

19 302x512 50 730x779 80 1359x1379

20 325x359 51 750x1112 81 1452x900

21 380x500 52 768x430 82 1479x783

22 400x215 53 799x531 83 1493x1046

23 400x360 54 800x565 84 1500x1500

24 400x387 55 800x798 85 1587x907

25 439x294 56 811x340 86 1600x980

26 475x594 57 816x980 87 1920x1080

27 480x480 58 900x648 88 1920x1080

28 499x355 59 900x675 89 1920x1080

29 500x375 60 900x900 90 1955x600

30 512x387 61 902x569 91 2400x3100

31 512x480

• included in 1 & 10 files set

• included in 10 files set
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Appendix B

Effect of example set size

Table B.1: The number of different paths found for the given example set sizes per iteration

# Vulnerability type Injected Function Paths 91 Paths 10 Paths 1
1 allocation:alloca png do unshift 856 729 341

2 allocation:alloca png handle pHYs 813 718 383

3 offbyn:loop png write info
4 unsafec:strncpy test one file 878 704 338

5 allocation:alloca png write sPLT 840 696 308

6 allocation:alloca png chunk unknown handling 851 688 339

7 allocation:alloca png write IHDR
8 offbyn:loop png init read transformations 840 680 342

9 offbyn:loop png write pCAL 833 698 400

10 offbyn:loop png set hIST 791 709 410

11 allocation:alloca png do shift 825 721 366

12 offbyn:loop png init palette transformations 852 692 366

13 allocation:alloca png write pCAL 841 700 356

14 allocation:alloca png formatted warning 831 686 364

15 allocation:alloca png write bKGD 822 702 373

16 offbyn:loop png destroy gamma table 924 688 379

17 offbyn:loop png destroy gamma table 858 699 352

18 offbyn:loop png destroy gamma table 851 700 308

19 allocation:alloca png handle oFFs 846 751 373

20 allocation:alloca png handle tIME 847 694 389

21 allocation:alloca png write pCAL 877 688 360

22 allocation:alloca write sTER chunk 842 679 379

23 allocation:alloca png read IDAT data 872 708 364

24 offbyn:loop png write info 879 672 340

25 allocation:alloca png user version check 876 732 420

26 allocation:alloca png do shift 901 675 410
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Table B.2: The number of times the line containing the vulnerability is executed for the given example set sizes per iteration

# Vulnerability type Injected function Hits 91 Hits 10 Hits 1
1 allocation:alloca png do unshift 0 0 0

2 allocation:alloca png handle pHYs 620 249 0

3 offbyn:loop png write info
4 unsafec:strncpy test one file 0 0 0

5 allocation:alloca png write sPLT 0 0 0

6 allocation:alloca png chunk unknown handling 7240 11076 9328

7 allocation:alloca png write IHDR
8 offbyn:loop png init read transformations 0 0 0

9 offbyn:loop png write pCAL 0 0 0

10 offbyn:loop png set hIST 0 0 0

11 allocation:alloca png do shift 0 0 0

12 offbyn:loop png init palette transformations 0 0 0

13 allocation:alloca png write pCAL 0 0 0

14 allocation:alloca png formatted warning 44 62 0

15 allocation:alloca png write bKGD 224 226 0

16 offbyn:loop png destroy gamma table 0 0 0

17 offbyn:loop png destroy gamma table 0 0 0

18 offbyn:loop png destroy gamma table 0 0 0

19 allocation:alloca png handle oFFs 0 0 0

20 allocation:alloca png handle tIME 159 215 0

21 allocation:alloca png write pCAL 0 0 0

22 allocation:alloca write sTER chunk 3 6 4

23 allocation:alloca png read IDAT data 342724 141670 41203

24 offbyn:loop png write info 0 0 0

25 allocation:alloca png user version check 0 0 0

26 allocation:alloca png do shift 0 0 0

Table B.3: The percentage of lines covered for the given example set sizes per iteration

# Vulnerability type Injected function L.cov % 91 L.cov % 10 L.cov % 1
1 allocation:alloca png do unshift 29.9 28.1 17.6
2 allocation:alloca png handle pHYs 29.7 28.1 16.1
3 offbyn:loop png write info
4 unsafec:strncpy test one file 29.8 28.1 16.1
5 allocation:alloca png write sPLT 29.7 28.0 15.9
6 allocation:alloca png chunk unknown handling 29.8 28.1 16.0
7 allocation:alloca png write IHDR
8 offbyn:loop png init read transformations 29.9 28.0 16.2
9 offbyn:loop png write pCAL 29.8 27.8 16.0
10 offbyn:loop png set hIST 29.8 28.0 16.1
11 allocation:alloca png do shift 29.7 28.1 16.2
12 offbyn:loop png init palette transformations 29.8 27.9 16.0
13 allocation:alloca png write pCAL 29.9 28.1 16.0
14 allocation:alloca png formatted warning 29.8 28.1 16.0
15 allocation:alloca png write bKGD 29.7 28.1 16.0
16 offbyn:loop png destroy gamma table 29.9 28.1 16.1
17 offbyn:loop png destroy gamma table 29.8 28.0 15.9
18 offbyn:loop png destroy gamma table 29.8 28.0 16.1
19 allocation:alloca png handle oFFs 29.8 28.2 16.1
20 allocation:alloca png handle tIME 29.9 27.9 16.3
21 allocation:alloca png write pCAL 29.9 28.1 16.1
22 allocation:alloca write sTER chunk 29.8 28.0 16.1
23 allocation:alloca png read IDAT data 30.0 28.0 16.0
24 offbyn:loop png write info 29.9 28.1 16.1
25 allocation:alloca png user version check 29.9 28.0 16.1
26 allocation:alloca png do shift 29.9 28.1 16.4
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Appendix C

Effect of set composition

Table C.1: The number of different paths found for randomized subsets of example input

# Vulnerability type Injected function Paths 10 Paths 1
301 offbyn:loop png do unshift 530 217

302 offbyn:loop png set pCAL 803 595

303 offbyn:loop png format buffer 709 394

304 allocation:alloca png write hIST 561 315

305 offbyn:loop png build 8bit table 806 375

306 offbyn:loop png set eXIf 1 677 326

307 allocation:alloca png handle tRNS 707 301

308 allocation:alloca write vpAg chunk 629 313

309 allocation:alloca png write pHYs 712 348

310 allocation:alloca png handle hIST 569 203

401 offbyn:loop png do unshift 523 332

402 offbyn:loop png set pCAL 560 459

403 offbyn:strncopy test one file 722 370

404 allocation:alloca png write hIST 529 234

405 offbyn:loop png build 8bit table 784 507

406 allocation:alloca png handle iCCP 639 194

407 allocation:alloca png handle tRNS 677 298

408 allocation:alloca write vpAg chunk 551 392

409 allocation:alloca png write pHYs 477 220

410 allocation:alloca png handle hIST 665 306
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Table C.2: The number of times the vulnerability was reached for randomized subsets of example input

# Vulnerability type Injected function Hits 10 Hits 1
301 offbyn:loop png do unshift 0 0

302 offbyn:loop png set pCAL 0 0

303 offbyn:loop png format buffer 6653 8031

304 allocation:alloca png write hIST 0 0

305 offbyn:loop png build 8bit table 0 0

306 offbyn:loop png set eXIf 1 0 0

307 allocation:alloca png handle tRNS 0 0

308 allocation:alloca write vpAg chunk 24 0

309 allocation:alloca png write pHYs 388 0

310 allocation:alloca png handle hIST 0 0

401 offbyn:loop png do unshift 0 0

402 offbyn:loop png set pCAL 0 0

403 offbyn:strncopy test one file 0 0

404 allocation:alloca png write hIST 0 0

405 offbyn:loop png build 8bit table 0 0

406 allocation:alloca png handle iCCP 0 0

407 allocation:alloca png handle tRNS 0 0

408 allocation:alloca write vpAg chunk 26 4

409 allocation:alloca png write pHYs 55 0

410 allocation:alloca png handle hIST 0 0

Table C.3: The line coverage percentages found for randomized subsets of example input

# Vulnerability type Injected function L.cov % 10 L.cov % 1
301 offbyn:loop png do unshift 22.0 15.0
302 offbyn:loop png set pCAL 28.6 22.2
303 offbyn:loop png format buffer 25.3 19.2
304 allocation:alloca png write hIST 20.6 15.1
305 offbyn:loop png build 8bit table 27.8 19.2
306 offbyn:loop png set eXIf 1 23.8 15.1
307 allocation:alloca png handle tRNS 27.2 14.2
308 allocation:alloca write vpAg chunk 27.9 18.8
309 allocation:alloca png write pHYs 28.1 15.3
310 allocation:alloca png handle hIST 25.1 15.1
401 offbyn:loop png do unshift 23.3 17.4
402 offbyn:loop png set pCAL 23.0 20.5
403 offbyn:strncopy test one file 26.2 17.5
404 allocation:alloca png write hIST 22.0 14.9
405 offbyn:loop png build 8bit table 26.2 20.5
406 allocation:alloca png handle iCCP 24.1 14.1
407 allocation:alloca png handle tRNS 26.4 14.8
408 allocation:alloca write vpAg chunk 25.8 17.6
409 allocation:alloca png write pHYs 20.2 16.0
410 allocation:alloca png handle hIST 26.3 16.6
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Appendix D

CRC-less fuzzing runs

Table D.1: The number of different paths found for the given example set sizes per iteration

# Vulnerability type Injected function Paths 91 Paths 10 Paths 1
1 allocation:alloca png do unshift 1738 1890 1004

2 allocation:alloca png handle pHYs 1723 1928 954

3 offbyn:loop png write info
4 unsafec:strncpy test one file 1760 1799 890

5 allocation:alloca png write IHDR 1663 1830 933

6 allocation:alloca png chuck unknown handling 1609 1764 941

Table D.2: The number of times the line containing the vulnerability is executed for the given example set sizes per iteration

# Vulnerability type Injected function Hits 91 Hits 10 Hits 1
1 allocation:alloca png do unshift 0 0 0

2 allocation:alloca png handle pHYs 911 317 0

3 offbyn:loop png write info
4 unsafec:strncpy test one file 8 2 0

5 allocation:alloca png write IHDR 0 34 0

6 allocation:alloca png chuck unknown handling 11989 21199 5893

Table D.3: The percentage of lines covered for the given example set sizes per iteration

# Vulnerability type Injected function L.cov % 91 L.cov % 10 L.cov % 1
1 allocation:alloca png do unshift 35.1 35.2 21.1
2 allocation:alloca png handle pHYs 34.9 35.2 20.9
3 offbyn:loop png write info
4 unsafec:strncpy test one file 35.8 35.3 21.0
5 allocation:alloca png write IHDR 35.4 34.7 20.9
6 allocation:alloca png chuck unknown handling 35.3 34.7 21.0
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