
Computer Science & Economics

UML class models as first-class citizen:

Metadata at design-time and run-time

Ralph Driessen

Supervisors:
Dr. G.J. Ramackers (first supervisor) &
Dr. A.W. Laarman (second supervisor)

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 23/08/2020

www.liacs.leidenuniv.nl

Acknowledgements

This research is done as part of a bachelor thesis at LIACS, the computer science institute of Leiden
University, and with great thanks to dr. G.J. Ramackers and dr. A.W. Laarman for supervising
and contributing to the result.

2

Abstract

Developing large-scale software systems requires a well-defined approach to the design of such
complex systems. The Unified Modeling Language (UML), defined by the Object Management
Group standards consortium, provides a standard way of expressing such designs, and is
supported by a large number of commercially available tools. These tools allow for the visual
expression of models at design-time, and subsequent generation of skeleton code that is then
fully implemented, compiled and deployed to provide applications . While such a Model Driven
Architecture (MDA) approach shortens development time in the design phase of a project,
it can actually slow maintenance tasks, such as implementing new feature requests, which
are performed when the system is operational. To implement feature requests, the design
and implementation phases have to be re-entered and executed in full. This is a costly and
time-consuming process, requiring expert developers.

In order to address these issues, we propose to augment the classic MDA approach by using
UML models not just as design-time artifacts, but by also deploying them as run-time artifacts
alongside the application. By structuring applications in such a way that the UML model
functions as metadata that is reflected upon at run-time by a “model interpreter” component,
the functionality of the application can be rapidly evolved by directly modifying the model
metadata in the system whilst it is running. The feasibility of this approach is demonstrated in
a prototype implementation that focuses on UML Class models as an example of metadata that
defines the structural aspects of a system. This implementation allows the user to define UML
class models at design-time, and additionally enables editing of that metadata at run-time by
the developer or user (by means of the same editing screens being accessible). Due to model
interpretation in the run-time environment developed to support the deployed models, the
application immediately changes functionality in terms of showing the new fields and links. In
order to facilitate this, the UML Class model has been extended with the concepts of “domain
model” and ”application model”. In addition, a limited dynamic aspect has been added to
the meta data in the form of “model scripting”: the user can add snippets of Python code
to methods which are stored in the model, and executed at run-time. This thesis discusses
lessons learned, and outlines future work in extending the set of UML models deployed to
have more dynamic aspects, such as state machines, and activities, which would require a
more comprehensive run-time model execution engine.

3

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem statement . 1
1.3 Approach . 2
1.4 Result . 4
1.5 Overview . 5

2 Background 6
2.1 OMG UML . 6
2.2 Model Driven Architecture . 7
2.3 Class model metadata . 7
2.4 First-class citizen . 9
2.5 Use cases . 9

2.5.1 Large Scale Enterprise Systems . 9
2.5.2 Rapid prototyping and application development 10
2.5.3 Model validation . 10

3 Related Work 11
3.1 Metadata mapping . 11
3.2 Current markets . 11

3.2.1 Market leaders . 11
3.2.2 Trends . 13

4 Metadata at design-time and run-time 14
4.1 Metadata definition . 14

4.1.1 UML extension concepts . 15
4.2 Dynamic aspects . 16

4.2.1 Adding custom code for real life applications 17

5 Prototype implementation 18
5.1 Web implementation framework . 18
5.2 Technical design . 18
5.3 Model execution . 19
5.4 View generation . 20

6 Worked example 22
6.1 Creating classifiers . 22

6.1.1 Adding properties . 23
6.2 Adding relationships . 24
6.3 Adding operations . 25
6.4 Domain model diagram . 26
6.5 Creating applications . 27

6.5.1 Linking classifiers to an application . 27
6.5.2 Linking properties to an application . 28

6.6 Evolution example . 29
6.7 Change handling . 32

7 Future work 33
7.1 Running application . 33

7.1.1 User interface . 33
7.1.2 UML editor . 33
7.1.3 Extended UML specification . 33
7.1.4 Editing existing metadata object properties 34

7.2 Rules . 34
7.3 Custom code . 34
7.4 Multiple domain models . 34

8 Conclusion 35

References 37

1 Introduction

1.1 Context

In order to increase efficiency and functional accuracy in software development, industry often
utilises the Model Driven Architecture (MDA) approach, sometimes also referred to as Model
Driven Development (MDD). MDA makes abstract models of the system-under-development as a
leading artefact in software development, using them to generate (parts of) the source code for the
implementation. Several models can be used to describe the system under development from various
perspectives: UML1 class models describe the structural aspects, UML state machines, activity
models and interactions describe behavioral(dynamic) aspects.

In practice, code generation also requires the availability of metadata2 other than UML models,
such as, configuration files for deployment, BPEL files for worklows, etc. The ultimate vision of
MDD is to make all models and other design-time data, as leading artefacts in the development
process. This means that the source code can be generated from this metadata at any time. This
is a non-trivial exercise, as feature requests and maintenance tasks (e.g., bug resolving) lead to a
continuous evolution of both the codebase and other design-time artifacts.

1.2 Problem statement

Currently, when a business or end user of an application requests a new feature there is a number
of process steps to be completed to implement the feature. The problem here is that these steps are
time consuming and require expert developers to perform them. While the MDA approach shortens
development time in the design phase of the project, it can actually slow maintenance tasks, such
as implementing new feature requests, which are performed when the system is operational. In
most businesses the process of implementing feature requests will mostly will take between a few
weeks and a few months. Often the requirements will have changed in that time or the result is
not what the original business expert or end-user had hoped for. To complete feature requests, the
design phase has to be re-entered and executed in full. The design phase consists of multiple steps
from the ”waterfall model” as illustrated in Figure 1.

1https://www.omg.org/spec/UML
2metadata: ’data about data’

1

Figure 1: UML activity diagram of the current software development flow

1.3 Approach

This thesis proposes to make UML class models first-class citizens by deploying them as metadata
at run-time. Our vision is that the metadata is deployed together with the application and can be
modified to change the behavior of the system while it is running. This creates a different workflow
than the one shown in Figure 1. This new workflow, as illustrated in Figure 2, lacks the aspects
of regenerating the code, compiling and deploying the codebase. In this flow, the metadata is
continuously interpreted during the definition of the model and the annotation of the model to
modify the application at run-time.

Because UML is a widely known language and supported in many existing applications we chose to
focus on UML models, specifically on UML class models as core structural aspects of the UML
specification. To demonstrate that it is indeed possible to update a running system based on
modifications to the UML class model, we implement a prototype system that contains a UML
class model definer and an interpretation environment that performs reflection on the UML class
model using its metadata. This system is used to build a simple example enterprise application.
The prototype application should thus support defining a UML class model and interpreting that
UML class model metadata to generate an enterprise application. To realise this approach we
propose to use a small metamodel to capture the model metadata and to implement a prototype
application that supports the evolution of software through continuous metadata modification and
interpretation. An overview of the main concepts of the UML class metamodel is illustrated in

2

Figure 3.

Figure 2: UML activity diagram of the software development flow with the proposed approach

Figure 3: UML class diagram of the overview of the main concepts of the UML metamodel

3

1.4 Result

We implemented a UML class model definer and run-time metadata interpreter in Python using
the Django framework. This is done by creating a web application that stores the metadata in
a SQLite database. This supports creating a UML class model by creating classifiers, properties,
operations and relationships. It also supports creating applications that are able to use the defined
classifiers and perform CRUD (Create, Read, Update, Delete) operations on those objects. At
run-time it is possible to edit the UML class model by adding new classifiers, properties, operations
or relationships by using the same class model definer (as depicted in Figure 4).

Figure 4: Model definer screenshots

These changes then directly evolve the running applications that make use of the classifiers that
were affected by the changes. This is possible because the run-time environment contains a model
interpreter. The run-time environment is structured as illustrated in Figure 5. In this illustration
we see that the user can talk to a web application, containing the model definer and the run-time
applications. The model definer saves the metadata in objects when a changes is made. The model
interpreter generates source code for the run-time application under the hood (not visible for the
user). The run-time applications are able interact with the classifiers from the metamodel because
of the work of the model interpreter.

4

Figure 5: Run-time environment of the prototype implementation

1.5 Overview

Chapter 2 provides a background of the system development concepts central to this thesis, and
contains definitions of the terminology. In addition a number of use cases to which this approach is
relevant is described based on the background of these concepts. Chapter 3 describes the previous
work in the field of Model Driven Development and Model Driven Architecture, and how this differs
from the approach outlined in this research. In addition, this chapter describes current development
tools, and their market segments. Chapter 4 contains information on the details of the approach
suggested in this thesis and how a resulting application should work. Chapter 4 also contains the
details of the model used, and how this is translated to be used in the run-time interpretation of
the meta data. Chapter 5 contains information on how the implementation is set up. Chapter 6
illustrates how such an application would look like from a end user’s point of view and demonstrates
how to use it. Chapter 7 contains all aspects that are not completely or totally not implemented in
the created prototype application. This chapter could give guidance to a potential continuance of
research on this topic and provides all of the currently thought of limitations and shortcomings.

5

2 Background

The following concepts are central to the approach presented by this thesis:

• OMG UML

• Model Driven Architecture

• Class model metadata

• First-class citizen

The approach presented in this thesis is build upon these concepts and they thus play an important
role in the definition of this approach.

2.1 OMG UML

The Object Management Group (OMG) created the Unified Modeling Language (UML) to have a
standardized modeling language which can be used to visualize system designs. UML contains a lot
of different definitions for diagrams, such as:

• Class diagram

• Use case diagram

• Activity diagram

We use the UML definition of the class diagram to create our own metamodel that contains parts
of the class diagram definition plus some extensions. Class diagrams are used to define the class
objects a system consists of. It shows the system’s classes, with their attributes and operations as
well as the relations between mutiple classes. A simple example of a class diagram is illustrated in
Figure 6.

Figure 6: UML class diagram example

6

Figure 6 shows that a system has four classes, viz. Person, Order, OrderItem and Product, and also
lists their attributes and relationships. UML class diagrams are orginally Platform Independent
Models, which are models that can be defined without reference to a platform, and therefore without
describing a particular form of technology[9]. However, adding some aspects that are only possible
in certain languages or frameworks can make them in fact platform specific.

2.2 Model Driven Architecture

The above terms are widely used in different ways. As for this research, ’Model Driven Architecture’
is interpreted as defining the architecture of an application by interpreting a model, or in this case
a UML Class Diagram. The MDA is defined and trademarked by OMG[21]. The MDA defined by
OMG is used as a basis in many different researches[20],[10],[13]. The term MDA is entangled with
MDD (Model Driven Development) as the term is mostly used for development based on models,
rather than only using models to define the architecture.

A lot of work within the software development field is done on model driven architecture or
rather on approaches based on the model driven architecture. Especially within business con-
text, the model driven architecture based approaches are very popular. This is because business
concepts can be directly translated to models. This leads to a codebase focused on the specific
business aspects it is created for and thus an application that is an exact fit to the business processes.

The approach we present is also based on the model driven architecture. However, where classic
MDA has no role fore models at run-time. The approach we present augments the classic MDA
approach by using UML models not just as design-time artefacts, but by also deploying them at
run-time artifacts alongside the application. This creates an environment where software can be
rapidly evolved by changing UML class models at run-time.

2.3 Class model metadata

The term metadata is mostly defined as ’data about data’. Metadata is used as the data about a
model, where the model is a model defined according to an extended version of the UML standards.
This model is used to save the metadata of a class diagram model that users can define. The
metamodel used for this approach, as illustrated in Figure 3, is an abstraction of the UML class
diagram specification. When looking back at the example UML class diagram shown in Figure
6, the way that the given model’s metadata is saved is done according to the structure of the
metamodel shown above. The classes Person, Order, OrderItem and Product are saved as Classes
which extend the Classifier class, their properties are saved in Property objects which are linked to
a classifier and their relationships are saved in, in this case, Relationship objects that are linked
to both the classes and contain the information such as multiplicity. An example of the resulting
metadata can be illustrated in many types of data, in Listing 1 is shown how the metadata of the
class model from Figure 6 could be expressed in JSON format.

1 {

2 "classifiers ": [

3 {

4 "id": 1,

7

5 "name": "Person"

6 },

7 {

8 "id": 2,

9 "name": "Order"

10 },

11 {

12 "id": 3,

13 "name": "OrderItem"

14 },

15 {

16 "id": 4,

17 "name": "Product"

18 }

19],

20 "properties ": [

21 {

22 "id": 1,

23 "name": "first_name",

24 "type": "string",

25 "classifier_id ": 1

26 },

27 ...

28 {

29 "id": 4,

30 "name": "order_number",

31 "type": "int",

32 "classifier_id ": 2

33 },

34 ...

35],

36 "relationships ": [

37 {

38 "id": 1,

39 "name": "Person orders Order",

40 "classifier_from_id ": 2,

41 "classifier_to_id ": 1,

42 "multiplicity_from ": "*",

43 "multiplicity_to ": "1"

44 },

45 ...

46]

47 }

Listing 1: ”Metadata example in JSON”

8

2.4 First-class citizen

The concept ’first-class citizen’ could be the most significant concept because it defines the run-time
use of metadata which is the core of the approach we present. The term ’first-class citizen’ is
defined as ’an entity which supports all the operations generally available to other entities’ where
the operations mentioned are:

• Being passed as an argument

• Being returned from a function

• Being modified

• Being assigned to a variable

In the proposed approach the metadata of a model is a first-class citizen. This means that all the
metadata entities have the availability of the above described operations. The first-class citizenship
is not only at design-time but also at run-time. This means that the properties of first-class
citizenship specified above apply at run-time too. The metadata can be changed at run-time
and also be used by the applications that use it. The use of metadata as a first-class citizen is
what makes this approach ’metadata driven’, which simply means that the application is driven
by metadata. An example of an existing metadata driven technology is BPEL(Business Process
Execution Language)[11]. Here the metadata of business processes is used for multiple applicational
activities such as data flow and manipulation. These metadata driven approaches are also a great
factor in No Code Platforms(further mentioned in 3.2). These platforms also use metadata as a
way to define the workings of an application. The difference with the approach presented by this
thesis is that the metadata in other approaches is most oftenly not deployed at run-time and is not
a subset of the widely known modeling language UML.

2.5 Use cases

A development approach based on the described concepts above will be an environment that allows
for rapid software evolution. This creates the possibility for this approach to be used in several
ways. The most important use cases are discussed in this chapter.

2.5.1 Large Scale Enterprise Systems

When this approach would be expanded to full on implement the UML specification, it can be used
for Large Scale Enterprise Systems. Most systems like this are primarily used for things as order
handling or other, quite simplistic, operations. The benefit of this setup in contrast to a extremely
complex system as SAP, is that because every change in the models are handled runtime, the
agility is much higher. Every small change can be done within minutes without having to dive into
the source code. Even very specific operations can be implemented by adding a custom operation
to a class. The disadvantage of this system would be that it is very generic and is not designed
specifically for a company. However, because the system is based on the models the user provides,
the base architecture would be an exact fit to the wishes of the user.

9

2.5.2 Rapid prototyping and application development

Rapid prototyping via web based systems provide a better availability for rapid prototyping tools[16].
This approach provides a service to rapidly create (prototype) applications by only creating a UML
models. This could higly reduce the cycle and cost of the standard development flow.

2.5.3 Model validation

One of the most viable possibilities for rapid prototyping would be prototyping a domain model to
get feedback from a customer about the structure. This way the customer is engaged in reviewing
the work in a early stage of the project cycle and it is less likely to get miscommunication issues. If
the customer notices a mistake in the structure it can easily be edited at runtime. This could be a
perfect setup for a live editing session with customers to find all possible mistakes in the domain
model.

10

3 Related Work

3.1 Metadata mapping

In [19], the author proposes a vision for the evolution of MDA. The near term vision is that ”of an
environment in which efficient and nearly seamless interoperability between diverse applications,
tools and databases is achieved through the interchange of shared models”. The use of model
instances to save and use metadata as done in the approach we propose is also what they defined
in their vision of MDA evolution. They also define a structure of how different language should
map to each other.

The difference between this work and our work is that their vision of using objects to save and
distribute model metadata is something we have implemented in our approach. Our work thus
adds the implementation of aspects from their vision for the evolution of MDA. Because this work
already overlaps with our approach, the outcomes of their (future) research can be beneficial to
our work. When their work on mapping metadata from different languages or frameworks, such
XMI(XML Metadata Interchange) and CWM(Common Warehouse Metamodel), is defined, it could
result in the ability for our approach to create more input/output types. For example, they refer to
mapping from XMI to a UML metamodel. When a user wants to define metadata using XMI that
would be possible, because after that it can be mapped to the UML metamodel the rest of the
environment uses. But because that UML metamodel could also be mapped to XMI, the metadata
visualization can be done with XMI if a user prefers that.

3.2 Current markets

An important aspect within enterprise systems and development approaches aimed for enterprise
systems is the existing market and the expectation on how this market will grow. There are a few
markets the solution of this thesis can be applicable to:

• No- or Low Code Platforms

• Packaged application software

• In house development

Because this approach requires less coding than normally it could be seen as a no- or low code
application platform. Of course it can also be packaged and be used within the packaged application
software market. Because it can also be used for prototyping and rapid application development,
this approach can be a great benefactor within in house development.

3.2.1 Market leaders

As for market leaders, only the low code platforms and the packaged application software markets
will be discussed as in house development is of course specific for a company itself. For the low
code application platforms market, Gartner created a magic quadrant showing the market position
of the companies within that market, as shown in Figure 7.
According to Gartner, the leaders within this market are:

11

Figure 7: Magic quadrant low code application platforms market

12

• Salesforce[7]

• Microsoft[5]

• OutSystems[6]

• Mendix[4]

• Appian[1]

All these companies provide a low code application platform. The platforms they provide are
all focused on quickly creating apps to automise processes or improve customer experience. The
development is platform independent and done by modeling rather than actual coding and thus
realises a short time to market.

As for the packaged application software market, the leaders according to gartner are Microsoft,
SAP and Oracle[15]. These companies provide full solutions for enterprise systems. They all created
a large amount of packaged applications that can be used as Enterprise Resource Planning and
Customer Relationship Management and many more.

Microsoft
Microsoft is one of the largest players in both of these markets with their Power platform and
Dynamics 365. The Power platform contains for example Powerapps and Power BI. Just like the
other platforms, Powerapps provides an easy to work with environment where apps can be created
in a short timespan. One of the advantages for Microsoft is that they have a great amount of
integration with their own services such as Azure3. Because microsoft is a leader in both of the
above mentioned markets, they have a unique position where they can provide a company with
every type of software it needs.

3.2.2 Trends

According to [3], the market size of low code application platforms in 2019 is around 10.3 billion
US dollars and has an expected growth rate of 31.1% between the years 2020 and 2030. The largest
drivers for this growth rate are an increasing demand for business digitization and a yearning for
less dependency on IT professionals. According to [2], the market size of packaged application
software was valued at 8.48 billion US dollars in 2017. The expected value in 2023 is 11.69 billion
US dollars, growing at a rate of 5.4%. Because the approach in this thesis can belong to both of
these markets as well as being able to be used with in house development, the market size of this
type of applications can expectedly grow fast within the upcoming years. This is because the same
aspects that drive the growth for the low code application market are used in this approach.

3https://powerapps.microsoft.com/nl-nl/build-powerapps/

13

4 Metadata at design-time and run-time

Based on the problems discussed before, and the missing features in the solutions within the current
markets, a new approach to software development is presented in this thesis. The basis for this new
approach is the structure of the metadata objects at design-time and run-time.

4.1 Metadata definition

The resulting software application will need to contain a front-end as well as a back-end component.
In the front-end component the editing of the UML metadata will be done, where as in the back-end
component the resulting changes will be translated to the correct metadata objects which will be
used to generate the corresponding source code.

The metadata of a UML class model will be saved with an OOP approach, where every aspect of the
diagram such as Classifier, Relationship or Property, has their own corresponding class. As
the metadata of a UML model can get quite complicated and extensive, we will start with a simple
structure and expand it when necessary. The structure of how metadata is saved is illustrated using
a UML class model in Figure 8, which is an expansion of the model illustrated in Figure 3. The
metadata of a UML class model is deployed alongside the application using the structure defined
here and is created as a first-class citizen. This means that at runtime the metadata objects are
still being used in standard operations where other normal entities would too. All changes in these
metadata objects would incur changes in subsequently called actions.

Figure 8: Structure of the metadata

As seen in Figure 8, this structure is not the complete according to the UML specification[18]. This
for instance does not contain all the relationships that exist. Rather this is based on the UML

14

classifier specification and thus expanding is possible. When the UML class model is interpreted by
the application at run-time, the source code for the definition of the classes, that is continuously
generated based on the saved metadata of the UML class model, will look like the code in Listing 2
when implemented in the Django framework:

1 class Person(models.Model):

2 first_name = models.CharField ()

3 last_name = models.CharField ()

4 age = models.IntegerField ()

5

6

7 class Order(models.Model):

8 order_number = models.CharField ()

9 description = models.CharField ()

10 person = models.ForeignKey(Person ,

11 on_delete=models.CASCADE ,

12 related_name=’person ’)

13

14

15 class OrderItem(models.Model):

16 quantity = models.IntegerField ()

17 order = models.ForeignKey(Order ,

18 on_delete=models.CASCADE ,

19 related_name=’order’)

20

21

22 class Product(models.Model):

23 name = models.CharField ()

24 description = models.CharField ()

25 order_item = models.ForeignKey(OrderItem ,

26 on_delete=models.CASCADE ,

27 related_name=’order_item ’)

Listing 2: ”Resulting source code”

4.1.1 UML extension concepts

Even though the UML specification is not completely implemented, an extension to this specification
is actually implemented. In this approach there are two additions to the UML standards:

• Domain model

• Application model

The domain model contains objects that are part of a specific domain. Work based on the existence
of a domain is commonly used in business logic and is the basis of Domain Driven Design[12].
Domain Driven Design is a concept where the structure of an application should match the business
domain it is created for. For example, when an application is created for a Sales domain, the
classes the application consists of might be SalesOrder, Customer, Product, etc. The availability
of mulitple domain models ensures the separation of classes that have no relation whatsoever.
Applications however, are able to pick classes from different domains if the application use case

15

spans over multiple domains.

The application model defines the scope of a specific application. An application model can consist
of multiple domain models and can handpick parts of a specific domain model whenever possible.
The application model is a detailed model where not only different classes can be used, but also
specific properties of a class. However, because multiple applications can share the use of a class, the
definition and logic of a class remains within the domain model. The advantages of an application
model is the ability to customly design what is needed for a specific application. Therefore it is also
possible to select different properties per class; why would you use a property if it is not needed?

4.2 Dynamic aspects

The metadata discussed above focuses on the structural aspects of an application, but all applications
also contain dynamic aspects. These define the internal workings of an application such as operations
and class methods. There are a few possible approaches to defining the dynamics of an application:

• Action language to define operational implementations

• Activity / state machine models to define operations

• Model scripting in implementation language(approach used in this thesis)

First of all, there is the action language defined by OMG[17]. The specification defined by OMG
contains an approach to make models executable. With this approach, it is possible to define
operational implementations. Different UML action languages are created of which all have their
different advantages. To use this implementation, one of these languages should be chosen.

It is also possible to define operations with activity- or state machine models. These models are
also specified in UML and give the ability to define behavior of a class or instance. In classic MDA
there would be a mapping from these models to the generated source code. In our approach we
would need a run-time interpreter for these models too to be able to implement this.

The approach used in this thesis is model scripting in the implementation language. As seen in
the metadata structure in Figure 8, it is possible to define operations. These operations are class
methods and thus can use everything that is available to that class. The operation class has a
textfield property containing the source code of that operation. The code provided has to be in
the implementation language. This approach gives a structured and relatively safe way for adding
dynamics to an application. When for example the __str__ operation is added to the Person class
from Figure 6, to make sure the name of the object will be the first and last name, this will be
added as a class method by simply giving the implementation as shown in Listing 3.

1 return self.first_name + ’ ’ + self.last_name

Listing 3: ”str operation implementation”

16

4.2.1 Adding custom code for real life applications

In real life applications, there is more operational code than class methods. To create a platform
for real life applications an approach to adding custom code should be provided. There are a few
different approaches on inserting custom code into an application. For example by using some kind
of API or simply editing the source code files. With adding custom code there are a some notable
problems:

• Changing source code could break the logic of the existing platform for interpreting the
metadata structure.

• It is also possible when working with objects defined in the metadata that changes in those
objects are not handled well by the existing logic and could break database related logic.

Adding custom code will most likely result in a lot of dirty code which is complex, conflicting, and
after some time nearly impossible to maintain. Working with custom code should be an exception
because of this and it lays a great responsibility on the developer. The platform defined in the
approach this thesis provides is not a platform containing solutions for adding custom code and
thus is not responsible for failures e.g. after adding custom code.

17

5 Prototype implementation

For this project we chose to create a web application. Most web applications use a Model View
Controller architecture[14], where the Model is a database or application model containing the data
of classes, the View is the part a user will see in the front-end such as a GUI, and the Controller is
an object that lets you manipulate the views in some ways. When mapping the MVC architecture
to Python, in particular to the Django framework, the terms used are a bit different. Views in
the Django framework can be seen as the controller in the MVC model and it uses Templates as
MVC’s Views. Thus in the Django framework, the Template will render the front-end part and can
be manipulated by Views.

5.1 Web implementation framework

For this project, the use of a web development framework is very logical because of the need for a
front-end and back-end that can communicate with each other. When choosing a framework to use,
multiple aspects come into play. There are a large amount of possibilities to choose from, differing
per programming language and/or features. For this thesis the following aspects were of influence
in the decision of choosing a framework to use for the prototype implementation:

• Language

• Ease of use

• Documentation

• Run-time interpretation

As the application needs to be able to generate code while running and changing application
behavior at the same time, the code will need to be interpreted at run-time. This will drop a
lot of options as every framework using a compiled language such as C# is not applicable here.
Two languages that were took into consideration were Python and PHP. With PHP there is the
possibility to use the Laravel framework which has an extensive feature set and is well documented.
For Python there are frameworks as Django, Flask, CherryPi and Web2Py.

As Python is the language that is used at LIACS, the decision to use this language was obvious.
This will provide the opportunity for other students to continue to work on this project while also
making it easier to integrate with other projects within LIACS. The framework that will be used is
Django[8]. This decision is mostly based on the enormous userbase which brings a large amount of
information online. Considering that the need to look up how certain aspects can be implemented
would probably be high, a userbase such as this one is useful.

5.2 Technical design

As discussed in section 5.1, the Django framework will be used. This provides the option of defining
multiple applications within a project. In this case we have a model project and a shared project,
where model contains everything for the model definer and interpreter and shared is the application

18

containing the result of the code generation done by the model interpreter. Outside of these applica-
tions, the run-time applications created by adding an Application object are receiving the name
that the user gives them. These created applications only contain specific views for all their classifiers.

The front-end of this application will consist of forms that make it possible to create new applications,
classes, properties, operations and relationships. Because of the way Django works, it is possible to
set up different applications that are able to use the same models from a shared application. This
is how this system will work too. A user can create multiple applications in which he can assign
classes to be used in this application. All classes are defined in a shared application and thus all
have the same database table, no matter in which application they are used. Within every class
that is assigned to an application, the user will be able to select which properties of the class that
specific application should use. Only the selected properties are shown and used in that application.

5.3 Model execution

Interpretation of the metadata will be done based on the info in the metadata objects that are
saved in the database. Adding or changing anything in the UML class diagram will trigger this
generation. The generation will be split into generating the classifiers themselves from the node
and attribute data, and the relations between them based on the link data. The first successful
generation was for generating the code for a new Class with it’s attributes. Where there were three
different attribute types; integer, string and boolean. A part of the code for this is shown in Listing
4.

1 def generate_classifier(self , classifiers , model_file):

2 file_content = model_file.read()

3 if file_content == ’’:

4 model_file.write(’from django.db import models\n\n’)

5 file_content = ’from django.db import models\n\n’

6

7 for classifier in classifiers:

8 if isinstance(classifier , Class):

9 if self.generate_class_declaration(classifier.name) not in

file_content:

10 self.generate_new_class(classifier , model_file)

Listing 4: ”Basic class generation”

The functions this loop uses are defined as in Listing 5.

1 def generate_class_declaration(self , name):

2 return ’\nclass ’ + name + ’(models.Model):\n’

3

4

5 def generate_new_class(self , classifier , model_file):

6 model_file.write(self.generate_class_declaration(classifier.name))

7 for attribute in Attribute.objects.filter(classifier_id=classifier.id ,

updated=True):

8 model_file.write(self.generate_attribute_declaration(attribute.name ,

attribute.type))

9

10

11 def generate_attribute_declaration(self , name , type):

19

12 declaration = ’ ’ + name + ’ = ’

13 if type in Type._value2member_map_:

14 if type == Type.String.value:

15 return declaration + ’models.CharField(max_length =255)\n’

16 elif type == Type.Int.value:

17 if name == ’id’:

18 return declaration + ’models.IntegerField(primary_key=True)\n’

19 else:

20 return declaration + ’models.IntegerField ()\n’

21 elif type == Type.Bool.value:

22 return declaration + ’models.BooleanField ()\n’

23

24 return declaration + ’models.CharField(max_length =255)\n’

Listing 5: ”Basic class generation (2)”

In listings 4 and 5 we can see that for every Node in the database a class definition is generated
after checking if it already exists and for every Attribute in this class an attribute declaration is
appended after the class declaration. This is a simple example and does not contain the complete
source code for the model execution. Aspects that are not showed here are:

• Writing at a certain line instead of appending to the file

• Check if an attribute already exists per class

• Generation of relation declarations

• Generation of operation declarations

The implemented relationship interpretation does not contain every possible relationship within
the UML class model specification, but rather is focused on one relationship type to demonstrate
the approach. Operation are generated as class methods and the implementation given by the user
is added as the class method code.

5.4 View generation

To make an application workable, there still needs to be a front-end where users can work with
the given data. In this project, for every class defined in the metadata, a view is generated for
CRUD(Create Read Update Delete) operations, such that users can work with the given objects.
Whenever a class is created, a view will be generated in de shared application. These views make
use of a set of generic html pages that can:

1. Show a list of all instances of that class

2. Add a new instance of that class

3. Edit an existing instance

4. Select which properties of the class should be used in this application

At first, This does not contain much because there are no properties attached to the class yet. The
source of for example the index function when there are no properties yet is shown in Listing 6:

20

1 def index(request):

2 properties = []

3 objects = Order.objects.all()

4 for object in objects:

5 object.properties = []

6 object.properties.reverse ()

7 context = {’application ’: __get_application(request),

8 ’properties ’: properties ,

9 ’objects ’: objects ,

10 ’object_name ’: ’Order’,

11 ’object_name_lower ’: ’order’}

12 return render(request , ’view_list.html’, context)

Listing 6: ”View index generation)”

For each property created for the class, extra code is generated to be able to handle all the logic
around properties. When a property ’Person’ is added because of adding a relationship between the
Order and Person class, the index view source code will be updated to the code in Listing 7

1 def index(request):

2 properties = []

3 objects = Order.objects.all()

4 for object in objects:

5 object.properties = []

6 object.properties.append ({’name’: ’Person ’, ’type’: ’association ’, ’

value ’: object.person.__str__ })

7 object.properties.reverse ()

8 properties.append ({’name’: ’Person ’})

9 context = {’application ’: __get_application(request),

10 ’properties ’: properties ,

11 ’objects ’: objects ,

12 ’object_name ’: ’Order’,

13 ’object_name_lower ’: ’order’}

14 return render(request , ’view_list.html’, context)

Listing 7: ”View index generation with property)”

Because an application can use a limited amount of properties of classes, the shared view is copied
to the applications views to be able to edit it without changing anything for other applications.
This way it is possible to use different sets of properties of a class between multiple applications.

21

6 Worked example

A prototype application for this development approach is created using Python with the Django
framework. This application generates code based on changes in the application and domain
model(s). At the homepage of this application, displayed in Figure 9, a simple menu is displayed
containing the different parts of the models that are editable.

Figure 9: Application homepage

6.1 Creating classifiers

To begin creating a domain model, one or more classifiers need to be added. This is possible by
opening the ’classifiers’ page and clicking ’Add classifier’. On the next page, fill in a name and the
type of classifier. When this is done the application will generate the corresponding source code for
this classifier. Because the classifier is saved as an object in the database, the ’classifiers’ page now
contains all the created classifiers as shown in Figure 10. To update the database containing the
tables for the domain model, database migrations are created and executed. This happens under
the hood after the source code generation.

22

Figure 10: Classifiers page

6.1.1 Adding properties

To add properties, navigate to the edit page of a classifier. On this page, as shown in Figure 11,
you will see all properties and operations the classifiers has. To add new properties simply fill in
the name of the property and select which type it is.

23

Figure 11: Classifier edit page

6.2 Adding relationships

After the classifiers are created, it is possible to add relationships between them. This can be done by
navigating to the relationships page and clicking on ’Add Relationship’. In the following screen you
choose what type of relationship you want to add. In this example application the only supported
relationship is an association, which can be ’One to Many’ or ’One to One’. To add classifiers,
select the classifiers you want to link and fill in the names and multiplicity of the relationship.
The ’classifier from name’ is what you want to name the relationship within the classifier from
model. For example, in a relationship from ’Order’ to many ’Persons’, the classifier from name
would be ’person’. This name will be added in the ’Order’ model. After adding the relationships,
the relationships page will contain all new additions as shown in Figure 12.

24

Figure 12: Relationships page

6.3 Adding operations

The last aspect of the domain model that is implemented is operations. Operations can be added
to a specific class as class methods. Adding an operation is mostly the same as adding a property.
The difference is with operation parameters. These can be added by editing an operation. For every
operation and operation parameter it is possible to select the basic types as parameter type or
return type. When the __str__ operation is added, the classifier edit page will show it under the
properties as shown in Figure 13.

25

Figure 13: Operation added

6.4 Domain model diagram

With the classifiers and relationships added, the domain model is now set up. By navigating to
’/model/diagram’, a UML class diagram is generated based on the domain model. The diagram
from this example application is shown in Figure 14.

Figure 14: Domain model diagram

26

6.5 Creating applications

Next to the domain model, it is possible to define an application model. This can be done at
the application model section of the homescreen, shown in Figure 15. At the applications page
it is possible to add a new application. After confirming the name of the desired application the
corresponding source code is generated. This contains some settings within the django project and
the base route of the application. Also, to be able to have different views per application seperate
files are created.

Figure 15: Application page

6.5.1 Linking classifiers to an application

Classifiers can be linked to different applications, as seen in Figure 16. To link one or multiple
classifiers to an application, view the concerned relation and add the desired classifier. After the
desired classifiers are linked, all of them will be listed at the application’s view page. By linking
a classifier to an application, an extra view file is created that is used for viewing the classifier’s
data and performing crud operations on the objects. This is all possible after running the created
application.

27

Figure 16: Application link classifiers page

6.5.2 Linking properties to an application

It is also possible to select different properties of a classifier that should be used within an application,
as seen in Figure 17. This is possible at the ’Link properties’ section of a classifier in an application.
This will result in additional code in the view file of the regarding classifier that makes sure that all
the properties selected are used in the crud operations on the objects at run-time. All relationships
are added to the run-time application the same way as linked properties are.

Figure 17: Application link properties page

After all this is done, it is possible to work with the applications. All applications contain a list of
objects for each classifier they are linked with. This is shown in Figure 18.

28

Figure 18: Application page

6.6 Evolution example

An important aspect of the approach presented in this thesis is of course not only the speed in
which the initial design of an application results in a running application, but rather the speed of
evolution after the application’s initial state is running. Figures 19, 20, 21 and 22 illustrate how
adding a few metadata objects at run-time result in changes in the running application. The initial
orders page contains an order showing it’s current properties. At this order the reference to Person
is ’Person object (2)’ because that is the current result of the default __str__ operation. After
adding a new property ’delivery address’ to the Order class and an implementation of the __str__

operation to the Person class, the orders page is updated to use those as shown in Figure 22. Note:
The address in the order object is added to clarify that adding the property actually works at
run-time.

29

Figure 19: Initial Orders list page

Figure 20: Add delivery address property to Order class

Figure 21: Add str operation to Person class

30

Figure 22: Resulting Orders list page

31

6.7 Change handling

Because it should be possible with this implementation to have multiple users working on the
application, the handling of changes should be clearly defined. In this implementation changes
to the UML metamodel can be done at the same time. For example when one user adds a new
property to a class at the same time another user add a different property to that class, the result
is that both properties will be added. However, as no duplicate check is implemented, this also
means that if both users add the same property, the property is added twice which will result in
failure at model interpretation because the database can’t add two columns with the same name.

Updates in the UML class model while run-time applications are already using it result changes
in the run-time applications as well. When for example a new property is added to a class, the
existing objects of that class do not contain data for that property. In this implementation this is
solved by making every field nullable. This simply means that an object will contain a null value
when a new property is added. After the property is added, it can be given a value for an object
when editing the object in one of the run-time applications.

32

7 Future work

7.1 Running application

7.1.1 User interface

The currently created user interface is simplistic and is not customized to the needs of real life
application users. The user interface needs to be extended with at least the basic features of a real
life business application such as filtering, sorting and searching. Also the structure needs some
expansion, currently if there are a lot of classifiers, the navigation tab on the left will get very long
and won’t fit on the screen anymore. Navigation between classifiers should be possible and also
the expansion of an object that is a property of another object. For example, if an Order has a
Customer, clicking on the Customer object should initialize an expansion of all the info of that
customer.

7.1.2 UML editor

Another feature of this approach of software development is to give users different ways to add
or edit the metadata of the model. In the application made for this project, the only way to add
metadata is to manually add the objects by filling in forms. Another way of providing metadata
would be editing a UML diagram. This gives the user different approaches to changing the model
thus the user can decide on which one to use according to it’s preferences. Most of the time multiple
people work on a software project and the fields of which these people have knowledge in can
vary. Because of this, being able to edit the metadata from different approaches the chance of a
better user satisfaction at editing the metadata is higher. One employee can have experience in
UML modeling while the other rather edits it from an object view with forms. Providing different
approaches better addresses people with different skillsets.

7.1.3 Extended UML specification

The currently implemented aspects of the UML specification only contain:

• The standard class with properties and operations

• The association relationship type

• Basic datatypes: integer, string and boolean

For a full blown platform it is needed to implement the complete UML specification. This includes
other classifier types as Interface or Abstract Class, but also all the different types of relationships,
in particular sub typing. The current list of basic datatypes should be extended to contain all of
them, such as arrays, enumerations and floating point numbers. To be able to use different objects
in other classes, it should also be possible to use a previously created classifier as datatype. This
thesis provides an extension to the UML specification by adding Application and Domain. These
should be integrated with the existing UML specification to work properly in a complete solution.

33

7.1.4 Editing existing metadata object properties

In the implementation provided in this project it is not possible to edit existing metadata properties
such as the name of a classifier or property. When this possibility is implemented it provides a
platform for quick fixes that can be done in a few seconds. Currently when a change in existing
metadata properties is desired, the old version should be deleted and a new version created. This
will result in loss of data. This is not a problem at the design-time, but as this approach is meant to
provide a platform for software development at run-time this is a crucial aspect of a fully providing
solution. Use cases of this aspect would for example be fixing a typo or quickly editing a name after
an epiphany. For instance when a small change is thought of when commuting. At that moment it
would be possible to grab a cellphone to make the quick fix.

7.2 Rules

Business logic can be added with rules. With these rules, business processes can be defined with
modelling. A lot of enterprise systems contain an environment where rules can be added to an
application. To make the approach from this thesis more complete, such an environment should be
added here too. There are multiple types of models that can define businness processes, for example
BPMN(Business Process Model and Notation). One model type should be picked and implemented
in the application to provide business rule integration. Of course, the gist of the approach proposed
in this thesis is metadata at runtime, thus the rule modelling should be in line with this too.

7.3 Custom code

As discussed in section 4.2.1, custom code needs to be supported to implement dynamic aspects
of an application. This can be done in multiple ways which all have their advantages and risks.
One of the risks of adding custom code to an application is breaking the logic of the metadata
interpretation. Also, adding custom code will likely result in dirty code that is not easily managable
and will only continue to build up and become completely impossible to maintain. Keeping the
custom code within existing models would be more maintainable however it would provide with
less opportunities and freedom. To support custom code completely, an environment should be
worked out where the custom code can be added to the application and a specific structure should
be thought to prevent unmaintainable code.

7.4 Multiple domain models

Currently the worked example shown in chapter 6 contains only one domain model. When working
for a larger enterprise system this domain model would get enormous and complex. Therefor
it would be better to be able to define multiple domain models, each with their own database
tables and class models. This way the specification of the domains would be more structured and
maintainable. The applications would be able to choose what classifiers to use from different domain
models. To get this working it should be worked out how the different domain models would, if at
all possible, work with eachother. There also a lot of small aspects that should be worked out such
as multiple classes with the same name existing in different domain models. An application will
then be able to pick for example 3 different types of a Person class. These edge cases should be
worked out and handled within the domain model logic.

34

8 Conclusion

This thesis presented a new approach for application development based on MDA. It adds additional
features to this approach, by demonstrating that metadata should not just be used at design-time,
but also be deployed alongside the application at run-time. As a result of interpreting the metadata
of a UML class model at run-time, the evolution of software systems can be done rapidly. When
fully worked out, a platform based on this approach can be a solution to the existing problems in
software development; A lack of IT professionals and a slow time to market.

To demonstrate the approach we developed a prototype application where a UML class model is
deployed at run-time alongside the application by it’s metadata. The application is structured as
illustrated in Figure 5. It consists of a web application a user interacts with, containing a model
definer and the run-time applications. This prototype application succesfully demonstrates the ease
and speed of developing by editing UML class model metadata at run-time. Because the changes are
done at run-time and then are interpreted under the hood, the changes immediately result in the
change of behavior of the run-time applications. This prototype also showed that development can
be done by a modeler instead of an expert developer and thus reduces the need for IT professionals.

From this prototype, we draw several lessons about the process of developing a system for this
new approach. First of all, there are a lot of edge cases one should think of, most importantly to
make sure that the source code resulting from the metadata changes are not creating conflicts with
existing code. Also the error handling should be implemented very well so that the saved metadata
will never be out of sync with the source code when something goes wrong while updating the
source code. Lastly we learned that editing source code by hand which is also involved in the
metadata interpretation is tricky and can mess up the metadata interpretation logic and thus
should be done with great care.

As discussed in chapter 7, a lot is still missing in our prototype implementation. Outside of user
experience aspects such as a UML editor and a fitting user interface for an enterprise system,,
there are also some core features that need to be added to make the application actually usable by
a business. Features such as process modelling with business rules and adding custom code are
needed to actually have a fulfilling application that can be used within enterprises. Also the theory
on how to work and interact with multiple domain models has yet to be worked out.

35

References

[1] Appian. https://www.appian.com/platform/.

[2] Application platform market. https://www.marketsandmarkets.com/Market-
Reports/application-platform-market-28942023.html.

[3] Low-code development platform market forecast, 2030.
https://www.psmarketresearch.com/market-analysis/low-code-development-platform-
market.

[4] Mendix. https://www.mendix.com/platform/.

[5] Microsoft power platform. https://powerplatform.microsoft.com/nl-nl/.

[6] Outsystems. https://www.outsystems.com/platform/.

[7] Salesforce. https://www.salesforce.com/nl/products/.

[8] The web framework for perfectionists with deadlines, django. https://www.djangoproject.com.

[9] A. Billig, S. Busse, A. Leicher, and J. G. Süß. Platform independent model transformation
based on triple. In ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing, pages 493–511. Springer, 2004.

[10] P. Caceres, E. Marcos, and B. Vela. A mda-based approach for web information system
development. In Workshop in Software Model Engineering, 2003.

[11] M. Das and A. Yiu. Business process management and ws-bpel 2.0. Oracle Corporation, 2006.

[12] E. Evans. Domain-driven design: tackling complexity in the heart of software. Addison-Wesley
Professional, 2004.

[13] A. Gavras, M. Belaunde, L. F. Pires, and J. P. A. Almeida. Towards an mda-based development
methodology for distributed applications. In Proceedings of the 1st European Workshop on
Model-Driven Architecture with Emphasis on Industrial Applications (MDAIA 2004), CTIT
Technical Report TR-CTIT-04-12, University of Twente, ISSN, pages 1381–3625, 2004.

[14] I. Hatanaka and S. C. Hughes. Providing multiple views in a model-view-controller architecture,
July 20 1999. US Patent 5,926,177.

[15] G. Inc. Market share: Enterprise application software, worldwide, 2018.
https://www.gartner.com/en/documents/3906841/market-share-enterprise-application-
software-worldwide-2.

[16] H. Lan. Web-based rapid prototyping and manufacturing systems: A review, Jun 2009.

[17] Object Management Group. Action language for foundational uml. 2017.

[18] Object Management Group. Unified modeling language. 2017.

36

[19] J. D. Poole. Model-driven architecture: Vision, standards and emerging technologies. In
Workshop on Metamodeling and Adaptive Object Models, ECOOP, volume 50. Citeseer, 2001.

[20] C. Sansores and J. Pavón. Agent-based simulation replication: A model driven architecture
approach. In Mexican International Conference on Artificial Intelligence, pages 244–253.
Springer, 2005.

[21] R. Soley et al. Model driven architecture. OMG white paper, 308(308):5, 2000.

37

	Introduction
	Context
	Problem statement
	Approach
	Result
	Overview

	Background
	OMG UML
	Model Driven Architecture
	Class model metadata
	First-class citizen
	Use cases
	Large Scale Enterprise Systems
	Rapid prototyping and application development
	Model validation

	Related Work
	Metadata mapping
	Current markets
	Market leaders
	Trends

	Metadata at design-time and run-time
	Metadata definition
	UML extension concepts

	Dynamic aspects
	Adding custom code for real life applications

	Prototype implementation
	Web implementation framework
	Technical design
	Model execution
	View generation

	Worked example
	Creating classifiers
	Adding properties

	Adding relationships
	Adding operations
	Domain model diagram
	Creating applications
	Linking classifiers to an application
	Linking properties to an application

	Evolution example
	Change handling

	Future work
	Running application
	User interface
	UML editor
	Extended UML specification
	Editing existing metadata object properties

	Rules
	Custom code
	Multiple domain models

	Conclusion
	References

