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Abstract

Existing quantum computers are still very limited in scale, making it vital to utilize them to
their fullest extent. One way of doing so is by using hybrid quantum-classical algorithms. In this
context, so-called parameterized quantum circuits can be regarded as machine-learning models
with the potential of remarkable expressive power. The use of such parameterized quantum
circuit models has been studied extensively in both a supervised and unsupervised context.
But, as it is still an emerging field, there has been little research on the use of parameterized
quantum circuits in a reinforcement learning context. In this thesis, we will investigate the use
of parameterized quantum circuits as Q-value approximators and attempt to train them on
the FrozenLake environment. To be more precise, motivated by unstable performance of initial
experiments using standard Q-learning methods, we thoroughly investigate the expressivity and
optimal configurations of newly introduced quantum model hyperparameters (i.e., parameters
that only appear due to the quantum model). We do so by performing supervised regression
to investigate whether the parameterized quantum circuits can encode optimal Q-values and
what configuration of quantum model hyperparameters works best. Our experiments found
that our quantum model is able to very closely represent the optimal Q-values. Moreover, we
found how to best configure the quantum model hyperparameters. As an extra experiment,
we investigate a training technique that is an intermediary between supervised regression
and true Q-learning, namely, Bellman updates with a fixed target network using the optimal
parameters.

2



Contents

1 Introduction 1

2 Quantum Computing 1
2.1 Quantum mechanics for quantum computing . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 Qubits and Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.1.2 Measurements and Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.4 Unitary evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Quantum Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Examples of quantum gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Parameterized Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Reinforcement Learning 6
3.1 Agents and environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Value functions and Q-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Function Approximation in Reinforcement Learning . . . . . . . . . . . . . . . . . . 10

3.4.1 From Linear functions to Deep Neural Networks . . . . . . . . . . . . . . . . 10
3.4.2 Importance of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.3 Quantum models in reinforcement learning . . . . . . . . . . . . . . . . . . . 12

4 Problem Statement 13

5 Methods 14
5.1 The environment: FrozenLake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 The Quantum Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2 Quantum Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Training the Quantum Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1 Supervised training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2 Reinforcement learning training . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 Testing and Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Results 21
6.1 Supervised Regression Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 How does regression progress? . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.2 Which configurations work? . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 From Supervised Learning to Reinforcement Learning . . . . . . . . . . . . . . . . . 27

7 Conclusions and Further Research 29



1 Introduction

Reinforcement learning has seen some significant advancements in recent years. Deep Q-learning
algorithms in particular have had amazing results. AlphaGo [7] is a prime example of a deep
Q-learning algorithm that has defied expectations.

Quantum computing is very promising because it can be used to significantly reduce the required
computation time of certain problems. A universal quantum computer can also solve any problem
that can be solved using classical computing. Quantum computing has an advantage for certain
problems because an n-qubit system can be used to encode larger vectors than an n-bit system would,
where these vectors are specified by the joint quantum state of the n qubits. Parameterized quantum
circuits in particular have a lot of expressive power even with a very small amount of quantum gates.

In this thesis we would like to combine these two fields by using the efficiency and expressive power of
quantum computing with the versatility of reinforcement learning. In previous works parameterized
quantum circuits have been used to serve as models for both supervised and unsupervised learning
(see [14] and [15] respectively), taking the role of neural networks, for example. Here we extend this
idea to reinforcement learning. This transition is not as simple as one might think, as will follow
from the results in the experiments section: chapter 6. In [10], a similar question is asked.

This thesis is structured as follows: in Chapter 2 give a more detailed overview of quantum
computing. In Chapter 3 we outline reinforcement learning and specifically Q-learning in more
detail. In Chapter 4 we state the research question in full, as well as the relevant sub-questions. In
Chapter 5 we describe how we intend to answer these questions. We also explain the model and
environment in this chapter. In Chapter 6 we discuss the results of our experiments. Lastly, in
Chapter 7 we try to answer the research questions based on the results of our experiments.

2 Quantum Computing

This chapter will give a short introduction to Quantum Computing and the relevant concepts for
this thesis. This chapter is based on [1] and [2]. For a more detailed overview of quantum computing
please consult these books.

2.1 Quantum mechanics for quantum computing

In order to understand Quantum Computing we must first understand qubits and some basic
concepts of quantum mechanics.

2.1.1 Qubits and Superposition

For classical computers, information is carried in bits. A bit can be in 2 states (usually called 0
(|0〉) and 1 (|1〉). For quantum computers, information is carried qubits (short for: quantum bits).
Qubits can also be in states |0〉 and |1〉, but they can also be in any superposition of these two states.
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More generally, a pure quantum state |φ〉 of a system that can be in N distinct states is a
superposition of all classical states in it’s system. All states |j〉 ∈ {|0〉 . . . |N − 1〉} have their own
complex amplitude αj within the greater quantum state |φ〉. The quantum state |φ〉 is then the
linear combination of all classical states multiplied by their amplitudes:

|φ〉 =
N−1∑
j=0

αj |j〉 ,

with the restriction that |φ〉 is normalized:
∑N−1

j=0 |αj|2 = 1. For example, a single qubit (with
N = 2 total states) can be in a superposition of states |0〉 and |1〉, i.e., |φ〉 = α |0〉 + β |1〉, with
|α|2 + |β|2 = 1. A specific example of such a state would be the state: 1√

2
|0〉+ 1√

2
|1〉.

The set of all classical states |0〉, . . . , |N − 1〉 of a quantum system forms an orthonormal basis of
an N -dimensional vector space. |0〉 would correspond to e0, |1〉 to e1, |N − 1〉 to eN−1, etc. Hence,
each quantum state |φ〉 is an N -dimensional unit vector. Which can be expressed with respect to
the basis of classical states as the vector:

|φ〉 =

 α0
...

αN−1



It is also possible to combine the quantum states of two objects into one combined quantum state.
The resulting state is the tensor product (denoted as ⊗) of the two original states. Likewise the
combined state space is spanned by the tensor products of the basis states of the two objects. Let
A and B be two quantum states, that can be written as a superposition over: |0〉 , . . . , |N − 1〉 and
|0〉 , . . . , |M − 1〉 respectively. The set {|j〉 ⊗ |k〉 : j ∈ {|0〉 , . . . , |N − 1〉}, k ∈ {|0〉 , . . . , |M − 1〉}}
is then an orthonormal bases for the combined state space of A and B.

A qubit is an example of a quantum system with a 2 dimensional state space, so N = 2. It has
basis states: |0〉 and |1〉. Therefore a system with two qubits has the basis states {|0〉⊗ |0〉, |0〉⊗ |1〉,
|1〉⊗ |0〉, |1〉⊗ |1〉}. Sometimes abbreviated to {|00〉 , |01〉 , |10〉 , |11〉} or {|0〉 , |1〉 , |2〉 , |3〉}. In their
vector representation they look like this: 1

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, |00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1


In general a system with n qubits has a set of basis states that forms the standard orthonormal
basis for C2n .

1|0〉 and |1〉 refer to the single qubit case

2



2.1.2 Measurements and Bases

A state-vector of a quantum state |φ〉 cannot be directly observed. Instead, one of the classical states
|j〉 will be observed when a quantum state is measured. Which one depends on the amplitudes of
the superposition. Namely, the probability of observing a state |j〉 is given by |αj|2. Because the
quantum state always collapses to one of the classical states, the αj have the restriction that:

N−1∑
j=0

|αj|2 = 1

In other words, the norm of the vector |φ〉 must be 1.

When |φ〉 is measured and |j〉 is observed, |φ〉 collapses to |j〉. Meaning that later operations act
on state |j〉, not |φ〉 (until the state is changed again, of course).

In linear algebra it is possible have different bases for the same vector space. For example: the
standard basis for C2 is {e0, e1}. However, it is possible to find a set of vectors {v0, v1} that form a
different orthonormal basis spanning the same vector space, for example:

e0 =

(
1
0

)
= |0〉 , e1 =

(
0
1

)
= |1〉 , v0 =

1√
2

(
1
1

)
=
|0〉+ |1〉√

2
, v1 =

1√
2

(
1
−1

)
=
|0〉 − |1〉√

2

Similarly, it is possible to consider superpositions in different bases. We define ej as the vector with
1 at index j and zeroes elsewhere. Using this notation, we define |j〉 = ej . We call {|0〉 , . . . , |N − 1〉}
the ‘standard basis’ or ‘the computational basis’. Normally measurements are taken in the standard
basis (the computational basis). But it is also possible to measure qubits in different orthonormal
bases. This has the added side effect of collapsing the superposition to one of the base-vectors from
the basis used for measurement.

2.1.3 Entanglement

It is also possible for two qubits in quantum states |φ1〉 , |φ2〉 ∈ H1, H2 respectively to be entangled
with each other. The combined state |φ〉 ∈ H1⊗H2 is entangled if you cannot write |φ〉 as the tensor
product |φ〉 = |φ1〉 ⊗ |φ2〉. What that means is that measuring the state of the first subsystem will
not only collapse the superposition of that subsystem, but the superposition of the whole system,
thus the superposition of the second subsystem as well, and vice versa. Note that this is different
from combining the states as discussed in 2.1.1.

2.1.4 Unitary evolution

A quantum state can also be changed without measuring (and thereby collapsing) the superposition.
If superpositions can be thought of as vectors, operations on quantum states can be thought of as
matrices. Performing the operation on the quantum states then becomes multiplying the matrix and
the vector (with the matrix on the left). Suppose we have a quantum state |φ1〉 and an operator U .
Then |φ2〉 = U · |φ1〉 would also have to be a quantum state. But superpositions can only be changed
in ways that preserve their constraints mentioned in 2.1.2. This means only unitary operations can
be performed on superpositions. This is because unitary matrices preserve the norm of the vectors
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after multiplication, since the determinant of a unitary matrix is always 1. Meaning |φ1〉 and |φ2〉
have the same norm, namely 1.

By definition, unitary matrices are invertible, with the inverse of a unitary matrix also being a
unitary matrix. This means that for any operation on a set of qubits (that doesn’t measure any of
them) there exists an operation that reverses it’s effects.

2.2 Quantum Gates

Similarly to classical computers the flow of information in a quantum computer is controlled by
gates, quantum gates in this case. Unlike classical circuits, it is impossible to have two qubit fan
out of one qubit because it is impossible to copy the superposition of one qubit onto another qubit.
There are 3 categories of quantum gates:

• Single qubit gates: These unitary operations, represented by a unitary matrix, are applied
to a single qubit. They function as explained in 2.1.4. These can also be extended to act on
multiple qubits, but they apply the same unitary operation on all of them independently,
therefore it would be the same applying the single qubit gate to all of the affected qubits.

• Controlled gates: These perform a unitary operation to one of the qubits (the target qubit)
depending on the state of the other qubit (the control qubit). It does not measure the
control qubit and cannot be represented by the tensor product of two unitary matrices.
Therefore it entangles the two qubits, see 2.1.3. Two qubit gates are the only way to introduce
entanglement between two qubits. This is important because entanglement is a powerful
resource in quantum information.

• Measurements: These measure a qubit, thereby collapsing the superposition to one of the
basis states (note that measurements can be in different bases 2.1.2). Because they always
collapse superpositions this operation is not unitary2.

2.2.1 Quantum Circuit Diagrams

Because quantum gates have different restrictions from normal gates, it makes sense that the
diagrams used to represent classical circuits are also different from those used to represent quantum
circuits. An example of a quantum circuit diagram is shown below in Figure 1.

In the circuit displayed in Figure 1 each qubit is assigned a horizontal line. Quantum gates are
often represented by boxes on the line of the qubit(s) they act on. The exception are gates that
require control qubits, for them a vertical line is drawn from a dot on the control qubit’s line to the
box representing the gate. The ⊕ in Figure 1 represents the CNOT gate, more on that in 2.2.2.
The circuit should be read from left to right in the sense that chronologically the gates on the left
are applied to the qubits before the gates on the right.

2Measurements are not technically quantum gates because they collapse a superposition and are therefore not
reversible. Which means they can not be represented by unitary matrices. But they do affect qubits and are drawn
in diagrams of circuits like gates, so I will include them in this category.
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Figure 1: An example of a 4-qubit quantum circuit diagram. Source: [3]

2.2.2 Examples of quantum gates

In theory, since there is an infinite set of (2x2)-unitary matrices, there is also an infinite set of
(1-qubit)-quantum gates. This section will outline some of the most commonly used quantum gates.
Firstly, the Pauli-X, -Y and -Z gates:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

The Pauli-X gate is the quantum equivalent of the classical not gate in the sense that it maps |0〉
to |1〉 and vice versa.

Another common quantum gate is the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)

It maps |0〉 and |1〉 to |0〉+|1〉√
2

and |0〉−|1〉√
2

, respectively. Both of these superposition states have a

50% chance of collapsing to |0〉 and a 50% chance of collapsing to |1〉 when measured. In essence
turning classical states into uniformly distributed superpositions. The Hadamard Gate also has the
interesting property that it is it’s own inverse:

H2 =
1√
2
· 1√

2

(
1 1
1 −1

)(
1 1
1 −1

)
=

1

2

(
2 0
0 2

)
=

(
1 0
0 1

)
= I

The last quantum gate we discuss in this section is the controlled Pauli-X gate, or controlled not
gate, or CNOT for short:

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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The CNOT gate applies the Pauli-X gate to the second qubit if and only if the first qubit is in
state |1〉. More generally it maps 2 qubits in states |a〉 and |b〉 to states |a〉 and |a⊕ b〉.3 This is

why the part of the CNOT that effects a qubit is often denoted by ⊕ instead of X .
Because the state of the second qubit depends on the state of the first qubit after the CNOT gate is
applied, the CNOT gate entangles the 2 qubits. Therefore, the matrix for CNOT cannot be written
as the tensor product of two other quantum gates (i.e. unitary matrices).

2.3 Parameterized Quantum Circuits

The quantum gates can also be parameterized, meaning that the matrix representation of the gate
has a tunable parameter θ. Or alternatively the matrix is raised to the power θ. For many of the
physical implementations of quantum gates the qubit is exposed to some type of external field,
depending on the exact implementation of the qubit. The strength and duration of the field can
then be used to specify θ.

Here are three examples of parameterized rotations over different axes, that we will use in this
thesis. They are the Rx(θ),Ry(θ) and Rz(θ), with their respective matrix forms:

Rx(θ) =

(
cos( θ

2
) −i sin( θ

2
)

−i sin( θ
2
) cos( θ

2
)

)
, Ry(θ) =

(
cos( θ

2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

)
, Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
A parameterized quantum circuit is a quantum circuit that uses a combination of parameterized
quantum gates (at least one) and regular quantum gates. The architecture of this circuit is fixed.
The parameters of the gates specify a particular circuit, obtained by filling in the parameters
into the fixed architecture. See Figure 7 and Figure 9 for examples of parameterized quantum
circuits. An example of a particular circuit obtained by filling in the parameters into one of these
parameterized quantum circuits can be found in Figure 8.

3 Reinforcement Learning

This chapter will give a brief introduction to reinforcement learning and the relevant concepts. it
will also outline: agents, environments, Q-learning, models and learning methods in reinforcement
learning. This chapter is based on [4]. For a more in depth look at reinforcement learning please
consult this book.

3.1 Agents and environments

Reinforcement learning is about an agent learning to fulfill an objective and maximizing a reward
function. Agents can take many forms. A character in a video game trying to complete a level or
an autonomous vehicle trying to travel safely from one location to another, to name a few.

3⊕ represents summation modulo 2 (also known as binary xor) in this context
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An agent is always situated in an environment with a certain set of rules and constraints. The
self-driving car for example is bound by the laws of physics as well as the traffic laws applicable
at the road it is on. In some environments there are also other agents to interact with. These
could be other vehicles or pedestrians for the self-driving car. The agent does not always know
everything about the environment. It can use its sensors to get information about the environment.
For the autonomous vehicle, for example, the sensors could be cameras, radar or even data about
other autonomous vehicles. The agent can perform actions, which potentially change the state
of the environment. For the autonomous vehicle these actions would be things like a breaking or
acceleration.

The abstract specification of what action the agent takes in which situation (state) is called the
policy It can be as simple as always move right or as complicated as a process modelled by a deep
neural network (c.f. 3.4.1). Policies are often initialized randomly or by a predetermined default
value. The agent then interacts with its environment by performing an action. The environment
then returns a reward back to the agent, based on the state of the environment and the action
played by the agent. The agent then uses the reward to adapt it’s policy such that it can maximize
the discounted reward it gets over time. Discounted, in this sense, means that rewards in the distant
future are valued less then more immediate rewards. This is implemented by using a discount factor
γ, which is multiplied by the sum of expected rewards for every timestep it would take to reach
that reward. This would make the expected discounted reward Gt at timestep t the sum of all
futute rewards Rk at later timesteps k, multiplied by the discount factor γ raised to the power m,
where m is the number of timesteps to reach Rk:

Gt =
∞∑

k=t+1

γk−t−1 ·Rk

Note that this sum is computed up to infinity. However, most useful policies have the agent
terminating the game after a finite amount of time (steps) Tf . Or at the very least most training
methods terminate the play through after a predetermined number of steps Tt, meaning that, in
practice, this is often a finite sum up to Tf or Tt, respectively.

3.2 Value functions and Q-values

Q-learning is a type of reinforcement learning that attempts to assign a value to every action in
every state. This score is called the Q-value and it represents the total discounted expected reward
over time, assuming the agent plays by a given policy π from that point on.
The value vπ(s) of a state s when playing according to policy π would then be the expected value
of Gt given that the agent plays by π and the agent is in state s at time step t:

vπ(s) = Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γt+k ·Rk+t+1|St = s]

To get the Q-value Qπ(s, a) we can simply take vπ(s) and add the constraint that action a is played
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at time step t:

Qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γt+k ·Rk+t+1|St = s, At = a]

This mapping of all state-action pairs to their Q-value is called the Q-function. There are two main
ways of implementing Q-functions, the first way is to store the Q-values in a (Q-)table. This is
often preferred for smaller discrete environments, as the size of the table scales with the amount
of different actions and states. The second way is to compute Q-values directly using a some
mathematical function(s) or model (as discussed in Section 3.4).

3.3 Learning algorithms

The first thing we should discuss when talking about learning algorithms is exploration versus
exploitation. The agent can explore the environment, in which case the agent plays a random action
with the intention of visiting states it has not yet visited to better understand the potential rewards
of the state from which that action was taken. The agent can also exploit its current knowledge of
the environment and greedily chose the action with the highest Q-value. There is always a trade-off
between exploration and exploitation. On the one hand we would like to explore the environment
as much as possible, but on the other hand we want the agent to take the most promising actions
to gain a higher reward. This is why the agent usually takes more exploratory actions in the early
stages of the training, as the policy is still not very optimized for the environment. Later it will
exploit its knowledge more as the policy should be better optimized for the environment (at least
in theory it should be better optimized).

When computing Q-values as defined in 3.2, there is a shortcut: instead of considering every possible
future state from an action. It is possible to define Q-values recursively, since the agent will always
play according to its policy:

Qπ(st, at) = rt + γ ·Qπ(st+1, at+1) | at+1 = π(st+1)

Qπ(st, at) = rt + γ ·Qπ(st+1, π(st+1))

This equation is called the Bellman equation. Here, st and at are respectively the state and action
played at time t. Also, rt is the reward the agent gets immediately after playing at from st. Finally,
γ is the discount factor and it penalized future rewards for every step it takes to get to that reward.

A policy π is called greedy, if it always selects the option with the highest expected reward. In
other words π(s) = maxa(Qπ(s, a)). For a greedy policy the Bellman equation simplifies to:

Qπ(st, at) = rt + γ ·max
at+1

(Qπ(st+1, at+1))

All Q-values in an optimal policy have to satisfy this Bellman equation. Moreover, as the policy
gets better optimized for the environment, the Q-values converge to those that fulfill the Bellman
equation. In other words the Bellman equation represents the final state of the Q-values; after
training. To get to that stage we can use temporal difference learning:
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Qnew(st, at) = Qold(st, at) + α · (rt + γ ·max
at+1

(Qold(st+1, at+1))−Qold(st, at))

The α in this equation is the learning rate. It is hyperparameter smaller than 1. It ensures that the
learning process happens smoothly and that the policy doesn’t make too big jumps in one update.
The rest of the variables have the same meaning as they do in the Bellman equation.

When the environment is finite and small enough the entire entire Q-function can be stored in
one table. For each possible state the table has a row and for each possible action the table has a
column. The Q-value Qπ(s, a) is then the entry of the table in the sth row on the ath column. The
table is usually initialized randomly, but depending on the environment it can also be initialized
to some default value (like zero everywhere). In this case the agent can simply episodically run
through the environment and update the Q-values using temporal difference learning:

Algorithm 1: Temporal Difference Learning for tabular Q-values

initialize policy();
ε← 1 ;
for episode in range(max episodes) do

environment.reset();
for step in range(max steps) do

#exploration/exploitation tradeoff:
exp tradoff ← random(0,1);
if exp tradoff < ε then

action ← argmax(Qtable[state]);
else

action ← env.action space.sample();
end
#perform action and update the state, reward, done variables
new state, reward, done, info ← env.step(action) ;
Qtable[state, action]←Qtable[state, action] + α · (reward+ γ·
maxaction(Qtable[new state, ·])−Qtable[state,action])
state← new state ;
ε← reduce epsilon(ε)
if done then

break ;
end

end

end

When the environment is more complicated and a model is used to estimate Q-values this approach
has to be altered somewhat because Q-values can no longer be altered directly. Instead the
parameters of the model have to be changed such that the model converges to the optimal model.
This is usually achieved by performing a gradient descent step on the model. This finds a model in
a local minimum near the current model. The parameters of the old model are then moved by α in
the direction of the parameters of the target model.
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3.4 Function Approximation in Reinforcement Learning

Sometimes it is not practical, or even possible, to store all Q-values of a policy directly. Because
the state space of the problem is either continuous or just to large. In this case Q-learning is
still possible, except all Q-values now have to be computed directly, when they are needed. This
paragraph will outline different models used to compute Q-values, why these models are relevant
and how quantum computing can be used as a model to compute Q-values.

3.4.1 From Linear functions to Deep Neural Networks

Perhaps the simplest type of model with which to compute Q-values is a linear model. A simple
line in a 2-dimensional space that can easily be specified by two parameters, the slope of the line
and the vertical shift. There are two main uses for linear models in machine learning; classification
and regression. In regression the model tries to fit a line to the data by trying to reduce the mean
squared error between the line and the data points available. In classification the model will try to
classify the different data points into a few different categories, where the line acts as a boundary
between the (two) different groups. A visual representation of the difference between classification
and regression can be seen in Figure 2.

Figure 2: A linear model used for classification (left) or regression (right). Source: [5]

Since we are trying to teach an agent to chose the best action in a given state, that could be
considered classifying state-action pairs as either good or bad actions (with the restriction that the
agent has to chose exactly one action in every state). In fact if you give the agent access to the
Q-value of each state-action pair this would be exactly what you are doing. But that would also be
supervised learning and not reinforcement learning. So in Q-learning the agent should not know
what the Q-values are beforehand and should only find out what works trough trial and error.

Linear models can also be used to directly compute Q-values. In equation form this usually looks
as follows: Q(s, a) ≈ wT · φ(s, a) + b. In which φ(s, a) is a vector representation of the state-action
pair (s, a) and w and b are the parameters that need to be trained.
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Sometimes the classification of the different states is too complicated to be divided or estimated
by a straight line. In that case, the model needs to assign a Q-value to each state-action pair and
select the one with the highest value. At that point it could be very impractical to classify anything
using ”simple” mathematical functions. Therefore, more advanced models are necessary.

An artificial neural network is inspired by the structure of the the human brain; like the brain a
neural network passes information between neurons (nodes or cells) which pass on information to
other neurons based on the strength of the connections (weights on vertices or thickness of the
axons). In general, a neural network is a weighted directed graph with a subset of input nodes, a
(few) subset(s) of hidden nodes and a subset of output nodes. The different subsets of nodes form
layers. There are no connections between nodes in the same layer and generally only connections
from nodes in one layer to nodes in the layer directly behind that layer. There are exceptions to
this rule, for example when there is a connection between nodes that skips a (few) layer(s). It is
typically also the case that every node in a given layer is connected by a directed vertex to every
node in the layer before it (these are the inputs for that node) and every node in the layer behind
it (for which it acts as an input). Below in Figure 3 is an example of a neural network:

Figure 3: An example of a (feed-forward) neural network with three hidden layers. Source: [6]

The value of each hidden or output node in the neural network is computed by taking the sum
of the value of its input nodes multiplied by the weight on the vertex connecting the respective
input node to the current node. After this computation the values of the nodes are normalized by a
so-called activation function. The values are usually normalized to be between -1 and 1 or 0 and 1,
but this may vary.

3.4.2 Importance of models

Tabular Q-learning based directly on using the Bellman equation can be very useful. But the
requirement to store all Q-values limits this method to small discrete environments as the space-
complexity tends to explode for larger environments.
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Deep neural network based Q-learning, also called deep Q-learning, has made some significant
advances in recent years. Consider AlphaGo (see [7]), which in 2016 had beaten Lee Sedol, the
second highest ranking Go player at the time, without a handicap4. But deep Q-learning has also
made significant advances in other fields like image recognition.

3.4.3 Quantum models in reinforcement learning

Quantum computing has the potential to significantly reduce the complexity of certain computations.
An example of which would be prime factorization using Shor’s Algorithm (see [8]). Currently
large-scale, fault-tolerant quantum computers don’t exists, nor will they likely exist in the very
near future. So the number of qubits that can be used is very limited. The number of operations
applied on those qubits before they succumb to noise is also very limited. Despite that, there are
still uses for these smaller scale quantum computers.

One of the ways to still utilize noisy intermediate scale quantum computers is by using parameterized
quantum circuits (PQC) (see 2.3). Because they can still have a lot of expressive power, even
with a relatively low amount of qubits and quantum gates. This could make them suitable models
for computing Q-values. And in fact, they have been used for both supervised and unsupervised
problems before (see [14] and [15], respectively). The parameters of the model have to be optimized
using some sort of classical training loop, just like any other model. Figure 4 shows the general
idea behind a parameterized quantum circuit as model for Q-learning:

Figure 4: Machine learning models, using parameterized quantum circuits. Source: [9]

This model can be split up into three different phases:

• A pre-processing phase, in which the state x of the environment is used to generate a list
of parameters φ(x) that are used as parameters of a circuit that is applied to the all-zeroes
state. Effectively encoding x into a quantum state.

• A parameterized quantum circuit phase, in which a quantum circuit Uθ is applied to the
qubits. Here, θ represents the list of all tuneable parameters in this context. Some of these
gates of Uθ can be regular quantum gates, but there have to be some parameterized quantum
gates.

4No handicap meaning that the AI did not receive extra stones at the beginning of the match
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• A post-processing phase, in which the final state of all qubits is measured and the result is
analyzed further using classical algorithms.

Next, one repeats the steps above, while tuning the parameters θ using a classical optimisation
algorithm along the way. Thereby training the quantum model using a classical computer.

4 Problem Statement

In this chapter we will go over the main research questions of this thesis. In section 3.4.3 the
general structure of a quantum model for Q-learning is outlined. An immediately evident question
is whether we can train a parameterized quantum circuit using reinforcement learning techniques?

From previous works (see [?]) we know that for classification regression problems, we can use a
parameterized quantum circuits as a substitute for a neural network and train it using similar
techniques. We have tried training the parameterized quantum circuit for many different hyper-
parameter configurations. But none of them were very successful. All of the pure reinforcement
learning runs we tested had a progression similar to the run in Figure 5, the metrics by which we
judge the model will be explained in section: 5.4.
It is evident from this figure that the model does not improve over time. This immediately

Figure 5: On the left: the progression mean squared error between the theoretical Q-table and the
Q-table if it were computed by the model, after each episode. In the center: the number of states
for which the highest Q-values in the theoretical and computed Q-tables match. On the right: the
cumulative reward over all episodes. All three are using the model parameters: amplitudes/action
= 2, correction factor = 3, γ = 0.8

raises the question of whether or not our parameterized quantum circuit is expressive enough to
accurately represent all Q-values for FrozenLake. Moreover, as the use of parameterized quantum
circuits introduces new quantum-specific hyperparameters, we would also like to find out how to
best configure these. To answer these questions we will use regression to train the parameterized
quantum circuit so that its output is a close approximation of the theoretically computed Q-values
for FrozenLake. Furthermore, this allows us to sweep the new hyperparameters introduced by this
quantum model and find out what configuration works best. It is easier to investigate the best
configuration of these new hyperparameters using regression because than we don’t have to deal
with the many extra hyperparameters and challenges that come with reinforcement learning.
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As an extra experiment we take one more step towards reinforcement learning (as opposed to
supervised regression), Namely, knowing the optimal configuration of the parameterized quantum
circuit, we can use the optimal parameters5 as a target network to apply Bellman updates with.
Doing this will allow us to investigate the stability of our model in setting that is slightly closer to
full-blown reinforcement learning.

To sum up, motivated by the shortcoming of standard Q-learning techniques to train our parame-
terized quantum circuit model, we investigate the following three main research questions:

• Is our parameterized quantum circuit expressive enough to accurately represent the optimal
Q-values?

• What is the optimal hyperparameter configuration for the newly introduced quantum hyper-
parameters (i.e., number of amplitudes per action and correction factor)?

• Is our model stable enough to stay near an optimal configuration when we apply Bellman
updates with a fixed target?

5 Methods

This chapter will outline the methods used to get an answer to the main research questions of this
thesis.

5.1 The environment: FrozenLake

Because we expect that the training of our model might be difficult, we will focus on a simple
environment for this thesis. The environment we will use to train the model is called FrozenLake, it
is played on a 4x4 grid. The agent can be in one square at a time and can move up, down, left or
right to a new square. The grid does not loop around and the agent cannot move off the grid. The
agent starts the game in the top left of the grid on the square labeled S (for start). The game ends
when the agent moves onto one of the squares labeled H or G (for hole or goal respectively). If the
game ends with the agent on a square labeled H the reward is 0 (the agent should avoid the holes).
If the game ends with the agent on the square labeled G the reward will be 1 (the agent has won
the game). Figure 6 shows the environment for FrozenLake:

5parameter in this context refers to the quantum gate parameters not the models hyperparameters
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Figure 6: The environment for FrozenLake: Source: [11]

5.2 The Quantum Model

We will use 4-qubit quantum circuit, inspired by the so-called ”hardware efficient Ansatz” from [14].
We will be simulating the quantum circuit and FrozenLake using the python libraries cirq [12] and
openAI gym [13]. We will not run the algorithms on a real quantum computer, when computing
Q-values. Instead we will simulate the circuit using vector and matrix multiplications and directly
use the amplitudes of the different basis states.

5.2.1 Pre-processing

The Pre-processing phase of this model is rather straightforward. Since FrozenLake is played on a
4x4 grid and the state is solely dependant on the position of the agent on that grid. There are 16
possible states in FrozenLake. We can simply number these states 0-15 and then encode each state
to the binary representation of its number. Since there are 16 states we would need 4 qubits to
encode them all into basis states.

This would be implemented as follows: given a state-number n, let N be the list of 0’s and 1’s that
represents the binary notation of n. Start with combined state |0〉 (every qubit in state |0〉) then
simply apply the NOT-gate to every qubit that corresponds to a 1 in N . In other words, apply the
NOT-gate to the power N [i] to the ith qubit, for every qubit. Figure 7 shows the parameterized
quantum circuit we use for this ”basis state encoding” for any game-state n. Figure 8 shows this
circuit when we fill in the parameters for game-state 5.
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|0〉

|0〉

|0〉

|0〉

φn =

|0〉

|0〉

|0〉

|0〉

XN [0]

XN [1]

XN [2]

XN [3]

Figure 7: This is a general overview of the basis-state encoding we used, for any game-state n, with
binary representation N .

|φ5〉 =

|0〉 |0〉

|0〉 |1〉

|0〉 |0〉

|0〉 |1〉

X0

X1

X0

X1

Figure 8: This is an example of the basis-state encoding for game-state 5, with binary representation
0101.
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5.2.2 Quantum Circuit

This part of the model in particular is heavily based on the ”hardware efficient Ansatz” from [14].
The parameterized quantum circuit is built up from several layers. Alternating between entanglement
layers and a rotation layers. The entanglement layer connects every qubit to the next qubit using a
CNOT-gate (see 2.2.2). Whilst the rotation layer consists of two parameterized rotations (see 2.3),
one around the Y -axis and one around the Z-axis. One layer of this circuit is broken down in Figure 9.

Uθ = Uentangle Urotation θ
=

Ry(θi,0,0) Rz(θi,0,1)

Ry(θi,1,0) Rz(θi,1,1)

Ry(θi,2,0) Rz(θi,2,1)

Ry(θi,3,0) Rz(θi,3,1)

Figure 9: This is the breakdown of one layer of the parameterized quantum circuit. This part of the
circuit is repeated as much as the depth of the circuit.

This layer can be repeated any number of times. The depth of the circuit is defined as the number
of repetitions of this layer. The total circuit is then set up as follows: start with the pre-processing
circuit φn defined in 5.2.1. Follow that up by one rotation layer Urotation θ. Then repeat an entan-
glement layer Uentangle followed by Urotation θ for the depth of the circuit6. Figure 10 shows the
complete overview of the parameterized quantum circuit we used.

This kind of circuit has a few notable analogies to neural networks, namely:

• Intuitively, the parameters θi correspond to the weights of a neural network; these θi are
ultimately what changes during the training phase.

• The depth of the circuit is variable like the depth of a neural network.

• The qubits are very interconnected between the layers due to the entanglement layers. This is
comparable to the many connections between the nodes in a neural network.

6Please note that for the purpose of this theses we will only simulate the states of the qubits and not simulate
(multiple) measurements.
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Repeat depth times

|0〉

|0〉

|0〉

|0〉

φn Urotation θ Uentangle Urotation θ

Figure 10: This is a full diagram of the circuit we used. The φn sub-circuit is broken down in Figure
7. The Urotation θ and Uentangle sub-circuits are broken down in Figure 9

5.2.3 Post-processing

There are 4 qubits and thus 16 amplitudes to consider. Despite that there are only 4 actions
that can be taken in FrozenLake: Up, Down, Left, Right. This means that we can assign up to 4
amplitudes to each action; discarding all amplitudes that aren’t assigned to an action.
To find out which amplitudes to assign to which action we will first define 4 different sets of
numbers with the property that: for every number n, in its binary representation, we would need
all 4 (qu)bits to determine in which set n belongs. This is because we want our outcome to depend
on all qubits, because single qubit measurement outcomes can be efficiently simulated classically.
These are the sets we have chosen:

• left: {0, 5, 10, 15},

• down: {1, 6, 11, 12},

• right:{2, 7, 8, 13},

• up: {3, 4, 9, 14}.

The choice of these sets is somewhat arbitrary except for the property mentioned above.

As mentioned before there are four different configurations we will test. For the first one, the
Q-value is simply the square of the amplitude of the first state in the list. For the second one it is
the sum of the squares of the first two amplitudes in the list. This pattern continues until the forth
one, which is the sum of the squares of all four amplitudes in the list.

Each of these Q-values is then multiplied by a constant correction factor; a hyperparameter to be
set beforehand. This parameter is used to compensate for the fact that the squares of all amplitudes
always sum up to 1 and thus the sum of the Q-values can never exceed 1.

To give a more concrete example: let |φ〉 be the final quantum state after the paremeterized quantum
circuit has been applied, and let φj be the j−th entry of |φ〉 in the standard computational basis.
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Let c be the correction factor, and assume that we measure in the standard computational basis. If
we use 2 amplitudes per action the Q-values would be computed as follows:

• Qleft = c · (|φ0|2 + |φ5|2)

• Qdown = c · (|φ1|2 + |φ6|2)

• Qright = c · (|φ2|2 + |φ7|2)

• Qup = c · (|φ3|2 + |φ4|2)

The amplitudes φ8 . . . φ15 will be ignored in this computation

5.3 Training the Quantum Model

This section will discuss the specific training methods used for the quantum model; a supervised
learning algorithm and a reinforcement learning algorithm.

5.3.1 Supervised training

Before taking on the more daunting task of training a reinforcement learning agent it might be
necessary to try to find out whether or not the circuit is expressive enough to solve the problem.
In short is there a configuration of parameters of the circuit such that: given the state of the sys-
tem, the circuit can accurately produce the Q-values for each action the agent can take in that state?

The easiest way to answer that question is to theoretically compute the Q-values for every (relevant)
state-action pair and using supervised learning techniques to tune the parameters of the circuit
such that the Q-values the circuit produces are as close to the theoretical Q-values as possible. The
mean squared difference (also called mean squared error) will be used as the value to be minimized.

5.3.2 Reinforcement learning training

The algorithm used to train the model using reinforcement learning is a variation on the one
explained in 3.3. The three most significant changes are: one, the fact that the argmax over the
Q-table has been replaced by an argmax over the results of the Quantum model (see 5.2). Two the
update rule for θ (and by extension the Policy) has been changed to a gradient decent step using
scipy.minimize. And three the fact that we now use experience replay, which simply means that we
store the last X amount of experiences in a memory, then take a random batch of experience from
this memory and apply our gradient decent step on all these experiences. The pseudo code for this
algorithm can be seen below in Algorithm 2:
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Algorithm 2: Temporal Difference Learning for Quantum Model

initialize policy();
ε← 1 ;
Experiences ← [] ;
θ ← RandomInitialPolicy ;
for episode in range(max episodes) do

environment.reset();
for step in range(max steps) do

#exploration/exploitation tradeoff:
exp tradoff ← random(0,1);
if exp tradoff < ε then

action ← argmax(evaluate PQC(θ,state));
else

action ← env.action space.sample();
end
#perform action and update the state, reward, done variables
new state, reward, done, info ← env.step(action) ;
Batch ← randomsample(Experiences) ;
last step = [reward+ γ· max(evaluate PQC(θ,new state)), state] ;
#[yt, st] Batch.append(last step);
Experiences.append(last step);
#gradient decent step
Objective ←

∑
i∈Batch (Batch[i,0] - max(evaluate PQC(θ,B[i,1)))2

minimize(Objective, θ) ;
state← new state ;
ε← reduce epsilon(ε)
if done then

break ;
end

end

end

5.4 Testing and Benchmarking

The agent will be tested on the game of FrozenLake. The states of FrozenLake will be numbered as
follows:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Using this naming of states we can compute the Q-value for each state action pair for a given γ.
This can be done by computing the length l of the shortest between the new state (the one the
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state-action pair would lead to) and the goal state and taking γl as the Q-value for that state-action
pair. Unless the next state is a hole (denoted by H), in which case the Q-value will be 0. Or
alternatively if the current state is a hole or the goal state, in which case the Q-value is undefined
and we will not use it to rate the agent’s performance.7 The resulting Q-table is shown below:

state left down right up

0 γ6 γ5 γ5 γ6

1 γ6 0 γ4 γ5

2 γ5 γ3 γ5 γ4

3 γ5 0 γ6 γ6

4 γ5 γ4 0 γ6

5 X X X X
6 0 γ2 0 γ4

7 X X X X
8 γ4 0 γ3 γ5

9 γ4 γ2 γ2 0
10 γ3 γ 0 γ3

11 X X X X
12 X X X X
13 0 γ2 γ γ3

14 γ2 γ 1 γ2

15 X X X X

There will be two different metrics by which we will judge the agent’s performance.8 Firstly, we
can use the model to compute a Q-table for FrozenLake, then compare the mean squared error
between the entries of that Q-table and the theoretical Q-table. This would give us a good in-
dication of how different the current model is from a theoretical optimal model. But this is not
the only metric that matters. In the end the agent will always select the action with the highest
Q-value. Therefore, in order to win the game, it is important that, for each state the action(s)
with the highest theoretical Q-value also has the highest Q-value produced by the model. That
is why we will also count the number of states for which the highest Q-value produced by the
model is matched to the same action as the action with the highest theoretical Q-value in that state.9

6 Results

This chapter contains the results of the experiments. We will discuss which configurations of the
model and circuit work and which do not, as well as which training methods work and which do
not. All parameterized quantum circuits we used for these experiments have a depth of 5.

7One could argue that the Q-value in a hole state is always 0 and the Q-value in the goal state is always 1. But
since the game terminates after reaching these states it does not matter to the agent which values they have

8These are only judgements after the agent has been trained and will not be used for training purposes (except
for the supervised learning experiment)

9Of course not counting the Hole and Goal states
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For the first few experiments we performed, we treated the parameterized quantum circuit as a
substitute for a neural network and attempted to train it using the same reinforcement learning
techniques. These experiments all had very similar results. The progression of one of them is shown
in Figure 11. The configuration we use for this particular experiment is as follows: to compute
the Q-values we used 2 amplitudes per action, a correction factor of 3 and a γ of 0.8. For the
computation of the gradient we used the scipy function ‘minimize’ with the method ‘Nelder-Mead’.
We used an ε-greedy strategy with an exponentially decaying ε. We also used experience replay,
with a batch size of 32. Finally, we updated the policy every 20 steps.

Figure 11: On the left: the progression of the mean squared error between the theoretical Q-table
and the Q-table computed by the parameterized quantum circuit, after each parameter update. In
the center: the number of states for which the highest Q-values computed by our model and the
highest theoretical Q-values correspond to the same action(s). On the right: the cumulative reward
over all episodes. All three use these model parameters: amplitudes per action = 2, correction factor
= 3, γ = 0.8

We have tested many more hyperparameter configurations, with the hyperparameters10 in the
following ranges:

• All possible number of amplitudes per action; 1 to 4.

• Correction factors ranging from 1 to 12.

• Several γ’s, ranging from 0.8 to 0.99

• Updating the parameters every step versus updating them every 20th step.

• Different batch sizes ranging from 1 to 32.

• Various scipy minimize methods to compute the gradient descent step: Nelder-Mead, COBYLA,
Conjugate Gradient (CG), SLSQP and BFGS.

None of these hyperparameter settings yielded models for which the mean squared error between
Q-values of the model and the theoretical Q-values converged to zero. Nor did any of the resulting
models score particularly well when judging them based on the amount of states for which the
correct action is played or their total cumulative rewards. All of the hyperparameter configurations

10Note that we have not tested every possible combination of these 7 parameters.
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we have tested had results similar to the results in Figure 11

So far we have identified 3 potential problems with our model:

• The parameterized quantum circuit might not be expressive enough to fully represent the
environment of FrozenLake.

• The configuration of the newly introduced quantum hyperparameters might still be wrong.

• The parameterized quantum circuit might not be stable enough, meaning a small change in
the parameters to improve one Q-value might reduce other Q-values to much.11

6.1 Supervised Regression Experiments

This section will show the results of the supervised learning training method. To recap, in section
5.2.3 we have discussed 4 different ways of post-processing the output vector: we can use 1, 2, 3 or
4 amplitudes per action. This gives us 4 slightly different models based on this choice12.

6.1.1 How does regression progress?

In this section we will try to determine whether or not the parameterized quantum circuit is
expressive enough to compute all the Q-values for FrozenLake. We will do this by computing the
theoretical Q-values, as discussed in section 5.4, and reducing the mean squared error between
those Q-values and the Q-values the model produces as much as possible, using regression.

One of our best results using regression is shown in Figure 12. This Figure shows 20 iteration-steps
of the regression model (300 optimization iterations using scipy ‘COBYLA’ for each of these steps).
The exact model we use for this experiment uses 2 amplitudes per action in the post-processing, as
well as a correction factor of 3. The discount factor for the rewards was set at γ = 0.8. This makes
it really one data point in the next section, Section 6.1.2, Figure 15.

From Figure 12 We can see that the mean square error converges to a value close to 0 (optimal
model) and the number of states for which the correct action has the highset Q-value converges to
11 (all relevant states). From this we can conclude that the model is expressive enough to model
the Q-function for FrozenLake.

The final stage of this model has a mean squared error from the theoretical Q-values of approximately
0.0155. And for each of the 11 relevant entries in the Q-table the highest Q-value is the one
corresponding to the best action. It plays the following actions: down → down → right → down →
right → right. Following the path shown in Figure: 13.

11Changes to Q-values are implemented by changing the parameters and are thus implemented indirectly.
12Many more when we consider the possible correction factors and γ’s
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Figure 12: On the left: the progression of the mean squared error between the theoretical Q-table
and the Q-table computed by the parameterized quantum circuit, after each parameter update.
On the right: the number of states for which the highest Q-value computed by our model and
the highest theoretical Q-value correspond to the same action(s). Using these model parameters:
amplitudes per action = 2, correction factor = 3, γ = 0.8

Figure 13: The path our supervised learning agent took. Source: [11] (modified image)
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6.1.2 Which configurations work?

In this section we will try to figure out how to best configure the newly introduced quantum
hyperparameters. To do this we will test all possible combinations of these configurations: we test
all options for the amplitudes per action, 4 different γ’s and correction factors ranging from 1 to 9
with steps of 0.5. The next Figures: Figure 14, Figure 15, Figure 16 and Figure 17, show this mean
squared error, as well as the number of correctly taken steps in each state, as a function of the
constant correction factor. For each Figure the number of amplitudes that is considered increments
from the previous Figure. Starting with 1 amplitude per action in Figure 14 and ending with 4
in Figure 17. The 4 different lines in each of these Figures correspond to a γ, as indicated by the
legends of the figures.

Figure 14: On the left: the mean squared error between the theoretical Q-table and the Q-table
computed by the parameterized quantum circuit, as a function of the correction factor that was
used. On the right: the number of states for which the highest Q-value computed by our model and
the highest theoretical Q-value correspond to the same action, as a function of the correction factor
that was used. These were computed when using 1 amplitude per action.

From these plots we can see that for each number of amplitudes we use there is a configuration that
has a mean squared error that approaches zero whilst also having the correct highest Q-values for
each of the eleven relevant states. This means that for each of these experiments, depending on the γ
and the correction factor, there exists a set of angles θ for which our parameterized quantum circuit
model can accurately represent the Q-values. Meaning that the agent can successfully navigate
FrozenLake. The most optimal configuration that we have discovered uses 2 amplitudes per action,
a correction factor of 3 and a γ of 0.8 (not coincidentally used in Figures: 11 and 12).

There are a few different patterns that emerge from these plots. Firstly, we notice that a higher γ
shifts the mean squared error functions slightly to the right, as the Q-values themselves scale with
γ. (see 5.4) Secondly, we notice that number of states for which the correct action has the highest
Q-value tends to decrease as γ increases, it also seems to be a very noisy plot in general. Both can
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Figure 15: On the left: the mean squared error between the theoretical Q-table and the Q-table
if it were computed by the model, as a function of the correction factor that was used. On the
right: the number of states for which the highest Q-values in the theoretical and computed Q-tables
match, as a function of the correction factor that was used. These were computed when using 2
amplitudes per action.

Figure 16: On the left: the mean squared error between the theoretical Q-table and the Q-table
computed by the parameterized quantum circuit, as a function of the correction factor that was
used. On the right: the number of states for which the highest Q-value computed by our model and
the highest theoretical Q-value correspond to the same action, as a function of the correction factor
that was used. These were computed when using 3 amplitudes per action.
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Figure 17: On the left: the mean squared error between the theoretical Q-table and the Q-table
computed by the parameterized quantum circuit, as a function of the correction factor that was
used. On the right: the number of states for which the highest Q-value computed by our model and
the highest theoretical Q-value correspond to the same action, as a function of the correction factor
that was used. These were computed when using 4 amplitudes per action.

be explained by the fact that the difference in Q-values for most actions in the same state tends to
be small, this is amplified by larger γ as they are closer to 1. Smaller differences between Q-values
are harder to train on, thus resulting in more errors when γ increases.. Lastly, we notice that all of
the mean squared error plots have a (local) minimum somewhere in this range. We also notice that
the right side of the curve flattens when fewer amplitudes are used. This is a side effect of the fact
that we use the amplitudes of quantum states to compute Q-values. If we use all amplitudes to
compute Q-values that would result in the sum of all Q-values always being constant and scaling
with the correction factor. This means that lowering one Q-value inadvertently increases another
and vice versa, when considering all amplitudes. The more amplitudes are ignored, the less this
effect applies, as more ‘excess Q-value’ can be transferred to the unused amplitudes. Which is also
why only the right part of the graph flattens, as we cannot increase the total Q-value increasing
the correction factor.

6.2 From Supervised Learning to Reinforcement Learning

In this section we will try to determine whether or not the model is stable enough to stay in a
(near)-optimal configuration once it is reached. To test this we will perform an experiment for which
we let the agent start with the model that has the same parameters as the final model after the
optimisation from Section 6.1.1, Figure 6.1. We will also use that model as a fixed target model
when applying Bellman updates to the policy. The results of this experiment are shown in figure 18.

When we start our circuit in a near optimal configuration, and keep the corresponding Q-function
as the fixed target, it seems like the circuit still diverges a little from the near optimal starting con-
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Figure 18: These results were obtained using a fixed target acquired from Figure 6.1.1 as well
as starting in that target. On the left: the progression of the mean squared error between the
theoretical Q-table and the Q-table computed by the parameterized quantum circuit, after each
parameter update. In the center: the number of states for which the highest Q-values computed by
our model and the highest theoretical Q-values correspond to the same action(s). On the right: the
cumulative reward over all episodes. All three use these model parameters: amplitudes per action
= 2, correction factor = 3, γ = 0.8

figuration. However, it does seem to stabilize more than a run without the fixed target (see Figure 11).

For the next experiment we still use Bellman updates with the same fixed target Q-function.
However, we now initialize the parameters of the circuit randomly to see if the circuits Q-function
converges to the near optimal one which use as the target Q-function. The results of this experiment
are shown in Figure 19.

Figure 19: These results were obtained using a fixed target acquired from Figure 6.1.1, but starting
with a random policy. On the left: the progression of the mean squared error between the theoretical
Q-table and the Q-table computed by the parameterized quantum circuit, after each parameter
update. In the center: the number of states for which the highest Q-values computed by our model
and the highest theoretical Q-values correspond to the same action(s). On the right: the cumulative
reward over all episodes. All three use these model parameters: amplitudes per action = 2, correction
factor = 3, γ = 0.8

From Figure 19 we notice that the Q-function seems to be moving in the right direction. However,
it seems to get stuck somewhere in the middle; perhaps there is a local minimum there that traps
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our Q-function? Another thing to point out is that the mean squared error of this Q-function seems
significantly more stable than the one in Figure 11, meaning that the fixed target does seem to
have some stabilizing effect on the training process.

7 Conclusions and Further Research

Given the results of the supervised learning experiments in Section 6.1, we can conclude that the
parameterized quantum circuit we used is expressive enough to accurately compute the Q-values
for FrozenLake. We have also proven that there are parameter configurations for which it wins the
game. Furthermore, we have found the optimal configuration for the newly introduced quantum
hyperparameters, namely: correction factor = 3 and amplitudes per action = 2.

From the hybrid supervised-reinforcement learning experiments in Section 6.2, we conclude that
fixing the target Q-function does stabilize the model to some extend. But it does not stabilize it
enough to improve upon this Q-function found by regressing towards the optimal Q-values. It is
also not stable enough to approach the (near) optimal target Q-function when initialized randomly.
Therefore the stability of the Q-function and training methods still needs to be improved.

For future research we would want to find ways to stabilize this model further. If we can get the
hybrid training techniques from Section 6.2 stabilized and if we can get the randomly initialized
circuit to converge to the near optimal parameters using a fixed target, we can start reducing our
dependence on this target network and eventually remove it completely. This would move us closer
to full-blown reinforcement learning and further away from supervised learning.
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