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Abstract 

Alzheimer’s Disease (AD) is a progressive disease characterized by loss of cognitive functions and 

autonomy, eventually leading to death. It is estimated that up to 80% of the risk for AD is determined 

by genetics of which 30% can attributed to the ε4 allele of APOE gene. GWASs are performed to identify 

additional risk factors. Understanding the mechanistic pathways through which these genetic risk factors 

are associated with AD is difficult. Here, we investigated how genetic variants influence AD associated 

aberrant behavior of proteins in Gyrus Temporalis Medialis (GTM). By investigating protein 

quantitative trait loci (pQTLs) we are looking at a molecular level that is directly involved in the 

biological processes that are supposedly affected. 

5,861 variant have been identified associated with aberrant expression of 153 proteins. The identified 

pQTL variants were compared to previously identified pQTLs and expression quantitative trait loci 

(eQTLs) in various brain regions. Eleven variants have been identified, associated with aberrant 

expression of proteins while also associated with AD risk. Additionally, we revealed that when 

individuals were grouped on homozygous genotypes of known AD risk variants, within those groups, 

distinct protein correlation structures exist. Finally, emerging, and disrupted protein co-expression 

networks associated with distinct biological processes were identified in individuals diagnosed with AD 

compared to non-demented (ND) controls.  

We showed that, if we want to understand genetic control on the brain proteome and its interaction with 

the brain transcriptome, region specific pQTL and eQTL studies are required. Furthermore, with the 

differential correlation analysis with respect to the genotypes of AD risk variants, we show that this 

approach is a promising addition to GWAS- and QTL-studies. Finally, with the emerged and disrupted 

protein co-expression networks we presented a set of proteins that might be associated with 

neurodegenerative consequences of AD and is associated with a dysregulation of metabolic processes 

and, alternative signal transduction that initiates a collaboration between proteins that is associated with 

a detrimental immune response.  

In conclusion, in this study, we linked genetic variants to proteomics in the GTM and revealed 

association between AD status and altered protein expression and correlation.  
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Abbreviations 

AD, Alzheimer’s Disease 

CHC, Cognitive healthy centenarians 

ND, Non-demented  

eQTL, expression Quantitative Trait Loci 

pQTL, protein Quantitative Trait Loci 

GWAS, Genome-wide association study 

MAF, Minor allele frequency 

LD, Linkage Disequilibrium 

TSS, Transcription start site 

GTM, Gyrus Temporalis Medialis 

Terms 

In this report, eQTL is used to describe a variant in consolidation with its respective mRNA transcript. 

eQTL variant is used when solely the variant is indicated. 

Similar to eQTL, pQTL is used to describe a variant in consolidation with the associating protein. pQTL 

variant is used to indicate solely the variant.  

Braak stage is a pathological assessment of AD progression and describes the spread of AD related 

neurofibrillary-tangles and hyperphosphorylated tau protein in different brain regions1 

Symbols 

β – BETA: The regression coefficient between log2 intensity of protein and variant. Describes the 

linear additive genetic effect of the minor allele relative to the major allele on protein expression.  

OR – Odds ratio: Association between AD status (ND = 0, AD = 1) and a variant’s genotypes.  

The genetic linear additive association of variants with protein expression is expressed in regression 

coefficient: beta (β). This is different from the association between variants and phenotype (AD vs 

control), in this case, the relationship is expressed in odds-ratios (OR).  

r – Correlation coefficient: Pearson’s correlation coefficient  

r2 – r squared: Squared Pearson’s correlation coefficient, used as threshold measure as it captures 

negative and positive co-expression.  
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Δr – Difference in correlation: The absolute difference of two Pearson’s correlation coefficients. 

Range: min = 0, max = 2 

ΔZ – Z score difference: Difference in z-scores that also follows a normal distribution. 
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1. Introduction 

Alzheimer’s Disease (AD) is a progressive disease characterized by loss of cognitive functions and 

autonomy, eventually leading to death2.  It is estimated that up to 80% of the risk of AD is determined 

by genetics3 of which 30% can attributed to the ε4 allele of APOE gene. The genetic risk and functional 

consequences of the ε4 allele of APOE have extensively been investigated4,5,6. Additionally, many 

genome wide association studies (GWASs) have been performed in order to identify additional genetic 

risk factors and to understand their role in AD etiology7,8,9,10,11. These GWASs have identified >40 

genetic variants that modify the risk of AD, however, understanding the mechanistic pathways through 

which these genetic factors are associated with AD is difficult. Many risk variants are located in non-

coding and intergenic regions12. As such, for many risk variants it is investigated whether they are also 

expression quantitative trait loci (eQTL), i.e. variants that are associated with differential expression of 

a messenger RNA transcript (mRNA). When risk variants are also eQTLs,  RNA transcripts are often 

considered synonymous for proteins: while mRNAs code for proteins, their expression levels are not 

always correlated with protein expression levels13,14,15 and eQTLs are often not protein QTLs (pQTLs)16. 

Proteins perform functions in the majority of all biological domains and are involved in many biological 

processes. Understanding how AD variants associate with protein expression might explain or elucidate 

the risk associated with the respective variants, as the biological processes in which the proteins are 

involved might be altered or disturbed. By investigating pQTLs we are looking at a molecular level that 

is directly involved in the biological processes that are supposedly affected. Concurrently, consequences 

of variants are not always reflected in differential expression. For instance, a missense variant might 

alter the amino acid sequence of protein and alter its function without changing its abundance. Here, we 

hypothesize that downstream consequences of disease-associated variants may be uncovered by 

genotype-specific co-expression networks. Under the assumption that co-expressed proteins are 

functionally related, these genotype specific co-expression networks might indicate an activation or 

deactivation of disease associated biological pathways. We tested this hypothesis on fifteen previously 

discovered AD risk variants11 and investigated supposedly downstream consequences of the respective 

variants. While genotype specific co-expression networks might elucidate the genetic risk associated 

with AD, investigating co-expression differences associated with disease state can uncover distinct 

molecular signatures associated with AD, which was also investigated in this study. The target tissue, 

subject in this study is the Gyrus Temporalis Medialis (GTM), the GTM is involved with episodic 

memory17 and is part of the temporal lobe, a region visibly affected by AD  related neurofibrillary-

tangles in a late stage of disease progression1.  The cohort, subject in this study is comprised of controls, 

and individuals representing the extreme ends of the AD spectrum. Namely, 1) individuals that have 

been diagnosed with AD at relatively early age, and, on the other end, 2) cognitively healthy centenarians 

(CHC). A previous study showed that with extreme phenotypes, the effect sizes of AD associated 

variants identified in GWASs nearly doubled18. In this study, it is expected that due to the inclusion of 
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the extreme ends of the AD spectrum, we increase power and are able to uncover genetic control of 

proteins associated with AD risk that would otherwise go unnoticed. 

Here, we investigated genetic control of variants on protein expression by means of a large-scale pQTL 

analysis, and, whether there are pQTL variants that are also associated with AD risk. Genetic control of 

AD associated risk variants on co-expression between proteins in the GTM was also investigated. 

Furthermore, we investigated protein co-expression networks specifically present and absent in 

individuals diagnosed with AD compared to non-demented (ND) controls. 

1.1 Analysis workflow 

This study consists of three major analyses that are complemented with additional smaller analyses. The 

first analysis (Fig. 1a) involves a large scale pQTL analysis (See Methods pQTL identification). For 

every measured protein in the GTM, we tested whether their abundance was associated with certain 

genetic variants. Each protein was tested against variants located 250 kilo base pairs (Kbp) up- or 

downstream the protein’s transcription start site (TSS). The pQTLs identified in this study were 

compared with previously identified brain pQTLs16 and eQTLs from twelve brain regions from GTEx19. 

For all identified pQTLs it was tested whether the variant was associated with increased genetic risk for 

AD, this was described in a separate subsequent results section. Additionally, a polygenic risk score 

(PRS) was constructed of pQTLs and tested on its predictive value of AD risk (See Appendix). The 

second major analysis (Fig. 1b) investigated whether fifteen known AD risk variants11 were associated 

with distinct protein correlations structures. This was determined by means of differential correlation of 

pairs of proteins between individuals homozygous for the AD-risk allele and those homozygous for the 

non-risk allele. When one of the homozygous alleles was not present in the population, the differential 

correlation was determined between the homozygous allele that was present and heterozygous allele. 

(See Methods Differential correlation). In the third major analysis we investigated differential 

correlation of proteins between individuals diagnosed with AD and ND controls (See methods 

Differential correlation with respect to phenotype status). For this analysis, we defined two classes of 

differential correlation. The first class (Fig 1c) includes protein pairs that are specifically co-expressed 

in AD individuals, and not in ND controls. The second class (Fig 1d) includes pairs of proteins 

specifically co-expressed in ND controls, and not correlated in AD individuals. In addition, associations 

of proteins with neuropathological features of AD were tested in the context of differential correlation. 

Lastly, differentially correlated proteins involved in co-expression networks were subject in pathway 

analyses to identify the aberrant biological pathways.  
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Figure 1 Schematic overview of the four major analysis that have been performed. a) Schematic representation of a pQTL. 

Individuals are divided based on the genotypes of an arbitrary variant and when the expression of a protein is significantly 

linearly associated with the genotype, a pQTL is identified. b) Schematic overview of differential correlation between proteins 

with respect to genotype. Again, individuals are dived based on the genotypes of an arbitrary variant and pairs of proteins 

are identified that are differentially correlated (PFDR ≤ 0.05) with respect to this variant. Note, three groups are presented in 

the schematic overview, differential correlation is only calculated between two groups. c) Schematic overview of identifying 

differential co-expression network specifically present in AD individuals but absent in control. The scheme represents the 

analysis that identifies a single pair of proteins that is differentially correlated between the respective groups. d)  Schematic 

overview of identifying differential co-expression network specifically present in controls but absent in AD individuals. The 

scheme represents the analysis that identifies a single pair of proteins that is differentially correlated between the respective 

groups. 

2. Results 

2.1 Demographics 

After quality control and pre-processing of the genetic data, 6,607 individuals were subject in the 

analyses. For the protein expression data from the GTM, 190 individuals remained. The number of 

individuals that were present in both datasets was 140 individuals (Table 1). The mean age of individuals 

in the genetic data was 68.4 (σ = 15.8) and consisted 53.7% of females. The mean age of the 190 

individuals of which protein data was available was 86.8 (σ = 13.8) and consisted 73.7% of females. 
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The individuals of the intersection had a mean age of 91.0 (σ = 14.2) and the percentage of females was 

74.3%.  

Table 1: Population characteristics  

 Genetic data Protein data intersection 

Number of individuals 6607 190 140 

Females (%) 3549 (53.7) 140 (73.7) 104 (74.3) 

Age (σ) 68.4 (15.8) 86.8 (13.8) 91.0 (14.2) 

Diagnosisa AD ND CHC AD ND CHC AD ND CHC 

N 2416 3848 343 88 53 49 67 27 46 

 

a(AD = AD cases, ND = Non-demented controls, CHC = cognitively healthy centenarians) 

2.2. Identified pQTL variants associated with abundance of 153 proteins in Gyrus 

Temporalis Medialis 

In this pQTL analysis (Fig. 1a), 140 individuals of which both genetic and protein data was available 

were subject. (See Table 1: intersection). Of the 3,556 proteins that were available, 3,427 proteins were 

tested on association with genetic variants. 129 proteins were not tested, as the gene of the respective 

protein was not located on chromosome 1-22 or the protein was not present in the Ensembl genome 

browser20. In total, 5,861 pQTL variants were significantly associated with the abundance of 153 

proteins (PFDR ≤ 0.05, Fig. 2a). As the mapping window for pQTL discovery was set on 250 Kilo base 

pairs (Kbp) down- and upstream around the TSS of the respective proteins, all variants are considered 

cis-pQTLs. Of the 5,861 pQTL variants discovered in the GTM, 2,265 (39%) pQTL variants were also 

previously found in the dorsolateral prefrontal cortex in 144 cognitively healthy individuals16 (See 

methods Summary statistics pQTL study). Next, we compared the regression coefficients (β) of the linear 

pQTL associations of the two studies. Overall, the correlation between pQTL effect sizes of matching 

pQTLs was r = 0.39 (P = 1.37 × 10-83, Fig. s1a). For the pQTL direction effects that were in the same 

direction (N = 1,591) the Pearson’s correlation coefficient between estimates was r = 0.92 (P < 5.00 × 

10-100, Fig. s1b). For pQTLs with opposite directional effects (N = 674) the Pearson’s correlation 

coefficient was r = -0.93 (P < 5.00 × 10-100, Fig. s1c). Of 153 proteins for which we identified pQTL 

variants, 60 unique proteins were associated with the shared pQTLs. Next, we tested whether the 5,861 

pQTL variants were also eQTL variants. For this, the pQTLs were clumped (R2 ≥ 0.001, MAF ≥ 0.05) 

on P-values of the pQTL association. This resulted in 154 independent pQTL variants associated with 

145 proteins. Eight proteins were lost as the minor allele frequency (MAF) of the associated pQTL 

variants were lower than 5% in the 1,000 Genomes Project reference panel21. Of the 154 pQTL variants, 

53 (34%) variants were also an eQTL variant in varying brain tissues available in the GTEx Portal19 (N 
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= 12). The most significant eQTL was rs8012 with GCDH in cerebellum (P = 1.10 × 10-52, NES = 0.93, 

Fig. 2c). rs8012 is moderate pQTL variant for GCDH in the GTM (P = 4.70 × 10-06, β = 0.29, Fig. 2b). 

Fourteen pQTLs variants were eQTL variants in all twelve brain tissues (Fig. 2d). Most eQTL variants 

were observed in the cortex (N = 45) and frontal cortex Brodmann area 9 (N = 38). Figure 2d shows all 

pQTL variants that are also a significant eQTL variant in any of the twelve brain regions. The effect 

sizes of the matching pQTLs and eQTLs were significantly correlated in all brain regions (P ≤ 6.55 × 

10-3, r ≥ 0.50). The strongest correlation of effect sizes was observed with eQTL from caudate basal 

ganglia (P = 3.50 × 10-5, r = 0.64, Fig. s2c). The weakest correlation was observed with effect sizes of 

eQTLs in the cerebellum (P = 2.77 × 10-5, r = 0.50, Fig. s2d).  
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Figure 2 Overview of significant pQTLs and comparison of pQTLs with GTEx eQTLs. a) Volcano plot of identified pQTLs 

(PFDR ≤ 0.05). X-axis represents the effect size of the pQTL association, and the y-axis represents -log10 P-value of the pQTL 

association. Labels are shown for pQTLs P ≤ 1 × 10-15. b) Boxplots of GCDH protein log2 intensity grouped on genotypes of 

rs8012. X-axis represent the genotypes of rs8012, and the y-axis represents the log2 intensity of GCDH.  c) Boxplots of 

normalized expression of GCDH in Cerebellum grouped on genotypes of rs8012 (GTEx). X-axis represent the genotypes of 

rs8012, and y-axis represent the normalized expresion of the GCDH transcript from GTEx. d)  Heatmap of all pQTL variants 

that are also an eQTL variant, squares are rendered for significant eQTLs and the color represents the -log10 P-value. The x-

axis of the heatmap are the tested brain tissues and the y-axis the protein/gene names. 
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2.3. pQTLs associated with APOE abundance also associated with increased Alzheimer’s 

Disease risk 

To identify pQTL variants associated with AD risk, we started with the pQTL set identified in the 

previous analysis (N pQTLs = 5,861, N proteins = 153). Next, we filtered the pQTLs based on the 

proteins, and selected pQTLs of which the proteins were differentially expressed in AD individuals. For 

this, we performed a differential protein expression analysis between ND controls and AD individuals. 

2,196 proteins were found differentially expressed in AD individuals (PFDR ≤ 0.05, Fig. 3b). 1,033 

proteins were upregulated, and 1,163 proteins were downregulated in AD individuals.  97 proteins were 

found differentially expressed and also to associate with pQTL variants (N pQTLs = 3,543, N proteins 

= 97, Fig. 3a). These 3,543 pQTLs variants were tested on association with AD status (see Methods 

Testing pQTL variants on association with AD risk, Fig. 3a). Eleven variants were associated with AD 

risk (PFDR ≤ 0.05). Of these, six variants were a pQTL for APOE and five variants were a pQTL for 

SIRPA. The APOE protein was upregulated in AD individuals (PFDR = 9.22 × 10-6, logFC = 0.22, Fig. 

3c). All six variants (rs429358, rs6857, rs769449, rs12972970, rs12972156 and rs34342646) had strong 

association with AD risk, (P ≤ 1.80 × 10-112, OR ≥ 2.8), with rs429358 being the strongest (P = 1.90 × 

10-171, OR=3.56). Of these six variants, rs6857 was the strongest associated with APOE abundance (P = 

2.75 × 10-6, β = 0.25, Fig. s3a). The Linkage Disequilibrium (LD) between rs429358 and rs6857 is R2 = 

0.76 (Fig. s3c). Rs429358 is a missense variant for APOE, rs6857 is a 3’-URT variant for NECTIN2, 

rs769449 is a non-coding exon variant, the remaining variants (rs12972970, rs12972156, rs34342646) 

are located in introns. In GTEx, none of the six pQTL variants are an eQTL variant for APOE in any 

tissue or brain region. SIRPA was downregulated in AD individuals (PFDR = 2.51 × 10-6, logFC = -0.20, 

Fig. 3d). SIRPA was also associated with five pQTL variants that are also associated with AD risk 

(rs6081094, rs2024867, rs2024868, rs6081105, rs754829). All variants were in LD (R2 ≥ 0.94), as such, 

had identical ORs for AD risk (OR = 1.16, P ≤ 1.30 × 10-4) and all variants are intron variants for SIRPA. 

The strongest pQTL variant was rs6081094 (P = 1.43 × 10-5, β = 0.18).  



14 
 

 

Figure 3 Overview of analysis workflow and differentially expressed proteins. a) Schematic overview of the analysis workflow 

that was used to identify pQTLs that are also associated with AD risk. This is purely a schematic overview, as such, the sizes 

of the circles in the Venn diagram are not representative for the data that that is described.  b) Volcano plot of differentially 

expressed proteins. Blue dots indicate differentially expressed proteins for which also significant pQTLs were found. Labels 

are added as APOE and SIRPA were associated with pQTL variants that are also associated with AD risk. c) Boxplot of APOE, 

the x-axis represents the diagnosis of the individuals and the y-axis represents the Log2 normalized intensity of APOE. d) 

Boxplot of SIRPA, the x-axis represents the diagnosis of the individuals and the y-axis represents the Log2 normalized intensity 

of SIRPA. 

2.4. Rs9381040 associated with 67 pairs of differentially correlated proteins 

Here, we analyzed known AD risk variants11 and whether individuals with different genotypes of the 

respective variants have distinct proteins correlation structures (Fig. 1b). The individuals subject in this 

analysis were the individuals for which genetic data and protein expression data was available (N = 140, 

See Table 1: intersection). Of the 41 known AD risk variants, after stringent selection, fifteen remained 

(See methods Differential correlation with respect to AD variants genotype). Thirteen variants remained 

with all three genotypes present, and two variants with only the homozygous genotype and heterozygous 

genotype present (Table S2). 156 pairs of proteins (PFDR ≤ 0.05, Fig 4a) were found to be differentially 

correlated. Most differentially correlated proteins were found between the homozygous genotypes of 

rs9381040 (N pairs = 67, N proteins = 112), an intergenic variant located near TREML2 gene. Of the 67 
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differentially correlated proteins pairs, DDX17 formed a pair with sixteen other proteins (Fig 4b), as 

such was found differentially correlated with sixteen proteins between homozygous rs9381040-C (NCC 

= 78) and rs9381040-T (NTT = 11). DDX17 was most differentially correlated with PKLR (Δr = 0.98, 

PFDR = 1.55 × 10-3, Fig. 4c) and CRYM (Δr = 1.23, PFDR = 7.41 × 10-3, Fig. 4d). The correlation between 

DDX17 and PKLR in individuals with the risk allele was 𝑟𝐶𝐶
 = 0.00 and correlation in individuals with 

the protective allele was 𝑟𝑇𝑇
 = 0.98. For the heterozygous allele, the correlation was 𝑟𝐶𝑇

 = 0.42. The 

correlation between DDX17 and CRYM in individuals with the risk allele was 𝑟𝐶𝐶
 = -0.28 and correlation 

in individuals with the protective allele was 𝑟𝑇𝑇
 = 0.96. For the heterozygous allele, the correlation was 

𝑟𝐶𝑇
 = 0.16. Functional enrichment analysis of the proteins differentially correlated with DDX17 showed 

enrichment for, among other terms, GO cellular component: cytosol (N = 14, PFDR = 1.90 × 10-4) and 

PFAM Protein Domains: Synuclein (N = 3, 2.06 × 10-7). All members of synuclein family (SNCA, SNCB 

and SNCG, Δr ≥ 1.15, PFDR ≤ 2.98 × 10-2) were differentially correlated with DDX17 with respect to the 

genotypes of rs9381040. Next, we investigated the differentially correlated proteins with respect to the 

genotypes of rs11218343, an intron variant for the SORL1 gene. Sixteen pairs of proteins, comprised of 

31 unique proteins, were found differentially correlated between homozygous individuals (NTT = 128) 

and heterozygous individuals (NTC = 12). E.g. in the homozygous individuals PRDX1 and MRPS27 had 

a correlation coefficient of r = -0.26, while in the heterozygous individuals the correlation coefficient 

was r = -0.98 (Δr = 0.72, PFDR = 6.02 × 10-3). Nineteen of the 31 proteins were involved in the GO 

biological process: localization (N = 19, PFDR = 7.50 × 10-3), eight proteins were involved  in GO cellular 

component: dendrite (N = 8, PFDR = 2.00 × 10-4) and neuron projection (N = 10, PFDR = 2.80 × 10-4). 

Additionally, we identified two proteins (NUB1-TUBB) that were differentially correlated with respect 

to the genotypes of four different variants, rs9381040 (Δr = 0.34, P = 2.84 × 10-9), rs7920721 (Δr = 0.50, 

P = 1.24 × 10-12), rs3740688 (Δr = 0.93 P = 3.61 × 10-13), rs4311 (Δr = 0.40, P = 2.31 × 10-9). The degree 

of overlap between the high-correlation alleles was relatively low (Fig s4). 
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Figure 4 Overview of differentially correlated proteins with respect to AD variants. a) Network graph of differentially 

correlated proteins and their respective variants. Blue nodes are proteins, an edge between two proteins means that they are 

differentially correlated with respect to the variant they are connected with (orange square). Size of nodes is determined by the 

degree and labels are shown for nodes with degree ≥ 4. b) All proteins DDX17 is differentially correlated with, with respect to 

rs9381040. The x-axis represents the Pearson’s correlation coefficient between the protein pairs for individuals with the 

respective genotypes. The y-axis represents each protein pair and the color of dots indicates the different genotypes. The size 

of the dot is determined by the -log10 p-value c) Scatter plot of the intensities of DDX17 (x-axis) and PKLR (y-axis), individuals 

are separated on rs9381040 genotype and colored accordingly. For each genotype, a linear regression line is drawn. d) Scatter 

plot of the intensities of DDX17 (x-axis) and CRYM (y-axis), individuals are separated on rs9381040 genotype and colored 

accordingly. For each genotype, a linear regression line is drawn. 
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2.5. AD specific co-expression network associated with signal transduction and immune 

system 

Here, we performed a differential correlation analysis with respect to AD status. Specifically, we 

investigated proteins that were co-expressed in AD individuals and not in ND controls (See methods 

Differential correlation with respect to phenotype status, Fig. 1c). The individuals subject in this 

analysis were the individuals for which protein data was available (N=190, See Table 1: Protein data). 

CHC with Braak stage ≥ 4 were exclude from this analysis (N=13). The remaining CHC were considered 

ND controls. As a result, 177 individuals remained, 88 individuals diagnosed with AD and 89 ND 

controls. Pairwise correlations between all available proteins were separately calculated for the AD and 

ND groups. In total, 345 pairs of proteins were identified that were significantly more correlated in the 

AD group (r2 ≥ 0.65) compared to the ND group (r2 ≤ 0.20, PFDR ≤ 0.001). The 345 pairs of proteins were 

comprised of 151 unique proteins. The most differentially correlated protein pairs were HSPB1-GNA13 

(Δr = 0.85, PFDR = 3.37 × 10-12, Fig. 5a) and TLN1-EEF1A1 (Δr = 0.93, PFDR = 3.87 × 10-11, Fig. 5a). 

TLN1 was found differentially correlated with the most proteins (N = 26). HSPB1 and ITGB1 were both 

found differentially correlated with 25 proteins. These three proteins shared thirteen proteins with which 

they were differentially correlated (Fig. 5b). Although 345 proteins pairs were found significantly 

differentially correlated, pairwise associations between all 151 proteins in the ND individuals were 

relatively low with a median r2 of 0.03 (Fig. 5c) compared to the association in the AD individuals where 

all protein pairs had a median r2 of 0.41 (Fig. 5d) Additionally, the first principal component of the 151 

proteins in all individuals which explained 97% of the variance was associated with the Braak stage (r 

= 0.75, P = 5.10 × 10-33) and age (r = -0.28, P = 1.91 × 10-4). Of the 345 differentially correlated protein 

pairs, 316 pairs also showed an interaction with Braak stage (PFDR ≤ 0.05) as the linear association 

between proteins changed with increasing Braak stage (Fig s6). Pathway analysis with String (v11)22 

revealed enrichment for, among others, synaptic vesicle cycle (N = 13, P = 9.83 × 10-13), immune system 

(N = 29, PFDR = 3.24× 10-6), innate immune system (N = 18, PFDR = 9.17 × 10-5) and signal transduction 

(N = 38, PFDR = 8.39 × 10-8)  for KEGG pathways. Signaling by receptor tyrosine kinases (N = 25, P = 

2.25 × 10-12) and L1CAM interactions (N = 13, P = 3.48 × 10-09) were among enriched REACTOME 

pathways. Four proteins were also associated with pQTL variants. Rs2854248, rs17134970, rs7960152 

and rs950798 were found to be associated (PFDR ≤ 0.05) with the abundance of H2BFS, PFKP, ANKS1B 

and PRKCG, respectively.  
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Figure 5 Overview of proteins specifically correlated in AD individuals. a) Left figure, log2 intensity (x-axis) of GNA13 and 

HSPB1 (y-axis), with individuals divided in controls (ND, Purple) and AD individuals (yellow). Right, log2 intensity (x-axis) 

of TLN1 and EEF1A1 (y-axis), with individuals divided in controls (ND, Purple) and AD individuals (yellow). b) network 

graph of all the proteins that are differentially correlated with ITGB1, HSPB1 and TLN1, including those respective proteins. 

c) Pairwise squared Pearson’s correlation of the 151 unique proteins in the controls. d) Pairwise squared Pearson’s correlation 

of the 151 unique proteins in the AD individuals.  
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2.6. Co-expression between proteins involved in metabolism disrupted in AD individuals 

Here, a similar analysis, with the same individuals was performed as described in the previous section. 

However, proteins were investigated that were co-expressed in the ND control group and not correlated 

in the AD group (Fig. 1d). In total, 178 differentially correlated pairs were identified involving 111 

unique proteins. The most significant differentially correlated protein pairs were OXR1-SCRN1 (Δr = 

1.03, PFDR = 1.23 × 10-12, Fig. 6a) and OXR1-ST13 (Δr = 0.72, PFDR = 2.58 × 10-11, Fig. 6a). FKBP4 was 

co-expressed with 24 proteins in the ND group while not in the AD group. OXR1 was also co-expressed 

with 24 proteins in the ND group, which was also not observed in the AD group (Fig. 6c). Of the 178 

differentially correlated protein pairs, 159 pairs also showed an interaction with Braak stage (PFDR ≤ 

0.05) as the strength of linear association between proteins decreased with increasing Braak stage (Fig 

s7). The first principal component (97% of variance) of the 111 proteins of all 177 individuals was 

correlated with Braak stage (r = 0.65, P = 2.48× 10-22) and age (r = -0.16, P = 0.03). The 111 proteins 

were enriched, among other terms, for metabolism pathway of REACTOME (N = 35, P = 1.14 × 10-07) 

and KEGG (N = 32, P = 1.34 × 10-07). For five proteins, pQTL variants were identified. Rs13027631, 

rs77916722, rs11967589, rs3118634 and rs9920103 for TUBA1A, CD47, TUBB, PTPA and IDH3A, 

respectively.  

 

Figure 6 Overview of proteins specifically correlated in control. a) Log2 intensity (x-axis) of OXR1 and SCRN1 (y-axis), with 

individuals divided in controls (ND, Purple) and AD individuals (yellow). b)  Log2 intensity (x-axis) of OXR1 and ST13 (y-

axis), with individuals divided in controls (ND, Purple) and AD individuals (yellow). c) Network graph of all the proteins that 

are differentially correlated with OXR1 and FKBP4, including those respective proteins. Colors highlight the enriched 
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REACTOME pathway the respective proteins belong to. If a protein was involved in multiple pathways, then, the node is 

colored according to the most significant pathway.  

3. Discussion 

In the current study, we performed a large scale pQTL analysis in the GTM. We identified 153 proteins 

that show aberrant expression associated with 5861 variants. Of these variants, eleven were associated 

with increased AD risk. Among them, the well-known rs429358 variant which is associated with a 3x 

increase of AD risk11. Here, we show that rs429358 is also associated with increased expression of 

APOE in the GTM We also performed a differential correlation analysis of proteins with respect to 

fifteen known AD variants and showed that for these variants the correlation structure between certain 

proteins is distinct in individuals with different genotypes. In addition, we showed that between controls 

and individuals diagnosed with AD also distinct correlations structures between proteins exist. As such, 

we have identified disrupted co-expression networks in AD individuals and also identified the 

emergence of new co-expression networks in AD individuals.  

In this study, we compared the identified pQTLs with previously identified pQTLs in the 

dorsolateral prefrontal cortex16. Robins et al,16 included only cognitively healthy individuals, in contrast, 

our population consisted of ND controls, CHC and individuals diagnosed with AD. CHC as well as AD 

patients are likely enriched with genetic variants that are involved in the maintenance/disruption of their 

cognitive health23, as such, our population includes more extreme phenotypes with respect to the AD 

spectrum. As a consequence, different pQTLs variants might have been identified. As both studies had 

divergent designs, different analyses have also been performed with different settings. In addition, brain 

regions have distinct protein expression profiles24. Despite all these the differences, of the 5861 pQTLs 

that we have identified in GTM, 2265 (37%) were also found in dorsolateral prefrontal cortex.  

Additionally, we investigated whether pQTL variant in GTM are also eQTL variants in various 

brain regions (cerebellum, cortex, nucleus accumbens, caudate, cerebellar hemisphere, frontal cortex 

(BA9), hypothalamus, putamen, hippocampus, anterior cingulate cortex (BA24), amygdala and 

substantia nigra). Of an independent set of 154 pQTL variants, 53 (34.4%) variants were also an eQTL 

variant for the transcript of the respective protein.  This corroborates the finding that genetic influence 

on mRNA and protein expression is distinct16. Most overlap between pQTL variants and eQTL variants 

was found with the cortex.  As the temporal lobe is part of the cortex, it is not surprising that most 

overlap was found with this region. A recent study25 observed decreasing correlation between mRNAs 

and their protein counterparts associated with increasing age in brains of  Nothobranchius furzeri. The 

decrease in correlation is mainly attributed to decreased activity of post‐transcriptional mechanisms. As 

such, age might also affect the degree of overlap found between pQTLs and eQTLs.  

In this study, we identified 2196 differentially expressed proteins in AD cases. For 97 

differentially expressed proteins, significant pQTLs were found. In an independent population, we tested 
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whether these pQTL variants can also be directly linked to AD risk. The reasoning being, that a pQTL 

variant associated with the expression of a protein with the same directional effect as was observed with 

differentially expression analysis might also, in part, explain genetic AD risk. This was only true for 

eleven pQTL variants, associated with two proteins (APOE and SIRPA). As AD is known for its genetic 

and clinical heterogeneity26,27, identifying evidence for AD associated genetic control on the expression 

of proteins with relatively small and independent populations is difficult. Nevertheless, to the best of 

our knowledge, this is the first study in which rs429358, a variant associated with 3x increased risk for 

AD11, has been associated with aberrant expression of APOE in any brain tissue. Interestingly, rs429358 

was not found significantly associated with APOE in dorsolateral prefrontal cortex16 (P = 0.51). In 

addition, rs429358 is also not a significant eQTL in any brain tissue for the APOE transcript. Finally, it 

should be noted that SIRPA was downregulated in AD individuals, while the AD risk genotype of the 

identified pQTLs were associated with increased expression of SIRPA. 

DDX17 (DEAD-Box Helicase 17) is thought to play central role in functional consequences of 

rs9381040, as it was differentially correlated with sixteen protein. DDX17 acts as a transcriptional 

coregulator for various target genes28, is involved in the splicing machinery and splicosome29 and plays 

a role in the regulation of alternative splicing30,31. DDX17 has also been found to be involved innate 

immunity as it acts on viral infections by facilitating microRNA (miRNA) processing32. DDX17 is a 

master regulator for the estrogen signaling pathway and plays a major role in the androgen signaling 

pathway28. The androgen signaling pathway has been linked to protective actions against 

neurodegenerative diseases as androgens have been found to negatively regulate β-amyloid 

accumulation33.  In addition, androgen is tightly connected with the innate and adaptive immune system 

as it plays a role in regulating inflammatory response, development and  activation of B cells and T 

cells34. Additionally, a central role for TREML2 (Triggering Receptor Expressed On Myeloid Cells Like 

2) also seems likely as rs9381040 located near this gene, TREML2 was not measured in this study.  

TREML2 is located on the human TREM gene cluster35 together with TREM1, TREM2, TREML1 and 

TREM3.  In response to inflammatory factors, TREML2 increases the expression of neutrophils and 

macrophages associated with immune responses36.  As TREML2 is known to initiate immune response, 

and DDX17 and androgen are also tightly connected with immune responses, we hypothesize that the 

protective consequences of rs9381040 results from altered behavior of androgen and DDX17 and is 

potentially initiated through immune related responses by TREML2. However, how TREML2 and 

DDX17 are functionally associated in relation to protective action against AD should be further 

elucidated.  

In this study we identified 345 pairs proteins that were not correlated in ND controls and co-

expressed in individuals with AD. TLN1 and ITGB1 were found differentially correlated with 26 and 25 

proteins, respectively. As such, it is expected that these proteins may play important roles in the 

maintenance and disruption of protein networks in AD individuals. The protein TLN1 (Talin 1) is located 
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between cells in the extracellular matrix and is involved in cell-cell adhesion37. TLN1 is involved in 

integrin signaling and acts as adaptor protein to promote integrin-mediated signal transduction38. TLN1 

is of interest in cancer and hematological disease research as previous studies have shown that a 

dysregulation of TLN1 is associated with cell disease states involving spreading, migration, and cell 

survival37. ITGB1 (Integrin Subunit Beta 1) is a receptor protein for IL1B39 (Interleukine-1 beta) which 

is known to be involved in neuroinflammation and AD40. ITGB1 also plays an important role in immune 

response41.  Among the enriched pathways for the AD specific co-expression network, were, among 

many others, the REACTOME pathways immune system (N = 29, PFDR = 3.24× 10-6) and innate immune 

system (N = 18, PFDR = 9.17 × 10-5). Additionally, many proteins involved in signal transduction were 

found (N = 38, PFDR = 8.39 × 10-8). Altogether, our results suggest that the AD specific co-expression 

network might be caused due to alternative signal transduction, and, as a consequence might initiate 

alternative immune response associated with AD pathology. As such, investigating the signal 

transduction proteins presented in this study in more detail (e.g. in vitro and in vivo), might result in 

more insight in regard to immune related responses and AD.  

Besides emerging co-expression networks in AD, we also observed disrupted co-expression 

networks in AD individuals. Central proteins herein were FKBP4 and OXR1, as both proteins were 

differentially correlated with 24 proteins. FKBP4/FKBP52 (FKBP Prolyl Isomerase 4) is part of the 

FKBP (FK506 binding protein) immunophilins family. Members of the FKBP family are known to 

regulate tau and amyloid beta42. Additionally, FKBP4/FKBP52 is involved in the translocation of 

glucocorticoid receptors into the nucleus and glucocorticoids are associated with an upregulation of tau 

and amyloid beta43. OXR1 (Oxidation Resistance 1) was found differentially correlated with 24 proteins. 

In mice, Oxr1 is found to play an important role in controlling oxidative stress resistance of neuronal 

cells44. In absence of Oxr1, mice showed cerebellar neurodegeneration, while, with an overexpression, 

the neurons in mice were less susceptible to exogenous stress. Interestingly, OXR1 was not found 

differentially expressed in AD individuals (logFC = 0.09, PFDR = 0.08). Oxidative stress is known to 

increase with age and is known to be involved in neurodegeneration in AD45. Additionally, of the 24 

proteins that were differentially correlated with OXR1, eleven were involved in metabolism.  

A strength of this study is the inclusion of individuals with extreme phenotypes, such as 

individuals with increased genetic risk for AD and AD escapers; as such, power and effect size are 

increased for AD specific variants18. Also, it should be noted that an AD specific signature may be 

underlying some of our pQTL results, specifically in regard to variants associated with AD risk. 

Furthermore, pQTL variants were compared to synonymous eQTL variants in twelve brain regions, due 

to the brain region wide comparison we revealed shared genetic control of transcripts between 

investigated brain regions. In this study, we investigated differential correlation of proteins between 

individuals with different genotypes of AD associated variants. Although this is an unorthodox approach 

of investigating genetic consequences, a similar approach, including software was proposed and 
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described in 201546. Adoption and widespread use never occurred for the approach. Our study shows 

promising results and might present novel research avenues for investigating genetic consequences of 

AD risk variants. However, the approach is not without its flaws.  For instance, using this approach on 

a proteome- and genome-wide level is not feasible, as the number of tests is depended on the number of 

pair-wise tests between proteins times the number of variants. As such, a hypothesis driven approach is 

required, as was done in this study. Additionally, differential correlation can only be calculated between 

two groups, in general when investigating variants, three groups are present. Lastly, biological intuition 

in regard to this approach requires additional thought, as adoption lacks, biological interpretations of 

corresponding results are also virtually absent. Therefore, in silico results generated with this approach 

are ideally complemented with in vitro experiments, which could develop a better intuition of results 

generated with a differential correlated analysis.   

4. Conclusion 

In this study, we linked genetic variants to proteomics in the GTM and revealed association between 

AD status and altered protein expression and correlation.  

 We presented evidence of genetic control on protein expression in the GTM and were able to 

link eleven variants, associated with aberrant expression of APOE and SIRPA, with AD risk. Among 

these variants, was a pQTL for APOE, that is also part of the notorious ε4 allele of APOE (rs429358). 

We showed that, if we want to understand genetic control on the brain proteome and its 

interaction with the brain transcriptome, region specific pQTL and eQTL studies are required, taking 

into account age and ideally with harmonized analyses, a consistent population and corresponding brain 

regions of eQTL and pQTL analyses. 

 Furthermore, with the differential correlation analysis with respect to the genotypes of AD risk 

variants, we show that this approach is a promising addition to GWAS- and QTL-studies, as it 

highlighted potential proteins functionally involved in downstream consequences of disease associated 

risk variants. In contrast to GWAS- and QTL-studies that point towards the closest gene or associated 

eQTLs/pQTLs as functional culprit, this approach expands on that and considers disrupted correlation 

structures associated with the respective variant. As such, the central regulatory protein DDX17 is 

hypothesized to play in important role in the functional consequences of rs9381040. 

 Finally, with a differential correlation analysis with respect to AD status we identified the 

emergence of protein networks functionally enriched for signal transduction and the immune system, 

among other functions. A disruption of a protein network was observed that was functionally enriched 

for metabolism, among other functions. In conclusion, we presented a set of proteins that might be 

associated with neurodegenerative consequences of AD and is associated with a dysregulation of 
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metabolic processes and, alternative signal transduction that initiates a collaboration between proteins 

that is associated with a detrimental immune response.  

5. Materials and Methods 

5.1. Gyrus Temporalis Medialis Proteomics data 

The proteomics data from the GTM was generated with the sequential window acquisition of all 

theoretical mass spectra (SWATH‐ MS) method with a data independent acquisition (DIA) approach. 

MaxQuant software47 was used for spectrum annotation and relative protein quantification. The Uniprot 

human reference proteome48 was used as reference. In total, 237 individuals were included, and 4,829 

proteins were measured. 102 individuals were diagnosed with AD, 62 individuals were CHC and 73 ND 

controls were included.  

5.2. Amsterdam Genetic data (AGD) 

Individuals indicated as AD individuals were clinically diagnosed probable AD patients from the 

Amsterdam Dementia Cohort49 (N=2668) or pathologically confirmed AD patients from the Netherlands 

Brain Bank50 (N=436).  The population consist of 1) 1779 individuals aged 55-58 years from the 

Longitudinal Aging Study Amsterdam51 (LASA), 2) 1206 individuals with subjective cognitive decline 

that visited the memory clinic of the Alzheimer center Amsterdam and were labelled cognitively normal 

after extensive examination, 3) 40 healthy individuals from the Netherlands Brain Bank, 4) 201 

individuals from the twin study52 and 5) 444 individuals from the 100-plus Study cohort23. The 100-plus 

Study cohort consist of Dutch-speaking individuals who have provided official evidence for being 100 

years and older and self-reported to be cognitively healthy. The self-reported cognitive health was 

confirmed by the respective family members and their partners. For this study, a total of N=358 CHC 

and N=86 partners of centenarian’s children. 

The Medical Ethics Committee of the Amsterdam UMC (METC) approved all studies. All participants 

and/or their legal representatives provided written informed consent for participation in clinical and 

genetic studies. 

5.3 Summary statistics pQTL study 

The pQTL summary statistics of Robins et al.16 were obtained from http://brainqtl.org. The pQTLs were 

identified in 144 healthy individuals that were originally subject in the ROSMAP study. The population 

consisted of 63.1% females and the median age was 86.5 with minimum of 67.4 and maximum of 102.7. 

The protein expression data is from the dorsolateral prefrontal cortex. Proteins were tested against 

variants that reside within 50 (Kbp) up- and downstream of the TSS of the respective proteins. In the 

available data, pQTL summary statistics of 7,901 proteins and 2,599,383 variants were presented. In 

total, 4,199,577 pQTLs were present.  Proteins were defined by their Uniprot accession IDs and variants 

were defined by their GRCh37/hg19 genomic coordinate. P-values were corrected for multiple tests with 

http://brainqtl.org/
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Bonferroni and FDR separately. With Bonferroni, 2,955 (PBONF ≤ 0.05) significant pQTLs were 

identified and, with FDR 28,211 (PFDR≤ 0.05) significant pQTLs were identified. 

5.4. eQTLs from GTEx 

The eQTL data was accessed through the Application programming interface (API) of GTEx19. In total, 

twelve brain regions were tested. Each brain region had varying numbers of individuals available with 

genotype and RNA-seq data (Table S1). The total population is comprised 395 individuals of which 

72% was male. GTEx does not report exact ages for the individuals but has specified the following age 

ranges, 20-29 (N = 8), 30-39 (N = 10), 40-49 (N = 36), 50-59 (N = 119), 60-69 (N = 200) and 70-79 (N 

= 22).  

The eQTL statistics received from GTEx contains a normalized effect size (NES), which is the slope of 

the linear regression and it is the effect to the alternative allele (ALT) relative to the reference allele 

(REF) according to human genome reference GRCh38/hg38. The data also contains nominal p-values 

of the eQTL association and a p-value threshold. The p-value threshold is determined by PFDR ≤ 0.05 

but is translated to a nominal p-value. Variants are defined by their reference SNP identification number 

(rs IDs). Transcripts are defined by their gene symbol and an Ensembl transcript ID.  

5.5. Gyrus Temporalis Medialis Proteomics Quality Control and Pre-processing 

Quality control was performed on a sample basis and protein basis separately. First, samples with more 

than 34% of low-quality (Q ≥ 0.01) peptides were excluded from the analyses (N = 35). After removing 

low-quality samples, a reference peptide intensity distribution was calculated of the remaining samples 

by averaging all peptide intensity distributions. Distances between every individual peptide intensity 

distribution and the reference distribution was calculated with Kolmogorov–Smirnov test. Sample 

distributions with a greater distance (D) than 0.04 from the reference distribution were excluded from 

the analyses (N = 1). For replicates, lower quality samples were determined with a paired t-test on the 

quality measures. The lower quality samples were removed, as such, eleven replicates were excluded. 

The proteomics data was generated in bottom-up fashion, meaning, that peptides were measured and 

used to estimate the expression of their respective protein. When peptides that make up a single protein 

had a low-quality in more than 10% of the samples, the respective protein was excluded. Proteins were 

represented by the sum of intensities of their respective peptides. Finally, the protein intensities were 

log2 transformed to ensure normality of the protein intensity distributions. The final proteomics dataset 

consists of 3556 proteins and 190 individuals.  

Next, batch effects were removed during the pre-processing step, as these effects have no biological 

meaning. First, age, sex, Braak stage I-VI, post-mortem delay (PMD), APOE genotype (log2 Polygenic 

Risk Score) and batch were tested on association with the variation in the proteomics data. This was 

done with the R-package variancePartition53,54. VariancePartition utilizes a mixed linear model to 

determine the percentage of variation that is associated to variables. Among the tested variables 
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substantial proportions of the variation was explained by age, Braak stage and batch. The combat 

function from the R-package sva55 was used to remove the variation associated with batch from the 

protein intensity data. 

5.6. Amsterdam Genetic data processing 

Genetic variants were determined with standard genotyping and imputation methods, additionally, 

established quality control methods were applied. Genotyping of individuals was performed using 

Illumina Global Screening Array (GSAsharedCUSTOM_20018389_A2). High-quality genotyping in 

all individuals was used (individual call rate > 98%, variant call rate > 98%), individuals with sex 

mismatches were excluded and departure from Hardy–Weinberg equilibrium was considered significant 

at P < 1×10-6. Genotypes were prepared for imputation using provided scripts (HRC-1000G-check-

bim.pl)56, which compares variant ID, strand and allele frequencies to the Haplotype Reference Panel 

(HRC v1.1, April 2016)57. All autosomal variants were submitted to the Sanger imputation server 

(https://imputation.sanger.ac.uk). The server uses MACH to phase data. Imputation to the reference 

panel (HRC v1.1, April 2016) was performed with PBWT. 3,670 population subjects and 3,106 AD 

cases passed quality control. Prior to analysis, we excluded individuals of non-European ancestry based 

on 1000Genomes clustering and individuals with a family relation based on identity-by-descent > 0.2. 

This led to the exclusion of 205 population controls and 152 AD cases with non-European ancestry and 

217 population controls and 100 AD cases with a family relation, leaving 4,191 population subjects and 

2,416 AD cases for the analyses (total sample size = 6607).  

5.7. pQTL identification 

Genetic variants associated with protein expression were identified with Plink (v2.00a2LM)58. For the 

association, we used linear models with genotype dosages as predictors for protein expression, assuming 

additive genetic effects. Analyses were corrected for population substructure using the first five principal 

components (See supplements pQTL linear regression model). Resulting effect-sizes (β) were calculated 

with the minor allele relative to the major allele in the investigated population. Association P-values 

were corrected for multiple tests with False Discovery Rate (FDR) and significance was assumed when 

PFDR ≤ 0.05. The analyses were restricted to variants with a MAF higher than 5% and variants located 

250 Kbp down- and upstream of the TSS of the respective proteins. Four window sizes were tested (50 

Kbp, 250 Kbp, 500 Kbp and 1 Mb, Fig. s5). With 250 Kbp, we reduced to total number of tests, while 

still capturing most of pQTLs. Genomic locations of the TSSs were acquired with biomaRt (v2.42.0)59,60. 

The retrieved genomic locations of the TSSs were for genomic build GRCh38/hg38. The liftOver R-

package (v1.10.0)61,62 was used to lift over the genomic coordinates to build GRCh37/hg19, as the 

genotype files were based on this genomic build.  An independent set of pQTLs in linkage equilibrium 

was derived using LD-based clumping. Variants located near each other are often in linkage 

disequilibrium, which means that they are correlated. Variants that are correlated have similar 

associations with the same protein. With clumping, only the strongest associating variant remains within 

https://imputation.sanger.ac.uk/
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a certain window. We clumped all variants for each protein individually on R2 ≥ 0.001 and MAF ≥ 0.05. 

Clumping was done with Plink (v1.90b4.6)58 European individuals from the 1,000 Genomes Project 

reference panel21 was used to calculate the linkage disequilibrium between variants. 

5.8. Testing pQTL variants on association with AD risk 

To identify pQTL variants that are also associated with AD risk, we first performed a differential 

expression analysis on protein intensities between ND controls and AD cases. This analysis was 

performed on the Gyrus Temporalis Medialis Proteomics data, on 141 individuals, 88 individuals 

diagnosed with AD and 53 ND controls. CHC (N = 53) were excluded from this analysis. Differentially 

expressed proteins were identified with a moderate t-test63 using the R-package limma64. P-values were 

FDR corrected for multiple tests. Significance was assumed PFDR ≤ 0.05.  

Next, for every significant differentially expressed protein, it was checked whether the previous pQTL 

analysis yielded a significant association with a genetic variant. When a differentially expressed protein 

was also associated with a pQTL variant, the respective pQTL variant was tested on association with 

AD risk. This was done with the Amsterdam Genetic data (AGD) population (N = 6,479) comprising of 

2,361 AD cases and 4,118 ND controls. To have an independent population, individuals from AGD that 

were used to identify pQTLs were excluded (N = 128). As such, there was no overlap of individuals 

between the population that was used for the differential expression analysis and the population that was 

used for the genetic association tests. To test the association of pQTL variants with AD status, a logistic 

regression model in R (v3.6.3) was used with AD status as discrete outcome variable (ND = 0, AD = 1) 

and the pQTL variant’s genotypes as predictor variable. The model was adjusted for population 

substructure (principal component 1-5). P-values were adjusted for multiple tests with FDR and 

significant association was assumed with PFDR ≤ 0.05. 

5.9. Temporalis gyrus medius and dorsolateral prefrontal cortex pQTL comparison 

For all the significant pQTLs we checked whether they previously have been found in the dorsolateral 

prefrontal cortex. For this, we used the pQTL summary statistics from Robins et al 16 made available on  

http://brainqtl.org.  Proteins were matched on UniProt48 accession IDs and variants were matched on 

genomic locations. From both studies, only pQTLs were selected that were FDR significant at PFDR ≤ 

0.05. Of matching pQTLs, the directional effect of the pQTLs were compared by means of calculating 

the Pearson’s correlation coefficient between effect sizes in R (v3.6.3)65 with the cor.test function. 

5.10. pQTL and eQTL comparison 

For all the significant pQTLs we checked whether they were also an eQTL variant. This was done with 

eQTL data from twelve brain tissues (Table S1) from GTEx (v8)19. Brain region wide and brain region 

specific associations of pQTLs from the GTM with eQTLs were investigated. Every gene - variant pair 

was queried from the GTEx API for the twelve brain tissues. For this, the get_eQTL_bulk function 

was used from the R-package CONQUER (v1.0)66, which requires tissue ID, gene symbol and RS ID to 

http://brainqtl.org/
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be supplied. The P-value thresholds supplied by GTEx were used to determine significance of the tested 

eQTLs. The directional effects of pQTLs with their synonymous eQTLs were compared by calculating 

the Pearson’s correlation coefficient between effect sizes with the cor.test function. 

5.11. Differential correlation 

We investigated whether correlation between proteins is subject to change when comparing two distinct 

groups. Differential correlation with respect to phenotype status was investigated, and differential 

correlation with respect to AD variants genotype was investigated. As both analyses require separate 

approaches, both are separately discussed in subsequent sections. However, the statistical procedure to 

determine differential correlation is shared, as such, that is discussed here.  

First, Pearson’s correlation between a pair proteins is calculated separately for the groups of interest. 

Assuming two groups x and y results in two correlation coefficients 𝑟𝑥 for group x and 𝑟𝑦 for group y. 

Next, the correlation coefficients are translated to z-scores. This is done with the Fisher z-

transformation67 (Eq. 1). 

𝑧 = 𝑎𝑡𝑎𝑛ℎ(𝑟) =  
1

2
 ln (

1+𝑟

1− 𝑟
)  (1) 

Then, the difference between z-scores 𝑧𝑥 and 𝑧𝑦 can be calculated with equation 2. Where 𝑣𝑎𝑟(𝑟) is 

calculated by  
1

𝑛−3
 . Here, 𝑛 is the sample size of the respective groups.  

∆𝑧 =  
(𝑧𝑥− 𝑧𝑦)

√𝑣𝑎𝑟(𝑟𝑥)+ 𝑣𝑎𝑟(𝑟𝑦)

 (2) 

As ∆𝑧 is normally distributed, a two-sided P-value for the differential correlation between each pair of 

proteins can be calculated.  

5.12. Differential correlation with respect to AD variants genotype 

In this analysis, the intersect of individuals from AGD and GTM proteomics were subject, 67 AD 

individuals, 27 ND controls and 46 CHC. With these individuals we performed differential correlation 

analysis of proteins with respect to known AD variants. As starting point 41 variants11 that are known 

risk variants for AD risk were considered. From the 41 variants we selected variants where each 

available genotype was at least present in 10 individuals. The minimal number of individuals was set to 

N = 10, as this reduces disparity between population sizes. Additionally, small population sizes increase 

the chance on false positives. When all three genotypes were present, the differential correlation was 

calculated between the two homozygous genotypes. In this case, the correlation between proteins with 

the heterozygous genotype is only reported. When only two genotypes were present, the differential 

correlation was determined between the homozygous genotype and heterozygous genotype. For the 

variants, the differential correlation method was implemented in R (v3.6.3)65. The p-values were FDR 
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corrected for total number of tests (94,811,850, i.e. differential correlation was calculated for all possible 

pairs of proteins, fifteen times). Significance was assumed at PFDR ≤ 0.05.  

5.13. Differential correlation with respect to phenotype status 

The individuals subject in this analysis were the individuals for which GTM proteomics data was 

available. CHC with Braak stage ≥ 4 were exclude from this analysis. The remaining CHC (Braak stage 

≤ 3) were considered ND controls. Altogether, this analysis involved 177 individuals, 88 AD individuals, 

and 89 ND controls. All 3,556 proteins measured in the GTM were pairwise tested for differential 

correlation in ND controls and AD individuals. Here, the ddcorAll function of the R-package 

DGCA68 (v1.0.2) was used, which calculates differential correlation as described in the previous section 

(See methods Differential correlation). P-values were adjusted for multiple tests with FDR. Two classes 

of differential correlation were defined that intuitively have different biological meanings. The first class 

includes protein pairs that are specifically co-expressed in AD individuals, and not in controls (r2 ≤ 0.20 

in controls, r2 >0.65 in AD individuals). As such, this reveals co-expression between proteins that 

emerges in AD individuals. The second class includes pairs of proteins specifically co-expressed in 

controls, and not correlated in AD individuals (r2 > 0.65 in controls, r2 ≤ 0.20 in AD individuals). This 

reveals co-expression between proteins that gets disrupted in AD individuals. Here, R-squared was used 

as threshold measure as it captures co-expression in positive and negative direction simultaneously.  

5.14. Braak interaction models and principal component analysis 

The interaction of Braak stage with the linear associations between the differentially correlated proteins 

pairs were tested. For this, a linear regression model was utilized with the log2 intensity of one protein 

(Py) as outcome variable and the log2 intensity of the other protein (Px) and Braak stage (0-6) as predictor 

variables and an added interaction term between the predictor protein (Px) and Braak stage (Eq. 3).  

𝑃𝑦 =  𝛽0 + 𝛽1𝑃𝑥 + 𝛽2𝐵𝑟𝑎𝑎𝑘 + 𝛽3𝑃𝑥𝐵𝑟𝑎𝑎𝑘 (3) 

Where, βi are the regression coefficients. Identified protein networks were tested on association with 

Braak stage and age. For this, principal component analyses were performed with the prcomp function 

on the intensities of the respective proteins. The first principal component was tested on association with 

Braak stage and age by calculating the Pearson’s correlation coefficient with the cor.test function. 

Pathway enrichments were performed on the webserver of String (v11)22. 
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Supplements 

pQTL linear regression model 

For identifying significant pQTLs, the generalized linear model (GLM) from Plink (v2.00a2LM)58 is 

used. Which is the primary association analysis method in Plink for quantitative phenotypes. The model 

applied on our data is as follows: 

𝑃𝒚 =  𝛽0𝐺 + 𝛽1𝑃𝐶1 + ⋯ +  𝛽5𝑃𝐶5 + 𝑒 

Where: 

Py is the log2 intensity for the individuals of respective protein (quantitative phenotype).  

G are the dosages for the individuals of the respective variant that is tested. 

PCi are the principal components for the individuals of the population substructure.  

e is an error term that gets minimized with least squares minimization. 

Table s1: Genotyped and RNAseq sample sizes from GTEx for all twelve investigated brain regions 

Tissue # RNASeq and Genotyped samples  # RNASeq Samples 

Cerebellum 209 241 

Cortex 205 255 

Nucleus accumbens (basal ganglia) 202 246 

Caudate (basal ganglia) 194 246 

Cerebellar Hemisphere 175 215 

Frontal Cortex (BA9) 175 209 

Hypothalamus 170 202 

Putamen (basal ganglia) 170 205 

Hippocampus 165 197 

Anterior cingulate cortex (BA24) 147 176 

Amygdala 129 152 

Substantia nigra 114 139 

Table S2: AD risk variants subject in differential correlation analysis 

RS ID Chromosome Genomic 
location 

Closest Gene Genotypes 

rs6733839 2 127892810 BIN1 C/C 
43 

C/T  
71 

T/T 
26 

rs9381040 6 41154650 TREML2 C/C 
78 

C/T 
51 

T/T 
11 

rs1859788 7 99971834 PILRA A/A 
13 

A/G 
58 

G/G 
69 
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rs73223431 8 27219987 PTK2B C/C 
43 

C/T 
81 

T/T 
16 

rs9331896 8 27467686 CLU C/C 
18 

C/T 
64 

58 
T/T 

rs34674752* 8 145154222 SHARPIN A/A 
0 

G/A 
11 

G/G 
129 

rs7920721 10 11720308 ECHDC3 A/A 
60 

A/G 
56 

G/G 
24 

rs3740688 11 47380340 SPI1 G/G 
22 

G/T  
68 

T/T 
50 

rs1582763 11 60021948 MS4A4A A/A 
18 

G/A  
77 

G/G 
45 

rs3851179 11 85868640 PICALM C/C 
53 

T/C 
66 

T/T 
21 

rs11218343* 11 121435587 SORL1 C/C 
0 

T/C 
12 

T/T 
128 

rs12444183 16 81773209 PLCG2 A/A 
20 

A/G  
65 

G/G 
55 

rs4311 17 61560763 ACE C/C 
34 

T/C  
75 

T/T 
31 

rs12459419 19 51728477 CD33 C/C 
68 

C/T 
58 

T/T 
14 

rs2154481 21 27473875 APP C/C 
35 

C/T 
64 

T/T 
41 

* = variant of which two genotypes were present in population 

 

Figure s1 Estimate comparison of pQTL studies, in all sub-figures the  x-axis represents the estimates of this current study and 

y-axis represents the estimates from 16. a) Estimates of all matching pQTLs. b)  Estimates of all matching pQTLs where the 

directional effects were the same. c) Estimates of all matching pQTLs where the directional effects opposite. 
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Figure s2 Estimate comparison of pQTLs versus the eQTL NESs from GTEx for all investigated brain regions. X-axes represent 

the NESs from GTEx for a particular eQTL – eGene pair. The y-axes represent the betas of the pQTL – protein pair synonymous 

for the eQTL – eGene pair. 
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Figure s3 Overview of APOE associated pQTL variants. a) Boxplot of rs6857 genotypes versus APOE intensity, x-axis represent 

the genotypes, y-axis represents the log2 normalized intensity of APOE. b) Boxplot of rs429358 genotypes versus APOE 

intensity, x-axis represent the genotypes, y-axis represents the log2 normalized intensity of APOE. c) LD correlation between 

the six pQTL variants associated with APOE.  

 

Figure s4 Overlap of individuals between the high-correlation alleles, the diagonal is the number of individuals carrying the 

single allele of the respective variant. 
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Figure s5 Overview of pQTL variant mapping window. X-axes represent the mapping windows of 50 Kbp, 250 Kbp, 500 Kbp 

and 1 Mb. The y-axes represent the count of the respective statistic that is shown.  The title above each plot is the respective 

statistic.  

 

Figure s6 Top three protein pairs of which the linear interaction had an interaction with the Braak stage. The pairs were also 

significantly differentially correlated between AD individuals and controls (controls = r2 ≤ 0.2, AD = r2 ≥ 0.65). The x-axis 
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represents the log2 intensity of the respective protein and the y-axis also represents the log2 intensity of the respective 

protein. Individuals are divided on their Braak stage. The Braak stage is also represented by the color of the dots.  

 

Figure s7 Top three protein pairs of which the linear interaction had an interaction with the Braak stage. The pairs were also 

significantly differentially correlated between control and AD individuals (controls = r2 ≥ 0.65, AD = r2 ≤ 0.2). The x-axis 

represents the log2 intensity of the respective protein and the y-axis also represents the log2 intensity of the respective 

protein. Individuals are divided on their Braak stage. The Braak stage is also represented by the color of the dots. 
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6. Appendix 

6.1. Polygenic risk score analysis 

6.1.1. Background 

Polygenic risk scores (PRSs) are composite scores for an individual to determine their increased or 

decreased genetic risk for a disease. PRSs are defined as the sum of risk alleles of disease associated 

variants, where each variant is weighted by their individual risk. PRSs can be used to identify individuals 

with increased risk for diseases but can also be used for precision and personalized medicine. Here, we 

constructed a PRS based on pQTLs that are associated with AD. The pQTLs that were selected to 

construct the PRS were associated with AD in two ways. 1) The respective protein had to be significantly 

differentially expressed in AD individuals, and 2) The variant itself had to be associated with AD risk. 

As our PRSs have associated proteins, they can be functionally analyzed and put into context with AD 

pathology and potentially reveal targets for precision medicine.  

6.1.2. Materials  

This analysis uses the same data as described in the main report (See Proteomics data and Genetic data). 

However, an additional  dataset is used, which contains the results of an AD meta-GWAS11. It should 

be noted that our cohort / genetic data was part of the meta-GWAS. For the meta-GWAS, summary 

statistics from three studies were combined. Spanish case-control study (GR@ACE/DEGESCO study, 

N = 12,386), case-control study of International Genomics of Alzheimer project (IGAP, N = 82,771) 

and UK Biobank(UKB) AD-by-proxy case-control study (N = 314,278). In total, risk for AD was 

determined for 16,358,696 variants.  

6.1.3. Methods 

pQTL selection 

First, we started with the pQTLs identified in this study (See Identified pQTL variants associated with 

abundance of 153 proteins in Gyrus Temporalis Medialis). Here, 5,861 significant pQTLs were 

identified. Next, we selected variants (Fig. A1.1) from the meta-GWAS (P ≤ 0.005) that were also a 

significant pQTL variant (PFDR ≤ 0.05).  In the next step, we filtered the remaining pQTLs on whether 

the respective protein was also differentially expressed in AD individuals (Fig. a1.2). This was done 

with the differential expression analysis described in Testing pQTL variants on association with AD 

risk. In total, 236 pQTL variants were used for PRS construction. 

PRS construction 

An individuals` PRS is constructed was follows: 

𝑃𝑅𝑆 =  ∑ 𝐷𝑝𝛽𝑝

𝑃

𝑝
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Where, P is the set of 236 pQTL variants and D is the predicted genotype dosage of variant p, which are 

determined by imputation (See Methods: Amsterdam Genetic data processing). β is the weight assigned 

to variant p. This weight was derived from the effect size from the meta-GWAS of the respective variant.  

 

Figure A1 Workflow for pQTLs selection to construct the PRS with. 1) Significant pQTLs that are also associated with AD risk 

according to the meta GWAS. 2) pQTLs of which the respective protein was also differentially expressed in AD individuals. 

 Validation 

To validate the PRS, we calculated PRSs for all individuals for which genetic data was available. As 

such, validation was performed on 6607 individuals for which genotypes were available. 2,416 

individuals diagnosed with AD and 4,191 controls. These individuals were also part of the meta-GWAS, 

as such, it is not a proper validation as it is not an independent set of individuals. The performance of 

the PRSs was tested with a logistic regression model, with AD status as outcome variable (ND = 0, AD 

= 1) and the PRS as predictor variable. Two separate PRSs were constructed for each individual, one 

including APOE variants and one without the APOE variants.  

6.1.4. Results 

The 236 pQTLs were associated with eight proteins (PITRM1, MADD, ACOT1, EARS, RHOT2, TRAP2, 

APOE and PLIN3). The variants that were associated with APOE were also strongest associated with 

AD according to the meta-GWAS (P ≤ 2.06 × 10-287, OR ≥ 2.35). The PRS without APOE variants was 

not significantly associated with AD status (P = 0.07, OR = 1.01). The PRS that included APOE variants, 

was as expected significantly associated with AD status (P = 1.36 × 10-80, OR = 1.12).  
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Figure A2 Boxplots with violin plot overlay of the PRSs. Every dot is an individual and the x-axis represent the diagnosis (ND 

controls and AD). the y-axis represents the PRS of the respective individual. 

6.1.5. Discussion 

Here, we tested whether a PRS constructed with pQTLs that are associated with AD have an added value 

on top of the APOE variant. Our results show the PRS without APOE is borderline not significant. 

Additionally, the PRS including the APOE variants showed less association with AD compared to APOE 

variants on their own. Altogether, constructing a PRS with pQTLs does not improve the predictive value 

of PRSs with this specific approach. Finally, an independent population should have been used for 

performance testing and validation, unfortunately, this was not feasible for this study. 


