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Abstract

Nonograms are a type of logic puzzles in which the puzzler is supposed to fill in
the correct values for all cells in a rectangle grid, effectively composing a pixelated
image. The lengths of the consecutive segments of non-empty pixels in each row
and column should, preserving the order in which these segments appear, match
their corresponding puzzle line descriptions.

In general, puzzles can have an arbitrary number of pixel values (colours). In
this thesis we focus on Nonograms with only two possible pixel values, depicting a
black and white binary image. Firstly, several solving strategies are explained and
examined. Then, the characteristics of these puzzles and strategies are analyzed
by mass solving large sets of puzzles with relatively small image spaces, as well as
by taking samples for larger puzzle sizes. Finally, we propose a difficulty measure
to classify the puzzles and try to capture some of the characteristics that can
make a puzzle substantially harder to solve.
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1 Introduction

The first logical puzzles date back as far as the 19th century, in which mathematician
Lewis Carroll used logic reasoning on premises to create a new type of game [Car86].
Although popular in its era, most logic puzzles known by the modern-day public are
not nearly as verbose as their predecessors. This is all due to the upcoming of the logic
grid puzzle in the last few decades, such as the logic maze and Sudoku.

Originating from Japan and known under many different names such as Paint by
Numbers, Griddler and Japanese puzzles, Nonograms have especially proven popular in
East-Asia where they still frequently appear in newspapers. Puzzles of higher difficulty
are usually distributed in puzzle magazines around the globe.

Previous research on Nonograms spans many different fields of computing. Chiung-
Hsueh et al. [YLC11] use chronological backtracking to cope with known deficiencies
in precursory proposed algorithms. Salcedo-Sanz et al. [SSOGPB+07] compare solving
strategies based on constraint programming with a genetic algorithm. Batenburg and
Kosters [BK12] propose a (p, q)-Solver which takes into account p rows and q columns
per step to find logical contradictions in the resulting p · q intersections. Apart from
analyzing solving strategies, some work has been done in constructing Nonograms as
well. Batenburg et al. [BHKP09] show the effectiveness of an algorithm that generates a
simple Nonogram of varying difficulty based on a given gray level image. Ortiz-Garćıa
et al. [OGSSLM+07] do the same to some extent by proposing an algorithm capable of
constructing a series of logic grid puzzles from any RGB color image.

In this thesis we first explain the basic concept of a Nonogram in Chapter 2. Then, we
propose three primary solving strategies and explain their algorithmic procedures in
Chapter 3, as well as by giving some formulated examples. These strategies have been
implemented in two programs written in C++14; one optimized for solving individual
puzzles, the other for solving and analyzing large sets of Nonograms given a specific
size. The latter program is actually an extension and partial reimplementation of a
program created and provided to me by one of my supervisors. This thesis also defines a
difficulty measure for Nonograms and categorizes all puzzles up to size 6× 6 by difficulty.
Later, in Chapter 3.2.5, we analyze a special case of the (p, q)-Solver where p = q = 2,
introduced by Batenburg et al. as the FourSolver, and compare it with our own
solving strategy based on 2-satisfiability.

This thesis is the result of a bachelor project under the supervision of W.A. Kosters and
H.J. Hoogeboom from the Leiden Institute of Advanced Computer Science (LIACS),
the computer science department of Leiden University.
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2 Definitions

Let m denote the height and n denote the width of the puzzle. First we define pixel
alphabet Σ = {�,�} (also referred to as white and black pixels) and extended pixel
alphabet Γ = Σ∪{?}, where ’?’ denotes the unknown pixel value. A line description is an
ordered sequence (d1, d2, . . . , d`) with di ∈ N+ (i ∈ {1, 2, . . . , `}) and 0 ≤ ` ≤ k−1 where
k = m for vertical line descriptions and k = n for horizontal line descriptions. Moreover,
for every description it should hold that

∑`
i=1 di + ` − 1 ≤ k. Let D = 〈DH ,DV 〉 be

a 2-tuple containing the sets of horizontal and vertical line descriptions, respectively.
Hence |DH | = m and |DV | = n in every case. We denote the ith horizontal and vertical
line descriptions by DH(i) and DV (i) respectively.

A Nonogram puzzle grid P is a set-up of ordered sequences (rows or columns) of
equal cardinality s1, s2, . . . , sk ∈ {(a1, a2, . . . , aq) | ai ∈ Γ (i ∈ {1, 2, . . . , q}) ∧ q = k′},
together representing a field of m× n pixel values like a two-dimensional array. Here,
k′ denotes the counterpart value of k, defined as k′ = m+ n− k. For convenience, let
PH (k = m) and PV (k = n) be the same grid represented by horizontal and vertical
lines, respectively. If defined analogously to D, we indicate the ith row and column by
PH(i) and PV (i). A puzzle image or simply image is a grid P such that for all pixels
it holds that PH(i)(j),PV (j)(i) ∈ Σ (1 ≤ i ≤ m, 1 ≤ j ≤ n). Put differently, this is a
grid where all the ?’s are replaced by �’s and �’s. If P is an image, it is a potential
solution to the puzzle. Furthermore, P is called a solution to the puzzle if all the rows
and columns adhere to their respective descriptions. A sequence (row or column) s
adheres to a description if the lengths, in order, of the �-subsequences in s match the
ones given in the description. These subsequences are separated by at least one �.
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Figure 1: Empty 4×4 Nonogram as presented to the puzzler as challenge (a); the same
puzzle in the 0-configuration, clearly differentiating white pixel values from unknown
ones (b); solution to the puzzle (c).
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Finally, a Nonogram N is a 2-tuple N = 〈P ,D〉 where P is the puzzle grid and D is
are the puzzles’ line descriptions. Simply put, a Nonogram is a logic puzzle, consisting
of a m × n pixel grid and m + n line descriptions. Each row and column has exactly
one line description. The puzzler starts off with a (possibly) empty grid, to be filled
with pixels adhering to the line descriptions for the rows and columns simultaneously.
Although puzzles usually begin with an empty grid, it is not uncommon for puzzles
of higher difficulty to start with clues; these are mostly given black pixel values. In
Figure 1, one could argue that there exists some level of ambiguity between an ordinary
unknown (yet to be determined) pixel and an actual white pixel (�) in (a). To remove
this ambiguity we introduce puzzles in their 0-configuration. In this configuration, the
pixels of which the values are unknown are marked by their actual value ’?’, rather than
leaving aside if they are simply unknown or white.

2.1 Unique solutions

A puzzle is called uniquely solvable iff there is exactly one image that adheres to its line
descriptions. This means that there exists only one image in the entire image space of
m× n puzzles, holding a total of 2m·n images, that fits the descriptions of the puzzle.
The puzzle in Figure 2 is the simplest example of a puzzle that is not uniquely solvable.
Naturally, if N is uniquely solvable, then the puzzles corresponding to its possible
rotations (maximum of 8) are so as well. Uniquely solvable puzzles are usually the easiest
class of Nonograms. This is due to their characteristics, and shall be explained in the
next chapter when we introduce the nonsimple concept.

1 1 1

1
1
1

Figure 2: Nonuniquely solvable 3× 3 Nonogram with all 6 possible solutions.
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3 Solving strategies

In this chapter we introduce three solving strategies and explain their algorithmic
procedures. These algorithms form the basis for the difficulty classification in the next
chapter.

3.1 Simple solving

When looking at individual puzzle lines and their descriptions only, one can derive pixel
values for which there is no doubt they hold a certain value. Let L = (a1, a2, . . . , ak) be
a puzzle line with its description D. If, for every possible placement of pixel values to
which L adheres to D, any ai ∈ L where L ⊆ Γ and ai 6= ? has the same value for every
possible line fix, we have found the definitive value of ai. Loosely speaking, for a single
line we fill in all pixel values that can be derived from individual line descriptions only,
by the process of elimination. This is what we call the SimpleSolver algorithm (see
Algorithm 1). It works by performing a series of horizontal and vertical sweeps : carrying
out the procedure described as above for every row (H-Sweep) or column (V-Sweep),
respectively. Accordingly, when SimpleSolver has carried out its procedure on a puzzle,
all pixel values that could be derived by a series of very simple logical reasoning steps
are placed in the puzzle grid.

Algorithm 1: SimpleSolver

begin
1 while ¬puzzle.solved do
2 H-Sweep(puzzle)
3 if ¬puzzle.solved then
4 V-Sweep(puzzle)

This is a very basic outline of the procedure performed by the SimpleSolver algorithm.
Note that the loop starts with an H-Sweep in line 2, rather than a vertical sweep.
Changing the order in which the sweeps occur (toggling the starting sweep) can make
a difference in terms of the amount of sweeps required to solve the puzzle. But this
difference will never be larger than 1, because even though H-Sweeps and V-Sweeps
are independent of one another, they can discover the same pixel values. Hence, the
situations in which this is not the case can cause one extra sweep search in the beginning,
but because the sweep procedures are interleaved, the missing value that was bound to
be discovered will certainly be found in the next corresponding sweep.
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(c) Progress with vertical starting sweep

Figure 3: Differences in sweep counts can occur.

Figure 3 illustrates the progress made after every consecutive sweep in the algorithm,
starting with an H-Sweep at (b). The puzzle from (a) is finally solved in the third
panel. However, starting with a vertical sweep in (c) results in one extra sweep in
comparison to the procedure in (b). This particular example is exactly what we call
a simple Nonogram: a puzzle that can be solved by SimpleSolver. Nonograms of
this class are the easiest to solve. No guessing is involved in the process, nor are there
any clues required to solve the puzzle. The number of sweeps required to completely
solve the puzzle starting from the 0-configuration is the difficulty measure for simple
puzzles. In this particular example, we obtain two different sweep counts from changing
the starting sweep. Therefore, we take the average of these two numbers. The difficulty
of this puzzle is then denoted by S3.5, describing a simple puzzle that is solved in (an
average of) 3.5 sweeps. Simple puzzles are always uniquely solvable, because if they were
not, this algorithm would not be able to solve them since it can only detect pixel values
that have a fixed (and therefore unique) position.
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3.2 2-SAT solving

In this subchapter we introduce a solving strategy based on 2-satisfiability, as well as a
polynomial algorithm that can determine if a puzzle encapturing all constraints in 2-CNF
has ≥ 1 solution(s). Some basic notions about 2-satisfiablity are given in an introduction,
and we further apply this to Nonograms in Chapter 3.2.2. An algorithm from Batenburg
et al. [BK12] is scrutinized and compared to the newly introduced solving strategy,
which in turn shall be shown to be a complete version of the fragmentary approach of
its counterpart.

3.2.1 Introduction to 2-satisfiability

The Boolean satisfiability problem (SAT abbreviated) copes with determining if there
exists a mapping β : X 7→ {True, False} for the Boolean variables X = {x1, x2, . . . xn}
in a given formula such that β satisfies this formula φ [BFO+10]. In other words, this
means that the standard Boolean evaluation of φ yields the value True, using assignment
β. A formula φ is said to be in conjunctive normal form (CNF abbreviated) if the
formula consists of a conjunction of disjunctions of literals, like

∧m
i=1Ci, where the Cis

denote clauses (e.g. (xa ∨ xb)). A literal is simply some variable x ∈ X or its negation
x. Notice that 2-SAT is a special case of SAT where the formula φ is usually given in
2-CNF as follows:

φ
def
= (ϕ1 ∨ ψ1) ∧ (ϕ2 ∨ ψ2) ∧ . . . ∧ (ϕn ∨ ψn)

Where ϕ1, ϕ2, . . . , ϕn and ψ1, ψ2, . . . , ψn denote literals over a finite set of variables X
such that {ϕ1, ψ1} ∪ {ϕ2, ψ2} ∪ . . . ∪ {ϕn, ψn} =

⋃n
i=1{ϕi, ψi} ⊆ X ∪ {x | x ∈ X}.

The general satisfiability problem k-SAT is an NP-complete problem for k ≥ 3, but
2-SAT ∈ P . The complexity class P consists of all decision problems that can be solved
in a polynomial amount of computing time, using a deterministic Turing machine,
whereas NP-complete problems are the most difficult problems in the complexity class
NP , known to hold all decision problems for which their yes-instances can be proofed
in polynomial time. Hence 2-SAT can actually be solved by algorithms that run in
polynomial time, but clauses consisting of 3 or more literals cant. Apart from actual
2-SAT-solving algorithms, determining if a formula is satisfiable can also prove useful. A
formula is said to be satisfiable if there exists ≥ 1 truth-assignment β over X such that
the Boolean evaluation of the formula is True. Multiple algorithms for solving 2-SAT
and determining if a formula in 2-CNF is satisfiable exist, including the Kosaraju-Sharir
algorithm implemented in Chapter 3.2.3.
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3.2.2 Nonograms and 2-satisfiability

When we turn our attention to Nonograms, the relation between these puzzles and 2-SAT
becomes evident if we apply the notion of Boolean variables to unknown pixel values
where True = � and False = �. Using the line descriptions and resolved pixels of the
puzzle, we can construct a formula φ in 2-CNF that represents the topological constraint
problem of the Nonogram in question. For a simple puzzle line L = (?,�, ?, ?,�) with
description (1, 1), we could, for example, argue that if the third unknown pixel value
is set to black, the definitive value of the fourth pixel should be white, since the line
description only allows consecutive black segments of size 1. Moreover, setting the
third pixel to black also implies that the first pixel should hold this value, since that
would be the only possible placement of the remaining black pixel that is part of two
segments of consecutive black pixels, when the third pixel value is white. If we apply
this procedure to all rows and columns of a Nonogram N , we end up with a set of
logical disjuntions over the variables, being the formula φ(N ). Because SAT-solvers
usually run in some polynomial time based on the number of clauses and variables in
the formula, it seems natural to first apply SimpleSolver to a Nonogram to remove
as much variables as possible by fixing these values in polynomial time as well. Fewer
unknown pixel values mean fewer variables and therefore smaller formulæ to solve. In
theory, for nonsimple Nonograms, this relieves a potential 2-SAT algorithm that would
continue where SimpleSolver left off.

However, it proves more useful to look at implicative forms rather than clauses following
2-CNF restrictions. Not only is it more comprehensible to reason about pixel relations
this way, it is also convenient for building implication graphs.
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x2

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3)

∧ . . . ∧
(x4 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x2) ∧ (x4 ∨ x3)

≡
(x1 ⇒ x2) ∧ (x1 ⇒ x3) ∧ (x1 ⇒ x2) ∧ (x1 ⇒ x3)

∧ . . . ∧
(x4 ⇒ x2) ∧ (x4 ⇒ x3) ∧ (x4 ⇒ x2) ∧ (x4 ⇒ x3)

Figure 4: Nonuniquely solvable Nonogram with derivable formula in 2-CNF.
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These directed graphs (digraphs) encapture the implicative relations between variables
and are used by the algorithms introduced in the following two subchapters. They
generally consist of 2 · n vertices V =

⋃n
i=1{v(xi), v(xi)} with n being the number of

variables (unknown pixel values in the constraint problem) and m edges E with m being
the number of clauses of the formula φ in implicative normal form and v a function
v : X ∪ {x | x ∈ X} 7→ {v1, v2, . . . , vn} that maps every literal ` ∈ {X ∪ {x | x ∈ X}} to
some vertex v.

Consider the example in Figure 4. This partially solved puzzle leaves four pixel values
unresolved, effectively creating the same constraint problem as seen in Figure 2 in Chap-
ter 2.1, but on a smaller scale. The implicative relations between these four consecutive
pixels allow multiple solutions; two in this case. It can be considered as a nonuniquely
solvable puzzle that is responsible for the ambiguous solution of the entire puzzle. This
is what we call a switching component.

It is important to note that altogether, 2-SAT does not encapture every single relation
between pixel values. Because clauses with ≥ 3 variables are not uncommon in larger
puzzles, i.e., (x1 ∨ x2 ∨ x3) ≡ (¬(x1 ∨ x2)⇒ x3), we know the resulting fomulæ of these
problems will certainly not be in 2-CNF and therefore not entirely solvable by applying
2-satisfiability in polynomial time.

3.2.3 Kosaraju-Sharir

If all the implicative relations of a puzzle can be represented by a formula φ in 2-CNF,
it is possible to determine, for this specific instance, if there exists a satisfying truth-
assignment for the variables. For this, we will be using the Kosaraju-Sharir algorithm.
Independently discovered by both, but published by Sharir [Sha81] in 1981, this algo-
rithm is designed to find the strongly connected components in a graph. A strongly
connected component (SCC abbreviated) of a directed graph G = 〈V , E〉 is a subset
SCC ⊆ V such that ∀v, u ∈ SCC : (v 6= u) ([v → u] ∈ E+) where G+ = 〈V+, E+〉 is the
transitive closure of G; formulated otherwise, there exists a path from v to u in G+ for
all pairs of two nodes in some SCC. This means that all vertices in a SCC are connected
internally (are reachable).

Kosaraju-Sharir uses a recursive subroutine, for instance depth-first search, to find a
topological ordering T (G) of the original graph G: a sequence of all vertices such that
if there exists a path [u→ v], u is found before v in the ordering. The algorithm then
assigns vertices to SCCs by walking through the transposed graph GT in the previously
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found order using the same ordering subroutine as before. To understand why this

works, let
−→
V (u) be all vertices reachable from u by only forward traversal,

←−
V (u) defined

analogously for backward traversal, and Q(u) = {ai | aj = u ∧ i < j} ( V for any
topological order T (G) = (a1, a2, . . . , an) would be all vertices appearing before u in

T (G). Naturally,
←−
V (u) ∩

−→
V (u) =

←−
V (u) \ (

←−
V (u) \

−→
V (u)) =

←−
V (u) \ Q(u) would be

the strongly connected component considering u to be the root node. Even though
slightly more efficient variations of this algorithm exist, we will be using a version with
depth-first search as its recursive subroutine to order the vertices because of its relative
simple approach compared to breadth-first search and other techniques. In general,
Kosaraju-Sharir makes the two traversals through the graphs in linear Θ(|V|+ |E|) time.

Our algorithm will make use of the fact that if v(x) and v(x) are in the same strongly
connected component, both vertices can visit one another, making a solution impossible
and φ unsatisfiable because (x ⇒ x) ∧ (x ⇒ x) ≡ (x ∨ x) ∧ (x ∨ x) ≡ (x ∧ x) has no
solution. Algorithm 2 is an implementation of the algorithm using Kosaraju-Sharir to
determine if an instance of 2-SAT has a satisfiable solution.

Note that this algorithm assumes the transposed graph GT has already been calculated.
The variables n and array typesM, T , C describe the number of variables, marked nodes,
the nodes in topological ordering and strongly connected components, respectively. The
Vertex type is simply an alias for the Integer type, hence the vertices are represented
by labels, where the label i+ 1 of any v(u) follows directly after its truth node v(u) with
label i. The main procedure of this algorithm consists of three loops which sequentially
carry out the following tasks:

1. Lines (14–16): Calculate topological ordering T of G.

2. Lines (17–21): Assign SCCs to all v ∈ V by visiting GT in reverse topological
order.

3. Lines (22–24): Check if any two nodes v(u) and v(u) are in the same SCC. If this
is the case then we proved there can not be a solution and φ is UNSAT.

Therefore, this algorithm still runs in linear time since Θ(2 × |V| + |E|) is still lin-
ear. And theoretically, Kosaraju-Sharir will always have to do at least Ω(|V| + |E|)
comparisons, because any possible implementation would have to visit all nodes and
all edges regardless. Summarized, this algorithm can prove useful in cases where it
is unknown if a puzzle has a solution or not. The formula of the puzzle in question
should, however, contain only 2-SAT clauses that completely cover all constraints for
this algorithm to work, since 2-SAT can be solved in polynomial (in this case linear) time.

9



Algorithm 2: 2-satisfiable Kosaraju-Sharir

Graph : G def
= 〈V , E〉, GT def

= 〈VT , ET 〉
Integer : n
Boolean→ Vertex : M
Integer→ Vertex : T , C

Data: Vertex : x
1 Procedure OrderDFS
2 Mx ← True . Vertex has now been visited

3 for u ∈ {y | [x→ y] ∈ E} do
4 if ¬Mu then
5 OrderDFS(u) . Visit neighbours

6 Tnextundef ← x . Next undefined value (append x)

Data: Vertex : x, Integer : c
7 Procedure AssignDFS
8 Cx ← c . Set SCC of x to c

9 for u ∈ {y | [x→ y] ∈ ET} do
10 if Cu = Undefined then
11 AssignDFS(u, c) . Assign reachable vertices to same SCC

Result: Boolean : ∃β : X 7→ {True, False} | φ(N ) = True

12 begin
13 ∀x ∈ {M1, . . . ,Mn} x← False

14 for i← 0 to n do
15 if ¬Mi then
16 OrderDFS(i)

17 for i← 0 to n ∧ j = 0 do
18 Vertex : v ← Tn−i−1 . Reverse topological order

19 if Cv = undefined then
20 AssignDFS(v, j)
21 j ← j + 1

22 for i← 0 to n do
23 if C2i = C2i+1 then
24 return false . c[i] = v(u) and c[i+1] = v(u)

25 return true

10



3.2.4 The 2-SATSolver algorithm

In the previous subchapter we introduced an algorithm to determine if there exists a
solution for a partially solved puzzle N with φ(N ) in 2-CNF. Now we will discuss an
actual solving strategy for Nonograms based on 2-satisfiability, the 2-SATSolver. As
mentioned before, we can derive the implicative relations between pixel values quite
easily to construct the implication graph G(φ) with 2n nodes, n being the number of
unknown pixels in N . Say we come across a path v(x)→ v(x) or v(x)→ v(x), starting
from v(y) for some unknown pixels x, y (including x = y), and we assume there exists
a truth-assignment for φ (hence φ is a yes-instance of Kosaraju-Sharir). Then there
is no doubt that we have found a contradiction for x or x. Again, in a similar way as
the SimpleSolver strategy, this approach can only determine fixed pixel values since
contradictions are found for instances for which we can logically proof they are incorrect.
Therefore, the puzzles that this algorithm can solve are all uniquely solvable as well,
since there is no guessing involved in the process. To illustrate how 2-SATSolver
operates, let us take a look at the following example in Figure 5.

Example 3.1.

Let N be a partially solved Nonogram that SimpleSolver got stuck on, φ its derived
formula such that φ =

∧
[ϕ→ψ]∈E ¬ϕ ∨ ψ with G(φ) = 〈V , E〉 being the implication graph

constructed from φ.
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x1 x2

x7 x8

x3

x6x5

x4
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1

1 3 1

G(φ) =

〈
{v(x1), v(x1), . . . , v(x8), v(x8)}︸ ︷︷ ︸

2n vertices

, {[x1 → x2], . . . , [x8 → x6]}︸ ︷︷ ︸
0 ≤ i ≤ |V|2 edges

〉

Figure 5: Uniquely solvable 5 × 5 Nonogram with unique solution and implication
graph definition.
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x7 x8 x2 x1 x7 x8
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x1 x2

x3 x4

B ( G(φ)

Figure 6: Implication graph of Nonogram in Figure 5 with only 2 edge crossings.

The implication graph in Figure 6 gives us a clear image of the topological problem.
This digraph can be separated into two strongly connected components, namely A and
B, the nodes with and without thick borders around them, respectively. Notice that

∀v ∈ V (((v(x) ∈ A)⇐⇒ (v(x) ∈ B)) ∧ ((v(x) ∈ A)⇐⇒ (v(x) ∈ B)))

And because for any node v ∈ B it holds that there is no transition to an outer ring
node, but all outer ring nodes can reach every node in B, B gets completely isolated
from A. Therefore, any node in B can be reached from a starting point in the outer ring
A, but not the other way around. We could, for example, completely walk the outer ring
and then enter B at any of the 4 entry nodes. Then, we would find contradictions for all
outer ring nodes and conclude that we have found a mapping satisfying φ, which in this
case would be either f : x→ (v(x) 6∈ A) or f : x→ (v(x) ∈ B) or some other expression
that is logically equivalent. In this specific example, we would be done and the unique
solution for the puzzle can be obtained by mapping True→ � and False→ � for the
found truth-assignment.
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2-SATSolver, however, does not make use of this approach where the strongly con-
nected components are being determined. For finding contradictions, it is sufficient
to check for all nodes, normal and negated, if a contradiction can be found on any
possible path in the digraph. If this is the case, we fill in our newly found pixel value
and halt 2-SATSolver to run SimpleSolver. This is done to relieve the intensity of
the algorithmic procedure, since 2-SATSolver is computationally more expensive than
SimpleSolver. The 2-SATSolver is therefore an assembly of 2-SAT procedures and
the SimpleSolver algorithm. After fixing a certain pixel that we want to investigate,
contradictions are found by monitoring a cross table (i.e., see Figure 7), consisting of all
nodes and corresponding Boolean values whether they have been visited or not. Once a
new node has been entered in the table, it will be queued to have all its implications
checked as well, effectively applying this procedure on all its neighbours and so on and
so on. In Chapter 3.3 we combine both forces of the SimpleSolver and 2-SATSolver
in making an extended version of our algorithm based on 2-satisfiability.

Contradiction table for v(xi+1) = True

Nodes
v ∈ G, i = 0

Marked for
finished

Has been
visited

Contradiction
found

v(xi) False True False

v(xi) True False False

v(xi+1) True True False

v(xi+1) True True (fixed) True1

...
...

...
...

v(x2n) False True False

v(x2n) False False False

Figure 7: Example cross table for 2-SATSolver.

3.2.5 FourSolver, a case study

In [BK12], Batenburg et al. propose a (p, q)-Solver. This solving strategy takes into
account p · q intersections (pixels) at a time, taken from selecting p rows and q columns.
In a regular m×n puzzle, this gives σ =

(
m
p

)
×
(
n
q

)
possible intersection combinations per

image. The concept of (p, q)-hardness is introduced (puzzles solvable by this method),
where the (2, 2)-Solver is referred to as the FourSolver algorithm. As the name

1Contradicting node v(xi+1) has been visited, and therefore we conclude ¬v(xi+1)
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suggests, only 4 pixels are assessed for finding contradictions. Therefore, the amount
of observable intersection combinations is reduced to 1

4
× m!·n!

(m−2)!·(n−2)!
. Instead of using

an implication graph with transitions, the procedure constructs a lookup table at the
beginning of the puzzle by simply deducing contradictions from the line descriptions.
Intuitively, this approach is far more efficient than 2-SATSolver, but not as complete.
In fact, having a lookup mechanism for every single quadruplet of pixels is equivalent to
creating nothing more than σ implication graphs over the pixel intersection combinations.
Implications between these smaller graphs themselves are left out, and therefore, there is
no chance of finding such an inter-quadruplet contradiction. Hence both algorithms would
behave the same way for 2×2 or smaller puzzles, because FourSolver would be assess-
ing the entire puzzle, just like 2-SATSolver always does regardless of the puzzle size.
To better understand FourSolver’s shortcomings, take a look at the following example.

Example 3.2.

Let N be a partially solved Nonogram that SimpleSolver got stuck on, and 4-Solver
the algorithm defined in [BK12], slightly modified so that it constructs subgraphs G∆ ⊆ G
of size |G∆| ≤ 4× 2 instead of using a lookup-table.
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Figure 8: Progress made by every solver on a uniquely solvable puzzle.
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As can be seen in Figure 8, 4-Solver is unable to solve the entire puzzle, but it makes
some progress even on top of SimpleSolver, which only finds the middle pixel and
the formations in the upper left and lower right corners (see Figure 8 (c)). 4-Solver,
for example, finds a contradiction in r = (0, 2) and c = (0, 3), when counting rows and
columns starting from 0. For this specific instance, the algorithm yields the digraph in
Figure 9.

x2,0 x0,0 x0,3 x2,3

x2,3 x0,3 x0,0 x2,0

Figure 9: 4-Solver constraint problem for r = (0, 2) and c = (0, 3).

Only for node x0,3 we can find a contradiction by choosing any of the paths to x0,3

via the right or left side of G∆. Hence we can conclude that the corresponding value
of the intersecting pixel of r = 0, c = 3 is �. Notice that, because of the symmetry
in the line descriptions, an equivalent digraph would be constructed for r = (0, 3) and
c = (0, 2). This graph would therefore have a path x4,1 → x4,1 just like the graph in
Figure 9 has a path x0,3 → x0,3. After running SimpleSolver, that finds some empty
pixels, 4-Solver cannot find anything and this gives us the result in Figure 8 (a).

This brings us to the 2-SATSolver, that proves to be more useful in solving this
puzzle. It effectively finds a superset of the paths that 4-Solver finds. In general, the
distinct pixels 4-Solver can find on a path is limited to 4, and therefore, usually less
than the m · n of 2-SATSolver. For instance, the path

x3,1 → x2,1 → x2,4 → x4,4 → x4,0 → x3,0 → x3,1

could never be found by 4-Solver, as it features 6 different pixels, but is crucial to the
solution of the puzzle. Again, because of the symmetry, a path from x1,3 to x3,1 is found
as well. It seems obvious that if a puzzle is (2, 2)-hard, it is also 2-SAT-hard. This
case study, however, proves by contradiction that the reverse is not true. But, as the
experiments in Chapter 4 will reveal, every puzzle that is (2, 2)-hard is also 2-SAT-hard,
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at least for the small and medium size puzzles tested. In this Chapter 4, where we
classify the puzzles, the FourSolver is left aside on purpose since it is simply an
incomplete version of 2-SATSolver and because Batenburg et al. already performed
experiments with FourSolver on medium and large sized puzzles in [BK12].

3.3 Extended 2-SAT solving

In this subchapter we briefly discuss a problem of the 2-SATSolver as introduced
in Chapter 3.2.4. We propose an improvement of the algorithm and upscale it to the
2S-Solver, and work out an example where the original algorithm fails but the new
one solves the puzzle.

3.3.1 Problem description

In Chapter 3.2.4 we discussed an algorithm capable of finding fixed pixel values in an im-
plication graph using a contradiction table. The 2-SATSolver makes iterations through
the nodes of the implication graph, and applies the cross table procedure explained in
Chapter 3.2.4 to every node. If some contradiction is found then the corresponding pixel
value of this node is set to its definitive value and the procedure is halted and repeated
again after applying SimpleSolver by constructing the new digraph if the puzzle is
not solved.

Even though it may look like 2-SATSolver is in every way superior to the Simple-
Solver algorithm, it turns out be rather different. Recall that 2-SATSolver halts if
the contradiction table has been filled as far as possible and no contradiction has been
found. The 2-SAT procedure will end, the algorithm applies SimpleSolver, and if
nothing is found then we will stop searching for new contradictions. Because we evaluate
the relations of single nodes, some crucial, yet extremely obvious information is lost and
neglected. The 2-SATSolver might halt at some point after fixing a pixel a certain
value where the relations hit a dead end, but in the process of entering values in the
cross table, we have created a situation where we assigned (possibly wrong) virtual
values to some pixels in some row or column where SimpleSolver can actually progress.
The 2-SATSolver algorithm seems unable to deduce these simple relations because
they feature the values of multiple nodes combined. We discovered this problem while
examining the remainder of the uniquely solvable puzzles that 2-SATSolver is unable
to solve. This is a relatively small set of puzzles. The exact numbers can be found in
the experiments Chapter 4.
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3.3.2 A simple solution

A straightforward solution has been implemented on top of the original 2-SATSolver.
While adding values to the table, we monitor an extra virtual puzzle grid and run
SimpleSolver if we hit any dead ends, in effect rescuing the 2-satisfiability procedure
where the original algorithm would stop if no new values would have been found. We
then enter any new values the procedure found into the table, and therefore they will
be queued to be checked out. This way, we get the best of both worlds as we use
SimpleSolver not only to gradually progress on the puzzle as intended, but also to
shed new light on situations where the conventional 2-satisfiability approach is inferior.
In Figure 10 we take a look at the a difficult puzzle, which also happens to be the
hardest 5× 5 2S-hard Nonogram.

Example 3.3.

Let N be a partially solved Nonogram that both SimpleSolver and 2-SATSolver
got stuck on and � and � denote the black and white pixels values following from
2-SAT implications after trying a certain pixel.
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Figure 10: SimpleSolver progress (left panel) including 2-SATSolver progress
(none). After trying the black pixel (right panel) we find no contradiction and stop
searching for (0, 1) = �. Notice that, in the third row (r = 2), SimpleSolver could
make some progress on this assumption.
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In the right panel of Figure 10, it is entirely obvious what the solution to the third
row should be. 2-SATSolver, however, is unable to deduce this from the formula and
stops searching for this pixel. If we let SimpleSolver interfere at this point (just like
2S-Solver would do), we get the following solving sequence.
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Figure 11: First row fill by SimpleSolver (first panel); middle and right column fill by
either SimpleSolver or 2-satisfiability on middle pixels (second and third panel); upper
row fill by SimpleSolver (fourth panel) and bottom row fill by either SimpleSolver
or 2-SATSolver.

At this point in time, if we follow the column descriptions and set the two remaining
unknown pixel values to black, we would end up with a contradiction in row 4 (r = 3).
Therefore, the assumption that we started with in Figure 10 is wrong, hence (1, 0) should
be white. Knowing this, we derive three other pixel values from creating a new graph
and continue with assuming pixel (3, 2) = �. Note that choosing the assumptions in a
different order might result in less or more work to do. From backtracking, we know
that this specific puzzle needs at least 2 confirmed assumptions by 2-SAT (or correct
guesses) to become simple-solvable.
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Figure 12: Assumption (3, 2) = � (first panel); obvious 2-SAT implications (sec-
ond panel); SimpleSolver on fourth column (third panel); 2-SATSolver or Sim-
pleSolver on fourth row and SimpleSolver on second column (fourth panel); 2-
SATSolver or SimpleSolver on second row; fifth column and first row (fifth panel),
respectively.
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In the final panel of Figure 12, a contradiction appeared in the third row. The line
description D3 = (1, 1) enforces any node from this row to have an implication of the
form v(x2,i)→ v(x2,i+1) for i < m− 1 and v(x2,i)→ v(x2,i−1) for i ∈ {1, 2, 3, 4}. Hence
both nodes would find a such a path to each other and we conclude that (3, 2) = �.
After this conclusion, SimpleSolver is able to fully solve the puzzle, but it still takes
a considerable amount of 6 sweeps to solve it. As said before, this is a special nonsimple
2S-hard puzzle that 2-SATSolver is unable to solve on its own. It is the only 5× 5
puzzle out of a small group of uniquely solvable not-2-SAT-hard puzzles that takes at
least 2 assumptions to get solved by SimpleSolver afterwards. For the other puzzles,
1 assumption suffices.

Figure 13: The four rotations of the 2S-hard puzzle dealt with in Example 3.3.2.

4 Classification

In this chapter we report and discuss the outcome of the experiments performed on
all puzzles of specific sizes. First we analyze the relatively small sets of 3 × 3 up
to 4 × 4 puzzles. We then continue with medium size Nonograms, being the 4 × 5,
5× 5 and 5× 6 puzzles. Because of the immensely large image space of 6× 6 puzzles
(26·6 = 68, 719, 476, 736 images), we analyze a sample taken from the images in the large
puzzle section. All experiments on small and medium size Nonograms have been run
on a 64bit Ubuntu 16.04 system with an Intel i7-6700HQ overclocked @4GHz with 8
logical cores. Experiments on large puzzles have been performed on several2 machines of
the LIACS Data Science Lab [lab] simultaneously, but most work has been done by the
64bit CentOS Linux 7 “Mithril” workstation with 128 logical cores (Intel Xeon E5-4667
v3 @2500MHz).

2Miraculously, these machines became very popular and therefore more and more occupied near the
end of this term.
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4.1 Small size Nonograms

The Nonograms in the uniquely solvable sets of these puzzles are rather uncomplicated.
For 3× 3 puzzles, the SimpleSolver even solves all uniquely solvable Nonograms. The
remaining 128 puzzles have multiple solutions. As from 3× 4 and higher, some uniquely
solvable puzzles turn out to be nonsimple. The results for other solvers on those puzzles
can be found on the next page in Figure 15. What is interesting is the relative drop in
the number of simple puzzles of 3× 5 Nonograms, which has an image space half the
size of the 4× 4 (23·5 = 32, 768 vs. 24·4 = 65, 536). This drop could be due to the larger
row width of 3× 5 puzzles, that introduces more possibilities and therefore also more
difficulties for harder line descriptions like (1) and (1, 1).

Difficulty simple 3× 3 simple 3× 4 simple 3× 5 simple 4× 4
Nonograms Nonograms Nonograms Nonograms

0 0 0 0 0
0.5 0 0 0 0
1 6 9 17 16
1.5 42 127 425 480
2 236 1,240 7,491 10,666
2.5 76 900 6,855 11,528
3 24 412 4,088 10,916
3.5 0 284 2,914 7,856
4 0 80 988 3,036
4.5 0 56 638 4,616
5 0 0 256 616
5.5 0 8 204 864
6 0 0 0 120
6.5 0 0 176 440
7 0 0 0 0
7.5 0 0 0 56
8 0 0 0 0
8.5 0 0 0 24
9 0 0 0 0

Total 384 3,116 24,052 51,234
% of 2m·n 75.00% 76.07% 73.40% 78.18%

Figure 14: Results for small size simple Nonograms.
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Difficulty 2-SAT-hard 2-SAT-hard 2-SAT-hard 2-SAT-hard
3× 3 3× 4 3× 5 4× 4

1 0 36 178 1,128
2 0 0 0 0

Total 0 36 178 1,128
% of 2m·n 0.00% 0.88% 0.54% 1.72%

Difficulty 2S-hard 2S-hard 2S-hard 2S-hard
3× 3 3× 4 3× 5 4× 4

1 0 0 0 0
Total 0 0 0 0

% of 2m·n 0.00% 0.00% 0.00% 0.00%

Difficulty 2S progress 2S progress 2S progress 2S progress
3× 3 3× 4 3× 5 4× 4

1 0 44 456 2,304
2 0 8 162 356

Total 0 52 618 2,660
% of 2m·n 0.00% 1.27% 1.89% 4.06%

Difficulty 2S no progress 2S no progress 2S no progress 2S no progress
3× 3 3× 4 3× 5 4× 4

1 122 856 7,484 10,156
2 6 36 436 334
3 0 0 0 24

Total 128 892 7,920 10,514
% of 2m·n 25.00% 21.78% 24.17% 16.04%

Figure 15: Results for small size nonsimple Nonograms.

No uniquely solvable Nonograms in this size category are so hard that 2S-Solver has
to interfere. The 2-SATSolver successfully solves all uniquely solvable Nonograms for
the sizes in the table in Figure 15. Therefore, there are no 2S-hard Nonograms that are
not 2-SAT-hard, yet. 2S-Solver can, however, make some progress on the remaining
nonuniquely solvable puzzles. This is also true for 2-SATSolver, but to reduce the
overload of information and since 2S-Solver is just an extension of 2-SATSolver,
we only show the progress of 2S-Solver. As difficulty measure for nonsimple puzzles,
we use the minimal amount of clues (or correct assumptions) required to fully solve the
puzzle with SimpleSolver. This difficulty measure shall hereon be used throughout
this chapter for nonsimple puzzles.
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4.2 Medium size Nonograms

Difficulty simple Difficulty simple
Nonograms Nonograms

0 0 6.5 14,884
0.5 0 7 1,076
1 36 7.5 5,544
1.5 2,248 8 108
2 107,474 8.5 2,496
2.5 139,184 9 8
3 186,274 9.5 844
3.5 135,348 10 0
4 69,428 10.5 380
4.5 82,404 11 0
5 21,608 11.5 48
5.5 27,576 12 0
6 4,820 12.5 44

Total 801,832 (76.47%)

Figure 16: Results for simple 4× 5 Nonograms.

Difficulty 2-SAT-hard 2S-hard some progress by no progress by
Nonograms Nonograms 2S-Solver 2S-Solver

1 12,796 0 40,388 173,626
2 4 0 11,522 7,944
3 0 0 96 368

Total 12,800 0 52,006 181,938
% of 2m·n 1.22% 0.00% 4.96% 17.35%

Figure 17: Results for nonsimple 4× 5 Nonograms.

Again, as with previous puzzle sizes, the 2-SATSolver solves all uniquely solvable
Nonograms of this size. Around 22% of the nonuniquely solvable puzzles made some
progress after applying 2S-Solver. We now quickly move on to the 5× 5 puzzles where
we discover our first 2S-hard puzzles.
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Difficulty simple Difficulty simple
Nonograms Nonograms

0 0 8.5 160,492
0.5 0 9 3,016
1 108 9.5 63,832
1.5 15,336 10 504
2 1,932,817 10.5 30,328
2.5 2,938,878 11 16
3 5,829,718 11.5 9,584
3.5 4,135,740 12 0
4 3,042,068 12.5 4,680
4.5 2,808,316 13 0
5 1,171,530 13.5 1,048
5.5 1,314,148 14 0
6 322,468 14.5 408
6.5 741,316 15 0
7 92,336 15.5 24
7.5 340,812 16 0
8 16,980 16.5 8

Total 24,976,511 (74.44%)

Figure 18: Results for simple 5× 5 Nonograms.

The total amount of uniquely solvable 5× 5 Nonograms is 25, 309, 575 out of a total of
25·5 = 33, 554, 432 puzzles of this size. Hence 333,064 uniquely solvable puzzles can not
be solved by SimpleSolver. 8,577,921 (25.56%) of the puzzles remain unsolved. The
vast majority of the simple puzzles (92.78%) have a difficulty 2 ≤ x ≤ 5.5, an interval
that spans only 25% of the difficulty domain (excluding 0 and 0.5).

(a) (b) (c) (d)

Figure 19: A very simple Nonogram of difficulty 1 (a), a reasonably difficult Nonogram
of difficulty 8 (b), a very hard Nonogram of difficulty 13.5 (c) and the hardest simple
Nonogram of difficulty 16.5 (d).
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Difficulty 2-SAT-hard 2S-hard some progress by no progress by
Nonograms Nonograms 2S-Solver 2S-Solver

1 331,926 1,036 1,406,828 5,868,368
2 98 4 578,308 351,191
3 0 0 18,970 20,827
4 0 0 34 331

Total 332,024 1,040 2,004,140 6,240,717
% of 2m·n 0.99% 0.00% 5.97% 18.60%

Figure 20: Results for nonsimple 5× 5 Nonograms.

2-SATSolver manages to solve 99.67% of all nonsimple uniquely solvable puzzles. The
remaining 1,040 nonsimple uniquely solvable puzzles turn out to be 2S-hard. Therefore,
all 5×5 uniquely solvable puzzles have been solved by one of our three solving strategies.
On roughly 2 million ambiguous puzzles (24.31% of the unsolved puzzles), 2S-Solver
makes some progress, but is not designed to solve these kind of puzzles with multiple
solutions. These solvers require a considerable amount of guessing, and even with some
smart implementations probably still amount to plain brute forcing strategies. The
progress that was made by 2S-Solver obviously only covers fixed pixels in these puzzles
with multiple solutions, and not the actual switching components.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 21: A happy and not so happy 2-SAT-hard Nonogram of difficulty 1 (a) and 2
(b), 2S-hard Nonogram of difficulty 1 (c), possible solutions of Nonograms where some
progress was made by 2S-Solver of difficulties 2 (d), 3 (e) and 4 (f) and where no
progress was made by 2S-Solver of difficulties 3 (g) and 4 (h).
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Difficulty simple Difficulty simple
Nonograms Nonograms

0 0 11 5,044
0.5 0 11.5 878,832
1 333 12 656
1.5 105,039 12.5 405,176
2 29,597,291 13 52
2.5 64,058,939 13.5 159,192
3 154,031,378 14 0
3.5 135,235,289 14.5 66,936
4 100,482,848 15 0
4.5 108,441,043 15.5 22,676
5 43,731,472 16 0
5.5 59,634,572 16.5 8,192
6 13,806,074 17 0
6.5 33,970,080 17.5 2,044
7 4,153,728 18 0
7.5 16,599,950 18.5 688
8 952,584 19 0
8.5 8,418,054 19.5 88
9 206,736 20 0
9.5 4,023,698 20.5 52
10 36,408 21 0
10.5 1,970,216 21.5 12

Total 781,005,372 (72.74%)

Figure 22: Results for simple 5× 6 Nonograms

Figure 23: The three hardest simple 5× 6 Nonograms of difficulty 21.5, all shown in
their first rotation as they occur in lexicographical order. Note that Nonograms of size
m× n where m 6= n have at most 4 rotations, unlike the conventional square puzzles
that can take a maximum of 8 different settings.
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Difficulty 2-SAT-hard 2S-hard some progress by no progress by
Nonograms Nonograms 2S-Solver 2S-Solver

1 13,313,573 52,378 48,115,336 189,306,574
2 6,302 708 24,438,941 14,505,776
3 0 0 1,904,822 1,011,238
4 0 0 32,718 47,884
5 0 0 44 158

Total 13,319,875 53,086 74,491,861 204,871,630
% of 2m·n 1.24% 0.00% 6.94% 19.08%

Figure 24: Results for nonsimple 5× 6 Nonograms.

Exactly 794,378,773 (73.98%) of the 5× 6 puzzles are uniquely solvable. Hence there
are 440 uniquely solvable puzzles that are not 2S-hard. So far, we have not seen any
uniquely solvable nonsimple puzzles that 2S-Solver is unable to solve, but now we
actually found some. Compared to 5× 5 puzzles, there are relatively more nonsimple
and less simple puzzles. Still, the number of 2S-hard Nonograms is extremely low and
difficulty 3 for this class of puzzles has also not been reached here. A very small amount
of 202, not necessarily uniquely solvable, puzzles require at least 5 clues to become
simple solvable. If we look at the different tables from this chapter, the percentage of
simple and uniquely solvable puzzles seems to decrease as the puzzles get larger. At
the same time, the share of 2-SAT-hard, 2S-hard and progress gaining puzzles seems to
increase. This will continue to go on for larger puzzles as well, probably.
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4.3 Large size Nonograms

So far, we have analyzed the complete image spaces of the small and medium size
puzzles dealt with in this chapter. As the puzzles increase in size, not only do their
image spaces expand, but, naturally, the computational workload required to solve every
individual (larger) puzzle increases as well. For instance, the image space expands from
5× 6 to 6× 6 puzzles by a factor of 26·6

25·6
= 26 = 64. The overall puzzle size increases by

20%. By cause of these facts, solving large image spaces with all three solving strategies
as a whole, whilst also backtracking the difficulty measures for SimpleSolver-based
difficulties, simply takes too much CPU time.

In order to still obtain a proper overview of the 6 × 6 puzzles we use a probability
sampling method; more specifically, systematic sampling [Agr18]. This means dividing
the population (the puzzles) in regular intervals and drawing a random sample over
each subgroup. We analyze a little over ∼ 1% of the 68,719,476,736 6 × 6 puzzles.
We chose the sample size to be N = 687, 194, 816 such that both the sample size
and the population size 26·6 are divisible by 64 (for both sampling and computational
purposes). The population is therefore divided in 64 different subgroups, with each
group containing exactly 26·6

26
= 230 lexicographic consecutive puzzles. Accordingly, we

draw a random sample of exactly N
64

individuals over each subgroup. Even though this
approach might lead to some form of sampling bias since puzzles with the same traits
are not necessarily clustered together, it excludes the possibility that a certain part
of puzzles are left out by default. The results for simple puzzles can be found in Figure 25.

Batenburg and Kosters also performed more complete experiments on simple 6 × 6
puzzles. They utilize a different difficulty measure that is similar to ours, but counts the
number of sweeps required by an H-Sweep-starting SimpleSolver to fully solve the
puzzle. It therefore does not take into account the sweep difference explained in Chapter
3.1. If we compare our results to these results in [BK12], we notice that the highest
difficulty they observed is 28. These puzzles would be scattered over our difficulties 27.5,
28 and 28.5. The random sample we drew clearly does not include any of these puzzles,
as these difficulties are not present in Figure 25. What seems to be pure cöıncidence,
however, is that the percentage of simple puzzles in respect to the total amount of
puzzles in [BK12] is exactly same same to the percentage of simple puzzles over our
random sample size (70.76%). The percentages of nonsimple puzzles in Figure 26 seem
to increase compared to previous puzzle sizes. Therefore, we suspect that as puzzles
increase in size, the overall share of simple puzzles decreases while more and more
puzzles are classified as 2-SAT-hard and 2S-hard.
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Difficulty simple Difficulty simple
Nonograms Nonograms

0 0 13 271
0.5 0 13.5 265,790
1 14 14 32
1.5 10,517 14.5 130,616
2 7,668,185 15 3
2.5 22,502,367 15.5 54,215
3 75,039,981 16 0
3.5 77,620,188 16.5 2,5236
4 66,586,358 17 0
4.5 75,366,690 17.5 9,732
5 33,802,328 18 0
5.5 47,531,148 18.5 4,068
6 12,649,365 19 0
6.5 29,380,115 19.5 1,469
7 4,209,214 20 0
7.5 15,103,012 20.5 526
8 1,173,952 21 0
8.5 8,469,436 21.5 199
9 296,300 22 0
9.5 4,266,482 22.5 56
10 65,063 23 0
10.5 2,326,222 23.5 19
11 12,299 24 0
11.5 1,121,113 24.5 8
12 1,946 25 0
12.5 591,483 25.5 2

Total 486,286,020 (70.76%)

Figure 25: Results for simple 6× 6 Nonograms (percentage taken over N).

(a) (b) (c) (d)

Figure 26: Four random 6× 6 2S-hard Nonograms in lexicographic order.
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Difficulty 2-SAT-hard 2S-hard some progress by no progress by
Nonograms Nonograms 2S-Solver 2S-Solver

1 11,139,168 48,830 33,151,702 122,291,457
2 10,019 969 19,871,815 10,857,209
3 0 0 2,505,368 836,406
4 0 0 119,072 72,680
5 0 0 1,502 2,577
6 0 0 7 15

Total 11,149,187 49,799 55,649,466 134,060,344
% of N 1.62% 0.01% 8.10% 19.51%

Figure 27: Results for nonsimple 6× 6 Nonograms (percentages taken over N).
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Figure 28: Results for each individual subgroup in the random sample for simple 6× 6
puzzles. The average, minimum and maximum difficulty observed are plotted for the
puzzle distribution, where the x-ticks are in lexicographic order.
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Figure 29: Solver distributions for the individual subgroups in the random sample.
Subgroups are in lexicographical order. Some kind of pattern is recognizable in the plot
and has to with the order in which the puzzles are generated. The 2S-hard puzzles are
completely overrun by the other two solving strategies and cannot be clearly distinguished
in this figure.
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5 Conclusions and Further Research

In this thesis we proposed three different solving strategies for Nonogram puzzles. We
began by introducing the SimpleSolver in Chapter 3.1. It turns out that the majority
of the puzzles can be solved by this algorithm based on logic reasoning steps. For the
remaining unsolved uniquely solvable puzzles, we proposed the 2-SATSolver. By alter-
nating a 2-satisfiability procedure with the SimpleSolver algorithm, we discovered the
group of 2-SAT-hard puzzles. Able to solve all uniquely solvable puzzles for smaller size
variants, we found a relatively small amount of uniquely solvable puzzles that are not
2-SAT-hard in experiments on medium size Nonograms in Chapter 4.2. By integrating
the SimpleSolver in the 2-satisfiability procedure of the 2-SATSolver we were
able to solve these remaining 5× 5 puzzles, classifying them as 2S-hard. Despite this
improvement, for 5× 6 and large size Nonograms, a portion of the uniquely solvable
puzzles remain unsolved.

It is difficult to say something about the characteristics of more difficult puzzles. The
number of guesses required to solve the puzzle by a procedure of simple logical reasoning
steps seems an appropriate difficulty measure, as every guess or assumption features a
series of new implications that might lead to either nothing or a contradiction. As the
puzzler guessed “wrong”, he or she wasted time by computing and filling in all pixel
relations. Reducing the amount of required guesses naturally decreases the chance of
guessing the wrong value for a pixel. However, other than the fact that the puzzle lines
should not be too full or completely empty (easy fixing), not much can be said about
how such a difficult puzzle actually might look like.

Future work should include researching both larger sized puzzles and the portion of
unsolved uniquely solvable puzzles. Distributing the computational workload even further
than done in this thesis might bring forth new opportunities to examine the entire
image spaces of 6× 6 or even larger puzzles. Since solving Nonograms is a NP-complete
problem, it is extremely likely that not all (uniquely solvable) puzzles can be solved by
algorithms that run in polynomial time. However, a thorough analysis of the remaining
unsolved puzzles might lead to the discovery of some new solving patterns, which in
turn might conduce to the pursuit of solving and classifying as many puzzles as possible.

31



References

[Agr18] A. Agresti. Statistical Methods for the Social Sciences. Pearson Education
Ltd., 2018.
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