
Opleiding Informatica

Hybrid Classical-Quantum Speedups for

the Random k-SAT Problem using

Smaller Quantum Computers

Miguel Oswaldo Blom

Supervisors:
Mathys Rennela
Vedran Dunjko

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 03/08/2020

www.liacs.leidenuniv.nl

Abstract

Real-life instances of SAT problems can be of rather large size, which means that even the most
space-efficient known quantum algorithms cannot be used to solve them on the still size-limited
state-of-the-art quantum computers. This thesis fits in a line of work which focuses on achieving
possible speedups (over classical computing) through the use of smaller quantum computers.
We explore a hybrid classical-quantum approach, the Divide and Quantum approach. In
this approach, Divide and Conquer classical algorithms are adapted to work with quantum
devices. Specifically, given a quantum computer whose size is a ratio of the size of the input,
one substitutes recursive calls to classical algorithms by calls to faster quantum algorithms,
whenever the size limitations allow. The question of what the minimal requirements on the
quantum computer size to ensure that the Divide and Quantum approach yields a polynomial
speedup depends on the problems studied. This thesis focuses on an empirical study of the
search trees generated by the classical algorithm DPLL for the random 3-SAT problem, in
which Boolean formulas are randomly generated. In other words, we investigate in the context
of SAT when the Divide and Quantum approach yields a computational advantage over a
classical Divide and Conquer approach. For this purpose, we develop software specifically
designed for collecting data about the shape and the size of the search trees generated by
DPLL. We analyze this data and determine settings in which the Divide and Quantum
approach seems to achieve a polynomial speedup over classical implementations of DPLL.
More specifically, we conjecture that the Divide and Quantum approach beats the classical
when the ratio of the quantum computer is above 90% in general, and can be significantly
smaller in more special cases.

2

Contents

1 Introduction 1

2 SAT Problem 2
2.1 3-SAT . 3

2.1.1 Random 3-SAT . 3
2.1.2 Sampling algorithm . 4

2.2 Complexity . 4
2.3 Search algorithms . 5

2.3.1 Brute-force . 5
2.3.2 Search space . 6
2.3.3 Backtracking . 6

2.4 DPLL . 6
2.5 Thresholds for random 3-SAT . 7

3 Quantum Computing 8
3.1 Quantum Bits . 9
3.2 Quantum Gates . 9
3.3 Quantum Algorithms . 10

3.3.1 Grover’s Algorithm . 10
3.3.2 Applying Grover’s Algorithm to SAT . 12
3.3.3 Quantum Backtracking . 13

4 Divide and Quantum 14
4.1 Approach . 15

5 Methods 16
5.1 Subtree size inspection . 16

5.1.1 Determining ∆ for which problem instances have search trees that grow
exponentially in size . 17

5.1.2 Determining cutoff points where subtrees still grow exponentially 17
5.2 Subformula structure inspection . 17
5.3 Total runtime comparison . 18

5.3.1 Estimate σ based on the relation following a D&Q speedup 18
5.3.2 Determining the median σ from problem instances with different n 19

6 Results 19
6.1 Results from subtree size inspection . 19

6.1.1 Determining ∆ for which problem instances have search trees that grow
exponentially in size . 19

6.1.2 Determining cutoff points where subtrees still grow exponentially 20
6.2 Results from subformula structure inspection . 21
6.3 Results from total runtime comparison . 22

6.3.1 Estimate σ based on the relation following a D&Q speedup 23
6.3.2 Determining the median σ from problem instances with different n 23

7 Conclusion and Discussion 23
7.1 Discussion . 24

References 27

A Random k-SAT generation 28

B Subtree size inspection – exact method 30

C Subformula structure inspection – exact method 31

D Total runtime comparison – exact method 32

Acronyms 33

Glossary 33

1 Introduction

Quantum Computers (QCs) are becoming more popular as current research unlocks the possibility
for bigger and more reliable machines. They are used for solving certain problems, which are
thoroughly researched to this day. Boolean Satisfiability Problem (SAT) is one of the problems in
which a lot of research has been done and is still ongoing, because many real life problems can be
translated to problem instances of SAT. SAT has many variants, such as random k-SAT, which are
called classes. However SAT is a hard to solve problem, it might take a time exponential in the
number of variables, even for the best current algorithms.
There exists a Quantum Algorithm (QA) for using which it has been proven that a QC achieves a
quadratic speedup on these classical algorithms in specific cases. Solving SAT using a Classical Back-
tracking (CBT) algorithm results in search trees, these search trees can be explored quadratically
faster using a QA. Solving the problem still takes an exponential amount of time, but polynomially
less compared to the classical case, which may be of great value in practice. However, we have to
deal with the fact that the current QCs are very limited in size, the problem instances do not fit
inside the QC in terms of available working memory. For speedups to be attainable, the search trees
have to satisfy certain conditions; namely, the subtrees, defined by the size of the available QC,
must be of an exponential size in relation to the size of the problem instance itself. These search
trees can also be heavily unbalanced, which renders some generally used Quantum Algorithms
(QAs) inefficient.
Divide and Quantum (D&Q) is a family of hybrid algorithms with classical and quantum elements.
D&Q runs classically on the top of the search tree to reduce the SAT problem, up until a given
cutoff point. When the cutoff point is reached, the reduced problem is guaranteed to fit inside the
QC for which the cutoff point was determined. D&Q then proceeds to run quantum-wise on the
subproblems that were reduced by the classical element and allows the utilization of QCs in solving
problems that do not initially fit inside the QC.

Using a smaller QC we can obtain a significant speedup only in specific cases. As we will ex-
plain later, this depends on the size of the search trees that the QC operates on, which may prohibit
any genuine speedup. This leads to the question of this thesis:

“Can we identify classes of instances of random k-SAT problems and a ratio of the size
of the original problem instance to the size of the smaller quantum computer, for which,
on average, a valuable speedup can be obtained?”

Whether or not a speedup is obtainable depends on the tree structure and QC size. Here we
study DPLL for random k-SAT to identify regimes of size, and random k-SAT specifications where
polynomial speedups are obtainable.

We believe that instances of hard classes of random k-SAT generate trees on which much smaller,
50% the size of the problem instance, QCs can still offer a polynomial speedup. We use random
k-SAT because it allows for an additional parameter ∆, used to tune the hardness of the problem
instances that we want to examine, to experiment with different classes of random k-SAT with
different shapes of search trees. In particular, we focus on random 3-SAT, for which there exist two

1

F = (¬p︸︷︷︸
literal

∨ q︸︷︷︸
literal

∨ s︸︷︷︸
literal

)

︸ ︷︷ ︸
clause

∧ (¬q︸︷︷︸
literal

∨ r︸︷︷︸
literal

∨ ¬s︸︷︷︸
literal

)

︸ ︷︷ ︸
clause︸ ︷︷ ︸

CNF formula

Figure 1: An example of a formula with two clauses and three literals per clause. For example,
p = False and r = True would suffice as a satisfying assignment

theoretically proven thresholds1 [BSW01, PI00, ABM04], which define three different regimes of
different hardnesses of corresponding problem instances. For all ∆ in between 3.003 and 4.3 (the
hard regime) the problem instances are hard; they are easy for any other ∆. Problem instances
of random 3-SAT with a ∆ in the hard regime are known to take an exponential amount of time
to solve, using the best known classical algorithms for this problem. In our research, we will be
looking at speeding up a conventional variant of the Davis-Putnam-Logemann-Loveland (DPLL)
family of algorithms [DP60, DLL62, Ouy98], which are Classical Backtracking (CBT) algorithms.

To explore our research question, we will be analyzing the shape and size of the search trees and
its subtrees corresponding to runs of DPLL on classes of random k-SAT formulas; in particular,
we will focus on ∆ in the hard regime. We will report which ∆ yield exponentially sized search
trees with exponentially sized subtrees at certain fixed cutoff points. Secondly, we will examine
how the hardness of initially hard formulas evolves as we reduce them using DPLL to partial
problems. Lastly, we will be examining the effectiveness of a theoretical quadratic speedup on
problem instances with different ∆ . These three parts will provide supporting evidence to our
hypothesis and show the importance of using QCs for solving SAT problems and, in general, using
D&Q. We examine runs of DPLL and collect information about the shape and size of the search
trees in order to simulate the effects of a QC with theoretically proven properties.

2 SAT Problem

A Conjunctive Normal Form (CNF) formula in Boolean logic [HR04] is constructed by using three
logical operators and a given set of variables. A variable, such as ‘x’, is a unit to which we can
assign a value, either True or False. The logical negation, ‘NOT’ (¬), negates the value of a
Boolean logic expression, it swaps True to False and vice versa. The logical conjunction, ‘AND’
(∧), results in True if and only if the expressions, which it operates on, result in True, otherwise
False. The logical disjunction, ‘OR’ (∨) results in True if and only if either of the expressions
on which it operates results in True, otherwise False. A logical literal is either a non-negated or
negated variable (x, ¬x respectively). A logical clause (constraint) is a disjunction of literals and a
CNF formula is a conjunction of multiple clauses. An example of a CNF formula is shown in Figure 1.

The Boolean Satisfiability Problem (SAT) is a problem where the task is to determine whether a
problem instance, a Boolean logic formula, is satisfiable. This is the case if there exists a satisfying

1A threshold is constant value we define to identify distinct classes by separating instances with values above
from those with values below the threshold.

2

assignment, i.e. a setting of variables, which renders the entire formula True. An algorithm that
solves SAT should return ‘Yes’ only for satisfiable formulas and ‘No’ otherwise. SAT problems are
often in CNF, a satisfying assignment would evaluate every clause being True.

If a contradiction like (p)∧ (¬p) is found, then there exists no satisfiable assignment for the problem
instance. As we will discuss later, the best classical algorithms solving SAT have an exponential
time complexity; its instances can, in the worst case, take an exponential amount of time to solve,
by the best algorithms, in relation to its size.

2.1 3-SAT

The SAT problem has many versions, one of which is the k-SAT class where our problem instance
has a fixed number (k) of literals in each clause. We also have a set of available variables of size n
and the formula consists of c clauses. In this thesis we will be focusing on 3-SAT, which means that
each clause in the formula contains k = 3 literals. We use 3-SAT because it is the most challenging
case for D&Q.

2.1.1 Random 3-SAT

For the class of k-SAT we have a subclass of random k-SAT (or random 3-SAT in our case). The
difference between Random k-SAT and k-SAT is in the generation of the formulas, for which each
formula consists of a fixed number of clauses, which are also all chosen uniform at random (i.e. it is
not necessarily a worst case instance for our algorithm). We have a concept of a set of all possible
clauses that are allowed by the class, defined by the number of literals in a clause as k and a set of
variables of size n which may occur in the formula. The total number of combinations of variables
in this pool is clit =

(
n
k

)
, the number of possible combinations of literals for each clause is cneg = 2k.

Thus the total number of combinations of literals is ctot = cneg · clit = 2k ·
(
n
k

)
. The way we combine

clauses in this research is by choosing a number of clauses, with replacement, possibly resulting in
having duplicate clauses in a formula.

Specifically in random k-SAT, one can characterize each instance with a parameter ∆, which denotes
the ratio c/n, for c clauses and n variables, and it is known that this parameter can influence the
hardness and search tree structure of the corresponding problem instance [CM01]. Higher ∆ results
in variables occurring more among clauses. Having variables shared among multiple clauses brings
dependencies between these clauses for assignment, thus making a satisfying assignment less likely
to exist. Each ∆ together with the number of variables results in a different subclass of random
k-SAT.

For random 3-SAT two thresholds are defined [CM01], resulting in three regimes; intuitively, when
we say that a regime or a formula is hard, we mean that best known algorithms take exponential
time (in n) to decide if a solution exist. For ∆ < 3.003 the problems are known to have many
satisfying assignments and therefore it is “easy” to find one. In general, for 3.003 < ∆ < 4.3 there
are very few satisfying assignments, but most often they do exist. To find these, current methods
search through many combinations in order to find a satisfying assignment, making this the “hard”
regime of random k-SAT problems. For 4.3 < ∆ we know that there are often no solutions at all. So

3

in our search we can see by the contradictions that our partial solution will not lead to a satisfying
assignment early on. This makes this regime “harder” than the easy regime, but not as “hard” as
the hard regime. In the case of our research, we will correlate to the size of the search space we
need to explore in order to decide the complexity using backtracking algorithms.

2.1.2 Sampling algorithm

In order to generate random k-SAT problem instances, it is required to clearly define what our
approach is, as there exist a number of variations. Also, randomness in computer science has some
notable complications in its definition.

A conventional computer (unlike a quantum computer) is a deterministic automaton, meaning that
given a state q, and an action a, the resulting state r from applying a on q (q

a−→ r) will always
be identical for the same q and a. Thus given a state of a process (for the generation of random
numbers) on the deterministic automaton will result in the same random number each time. We
can algorithmically approximate randomness and call this pseudo randomness where “pseudo”
is often omitted.

To generate random k-SAT problem instances, we order all ctot possible clauses by giving each
of them a unique identifier. Next we generate #(Clauses) = ∆ ∗ n random numbers between
0 ≤ rn < ctot. We use these to pick clauses from the pool by selecting the clauses with the unique
identifiers equal to the generated random numbers. A more precise definition of the generation is
presented in the appendix, this does not have to be fully understood in order to comprehend our
used methods.

2.2 Complexity

Complexity is a term that is used to describe the growth of resources required by a procedure as a
function of the size of the input (n). In complexity, we make use of big-O notation to determine a
set of functions specified by whatever function is within big-O; these functions describe the growth
rate f(n) of the required resources as a function of n. For example, we describe this behaviour using
O(g(n)) where f(n) ∈ O(g(n)). f(n) ∈ O(g(n)) means that there exist n0 ≥ 0 and c ≥ 0 such that
0 ≤ f(n) ≤ c · g(n) for all n ≥ n0. This describes the upper bound of the growth of the function,
likewise Ω describes the lower bound and Θ describes a growth that is alike. Most often, g will not
consists of multiple terms as O(g(x)) = O(g(x) + lower order terms). Orders of functions in big-O
notation include: constant (O(1)), logarithmic (O(log(n))), linear (O(n)), n-log-n (O(n log(n))),
quadratic (O(n2)), polynomial (O(nm)), exponential (O(exp(n))) and factorial (O(n!)).

Time complexity describes the amount of elementary computational steps2 resources are needed
by an algorithm. We use steps to describe time complexity for the sake of being a machine
independent model. Different machines may have different speeds, this makes measuring the actual
time unreliable for describing the computational time complexity of an algorithm. This would
become a machine dependent multiplicative term, subsumed by big-O For example, in SAT if we

2The essential operation in an algorithm which must have a fixed constant time. For example, for an algorithm
on solving SAT, the elementary computational step is an assignment of a value to a variable.

4

would use a backtracking algorithm to explore the search space resulting in a binary tree, where
each node represents an assignment (step), then in the...

1. ... worst case3, we would perform as many steps as the number of nodes in a full binary tree
with a height of the number of variables in the formula. This results in an exponential amount
of steps (O(2n − 1)). All possible assignments were covered until either the very last satisfies
to true, or it did not and there exists no satisfying assignment at all.

2. ... best case4, we would perform as many steps as the number of nodes in a minimally sized
binary search tree with a height of the number of variables in the formula. This results in a
linear amount of steps (Ω(n)). Here the very first assignment would satisfy the formula.

Space complexity describes the memory resources needed by an algorithm. Suppose we have
an algorithm solving SAT, each variable gets either assigned True or False, which requires at
least exactly one bit per variable for any algorithm in order to solve the problem. If the algorithm
requires no extra bits, then its space complexity is thus linear in the size of the problem instance.

The best known classical algorithms for constraint satisfaction problems such as 3-SAT have an
exponential time complexity, and their quantum counterparts also have an exponential runtime,
although polynomially smaller. In particular, we do not suspect that quantum computers can solve
3-SAT in a polynomial amount of time, but we know they can provide a valuable polynomial
speedup for almost all cases. In other words, the complexity will be exponential, but polynomially
smaller than in the classical case. [BV97].

2.3 Search algorithms

Search algorithms are procedures that explore possible candidates in a search space in order to find a
solution to a problem, such as SAT. When comparing search algorithms there are four attributes that
can be discussed. A search algorithm can either terminate or not, which means that it either does
or does not stop running at some point for any finite search space5. A search algorithm is complete
if it obtains a solution if there exists one in the search space. A search algorithm can be admissible,
which is the same as completeness, but the solution should be optimal6 in this case. Lastly, space
and time complexity play a big role in choosing which kind of search algorithm should be used for a
specific problem. The algorithms we use to solve SAT should always terminate and must be complete.

2.3.1 Brute-force

Brute-force search is a family of exhaustive search algorithms for finding a solution to a problem.
The general idea of brute-force is to generate all7 possible solutions and checking them one by one.
In SAT, given n variables, there are 2n possible assignments provided that n > 0. Thus the time

3An upper bound for problem instances with the highest possible number of elementary operations.
4A lower bound for problem instances with the lowest possible number of elementary operations.
5A finite set of candidate solutions to the problem.
6An optimal solution is the best solution as specified by the problem definition. For example, given a minimization

problem, a solution to the problem is optimal if there exists no other solution with smaller “costs”.
7Hence exhaustive.

5

complexity of brute-force on SAT is O(2n) in the worst case. SAT problem instances may have a
structure that allows for the use of faster algorithms than brute-force, this is the case for 3-SAT.

2.3.2 Search space

A search space consists of all (partial) solutions that satisfy all constraints8. A search algorithm
describes the exploration of this space. We express the exploration for SAT in the form of a tree
structure, a search tree. This search tree consists of nodes, corresponding to partial assignments
to the original random k-SAT formula in the root node. It also consists of edges between parents
node and their children (a subformula / subproblem). These edges correspond to the transitions
from a formula to a subformula respectively by a reduction by assigning a value of True or False
to a variable in the formula. These partial assignments serve as partial solutions to the problem.
The leaf nodes (at the endings of the tree) of a fully explored search tree correspond to either a
contradiction or a satisfying assignment to the problem. In our problem instances, these search
trees can be unbalanced, which means that not all leaf nodes lie on the same depth (See Figure
6). Worth mentioning is that the differences in depths can be relatively large to the height of the
tree. This means that big parts of the trees may not be explored, due to contradictions or a not
fully explored search tree.

2.3.3 Backtracking

Classical Backtracking (CBT) is a family of classical search algorithms for solving problems that
allow evaluation on partial solutions. For SAT we can evaluate partial solutions on the formula to
see whether any contradictions occur. In the case of a node in the search tree with a contradiction,
the whole subtree of the corresponding node can be ignored; the contradiction will persist in all of
its children and it is thus guaranteed to not contain any satisfying assignment. By ignoring the
subtree, CBT prunes the search tree, resulting in the mentioned imbalance due to contradictions. A
CBT algorithm calls itself recursively in order to visit children of the current node in the search tree.
In the case of SAT, this is adding the assignment of a value to a variable to the partial assignment.
When the algorithm can not or should not visit any child nodes, the algorithm returns to the call on
the parent node, ending up back higher in the search tree, until it finds unvisited nodes. This goes
on until a satisfying assignment is found, which is returned by the algorithm. The time complexity
of a CBT corresponds to the size of the search tree. As mentioned, in the worst case this is O(2n)
and the best case O(n).

Brute-force and CBT are approaches of search algorithms that can be generalised for other search
problems. Why we prefer CBT over brute-force, is that CBT searches through the search space
more strategically. This results in a lower time complexity, in the average case, as a result of pruning
disposable parts of the search tree.

2.4 DPLL

The Davis-Putnam-Logemann-Loveland (DPLL) [DP60, DLL62, Ouy98] algorithm family consists
of backtracking algorithms used to solve SAT problems. A heuristic is a type of ruleset that

8Conditions which a (partial) solution to the problem must satisfy in order to be valid.

6

(¬x) ∧ (x ∨ y ∨ z)

(y ∨ z)

x = False

(a) Unit propagation

(x ∨ ¬z) ∧ (x ∨ y) ∧ (¬y ∨ z)

(¬y ∨ z)

x = True

(b) Pure literal elimination

(x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)

(y ∨ z) (¬y ∨ ¬z)

x = False x = True

(c) Branch

Figure 2: Reduction rules and branch operation for DPLL

determines which decisions are made based on some evaluation given the original formula and
current partial assignment; here the decision is the order in which we explore partial assignments. A
partial assignment is a state in the form of a subformula which corresponds to a node in the search
tree. The heuristics for DPLL can be chosen freely, thus making DPLL a family of algorithms.
There are two reduction rules that are generally used in DPLL:
Unit Propagation (UP) detects whether a clause with one element exists in the current subformula
and assigns a value to the corresponding variable as to render the clause True; see Figure 2a.
Pure Literal Elimination (PL) detects whether there exists a variable which occurs negated in
all clauses or non-negated, i.e. they occur in one polarity9 in all clauses. If such variable exists
in the current subformula, a value is assigned to it as to render the clauses to be True; see Figure 2b.

If neither of the reduction rules can be applied to simplify the formula, then some branch heuristic
is used. We select the variable corresponding to the label which comes first in the sequence of all
used labels (of which their corresponding variables are unassigned) in canonical order. We will call
this method NäıveDPLL. The order in which we select a variable, using the heuristic, is critical
for performance, hence this is NäıveDPLL. Because the clauses are chosen uniformly at random,
the labels of the variables are also at random. By selection using any order we will have random
selection. A branch operation is performed as seen in Figure 2c.

A variable is chosen for which both True and False will potentially be evaluated. If a contradiction
is found, then the algorithm backtracks higher up to a branch. If no more unexplored regions are
found in the search tree, then there exists no satisfying assignment.

2.5 Thresholds for random 3-SAT

As mentioned earlier, the thresholds for ∆ in which the hard regime falls are 3.003 and 4.3 [CM01].
These thresholds have been experimentally studied in previous works [BFS19, Zho, AP03, MPRT16,
Nik05, AHI06]. The whole search trees are likely to be exponential in size in relation to the height
of the subtrees, very likely because of its upper region. After some assignments, the subformula is
likely to become smaller, such that the bottom region of the search trees often become polynomial,
then linear and in the leaves constant in size in relation to the height of the subtrees; see Figure 3.
Polynomial sized trees in relation to the height meaning that the function describing the size of the
tree in amount of steps is polynomially sized as a function of the amount of variables. This means
that a solution for a problem with a polynomially sized search tree can be found in a polynomial

9Being negated or non-negated.

7

Exponentially sized subtree (hard)

Subtree of polynomial/linear/constant size (easy)

Figure 3: Growth regions of the subtrees of an example search tree of random k-SAT formulas.

amount of time. Also notable is that the height of the tree is a function of the number of variables,
because at each step, we eliminate at least one variable. If variables, present in a set of clauses being
satisfied in one step, are not present in other clause that remain, then we can eliminate multiple
variables at once. A QA, with a theoretical quadratic speedup on problems with an exponential
time complexity, would not be effective for problems with a polynomial complexity considering the
polynomial overhead needed to use the QC. This is because running the query of the search tree
using the QA can actually be slower than the classical algorithm, but the overall number of queries
can be much (polynomially) smaller. A search tree that grows exponentially in size in relation to
its height and thus number of variables do have an exponential complexity allowing said QA to be
effective, even considering the overhead.

3 Quantum Computing

Our methods requires an understanding of used concepts from quantum computing [NC09]. QCs are
machines built with the goal in mind for computation while exploiting phenomena from quantum
mechanics. Superposition is the phenomenon where a particle is represented as a linear combination
of multiple computational basis states at the same time, until it collapses in only one of the states,
upon measurement. Entanglement is the phenomenon where the states of all particles in a paired
set are much stronger correlated than a classical system allows. For instance, measuring a particle
making it collapse also makes its paired particles collapse. Interference is the phenomenon where
the quantum wave functions of particles interact constructively. A classical computer does not
depend on any of these phenomena and makes use of only classical physics. QCs allow for much
faster calculations in specific cases relative to classical computers.
Current QCs do not have enough working memory in order to solve real-life sized SAT problems.
The overhead of using a quantum computer should also be considered while talking about practical
speedups; where theoretical speedups might sound good, they might not be good enough in a
practical manner. In other words, if a low theoretical speedup is guaranteed for solving specific
classes and instances of SAT problems, it might not be valuable enough to outweigh the overhead.

8

3.1 Quantum Bits

A Quantum Bit (qubit) is similar to a classical bit in the way that it describes a unit of information.
While the state of a classical bit is a discrete value, either 0 or 1, the state of a qubit is represented
by a unit vector in a 2-dimensional complex vector space, the Hilbert space. Any valid quantum
state can be given with α |0〉 + β |1〉. The coefficients α and β in this expression are called the
the amplitudes of the state. They describe the superposition of the qubit, In particular, they
describe the probabilities of finding a qubit in either the |0〉 or |1〉 state upon measurement with
probabilities |α|2 and |β|2 respectively. The expression |α|2 + |β|2 = 1 should always hold; the
probabilities of finding the qubit in either state upon measurement should add up to 1. We can
think of the amplitudes as the polarization of a photon, which is a valid physical encoding of a qubit.

Measuring a qubit will collapse its superposition state of α |0〉+ β |1〉 to either ‘0’ or ‘1’. In terms
of linear algebra, the measurement operation projects a state |φ〉 onto either of the vectors |0〉 or
|1〉 based on the probability given by the amplitudes of the state.
If the system contains multiple Quantum Bits (qubits), the collection of qubits is called a quantum
register, allowing for quantum entanglement. Given a quantum register of n qubits with for each
qubit two different outcomes upon measurement, the state space dimension grows exponentially,
O(2n).

3.2 Quantum Gates

Quantum gates, like classical gates, perform an operation on the state of the register. In quantum
computing, this is not defined by a Boolean logic operation, but rather a linear transformation
in a vector space. All quantum gates can be described by using matrices that transform the state
of the quantum register. Earlier in this section we mentioned that all quantum operators should
be reversible, this is to preserve the amplitudes of the states. The state after applying a unitary
gate can be expressed using linear algebra; it is obtained by applying the corresponding matrices
onto the vector representing the initial register of the qubit system. Composing operations as a
circuit with gates is represented by the tensor product. In other words, any quantum circuit is a
representation of an exponentially large unitary transformation.

An example of a gate is the Hadamard gate, which is used to put qubits into superposition, if

they were in a computational basis before. The Hadamard matrix is defined by: H = 1√
2

[
1 1
1 −1

]
,

where for instance applied to |0〉 and |1〉 respectively: H |0〉 = |0〉+|1〉√
2

= 1√
2
|0〉 + 1√

2
|1〉 and

H |1〉 = |0〉−|1〉√
2

= 1√
2
|0〉 + 1√

2
|1〉. Taking the amplitudes α = β = 1√

2
from this equation and

squaring them gives us the probability of observing either state upon measurement. A probability
of | 1√

2
|2 = 1

2
= 0.5 to encounter either ‘0’ or ‘1’ upon measurement, thus the Hadamard gate puts

these vectors (qubit states) in an equal superposition for the states |0〉 and |1〉. This superposition
is a common initialization, after which we use interference to amplify “good” branches of solutions.
The use here is that given a superposition of all possible states, we apply operations in a way that
only viable solutions that respect all conditions can result upon measurement.

Another example of a quantum gate is the Controlled NOT (CNOT) gate, which operates on

9

two qubits. If the control qubit equals |1〉, then the target qubit is flipped. We can represent this

operation in the form of a matrix as well: CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. In order to make use of quantum

entanglement, there should be operations that perform on multiple qubits at once; one of such
operations is CNOT.

There are actually infinitely many possible quantum gates for any number of variables. However
we do not have to define each gate separately. They can be constructed from a universal set of
gates. A universal set of gates is an, often minimal, finite set of gates from which any operation can
be expressed as a combination of the gates in the set. In fact, the combination of CNOT and any
single qubit gate forms a universal set of gates, that can represent any quantum unitary operation.

3.3 Quantum Algorithms

The methods we will be referring to are based on QAs. An algorithm is a description or a recipe
that determines a specific sequence of applications of transformations in order to solve a specific
problem, given an input, where the input size determines the actual sequence of transformations.
Therefore a QA specifies a sequence of quantum gates applied on the input qubits. After the
application of the whole circuit, in the final state, a measurement is done on one or more qubits.
From this measurement we read the result of the algorithm, given the input. The methods we will
be mentioning both make use of superposition. In what follows we will explain a particular QA for
the Quantum Search problem, which is the problem of detecting whether a marked element x∗10 is
present in a given set of elements x0, x1, ..., xn. We will also explain how the QA can be applied to
SAT in order to show an approach to solving SAT problems using a QC. When we talk about time
complexity we mean the number of elementary gates; when we talk about space complexity we
mean the size of the quantum register needed.

3.3.1 Grover’s Algorithm

We will now exemplify QAs by showing how quantum (brute-force) search of Grover works
[Gro96, NC09]. To describe what kind of properties must be satisfied in this quantum search, we
make use of a concept called an oracle. An oracle, in general, is a function f that can be treated as
a black box. In our case we define a function f(x)→ 0, 1 where x is an element in the set of all the
possible assignments. f is defined by Equation 1.

f(x) =

{
1 x is marked, a satisfying assignment

0 otherwise
(1)

Grover’s Algorithm (GA) is a quantum search algorithm [NC09] with the objective to find one
or more of the M elements that satisfy a criterion given a large unstructured database of size
N where 0 ≤ M ≤ N ; by unstructured we mean that the elements are not necessarily ordered.

10An element that satisfies a given set of properties.

10

Init Grover Iteration (O(
√
N) Times) Measurement

. . .

. . .

n|0〉 H⊗n

Of
H⊗n 2 |0n〉 〈0n| − In H⊗n

|1〉 H

Figure 4: Grover’s Algorithm as quantum circuit, consisting of three parts: Initialization, Grover
Iteration and Measurement.

N here is the number of elements, but we will think of them as indices that can be represented
using n bits such that N = 2n. Given this n we can describe the complexity of GA as O(

√
n/M).

GA is an oracular algorithm, which means that it makes use of an oracle. Furthermore GA is a
meta-algorithm which shows how to use any such oracle to do its work. The oracle in reality is an
explicitly-specified subroutine corresponding to a particular problem. We define a unitary matrix
Of such that Of |x〉 = (−1)f(x) |x〉. In words it flips a bit phase if and only if the evaluation of the
oracle is true.

Grover’s Algorithm consists of three parts which we will explain on the basis of Figure 4. The qubit
register consists of n qubits in a vector |0〉 and the oracle’s working memory in a vector |1〉.

In the first part we initialize all qubits.

1. Put all the qubits in an equal superposition |0〉⊗n for initialization.

This equal superposition is obtained by applying a Hadamard transform on each qubit, such that
the state after initialization is described as |ψ〉 = 1

N1/2

∑N−1
x=0 |x〉 where x represents each one of the

N indices.

The second part is to apply the operation G, consisting of a number of quantum gates, O(
√
N)

times. G is a Grover iteration as shown in Figure 5a. Here we see a state |ψ〉 approaching the
superposition |β〉, where |β〉 represents a superposition of states that satisfy the criterion as defined
by the oracle function, |β〉 ≡ 1√

M

∑
x |x〉 where we sum over all x that are solutions to the search

problem. We want to maximize the probability of measuring a solution that satisfies the criterion
as shown in Figure 5. We also have the vector |α〉 which is orthogonal to |β〉, |α〉 ≡ 1√

N−M

∑
x |x〉

where we sum over all x that are not solutions to the search problem. Together |α〉 and |β〉 span
the whole two-dimensional space. A Grover iteration consists of two reflections.

2. Reflect over |α〉 by applying the unitary matrix Of ; as mentioned all elements that satisfy
f(x) = 1 will be phase flipped. We see in Figure 5b an example of the initial probabilities of
the candidate solutions, after applying the oracle we meet the situation as shown in Figure
5c. In Figure 5a, this results in the vector O |ψ〉.

3. Apply Grover’s Diffusion operator : First, apply a reflection over the initial state |ψ〉 before
applying Of . A Hadamard transform H⊗n is applied on the qubits, to put all non reflected
entries in the computational basis state of |0〉. Then a conditional phase flip is applied that

11

|α〉

|β〉

|ψ〉

O |ψ〉

G |ψ〉

θ/2

θ/2

θ

(a) A Grover iteration
visualized using vec-
tors.

00 01 10 11
x

P (x)

(b) Initial state before
Grover iteration

00 01 10 11
x

P (x)

(c) State after apply-
ing the oracle

00 01 10 11
x

P (x)

(d) One finished
Grover iteration

Figure 5: Grover iteration visualised using vectors and probabilities. In the latter we see the
maximization of the probability of finding the candidate solution of ‘10’ upon measurement, where
‘00’, ‘01’ and ‘11’ are not solutions that satisfy the criterion.

applies a phase of -1 to all elements except those in the computational basis state of |0〉.
Finally, apply H⊗n once again to restore its first application to undo putting the elements in
the compuational basis state of |0〉 (to its original state). In Figure 5a this results in G |ψ〉,
and in Figure 5d we see an examples of the resulting probabilities.

By repeatedly applying Grover iterations, the vector |β〉 will be approached by our transformed
G |ψ〉.

4. Repeat steps 2 and 3 O(
√
N) times.

The third part of the algorithm is measuring the input qubits. Upon measurement, the superposition
state of the input quantum register will collapse in either of the M results that satisfy the criterion.

5. Perform the measurement.

This yields the index of one of the N elements in the database. When running the whole GA
multiple times, we can eventually find all of the M possible solutions. Grover proved that applying

this O(
√

N
M

) times guarantees a measurement will reveal one of the M solutions with a high

probability, greater than 0.45.

3.3.2 Applying Grover’s Algorithm to SAT

In SAT the criterion of the elements, assignments in this case, we are looking for is satisfying all
constraints of the clauses. The database used for solving SAT with GA would be a set of all possible
assignments; the ith qubit in the quantum register representing the ith variable of all variables in
the formula given an order. Each bit can either be ‘0’ or ‘1’, representing the value assigned to
the variable in order to satisfy the formula. In the case of SAT the oracle is a subroutine which
evaluates the formula on a given input as defined in Equation 1. Solving SAT using GA is faster
than using a classical brute-force algorithm. The complexity of GA here is O(

√
n/M) in contrast

12

Pruned subtree(s)

Covered by Grover’s

Figure 6: Unbalanced search tree resulting from the pruning of a Classical Backtracking in comparison
to Grover’s Algorithm evaluating on the same redundant solutions that could be ignored.

to O(2n −M) for brute-force. GA looks at all assignments, which we can map to the leaves of a
full search tree as generated by a backtracking algorithm as seen in Figure 6. As mentioned, actual
search trees can be heavily unbalanced when a backtracking algorithm like DPLL prunes a large
portion of the subtrees. Because pruning is very common, it is likely that DPLL is faster than GA
in the vast majority of the cases, despite using a QC and a QA. In Figure 6 we see this happening,
as GA will evaluate every assignment at the bottom of the full search tree that would be pruned by
DPLL, which is very inefficient.

3.3.3 Quantum Backtracking

A quantum walk is similar to a classical random walk through a search tree, but is implemented
on a QC. Quantum Phase Estimation (QPE) is a QA that is used to find the eigenvalue given
a unitary operator, however in the next description it is solely used to determine whether there
exists a marked element inside a search tree when integrated inside a quantum walk. We define
an operator which enables the possibility to detect the presence of a marked element within the
search tree, as described in Algorithm 2 of [Mon18]. We define a meta-algorithm called quantum
backtracking, which

• defines a quantum walk operator, which is used to detect a marked element by using Quantum
Phase Estimation (QPE).

• finds marked elements by recursively exploring11 the search tree using the mentioned detection
of a marked element in order to narrow down its location.

as described in [Mon18].

For a given search tree of size T , the complexity of a CBT algorithm would be Θ(T), in the
worst case. Using a quantum backtracking algorithm for solving SAT, one can find a satisfying
assignment quadratically faster than a CBT like DPLL. Thus, quantum backtracking allows for a

11Based on the Classical Backtracking (CBT) routine.

13

Ttop

T0 T1 . . . Tn

Cutoff point
Classical Computer

Quantum Computer

Figure 7: Divide and Quantum (D&Q) division using cutoff point visualised using a search tree. We
see the top part of the search tree, annotated with Ttop, which is handled using a classical computer
and the cutoff subtrees T0, T1, . . . , Tn at the bottom handled using a QC

theoretical complexity of O(
√
Tn log(1

δ
)) (where δ is a parameter which controls the probability of

the algorithm to fail) which is much better than the complexity of GA if T is much bigger than n.
GA may be worse than DPLL as shown in Figure 6, but quantum backtracking will guarantee a
theoretical quadratic speedup, which is why we choose for quantum backtracking over GA.

4 Divide and Quantum

Divide and Conquer (D&C) is a family of algorithms that make use of the idea of splitting up a
problem instance recursively (divide) until we end up with trivial subproblems, which are solvable
in a polynomial amount of time. The next step is to solve the subproblems and merge them together
until we end up solving the original problem instance (conquer).
Divide and Quantum (D&Q) [GD20, DGC18, RLD20] is a Hybrid Divide and Conquer algorithm,
that is based on the previous description of D&C, but where we make use of both a classical and a
quantum computer. In general for D&Q, if a subproblem reaches a reduced size which fits inside
the QC, we can solve it in a polynomial amount of time too. This means that we do not reduce
the problem recursively as the case in conventional D&C, but we solve the subproblem immedi-
ately using the QC in a polynomial amount of time. In a search tree for a backtracking algorithm,
this subtree is not explored classically, but rather by some QA with the aim to reduce the complexity.

Generally the bottlenecks of D&Q are noise and polynomial overheads. We want to find polynomial
speedups in order to still obtain a significant speedup that outweighs the polynomial overhead.
Given a m-sized QC and a n-sized problem instance, we can calculate a size ratio κ = m/n. For
the number of steps TC(n) to solve the problem instance of size n by a classical algorithm and
the number of steps TH(n) a hybrid algorithm takes and a coefficient εκ, we say TC(n) and TH(n)
are polynomially related by the equation TH(n) = O(TC(n)εκ). If εκ exists for any κ, we have a
threshold free speedup; εκ should be strictly smaller than 1 because a speedup is not supposed to
be worse, resulting in a higher number of steps. The idea is that we have two functions TC(n) and
TH(n) in n, and for each κ, we look for a constant coefficient εκ such that TH(n) ∈ O(TC(n)εk).

The essence of the D&Q algorithm of this research will be explained on the basis of Figure 7. A CBT
like DPLL is run on the top part Ttop of the search tree, up to the cutoff point where the problem
instance has been reduced enough, such that the remaining subtrees T0, T1, . . . , Tn can be handled
on a QC, whose size is fixed to be a fraction of the size of the original problem instance. D&Q was

14

developed to beneficially use a QC with a size smaller than that of the considered problem instance,
motivated by the fact that near-term QCs are limited in size. The objective is to find the cutoff
point, a ratio of the size (κ) of the instance, where a few conditions are met:

• The problem instances at this cutoff point fit inside a QC with a fixed size; i.e. the number of
available qubits of the QC must be sufficient to be able to express the problem instance.

• The search trees of the problem instances at this cutoff point are exponential in size in relation
to their height, which is a function of the number of variables. If the complexity of the CBT
is exponential, then a theoretical quadratic speedup is guaranteed as shown in [Mon18]. With
a polynomial complexity on a CBT, the overhead would cancel out the polynomial speedup
gained, making our efforts unvaluable.

Current QCs have very few qubits, not enough to solve big problems with. Say, we can express
each variable in a SAT formula using one qubit (which is not the case because of overhead), then
the biggest formula we can handle also consists of very few variables. In perspective, real life SAT
formulas are often bigger than a couple of hundred variables. However, QAs do have a quadratic
speedup [Mon18] on CBT, for problems with exponentially sized search trees. This is the case for
the mentioned hard classes of random k-SAT formulas, which are NP-complete. Meaning
that if the problem fits inside a limited sized QC and has an exponential sized search tree, then we
can realise a quadratic speedup.

4.1 Approach

Given are a formula φ of size |φ| which results in an exponentially sized search tree, a fixed sized
QC of size m (where m ≤ |φ|) and a classical computer, we find a satisfying assignment for φ using
Divide and Quantum (D&Q). First, we reduce φ using DPLL on the classical computer until we
get a subformula φi which fits inside the QC. If φi is still in the exponential region of the search
tree, as seen in Figure 3, then we solve the rest of the reduced problem instance using the QC. At
this point a quadratic speedup is possible. If the size ratio of the reduced problem instance falls
below the cutoff point, so if it is in the polynomial region, then a quadratic speedup can not be
guaranteed for this subformula.

Given the search tree of φ of size T , during our run we meet subproblems φ0, φ1, ..., φn where
each φi fits inside the quantum computer: |φi| ≤ m. Furthermore, there exists no parent of these
problem instances for which the same holds, so we consider the largest sub-instances we can. The
search trees of these φi are of size Ti, for which we take T ′ steps in the hybrid case, with T ′ being
polynomially smaller than T . We define this overall theoretical speedup in the hybrid case as
T ′ = T +

∑n
i=0(
√
Ti − Ti). The task is to determine a cutoff point where subformulas fit inside a

limited sized QC and, the φi on average, have exponentially sized search trees. If the search trees
are not exponential in size, then the polynomial overhead of using the QC in D&Q could cancel
out the polynomial speedup gained from using the QA. For certain classes of SAT we suspect the
subtrees from a to be determined cutoff point to be exponential in size. We want to identify which
classes of possess this property and up until which cutoff point this property persists as visualized
in Figure 3.

15

5 Methods

In this section we explain three different methods we use to investigate whether a QCs will help
when used in a D&Q approach to DPLL-based algorithms, if the size of the QC is small. Solving full
problem instances with exponential complexity on a QC will always result in a speedup. However we
want to investigate whether this holds for D&Q, when the QC size is limited. To find out whether
it is the case that there exist classes of SAT, in particular random 3-SAT with 3.003 < ∆ < 4.3,
where D&Q with small QCs helps for wide ranges of ratios, we employ three methods, targeting
various criteria for speedups.

Generation of data on shape and size of search trees
We have written a python program that generates random k-SAT formulas for an experiment,
solves the experiment’s problem instances using DPLL and stores data about the search trees that
were generated during the run. The settings of the experiments are read from configuration files,
in which the number of problem instances, a number of variables (n), ∆ (delta), the number of
variables per clause (k) and optionally cutoff points of the tree (onDepth) at which we will look at
nodes are set. For a cutoff point value of onDepth, we multiply onDepth · n to obtain some value
relative to the absolute number of variables that were available to be used from the start; hence we
use the suffix −OnDepthAbsN for some attributes. The generated data, such as sizes of subtrees
at different cutoff points, will be accumulated in a CSV file. Whenever the program restarts, the
CSV file will be consulted to determine which experiments are already present; this way, we do not
run duplicate experiments when restarting the program.

Analysis of data
To analyze the data we generated, another program is created for extracting relevant values from
the CSV file. It can categorise certain entries by values of some attribute and plot data on the
x- and y-axes of a figure. Next, to evaluate the relation between two attributes in the generated
data we need to determine the functions of growth between the two. We perform a curve fitting of
constant, linear, multi polynomial and exponential functions on the first 80% of the data (which is
thus split up), then we evaluate the accuracy of each function family on the full 100% of the data
using R2. The function family with the highest R2 is chosen, of which the function is recalculated
on the full setting and plotted. In general, conclusively deciding that a scaling is polynomial or
exponential, is a known hard problem.

5.1 Subtree size inspection

By direct inspection, we want to demonstrate whether there are classes of random 3-SAT for which,
on average, the DPLL algorithm generates exponentially sized search trees with exponentially sized
subtrees given their problem instances. Regarding Figure 7, if the roots of the subtrees are be in the
exponential region, regarding Figure 3, then the subtrees at this cutoff are, on average, exponentially
sized. For classes of random 3-SAT for which its problem instances have exponentially sized subtrees
given a cutoff point for D&Q where the instance fits inside a small QC, we can conclude that,
regarding the theoretical quadratic speedup, the QC can provide a valuable speedup. The theoretical
quadratic speedup over an exponential time complexity will be sufficient to be not cancelled out
by any polynomial overhead. To detect exponential scaling, we plot the sizes of generated search

16

trees and its subtrees at fixed cutoff points as a function of the number of variables for different
∆. We make use of curve fitting to get a best fit on our data points to detect exponential growth
in the search trees and its subtrees. Two separate parts for the experiments will be defined as follows:

5.1.1 Determining ∆ for which problem instances have search trees that grow expo-
nentially in size

We generate data on the size of the search trees as a function of the number of variables for different
∆. Then we perform Curve fitting of polynomial and exponential functions on the data points for
each ∆. In order to find the function that describes the data best (best fit), we run a statistical
test (R2). The family of the best fit function will either be polynomial or exponential, indicating
whether the search trees are either polynomially or exponentially sized. We will assert that the
problem instances with ∆ in the hard regime have exponentially sized search trees and also that
our data corresponds to that of Figure 3 of [CM01].

5.1.2 Determining cutoff points where subtrees still grow exponentially

For ∆ where the growth is determined to be exponential (by performing curve fitting) on the full
search tree, plot the average subtree size as a function of n on multiple depths. If these subtrees
grow exponentially on specific depths with their height as a function of the number of variables, by
curve fitting, then we can determine that the subtrees are, on average, exponential in size.

5.2 Subformula structure inspection

In this method we want to investigate which classes of random k-SAT formulas remain hard to
solve in their subformulas, based on known theoretical bounds (3.003 < ∆ < 4.3), and how these
amounts evolve for different fixed cutoff points. We know that subformulas with ∆ in the hard
regime imply trees of, on average, exponential size. Thus, having subformulas with this property at
a cutoff point where it fits inside a small QC, tells us that a polynomial speedup over exponentially
sized trees can be acquired for a small QC in D&Q. Regarding Figure 7, if the roots of the
subtrees at the cutoff point have an average ∆ in the hard region, then, by theory, their search
trees are exponential in size. To determine whether subformulas of hard random k-SAT formulas
stay hard random k-SAT formulas using theoretical bounds, we reduce a formula to subformulas
and estimate the ∆ on these subformulas. We count whether these ∆ lay between the theoret-
ical bounds for the hard regime general. If so, the subformulas of hard formulas remain hard to solve.

We generate a formula and reduce it, now for all cutoff points that we are interested in, we determine
the ∆ on its subformulas at this cutoff point. Next, we count the number of these subformulas
of which the determined ∆ is in between the theoretical bounds and determine the ratio of hard
to solve subformulas over the total amount. Finally, we plot this ratio of hard subformulas as a
function of the cutoff point and make statements about the results.

17

5.3 Total runtime comparison

We want to determine the overall speedup for a QC with a certain size, on certain classes of Boolean
Satisfiability Problem (SAT) formulas, based on the theoretical quadratic speedup of a QC on
backtracking algorithms. In order to do so, we compute the runtime of the hybrid algorithm, given
a fixed cutoff point, and compare it to a classical algorithm. This gives us a speedup ratio σ, such
that T ′ = T σ, where T is the size of the search tree for a classical algorithm and T ′ the size of the
search tree when using D&Q. By expressing the speedup ratio σ as a function of the cutoff point at
which we switch to a QC with a theoretical quadratic speedup, we can determine whether a QC in
D&Q will provide a valuable speedup, despite being small.

We use two distinct sub-methods for our investigation, both require determining T ′. By solv-
ing random 3-SAT formulas using DPLL we generate search trees for the problem instances.
Given the search tree, we select nodes that have a fixed ratio of the original number of vari-
ables; each of these nodes is the root of a subtree Ti. See Figure 7, to calculate T ′, we take
Ttop = T −

∑
i Ti, on which we run DPLL, plus the summation of the square root of each of

the subtrees, regarding our theoretical quadratic speedup:
∑

i

√
Ti. We end up with the equation

T ′ = Ttop +
∑

i

√
Ti = T −

∑
i Ti +

∑
i

√
Ti = T +

∑
i(
√
Ti−Ti), an approximate quadratic speedup,

or polynomial to be more exact. For all given cutoff point ratios, we calculate the theoretical number
of steps T ′ that D&Q would take on the original tree of size T using a theoretical quadratic speedup.

5.3.1 Estimate σ based on the relation following a D&Q speedup

We plot all T ′ on the fixed cutoff points and T as a function of the number of variables for which
we will perform curve fitting of an exponential function. Next we find σ such that T ′(n) = T (n)σ,
using the parameters a and b of the exponential function (f(x) = 2a·x · b) obtained by the best fit
on the number of steps as a function of the number of variables (hence T ′(n) and T (n)):

T ′(n) = T (n)σ =⇒ 2a
′·n · b′ = (2a·n · b)σ =⇒ log2(2

a′·n · b′) = σ · log2(2
a·n · b)

Use: log2(2
a·n · b) = a · n+ log2(b), provided that n 6= − log2(b)/a:

a′ · n+ log2(b
′) = σ(a · n+ log2(b)) =⇒ σ = (a′ · n+ log2(b

′))/(a · n+ log2(b))

Because we are interested in a constant, we eliminate n using a limit12:

σ = lim
n→∞

((a′ · n+ log2(b
′))/(a · n+ log2(b)))

This gives an estimation of σ based on the exponential functions curve fit on the growth of T ′

theoretically derived from T for different n. We apply this process for each cutoff point and the ∆
we are interested in, then represent the results in a table.

12Otherwise we would end up with a fraction with n in the denominator, and not a simple number.

18

5.3.2 Determining the median σ from problem instances with different n

We can also derive the same σ in a different way. Again, after determining T ′ for different fixed
cutoff points, we calculate σ = log2 T

′

log2 T
and express it as a function of the cutoff point for different

∆. Check that 0.5 ≤ σ ≤ 1.0 for (T ′ = T σ), where 0.5 is a full quadratic speedup and 1.0 is no
speedup. We expect the full quadratic speedup to be at onDepth = 0.0 meaning that the quadratic
speedup is obtained directly at the root node (we can not do better than this) and no speedup at
onDepth = 1.0 which means having a quadratic speedup only in the leaf nodes, so no speedup (we
can not do worse than this). We then represent the median σ over problem instances with different
numbers of variables for the different cutoff points and the ∆ we are interested in.

6 Results

From our extracted results for each of the methods we can make conjectures that solidify our
hypothesis that small QCs are able to help obtain valuable speedups in D&Q. We will use the
abbreviations const (constant function), lin (linear function), polyX (polynomial function with
degree X) and exp (exponential function) in these results to describe the function families as a
result of curve fitting. Given onDepth and n, the cutoff point in our tree is at the nodes with
n · (1 − onDepth) variables left. I.e. onDepth = 0.0 always corresponds to the full tree, likewise
onDepth = 1.0 corresponds to only its leaves and anything in between corresponds to nontrivial
subtrees.

6.1 Results from subtree size inspection

Conjecture 1 Subtree size inspection indicates that the D&Q method yields a polynomial speedup
on subproblems of problem instances of random 3-SAT with 3 .003 ≤ ∆ ≤ 4 .3 provided that the
size of the QC is at least 90% of the size of the input. Exponential growths may be found at smaller
subproblems as seen for 70% for ∆ = 3.7.

As described above, we make use of two separate parts for this experiment, one where we determine
∆ with trees with an overall exponential growth; then for those ∆ we examine the growth of their
subtrees at different cutoff ratios and connect the results the conjecture above.

6.1.1 Determining ∆ for which problem instances have search trees that grow expo-
nentially in size

In Figure 8 we see a graph with the best fit on data points (each point is an average over 100
problem instances) for the number of steps13 (steps) as a function of the number of variables (n)
for different ∆ (delta); as ∆ gets higher, the color gradient shift more from blue to red. In the
legend we see which ∆ correspond with exponentially sized search trees according to the curve
fitting. For 1.0 ≤ ∆ < 3.0 we find linear shifting to polynomial search tree sizes. For 3.0 ≤ ∆ ≤ 4.3
the search tree sizes are exponential. After the second threshold, 4.3 < ∆, the average number
of steps to solve a problem with n variables takes on a polynomial growth again. We conclude
that for 3.003 < ∆ < 4.3, in the hard regime, the relation between the number of steps and the

13The number of steps it takes to find a satisfying assignment or conclude there are no satisfying assignments.

19

Figure 8: Search tree growth; Size of the search tree as a function of the number of variables of its
problem instance for different ∆.

number of variables is exponential on average. This means that the search trees of those random
k-SAT problems grow exponential in size in relation to the number of variables overall. For these ∆
it is possible to obtain a quadratic speedup using a QC when running on the whole problem instance.

In Figure 9 we see the number of steps as a function of ∆, where each data point represents the
average over 100 problem instances; here the color gradient shifts from blue to red with the number
of variables from low to high respectively. We see a spike for which we can successfully assert that
our results are similar to that in Figure 3 of [CM01] in regarding the thresholds.

6.1.2 Determining cutoff points where subtrees still grow exponentially

In Table 1 the best fit resulting from the curve fitting shown for different ∆, in the rows, and cutoff
points (as a ratio of the original number of variables), in the columns. The exponential families that
we will cover are shown in light gray. For instance, given a ∆ of 3.7 and a cutoff ratio, onDepth,
of 0.1, the subtrees are exponential; at this cutoff we have reduced 10% of the problem, for say
an original n = 50, the subtrees are of size 50 · (1.0− 0.1) = 45. We see that for 3.003 < ∆ < 4.3
the original trees are still exponential on average as concluded previously and, on average, stay
exponential at a cutoff ratio of 0.1. For the cutoff point of 0.2 we see only that the same property
holds for ∆ = 3.4. We see an additional exponential function for ∆ = 3.7 and onDepth = 0.3,
however, a polynomial function is found at onDepth = 0.2. As we will mention in the discussion,
we can suspect that exponential scalings (better results) exist on deeper levels, which may become
clear when working with a higher number of variables. However, it is safer to assume that this is
only an outlier.

20

Figure 9: Search tree growth per ∆; The number of steps taken in the search tree of the problem
instances as a function of ∆ for different numbers of variables.

We can conclude that we can reduce the problems classically up until the mentioned cutoff points
where the subtrees are on average still exponential in size, then use a quantum backtracking
algorithm with a theoretical quadratic speedup to obtain a valuable speedup. Given a problem
instance of random k-SAT, with 3.003 < ∆ < 4.3, which fits inside a small QC at a cutoff ratio of
0.1, we can conclude that a valuable speedup can be provided in the setting of D&Q.

6.2 Results from subformula structure inspection

Conjecture 2 Subformula structure inspection indicates that the D&Q method yields a polynomial
speedup on subproblems of problem instances of random 3-SAT with 3 .003 ≤ ∆ ≤ 4 .3 . We get a

∆
Function on cutoff point (onDepth)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 lin poly3 lin poly3 poly3 poly4 poly3 lin poly2 const const
3.1 exp exp poly2 poly2 poly2 poly3 lin lin lin poly3 const
3.4 exp exp exp poly2 poly3 poly5 poly2 poly2 poly2 poly3 const
3.7 exp exp poly2 exp poly6 poly3 poly3 poly4 poly2 poly2 const
4.0 exp exp poly5 lin poly2 poly4 poly2 poly2 poly2 poly4 const
4.3 exp exp lin poly2 poly2 poly3 poly3 poly3 poly3 lin const
7.0 poly3 lin poly3 poly2 lin poly5 poly3 const exp const const

Table 1: Subtree growth for different ∆. The subtree size as a function of the number of variables
for different cutoff points.

21

∆
onDepth

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
3.1 1.00 0.20 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3.4 1.00 0.99 0.58 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.00
3.7 1.00 1.00 0.97 0.55 0.12 0.02 0.00 0.00 0.00 0.00 0.00
4.0 1.00 1.00 1.00 0.91 0.55 0.18 0.04 0.01 0.00 0.00 0.00
4.3 1.00 1.00 1.00 1.00 0.87 0.43 0.13 0.04 0.01 0.01 0.00

Table 2: Overview of estimated hard problem instances found in subtrees for different ∆ and cutoff
points for n = 50.

significant speedup14, provided that the size ratio of the QC is at least 90% of the size of the input.
The ratio gradually decreases to 40% as ∆ approaches 4 .3 .

In Table 2 we see the ratio of 100 problem instances that have hard subformulas on average for
multiple cutoffs and ∆. If the subproblem has an estimated ∆ in between 3.003 and 4.3, then it
is considered hard. Note that the estimated ∆ here is a rough estimate as the subformulas are
often not pure random 3-SAT formulas, but rather mixed with random 2-SAT and random 1-SAT
clauses.

Given a cutoff point of, say, 0.2 (where we still have 40 variables) and a ∆ of 3.7, then 97% of the
subformulas are still hard. Therefore, for this case, D&Q seems to provide a polynomial speedup over
DPLL provided a QC that is big enough to handle 40 variables. This statement can be generalised
to different cutoff ratios and values of ∆, shown in Table 2. For random k-SAT problem instances
where 3.003 ≤ ∆ ≤ 4.3, we can conclude that subformulas with 90% of the original number of
variables stay hard, and for ∆ = 4.3, this value even drops to 40%. For these subformulas, which
remain hard on different cutoff ratios, we can obtain a theoretical quadratic speedup using a small
QC in D&Q, as hard problem instances imply exponentially sized search trees.

6.3 Results from total runtime comparison

Conjecture 3 The total runtime comparison method suggests that the D&Q approach yields a
polynomial speedup when given as input instances of random 3-SAT with ∆ such that 3.003 ≤ ∆ ≤
4.3, provided that the size of the QC is at least 60% of the size of the input15.

We will investigate the theoretical speedups allowed by a D&Q algorithm by exploring what valuable
speedups we can obtain for different cutoff points and ∆. As we will see, for both partial experiments
we can conclude that for an onDepth = 0.2 a valuable speedup near quadratic is guaranteed for all
∆ in the hard regime. This corresponds to stating that, when applying D&Q, reducing the problem
instances to 80% of their original size using a classical computer a valuable speedup can be gained.
Thus a small QC with a size of 80% of the original input provides a quadratic speedup in D&Q.

14We take 0.1 as our threshold, in order to find a “significant” fraction of hard subproblems, which is clearly
distinguishable from 0.

15This is consistent with Conjectures 1 and 2, which put the threshold at 90% (as those methods are more precise
than Conjecture 3).

22

∆
3.1 3.4 3.7 4 4.3

Depth

0.0 0.43 0.44 0.45 0.46 0.48
0.1 0.48 0.49 0.56 0.63 0.68
0.2 0.56 0.62 0.72 0.78 0.83
0.3 0.68 0.77 0.85 0.90 0.93
0.4 0.81 0.89 0.94 0.98 1.00
0.5 0.90 0.96 0.99 1.01 1.02
0.6 0.97 1.00 1.02 1.02 1.03
0.7 1.00 1.01 1.02 1.02 1.02
0.8 1.01 1.01 1.01 1.01 1.01
0.9 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00

(a) By calculation estimated σ from curve
fitting exponential functions, represented
in a table for all ∆ and cutoff points we
are interested in.

∆
3.1 3.4 3.7 4 4.3

Depth

0 0.50 0.50 0.50 0.50 0.50
0.1 0.62 0.62 0.61 0.62 0.64
0.2 0.71 0.71 0.71 0.73 0.75
0.3 0.78 0.79 0.80 0.82 0.84
0.4 0.84 0.85 0.86 0.88 0.90
0.5 0.89 0.90 0.92 0.93 0.94
0.6 0.93 0.94 0.95 0.96 0.97
0.7 0.96 0.96 0.97 0.98 0.99
0.8 0.98 0.98 0.99 0.99 0.99
0.9 0.99 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00 1.00

(b) Median σ from experiments with differ-
ent numbers of variables, represented in a
table for different ∆ and cutoff points we
are interested in.

Table 3: Determined σ represented in a table for different ∆ and cutoff points

6.3.1 Estimate σ based on the relation following a D&Q speedup

We see a similar Table 3a to that of the previous part, however here are σ listed as calculation
from the estimated exponential function as a result of curve fitting. These sigma are not necessarily
bounded by 0.5 ≤ σ ≤ 1.0 because we take an estimation over a performed curve fitting, which is,
on itself, already an estimated function. Extrapolating to an n limiting ∞ results in these kind
of estimation errors. Still, for a ∆ = 3.7 and onDepth = 0.2 we get a speedup ratio of σ = 0.72
by theory. This means that D&Q provides a valuable polynomial a speedup T ′(n) = T (n)0.71 over
DPLL.

6.3.2 Determining the median σ from problem instances with different n

In Table 3b we see the medians of σ, over the averages over 100 problem instances of experiments
with different numbers of variables, for multiple ∆ and cutoff ratios. We see that the speedup ratio
lies between 0.5 ≤ σ ≤ 1.0, which follows the theory that a maximum speedup in T ′(n) = T (n)σ

is quadratic (0.5), and the minimal speedup is T (n) itself, with a ratio of 1.0. For instance, for
∆ = 3.7 and onDepth = 0.4 (we assigned 40% of the variables), a speedup ratio σ = 0.86, such that
T ′(n) = T (n)0.71, can be obtained according to the theoretical quadratic speedup from [Mon18]. For
all ∆ we get a speedup ratio 0.50 ≤ σ ≤ 0.9 as long as our problem is at least 60% of its original
size. This means that using D&Q provides a valuable polynomial a speedup over DPLL.

7 Conclusion and Discussion

We have investigated whether that Divide and Quantum using a limited sized Quantum Computer
can obtain valuable speed ups over Classical Backtracking algorithms like DPLL for random k-SAT

23

problem instances. This has been done in the setting classes of random k-SAT with certain ∆16 for
which problem instances take an exponential amount of steps to be solved. The importance of this
investigation is showing that small QCs can provide valuable speedups on DPLL for solving SAT
problems despite the problem instances being larger than can fit inside the QC.

Conclusion: Our results seem to indicate that there are settings in which the D&Q
method provides a computational advantage (polynomial speedup) over classical imple-
mentations of DPLL for the random 3-SAT problem. In particular, our most significant
observations are that the D&Q method seems to yield a polynomial speedup in the
following cases for ∆ and size ratio κ:

• 3.003 ≤ ∆ ≤ 4.3 and κ = 90% for all Conjectures; κ = 60% for the least precise
method (Conjecture 3).

• ∆ = 3.7 and κ = 70% (Conjecture 1).

• ∆ = 4.3 and κ = 40% (Conjecture 2).

First, we showed that problem instances of the hard classes of random k-SAT are exponential in
time complexity in relation to the number of variables of the instance. Furthermore, these problem
instances preserve this property on their subformulas. Here we can define a cutoff point for which
we know that if the subformula with this property fits inside a QC, then a theoretical quadratic
speedup over DPLL can be obtained for this problem instance. Secondly, we have shown that
subformulas of problem instances of random k-SAT with a ∆ in the hard regime, will stay hard up
until some nontrivial cutoff point. Finally, we have shown what kinds of polynomial speedups D&Q
allows us to obtain with limited sized QCs.

7.1 Discussion

Limitations: We found experimental evidence for polynomial speedups to be obtainable for
problem instances of the hard classes of random k-SAT where 3.003 ≤ ∆ ≤ 4.3. However, our
experiments did not provide evidence for much smaller QCs of 50% of the size of the problem
instance to offer polynomial speedups. We have used a relatively low number of variables and we
did find better results for smaller ratios as we increased the number of variables in our experiments.
This makes us believe that better results may emerge from using even higher numbers of variables.
We used a relatively low number of variables because our algorithm has an exponential run time,
thus running experiments may go up to hours each.
In the subformula structure inspection we estimated a ∆ over subformulas of random 3-SAT problem
instances. However, after reducing such formulas, we obtain formulas mixed from random 1-SAT,
random 2-SAT and random 3-SAT formulas. The estimation of ∆ has the assumption that this
estimation holds for these subformulas as if they were pure random 3-SAT problem instances.

Future: In the future, we can look at more techniques of speeding up algorithms for SAT problems.
Because we have multiple devices available for calculation in D&Q, we can run them in parallel.
We can run the classical computer and the QC(s) at the same time and stop when one solution has
been found, this allows for a higher speedup. Given some limited sized quantum computers, we

16A parameter that is used to tune the hardness of problems

24

can do much more accurate experiments. If the number of qubits on the QCs grows, then we can
obtain even better speedups as shown in our methods (emphatically 1 and 3). Given our cutoff
points it is possible to estimate whether solving problem instances of certain classes of random
k-SAT on bigger quantum computers is worthwhile for certain bigger instances.

It is possible to reduce random k-SAT problem instances with k > 3 to random 3-SAT problems, we
can make statements about our expectations on the speedup that D&Q would grant. We reduce a
random 4-SAT problem instance A to a random 3-SAT instance B. Generally, the number of clauses
in B would be bigger than that of A in order to describe all dependencies A has. The number of
variables stays equal in both instances, so as the number of clauses grows during the reduction,
∆ grows too. Problem instances of A are harder with lower ∆, but it does not mean speedups
would be much better. Say we reduce a problem of A to a problem of B, where the resulting B has
a ∆ > 4.3, then it is not expected that D&Q would provide a valuable speedup on the original
problem of A.

Considering random k-SAT instances for k > 3 can be motivated by the following well-known
conjecture in Boolean satisfiability. Consider the coefficient sk, which is defined to be the smallest real
number c such that there is a k-SAT-solving classical algorithm which runs in time O(poly(n)2cn),
where n is the number of variables of the formulas given as input. Also for all k ≥ 3: sk ≤ sk+1

because the difficulty of the formulas will not decrease as k increases. For example s2 = 0, given
k = 2, because 2-SAT formulas can be solved in a polynomial amount of time. The Exponential
Time Hypothesis (ETH) [CIP09] describes that s3 > 0, such as for all sk for k ≥ 3. Furthermore, the
Strong Exponential Time Hypothesis (SETH) describes that s∞ = 1 (exponential), which means
that as k goes to infinity, the best classical algorithm for k-SAT is exhaustive search. This theorises
that the worst case scenario for solving any sat problem will always be exponential. This hypothesis
states that there are no sub-exponential time classical algorithms for the k-SAT problem.

25

References

[ABM04] D. Achlioptas, P. Beame, and M. Molloy. Exponential bounds for dpll below the
satisfiability threshold. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, page 139–140. ACM/SIAM, 2004.

[AHI06] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential lower
bounds for the running time of DPLL algorithms on satisfiable formulas. Journal of
Automated Reasoning, 35(1-3):51–72, August 2006.

[AP03] Dimitris Achlioptas and Yuval Peres. The threshold for random k-SAT is 2k (ln 2 -
o(k)). In Proceedings of the thirty-fifth ACM symposium on Theory of computing -
STOC '03. ACM Press, 2003.

[BFS19] Thomas Bläsius, Tobias Friedrich, and Andrew M. Sutton. On the empirical time
complexity of scale-free 3-SAT at the phase transition. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 117–134. Springer International Publishing,
2019.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001.

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on
Computing, 26(5):1411–1473, October 1997.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of
satisfiability of small depth circuits. In Parameterized and Exact Computation, pages
75–85. Springer Berlin Heidelberg, 2009.

[CM01] Simona Cocco and Rémi Monasson. Trajectories in phase diagrams, growth processes,
and computational complexity: How search algorithms solve the 3-satisfiability problem.
Physical Review Letters, 86(8):1654–1657, February 2001.

[DGC18] Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac. Computational speedups using small
quantum devices. Physical Review Letters, 121(25), December 2018.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM (JACM), 7(3):201–215, July 1960.

[GD20] Yimin Ge and Vedran Dunjko. A hybrid algorithm framework for small quantum
computers with application to finding hamiltonian cycles. Journal of Mathematical
Physics, 61(1):012201, January 2020.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing - STOC '96. ACM
Press, 1996.

26

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science. Cambridge University Press,
August 2004.

[Mon18] Ashley Montanaro. Quantum walk speedup of backtracking algorithms. Theory of
Computing, 14(1):1–24, 2018.

[MPRT16] Raffaele Marino, Giorgio Parisi, and Federico Ricci-Tersenghi. The backtracking survey
propagation algorithm for solving random k-SAT problems. Nature Communications,
7(1), October 2016.

[NC09] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2009.

[Nik05] S. I. Nikolenko. Hard satisfiable instances for DPLL-type algorithms. Journal of
Mathematical Sciences, 126(3):1205–1209, March 2005.

[Ouy98] Ming Ouyang. How good are branching rules in DPLL? Discrete Applied Mathematics,
89(1-3):281–286, December 1998.

[PI00] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k -sat
(preliminary version). In David B. Shmoys, editor, Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco,
CA, USA, pages 128–136. ACM/SIAM, 2000.

[RLD20] Mathys Rennela, Alfons Laarman, and Vedran Dunjko. Hybrid divide-and-conquer
approach for tree search algorithms, 2020. https://arxiv.org/abs/2007.07040.

[Zho] Yi Zhou. Phase Transition in 3SAT. http://home.ustc.edu.cn/~zhao03/slides/

pt_sat.pdf.

27

https://arxiv.org/abs/2007.07040
http://home.ustc.edu.cn/~zhao03/slides/pt_sat.pdf
http://home.ustc.edu.cn/~zhao03/slides/pt_sat.pdf

A Random k-SAT generation

To generate random clauses, we can use the chosen parameters to determine the number of total
clauses ctot = ctot neg · ctot lit = 2k ·

(
n
k

)
. Next we generate a random number between 0 ≤ rn < ctot.

We use the random number rn to determine a number that denotes the combination of variables
clit = rn/ctot neg and a number that denotes the sequence of negations cneg = rn mod ctot neg

17.

In Algorithm 1 we see as the first step to generate a row for all k variables that we want to generate,
the first row and left border being filled with ones, this row represents one outer layer of the Pascal’s
triangle (Seen in Figure 10). Then for each cell, we add the left cell and the upper cell together. For
the algorithm, we start at the right bottom corner of the part of the used Pascal’s triangle, each
time the number in the cell is smaller than or equal to our current clit we shift a cell to the left and
increment our counter. Each time this is not the case we shift one cell to the top and save our counter.

Repeating this process gives us a list of numbers that correspond to indices of variables. Afterwards,
we apply the negations to our variables. Writing cneg out in binary gives us a 1 bit on all indices of non-
negated variables and a 0 on all indices of negated variables. An example of the result of Algorithm
1 is shown in Figure 10. The same for Algorithm 2 and Figure 11. The initial call to generate a
formula will be done to Algorithm 3. The examples shown are for the configurations of k = 3 and
n = 6. The random number rand = 149 is generated, resulting in the values clit = 18 cneg = 5.

Data: n, k
Result: Pascal’s triangle

triangle = [[1] ∗ (n− k + 1)]
for i ∈ [0, k − 2] do

triangle+ = [[1] + [None] ∗ (n− k)]
end

if k > 1 then
for i ∈ [1, k − 1] do

for j ∈ [1, n− k] do
triangle[i][j] = triangle[i− 1][j] + triangle[i][j − 1]

end

end

end
return triangle

Algorithm 1: Generation of Pascal’s triangle

17 mod : modulo operator results in the remainder when dividing the left hand side expression by the right hand
side expression of the operator.

28

Data: rn, n, k, triangle
Result: Random k-SAT clause for given random number, n and k
cneg = rn mod 2k

clit = rn/2
k

i = k − 1
j = n− k
prev = 0
A = []
while i >= 0 do

current = prev + 1
if clit > 0 then

while triangle[i][j] <= clit do
current = current+ 1
clit = clit − triangle[i][j]
j = j − 1

end

end
prev = current
A.append(current)
i = i− 1

end
for i ∈ [0, k − 1] do

Add literal A[i] with negation of ith bit in cneg to clause.
end
return clause

Algorithm 2: Generation of a clause from a random number

Data: k, numvariables, ∆
Result: Random k-SAT formula for given ∆ and number of variables
numclauses = ∆ ∗ numvariables

for i ∈ [0, numclauses − 1] do
rn = random(2k ∗

(
numvariables

k

)
)

clause = generateClause(rn)
formula.addClause(clause)

end
return formula

Algorithm 3: Generation of a random k-SAT formula

29

Figure 10: Generation of Pascal’s triangle for k = 3, n = 6

Figure 11: Generation of a clause for k = 3, n = 6, rand = 149, thus clit = rand div ctot neg =
149 div 8 = 18, cneg = rand mod ctot neg = 149 mod 8 = 5

B Subtree size inspection – exact method

Part 1
The exact description is to first determine which ∆ have, on average, exponentially sized trees in
relation to their height.

1. For k = 3, the number of variables n ∈ [3, 4, ..., 39, 40] and ∆ ∈ [1.0, 1.3, ..., 2.5, 2.8, 3.0, 3.1, 3.2,
3.3, 3.4, 3.7, 4.0, 4.3, 4.35, 4.4, 4.6, 4.9, ..., 9.7, 10.0] run an experiment of p = 100 problem
instances (random 3-SAT formulas) for each combination.

2. Solve these formulas using DPLL and count the number of steps needed to: find a satisfying
assignment or conclude there are none, for each problem instance.

3. Per experiment, average the number of steps over all p instances.

30

4. Plot the average number of steps as a function of n for the different ∆.

5. Determine the best fit for constant, linear, polynomials of multiple higher degrees and
exponential function families on the data.

6. Find R2 on the best fit for all function families.

7. Select the best fit function with the highest R2 and output it for each ∆.

8. Determine ∆ for which the curve fitting outputs that the trees are overall exponentially sized.

9. Assert that these ∆ match the theoretical bounds given for the hard regime (where we expect
exponentially sized trees). Assert that the number of steps as a function of ∆ corresponds to
that of [CM01] Figure 3.

Part 2
Now that we have found ∆ for which the trees are exponentially sized, find the cutoff points in the
number of variables for which the size is still exponential. For the determined ∆, plot and examine
the average subtree size for ratios of n, as the cutoff point, as a function of n as follows.

1. Run experiments for k = 3, n ∈ [10, 11, ..., 49, 50], ∆ ∈ [1.0, 3.1, 3.4, 3.7, 4.0, 4.3, 7.0]18 ,
onDepth ∈ [0.0, 0.1, ..., 0.9, 1.0] and p = 100.

2. Determine the size of the subtrees for the the classes of nodes that have a certain amount of
variables. In our case, group all nodes by the number of variables from n · (1− onDepth) =
[100, 90, ..., 10, 0]. At a cutoff point where we assigned to a ratio of onDepth = 0.0 of the
variables, we still have all n = 100 variables. The same applies to onDepth = 0.4, n = 60 and
onDepth = 1.0, n = 0.

3. Plot the size of the subtree to n for all chosen cutoff points and curve fit for each cutoff point.

4. Examine and describe the function of the subtree growth at these ratios by looking at the
best fit families.

C Subformula structure inspection – exact method

We want to plot a theoretical upper bound of hard formulas for ∆ in the hard regime, as a function
of the ratio of live variables in these formulas as follows:

1. Run experiments for k = 3, n ∈ [10, 20, 30, 40, 50], ∆ ∈ [3.1, 3.4, 3.7, 4.0, 4.3], onDepth ∈
[0.0, 0.1, ..., 0.9, 1.0] and p = 100.

2. For all node groups from n · (1− onDepth), determine nnew = n− depth as an upper bound
of n, where depth is the depth of the node in the tree19. From this nnew, estimate an upper

bound of ∆UB =
⌈
nlive
nnew

⌉
where nlive is the number of live variables in the formula.

18We use ∆ ∈ [1.0, 7.0] as representatives for their regimes to compare our results with.
19Assuming that we eliminate one variable in each step.

31

3. For each problem instance, average ∆ on all of its subformulas at each cutoff point. Then
count the number #(hardsubformulas) of subformulas with 3.003 < ∆UB < 4.3 for all
problem instances.

4. For each problem instance, calculate the ratio α = #(hardsubformulas)
#(subformulas)

for all cutoff points.

5. Average α over all problem instances.

6. Plot αavg as a function of the cutoff point for the given ∆.

7. Examine how αavg relates to the cutoff point and determine where αavg is significantly big for
specific depths.

D Total runtime comparison – exact method

We want to find σ as a ratio between the number of steps D&Q would take and the number of
steps DPLL would take on a problem instance, using the theoretical quadratic speedup.

1. Run experiments for k = 3, n ∈ [3, 4, ..., 49, 50], ∆ ∈ [3.1, 3.4, 3.7, 4.0, 4.3], onDepth ∈
[0.0, 0.1, ..., 0.9, 1.0] and p = 100.

2. For all node group the ones at the cutoff points using n · (1− onDepth)

3. For each of the groups, so for each cutoff point calculate σ = log2 T
′

log2 T
, take the median as our

result for the median estimation of σ.

4. Also plot the subtree sizes and find the best fit function using curve fitting.

5. Use σ = limn→∞((a′ · n + log2(b
′))/(a · n + log2(b))) in order to calculate σ as our second

result for the estimation of σ by calculation.

32

Acronyms

CBT Classical Backtracking. 1, 2, 6, 13–15, 23

CNF Conjunctive Normal Form. 2, 3

D&C Divide and Conquer. 14

D&Q Divide and Quantum. 1–3, 14–19, 21–25, 32

DPLL Davis-Putnam-Logemann-Loveland. 1, 2, 6, 7, 13–16, 18, 22–24, 30, 32

GA Grover’s Algorithm. 3, 10–14

PL Pure Literal Elimination. 7, 33

QA Quantum Algorithm. 1, 8, 10, 13–15

QC Quantum Computer. 1, 2, 8, 10, 13–25

QPE Quantum Phase Estimation. 13

qubit Quantum Bit. 9–12, 15, 25

SAT Boolean Satisfiability Problem. 1–6, 8, 10, 12, 13, 15, 16, 18, 24

UP Unit Propagation. 7, 33

Glossary

3-SAT A class of SAT problems where each clause has 3 variables. 3, 5, 6, 22

k-SAT A class of SAT problems where each clause has k variables. 3, 25, 34

Boolean logic A system for logic, named after George Boole. The system uses two values, True
and False, variables and a set of operators to perform manipulations on them. 2, 9

CSV A comma-seperated values file is a file format for storing data. The columns of which are
seperated by commas. 16

curve fitting Curve fitting is a method where we try to find a mathematical expression that
describes a function of the data points best. 16–20, 23, 32

NäıveDPLL A DPLL algorithm where we use UP and PL and otherwise randomly choose a
variable on which we make a binary branch, where randomly choosing defines the Näıve part..
7

33

R2 A statistical method for defining the goodness of a fit. The higher R2, the more accurate a
function describes the data points. 16, 17

random 3-SAT A class of random k-SAT problems where the number of variables per clause
equals 3. 1–3, 16, 18, 19, 21, 22, 24, 25

random k-SAT A class of k-SAT problems where the clauses are generated uniform at random
given a parameter ∆. 1–4, 6, 8, 15–17, 20–25, 28, 34

34

	Introduction
	SAT Problem
	3-SAT
	Random 3-SAT
	Sampling algorithm

	Complexity
	Search algorithms
	Brute-force
	Search space
	Backtracking

	DPLL
	Thresholds for random 3-SAT

	Quantum Computing
	Quantum Bits
	Quantum Gates
	Quantum Algorithms
	ga
	Applying ga to sat
	Quantum Backtracking

	Divide and Quantum
	Approach

	Methods
	Subtree size inspection
	Determining for which problem instances have search trees that grow exponentially in size
	Determining cutoff points where subtrees still grow exponentially

	Subformula structure inspection
	Total runtime comparison
	Estimate based on the relation following a dnq speedup
	Determining the median from problem instances with different n

	Results
	Results from subtree size inspection
	Determining for which problem instances have search trees that grow exponentially in size
	Determining cutoff points where subtrees still grow exponentially

	Results from subformula structure inspection
	Results from total runtime comparison
	Estimate based on the relation following a dnq speedup
	Determining the median from problem instances with different n

	Conclusion and Discussion
	Discussion

	References
	rksat generation
	Subtree size inspection – exact method
	Subformula structure inspection – exact method
	Total runtime comparison – exact method
	Acronyms
	Glossary

