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Abstract

Traditional programming languages have a range of artifacts that prevent
compilers from being able to optimize the code on a grand-scale, such as ex-
plicit parallelization, explicit data structure definitions and data dependencies.
tUPL is an alternative, high-level programming language that aims to avoid
these problems. In this thesis we present libtupl, an optimizing compiler for
tUPL, which has the ability to automatically generate efficient data structures
for algorithms through a range of simple transformation passes. We show that
advanced data structures derived through application of these transformation
passes have the ability to outperform naive data structures and in certain sce-
narios outperform hand-optimized implementations of MKL. To enable tUPL
to be used in any existing Python code base, we developed Tython, a front-end
for libtupl that enables tUPL to be used in any existing Python code base. The
use of Tython will be illustrated with a number of examples and its implemen-
tation will be discussed.
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Chapter 1

Introduction

Optimizing compilers for traditional programming languages only have a lim-
ited ability to optimize the input code. For example, in traditional program-
ming languages typically explicit programming constructs have to be used for
multi-core parallelization in order to achieve near-optimal performance. Addi-
tionally, concrete data structures have to be defined by the programmer. Also,
algorithm implementations tend to introduce a lot of explicit data dependen-
cies which optimizing compilers must respect. Altogether this limits optimiz-
ing compilers of traditional languages mostly to small-scale optimizations and
prevent such compilers from performing optimizations on the grand-scale.

tUPL is a widely applicable very high-level programming language for
computational algorithms aiming to free itself from these artifacts [13]. Within
tUPL the two core looping structures, the forelem and whilelem (pronounce:
while—elem) loops, play a primary role in its power. These loops allow iter-
ating through a set of (named) tuples: a tuplespace (or reservoir). A forelem
loop iterates all tuples in a tuplespace once in an undefined order and executes
the loop body atomically. A whilelem loop continues iterating tuples in an un-
defined order (possibly iterating some tuples more than once) until “nothing
happens anymore”. These looping structures naturally avoid locking down
data dependencies across the entire program: only within a single loop body
iterations data dependencies may exist explicitly. As no data dependencies are
explicitly defined across different loop iterations these looping structures are
inherently parallel. Within this thesis we will primarily look at the forelem
loop.

Within loop bodies we can access shared spaces through an address function.
A shared space is a storage location for data items indexed by any-dimensional
integers. Address functions allow converting the tuple that is being iterated to
the desired shared space index. For example, when we iterate a tuplespace
containing two-dimensional tuples t with fields ⟨a, b⟩ we can access a one-
dimensional shared space X using address function λ t : (t.a, ), indexing X
using only the a component of the tuple. Usually we shorten this abstraction
to X[t.a] for the sake of readability. Note that even though this syntax sug-
gests X could be an array, the true data structure for this shared space is unde-
fined: it can be seen as a key-value mapping without defined implementation.
Similarly, we do not define the way tuples in a tuplespace are actually stored.
Due to these high-level storage containers program specifications are free from
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explicit data structures.
Let us consider an example. Listing 1.1 shows a sparse matrix-vector multi-

plication specification in tUPL. This specification iterates over the tuples in the
NZ tuplespace (representing nonzeros) in any order and, for each nonzero, per-
forms the multiply-add operation atomically. Here, the NZ tuplespace contains
two-dimensional tuples with fields row and col, both integers.

1 forelem nz in NZ:
2 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing 1.1: Sparse matrix-vector multiplication tUPL specification.

Note how we store the nonzero value in a shared space A rather than with
the tuples in the tuplespace. Although the alternative is allowed and equiva-
lent, the convention is to store only indices in the tuples in reservoirs.

Listing 1.2 shows another example: sorting. This specification continues to
swap adjacent elements until no element is out of order anymore. Generally,
whilelem loops terminate when the program is in some state to which we can
always return, no matter what sequence of (executable) tuples are executed.
For this sorting specification it holds that when no element is out of order, no
tuple is enabled at all, so detecting termination is trivial in this case.

1 whilelem adj in ADJS:
2 if A[adj.left] > A[adj.right]:
3 tmp = A[adj.left]
4 A[adj.left] = A[adj.right]
5 A[adj.right] = tmp

Listing 1.2: Sorting tUPL specification.

We have developed an optimizing compiler for tUPL, focusing on the auto-
matic generation of efficient data structures. This project consists of two parts:
libtupl and Tython. libtupl is a language-agnostic compiler that operates on a
tUPL AST in which we perform optimization routines and generate output pro-
grams. libtupl only takes an initial AST and some other initialization structures
as input. Tython is a front-end we have developed for libtupl which extends
Python 3 with tUPL constructs. Tython interfaces with libtupl to then perform
the actual optimization routines.

In Section 2 we look at an overview of the entire compiler. Within Section 3
we will look at the heart of the compiler: libtupl. In particular, two strategies
for the generation of I/O routines will be discussed. Section 4 will describe at
the Tython front-end we have developed in more detail. Section 5 enumerates
a few additional extensions to tUPL. These extensions enable the compiler to
derive more advanced implementations. In Section 6 we will demonstrate the
effectiveness of various derived advanced implementations using a number of
experiments on sparse matrix-dense matrix multiplication. Finally, Section 7
will conclude this thesis and propose some avenues for future work.

1.1 Related work

tUPL is an extension of the previously developed forelem framework [10, 11].
A range of the transformations described in this thesis resemble those from the
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original forelem framework. In unreleased slides, Prof. dr. H.A.G. Wijshoff de-
scribed various additions to the forelem framework which formed tUPL, such
as the whilelem loop. In this thesis we extend the transformations to robustly
transform input and output data streams and also introduce a range of new
transformations.

Many algorithms have already been specified in tUPL. We have already
seen sparse matrix-vector multiplication and sorting in Listings 1.1 and 1.2 re-
spectively. Previously, specifications for maximum flow, finding strongly con-
nected components, triangular solve [13], LU factorization [12], K-means clus-
tering [8, 7], PageRank [15] and more have been constructed. For many of
these specifications full implementations have been derived, such as for Page-
Rank [15].

Within the experiments we will consider an extended version of tUPL which
takes parallelization and runtime I/O into account. This is then applied on
sparse matrix-dense matrix multiplication (SpMM) by deriving various sparse
matrix data structures for the algorithm, similar to the experiments in the dis-
sertation of Dr. K.F.D. Rietveld [10]. In this thesis we, however, perform exper-
iments using tUPL, which has evolved significantly since those experiments.
Additionally, we consider the automatic transformation of I/O routines so the
input and output is transformed to the generated data structures automatically.
Although a lot of research and library development has been performed to op-
timize the performance of SpMM in the case where all data is in-memory, such
as in [12, 14, 1, 16], only a limited amount of research has been done in which
data is loaded from persistent memory, such as in [17]. In our experiments we
consider both cases: data can either be in-memory or has to be loaded from
persistent memory.

1.2 Notation

Within this thesis we typically use a Python-like style to describe code, so cer-
tain Python-like notations are used. In fact, the syntax is mostly that of Tython,
the front-end we have developed for tUPL. For example a: Generator indi-
cates that the variable a is of type Generator. Similarly, λ() -> Generator
indicates the function returns a Generator. We use the shorthand notation {a:
int, b: int} to describe the type of a named tuple in code, here a two-tuple

with fields a and b, both of type int. Outside of code we usually omit the type
of values and write named tuples as ⟨a, b⟩.

Sometimes the function assert is used to indicate something is always
truthy. This function also returns the object being asserted. Like in Python,
empty structures are not truthy.

The unary postfix ++ and -- operators from, for example, C++ are also
used in code for brevity. Outside of C++ code, the unary prefix ∗ operator
will unpack a structure. For example, with a = ⟨1, 2⟩, ⟨∗a, 3⟩ = ⟨1, 2, 3⟩, but
⟨a, 3⟩ = ⟨⟨1, 2⟩, 3⟩. Unpacking a Subscriptable implies unpacking it into a
Stream of key-value pairs (i.e. tuple of length two), as will be described in
Section 3.

Note that in previous work involving the forelem framework and tUPL a
different notation was used to specify algorithms. To ease into the new no-
tation Listings 1.3 and 1.4 can be compared. The specification using the old
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notation in Listing 1.3 is equivalent to the specification with the new notation
in Listing 1.4.

1 forelem (r; r ∈ NZ.row)
2 forelem (nz; nz ∈ NZ.row[r])
3 C[nz.row] += A[nz.row, nz.col] * B[nz.col];

Listing 1.3: A tUPL specification using the old notation.

1 forelem r in NZ.row:
2 forelem nz in NZ where nz.row == r:
3 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing 1.4: A tUPL specification using the new notation (i.e. Tython syntax).

6



Chapter 2

Overview

Within this thesis we look at two components: libtupl and Tython. Tython, the
front-end, can parse Tython code and generate an AST from it. Tython then
converts this Tython AST to an agnostic tUPL AST part of libtupl. Initially, the
code represented by the tUPL AST is expressed as operations on tuplereser-
voirs and shared spaces. In order to import data into these tuplereservoirs and
shared spaces, a load I/O routine must be initialized. Similarly, for the reverse
export operation an unload routine is defined. For every transformation that is
performed by libtupl, both the algorithm AST as well as the load/unload rou-
tines are transformed. This ensures that for every step in the transformation
chain input data can be transformed to the libtupl-generated data structures
and vice versa.

Figure 2.1 visualizes this structure. Note that each Function contains the
AST while each IOGen contains information on how to load/unload the data
structures for that particular instantiation of the function. Each (parameteriz-
able) optimization Pass can modify the Function and IOGen objects, forming
a new node in the transformation tree. Tython (or another front-end) initializes
the root TransformationTreeNode. In the end, code generation is performed on
some final TransformationTreeNode. This will yield, for example, C++ code
that can import (load) data, run the algorithm and export (unload) data.

The majority of the logic is part of the libtupl library, including a range of
passes that can be applied on the transformation tree nodes, as we will see in
Section 3.3. We primarily look at data structure transformations, not consider-
ing algorithmic transformations in great detail. Two different ways of handling
I/O data transformations have been developed, each with certain advantages
and disadvantages. Firstly, the I/O generation approach through combinations
of simple generators transforming the data will be described in detail in Sec-
tion 3.4. Secondly, the I/O generation approach by constructing transformation
graphs of the data is described in Section 3.5. The definition of the IOGen ob-
jects and the way these objects are modified during each transformation Pass
differs significantly between the two approaches as we will see in these two
sections.

In Section 4 we will take a more detailed look at how Tython parses input
code and interacts with libtupl to perform the compilation process.
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Figure 2.1: Overview of the compilation process.

8



Chapter 3

libtupl

In this chapter we will describe libtupl, a library to compile and optimize tUPL
programs. libtupl does not include features to parse code, instead it operates
on a more agnostic tUPL abstract syntax tree (AST), which allows any front-
end to use this library. The frond-end we have additionally developed, Tython,
is discussed in Section 4.

3.1 Compilation process

The compilation process can be divided into two phases: algorithmic optimiza-
tion and data structure optimization. The algorithmic optimization process
transforms the algorithm so that generally fewer operations are necessary to
execute the algorithm. For example, the sparse matrix-vector multiplication
specified in Listing 1.1 can be optimized to the specification in Listing 3.1. The
latter specification iterates the tuples in tuplespace NZ in a row-wise fashion,
iterating all tuples in a row at once. Compared to the first specification, which
does not group the tuples in any way at all, a large amount of unnecessary
reads and writes to shared space C can be saved. From this point on we will as-
sume input specifications have already been algorithmically optimized unless
mentioned otherwise and only focus the data structure optimization phase.

1 forelem row in NZ.row:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing 3.1: A possible sparse matrix-vector multiplication tUPL specification
after algorithmic optimization.

Data structure optimization consists of a number of simple transformations
that are performed on the output of the algorithmic optimization phase. Note
that because the output of the algorithmic optimization phase defines the start-
ing point of the data structure optimization phase, it has a significant effect on
the data structures that will be generated: the generated data structures will be
tailored to the specification of the algorithm on which algorithm transforma-
tions have already been applied. Data structure optimization can significantly
change the data structures further from this starting point. Algorithmic and
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data structure optimization together can thus lead to a wide range of differ-
ent data structures. Within the next few sections we will look at data struc-
ture transformations and two techniques to efficiently transform the input and
output routines to match the target data structures. The vast majority of the
data structure optimization process has been implemented as part of the Tython
project as the C++ libtupl library.

3.2 Transformation tree

During the optimization process we construct a transformation tree. Each node
in this tree is an algorithm specification, consisting of an AST, I/O information
and some additional metadata. Each edge represents a transformation applied
on a certain node, where the node at the arrowhead end is the result of the
transformation. A transformation may be parameterized, indicating that we, for
example, want a certain transformation to have an effect on a specific symbol
only. Figure 2.1 visualizes this structure.

Technically we only have to store the initial AST, I/O information and meta-
data in the root node of the transformation tree. All transformations are de-
terministic, so we can derive child nodes directly from the root node and the
sequence of transformations applied on this root node.

3.3 Transformations

A wide range of simple transformations have been implemented as passes to
automatically transform the algorithm. Within this section we will describe
these transformations and the effect they have on the algorithm. Within Sec-
tions 3.4 and 3.5 we will look at the effects these transformation passes have on
the input and output data streams, as these have to be transformed to be able
to store the actual data in the generated data structures.

Table 3.1 lists the implemented transformations. Some of these transforma-
tions are based on the forelem framework [11]. Appendix A can be referred to
for a more detailed description of each of these passes.

The transformations can transform the initially unmaterialized specification
(i.e. iteration order of the loops is undefined) to a materialized specification,
where we fix the order we iterate through reservoir tuples. In materialized spec-
ifications all SharedSpace and Reservoir symbols have been transformed
into Subscriptable symbols. Subscriptable symbols assign indices to each
element, but do not enforce how these elements are stored. The ReservoirMate-
rializationPass, NStarMaterializationPass and SharedSpaceMaterializationPass
passes can be used to materialize a specification. The materialized specification
becomes a concretized specification after the final ConcretizationPass. Here all
Subscriptable symbols have defined implementations, such as it becoming
a multi-dimensional array or jagged linked list. In concretized specifications
loops are also limited to just simple for- and while-loops. Note that vari-
ous other transformations exist that operate on unmaterialized or materialized
specifications that solely change the data structure in some way, leading to dif-
ferent outputs.

To illustrate the application of a transformation, consider the following ex-

10



Transformation name Description See also

EncapsulationPass Transforms iterating a tuplespace its possible values (forelem
row in NZ.row) to iterating a range (forelem row in [0,

max(NZ.row)]) when possible.

A.1, [11]

AggregateReservoirPass Transforms aggregations over a tuplespace its possible field
values (forelem row in [0, max(NZ.row)]) to a scalar value
(forelem row in [0, max_NZ_row)]), delegating the compu-
tation of that scalar to load time.

A.2

LocalizationPass Merges (localizes) the values of a shared space into a reservoir so
that indexing the original shared space is no longer necessary.

A.3, [11]

QueryForwardSubstitutionPass When a loop has an equals-query, like in forelem nz in NZ
where nz.row == row, substitutes nz.row for row in the loop
body.

A.4

ReservoirMaterializationPass Materializes a reservoir, constructing a subscriptable to store the
reservoir its tuple data into. In the case of forelem nz in
NZ where nz.row == row the materialization leads to a two-
dimensional Subscriptable PNZ with indices row (the query)
and k (an offset). The loop is substituted by forelem k in N*,
iterating over all offsets.

A.5, [11]

NStarMaterializationPass Materializes an N* Reservoir. If the original forelem loop
has a query, this can lead to, for example, a Subscriptable
PNZ_len, in which the number of tuples are stored matching
those query values. PNZ then contains tuple data on indices
[query_value, 0 . . . PNZ_len[query_value]− 1].

A.6, [11]

SharedSpaceMaterializationPass Materializes a shared space, converting it into a subscriptable. A.7, [11]
HorizontalIterationSpaceReductionPass Removes fields from a subscriptable containing tuples if that

field is never used anywhere, reducing the width of each element
in the subscriptable.

A.8, [11]

DelocalizationPass Duplicates a subscriptable containing tuples into two subscripta-
bles. The specification is modified to access the newly duplicated
subscriptable to access certain fields. Usually followed up by a
HorizontalIterationSpaceReductionPass to shrink both subscript-
ables so that they contain mutually exclusive fields.

A.9

StructureJaggedSplittingPass Splits a Subscriptable containing tuples into a jagged Subscript-
able. For example, can transform Z[x, y].a += Z[x, y].b *
Z[x, y].c into Z[x]._a[y].a += Z[x]._b_c[z].b * Z[x].

_b_c[z].c. Note how Z is now an array of structures containing
two arrays each (i.e. a jagged structure).

A.10, [11]1

ConcretizationPass Concretizes each subscriptable to an actual data structure (usu-
ally an array of potentially multiple index dimensions). forelem
loops are concretized to, for example, simple for-loops.

A.11, [11]

1 Regular structure splitting only.

Table 3.1: All implemented transformations that have an effect on the algo-
rithm specification.
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ample application of the LocalizationPass. Listing 3.2 shows a scenario on
which the LocalizationPass can be applied. We can decide to merge, for ex-
ample, the shared space A into tuplespace NZ. This will insert a new field
merged_value for each tuple nz inside of NZ with value nz.merged_value
= A[nz.row, nz.col]. In order to access the value A[nz.row, nz.col] we
can now simply read it from nz.merged_value instead, yielding the code in
Listing 3.3.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing 3.2: Example scenario on which the LocalizationPass can be applied.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += nz.merged_value * B[nz.col]

Listing 3.3: Resulting code after applying the LocalizationPass.

Do note that it is not always safe to substitute indexing a shared space by
such a merged value, as described in Appendix A.3. Other transformation
passes also perform minor changes to the algorithm. Refer to Appendix A for
full descriptions of each pass.

3.4 I/O generation through generators

One of the implemented techniques to generate data load and unload routines
operating on streams of data (i.e. a lazily generated sequence of named tuples)
is through creating a generator coroutine for each (potentially virtual) data
structure each time a data structure is transformed during a transformation
pass. Each generator takes one or more input generators (in the data format
from the previous data structure), transforms these streams of elements and
produces a new stream of elements (in the desired data format). Each gener-
ator is typically very simple, but connected together complex data structures
can be loaded and unloaded.

Listing 3.4 shows an example generator that changes a subscriptable from
containing tuples ⟨row, col⟩ to containing tuples ⟨col⟩. It does not modify
the two-dimensional key of each value in the subscriptable. We do not yet
store the elements, but just change the data that is to be stored later in an ac-
tual data structure and yield the resulting elements. Generators like this are
typically produced by a HorizontalIterationSpaceReductionPass, changing a
Subscriptable containing tuples ⟨row, col⟩ so that the row field is no longer
stored if it is not accessed anywhere.
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1 λ(input: Generator[Tuple[int, int], NTuple[row: int, col:
int]]) -> Generator[Tuple[int, int], NTuple[col: int

]]:
2 while input:
3 key, value = input.next()
4 yield key, (value.col,)

Listing 3.4: A generator that reduces the width of the tuples in a subscriptable.

3.4.1 Transformations which modify data structures

Certain transformations change the data structure, such as the HorizontalItera-
tionSpaceReductionPass. Data has to be transformed as well to make it fit the
new structure. Some transformations thus produce generators that take the
original data and generate transformed data that fits these new structures. Ta-
ble 3.2 lists various transformations passes and the data transformations they
perform. Note that these operations are an extension of the pass behavior de-
scribed in Table 3.1. Detailed descriptions of the generators that are produced
during these passes can be found in Appendix B.

Transformation name Description See also

HorizontalIterationSpaceReductionPass Takes key-value pairs from a subscriptable, removes some fields
from the tuple, outputs new key-value pairs with an unmodified
key and width-reduced value. Listing 3.4 shows a generator that
could be produced by this pass.

B.1

LocalizationPass Reads tuples from a tuplespace, produces new tuples for the tu-
plespace with a new field (merged_value) for each tuple. The
merged_value is found in a shared space depending on the in-
put query (see Appendix A.3).

B.2

ReservoirMaterializationPass + NStar-
MaterializationPass

Two generators are typically produced for a reservoir R: one for
the materialized data PR, assigning indices to each value, and one
for the data in PR_len.

B.3

DelocalizationPass Duplicates the generator for the original subscriptable to be used
for the duplicated subscriptable.

B.4

ConcretizationPass Takes the final generator producing key-value pairs and writes
the output to an actual concrete data structure.

B.5

Table 3.2: Generators produced by various transformations. Descriptions here
extend the behaviour of the original transformation passes described in Ta-
ble 3.1.

Note that using coroutines to abstract the I/O will result in the chain of gen-
erators being controlled from the bottom (i.e. the end of the chain). Each gener-
ator then invokes the upper generator to produce a new element (through the
next() call). The bottom generators here typically contain routines that con-
struct the final data structure from the input and load concrete data in there,
while the top generators typically read raw data elements from, for example,
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the file system (or the other way around when unloading data from the gener-
ated data structures).

This can cause performance issues when more than one concretized data
structure reads from a single source: that source is then read multiple times.
For example, applying the ReservoirMaterializationPass and NStarMaterial-
izationPass on some reservoir A can lead to the materialized reservoir PA (i.e.
transforming the specification in Listing 3.5 into Listing 3.6), generated by the
generator in Listing 3.7, and additionally a lookup subscriptable PA_len, gen-
erated by the generator in Listing 3.8, containing the number of entries match-
ing each query. Both of these data structures are based on the contents in A,
which results in the input being read twice in order to construct the data in
both structures. See also Appendix B.3 for additional details about this case.
Similar issues occur when performing the DelocalizationPass, as described in
Appendix B.4.

1 forelem a in A.a:
2 forelem tuple in A where tuple.a == a: # A:

Reservoir[a: int, b: int]
3 ... tuple ...

Listing 3.5: Some tUPL specification with tuplespace A before materialization.

1 forelem a in A.a:
2 forelem k in PA_len[a]:
3 ... PA[a, k] ...

Listing 3.6: Some tUPL specification with subscriptable PA after
materialization.

1 λ(tr: Generator[NTuple[a: int, b: int]]) -> Generator[
Tuple[int, int], NTuple[a: int, b: int]]:

2 counts = {} # some sort of lookup table, default value of
0 if key does not yet exist

3 while tr:
4 tuple = tr.next()
5 query = (tuple.a,)
6 yield (*query, counts[query]), (*tuple, counts[

query])
7 counts[query] += 1

Listing 3.7: A generator materializing a tuplereservoir.

1 λ(tr: Generator[NTuple[a: int, b: int]]) -> Generator[
Tuple[int, int], NTuple[a: int, b: int]]:

2 counts = {} # some sort of lookup table, default value of
0 if key does not yet exist

3 while tr:
4 tuple = tr.next()
5 query = (tuple.a,)
6 counts[query] += 1
7
8 for query, count in counts:
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9 yield query, count

Listing 3.8: A generator materializing a N* reservoir into a _len subscriptable.

3.4.2 Initialization

Initial generators must be defined that stream the input data. For tuplespaces
this is always a stream of tuples, for shared spaces this streams both the key and
value of the contents of that shared space. Callback functions can be defined
to export shared space data after running the algorithm, taking the key and
value of each element in the shared space as function parameters. This callback
function is invoked for each element in the shared space. A chain of generators
can transform the data back to the desired output format before invoking the
callback function for each data element.

For example, Listing 3.9 defines a coroutine generator in C++ which pro-
duces tuples ⟨row, col⟩ from a given input file in text format, which could be
used to define where nonzero elements are stored in a sparse matrix. Genera-
tors like this are used to initialize the data structures from external sources.

1 struct tuple_row_col {
2 uint64_t row;
3 uint64_t col;
4 };
5
6 Stream<tuple_row_col> loader(std::ifstream text_stream) {
7 tuple_row_col nonzero_location;
8 while (text_stream >> nonzero_location.row &&

text_stream >> nonzero_location.col) {
9 co_yield nonzero_location;

10 }
11 }

Listing 3.9: Coroutine to load nonzero position data for shared space NZ.

3.5 I/O generation through transformation graphs

Although generators are highly flexible to abstractly represent the data trans-
formations applied by each pass, they have some limitations. Generators nat-
urally have their control at the end of the generator chain. In other words, the
generator produced at the ConcretizationPass will invoke parent generators to
produce more data. Because of this certain things cannot easily be described
efficiently using such a setup. For example, a DelocalizationPass wants to prac-
tically duplicate a data structure, which then requires reading the input twice
(but typically processing this input slightly differently for the different con-
cretized data structures).

To counter these problems we have developed a second implementation
of I/O load/unload routine generation. This implementation stores the data
transformations in I/O transformation graphs. Each (parameterizable) node in
this graph represents a certain data transformation on the inputs. Directional

15



edges connect output sockets of one node to input sockets of others. A node
may have zero or more input sockets and zero or more output sockets. It is per-
mitted to connect multiple edges to a single output socket, in which case the
data is duplicated. Sockets can be tagged by any amount of expressions, relating
the data passing through a socket to the data structures used in the code. The
exact way this I/O transformation graph is converted into imperative code is
flexible, but here we primarily use a top-down compilation, unlike the genera-
tor approach, which is basically limited to a bottom-up compilation. Thus the
control with this method lies at the topmost data generators, like a node where
raw data is being read from a file. This is then pushed to other I/O nodes as
data is being read.

Let us consider a simple example. Listing 3.10 shows the initial sparse
matrix-vector multiplication specification without additional algorithmic op-
timizations applied on it. We can materialize shared space A to subscriptable
PA using the SharedSpaceMaterializationPass and then concretize it to a flat 2D
array CPA using the ConcretizationPass.

1 forelem nz in NZ:
2 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing 3.10: Initial sparse matrix-vector multiplication specification.

Figure 3.1 displays the simplified resulting input transformation graph, not
displaying transformations on data structures other than A1. I/O graphs con-
sist of a few concepts. Primarily it consists of I/O nodes, which typically de-
fine some sort of operation on data. I/O nodes have any number of input and
output sockets (depending on the type of the I/O node). Output sockets can
connect to input sockets of other nodes as long as no cycle forms. Connections
between sockets are always annotated with the type of data sent. For example,
between the “I/O reader” and “Tuple to KeyValue” node we send named tu-
ples ⟨row, col, val⟩, and from “Tuple to KeyValue” to “Concretize to FlatArray”
we send both a two-dimensional unnamed tuple (the index), denoted by [2D],
and named tuples ⟨row, col, val⟩. Note that when we send these two items they
are always sent together: it can practically be seen as a two-tuple containing an-
other two-tuple and the named tuple. We usually annotate each input socket
with symbols (local to the I/O node) to which we assign incoming data. The
output socket is typically annotated with a rough description of the transfor-
mation the I/O node performs. Finally we allow sockets to be tagged by expres-
sions used in the algorithm, defining what data structures are represented by
data going through that socket. In most cases these expressions are just a single
symbol. For example, the data in A, PA and CPA is represented by the output of
the “Tuple to KeyValue” node.

Note that in the example input transformation graph of Figure 3.1 the appli-
cation of the SharedSpaceMaterializationPass to A did not transform the data,
but did tag the “Tuple to KeyValue” node to indicate PA is also represented by
the same output. The application of the ConcretizationPass did not transform
the data as well. The I/O graph was initialized with just the “I/O reader” and
“Tuple to KeyValue” nodes, the “Concretize to FlatArray” node is produced by

1Figure 3.1 is simplified. Concretization does not produce just a single I/O node, as we will see
later in this section. The example illustrates the structure of I/O graphs well, though.
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I/O reader
⟨row, col, val⟩

Tuple to KeyValue
t

key: [t.row, t.col], value: t

⟨row, col, val⟩

Concretize to FlatArray
k, v

[2D], ⟨row, col, val⟩ A, PA, CPA

I/O node

Type of data sent

Input socket
Input variables

Output expressions
Output socket
Expression tag

Figure 3.1: Simplified partial input transformation graph, for transforming a
shared space A to a concretized subscriptable CPA, displaying nodes affecting
shared space A only.

the ConcretizationPass. This node will actually write the data to the generated
data structure.

These I/O transformation graphs specify the data transformations at a higher
level than the coroutines in the previous section did, allowing us to perform
transformations on this transformation graph more easily. Unlike the genera-
tor approach where we generate imperative code immediately, we only store
high-level logical operations in the transformation tree describing what each
node does. Only in the end we generate imperative code for each I/O node
that actually performs the data transformations, unlike the approach in the
previous sections where the produced coroutines are practically directly exe-
cutable. It is, for example, possible to convert an I/O transformation graph
back to a range of connected generators as described in the previous section,
although in Section 3.5.1 we will see that a top-down compilation approach
avoids certain problems a bottom-up compilation yields.

Table 3.3 enumerates all implemented I/O nodes. They are described in
more detail in Appendix C.

3.5.1 Transformations which modify data structures

Table 3.4 summarizes the effect the transformation passes have on the I/O
transformation graphs. Appendix C can be referred to for detailed descriptions
and examples.

In the previous section we have seen that applying the ReservoirMaterial-
izationPass and NStarMaterializationPass on A will yield two data structures
PA' and PA_len. Both data structures have their own generator that can load
its data, but both generators have to read the source input (i.e. A its data source),
leading to the input being read twice.

This is no longer necessarily an issue when using transformation graphs to
store transformations on the input data in. Figure 3.2 shows a typical graph
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Node name Input Output Description Conv.

ConstantStream Tuple, NTuple For a range of keys outputs a constant tuple
(see also Section 3.5.2).

D.4

DataStreamReader NTuple Imports data using an external data generator
(see also Section 3.5.2).

D.3

DataStreamWriter NTuple Exports data using an external callback func-
tion (see also Section 3.5.2).

D.10

Aggregate NTuple Tuple, NTuple Aggregates the value in a certain field of
all input tuples depending on the aggregate
function. Outputs single singleton tuple.

D.5

KeyValue to Tuple Tuple, any NTuple Transforms input key-value pairs to a tuple
depending on the configured expression.

Like D.1

Transform KeyValue Tuple, any Tuple, any Transforms input key-value pairs depending
on the configured expressions.

D.2

Tuple to KeyValue NTuple Tuple, any Transforms input tuple to a key-value pair de-
pending on the configured expressions.

Like D.2

Transform Tuple NTuple Tuple, any Transforms input tuple depending on the con-
figured expression.

D.1

Count Tuples NTuple NTuple & Tuple,
NTuple

Assigns a number to each input tuple, ex-
tending the tuple with a new field contain-
ing that number. Tuples that match the same
query have distinct numbers. Also outputs
key-value pairs containing the total number
of tuples in each query group.

D.6

Write Value Tuple, any Writes data to a concretized Subscriptable. D.8
Deconcretize Tuple, any Streams data out of a concretized

Subscriptable.
D.9

Jag Tuple, NTuple Tuple, NTuple Reduces the width of the input key by a cer-
tain offset, creating a jagged structure (see also
Section C.6).

D.7

Merge NTuple & Tuple,
any

NTuple Extend each tuple in the first input with a
new field whose value is looked up by key
in the second input depending on the config-
ured query.

—

Table 3.3: All implemented I/O nodes. The last column references to Ap-
pendix D where conversion routines for each I/O node are described, see also
Section 3.5.3.
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Transformation name Description See also

HorizontalIterationSpaceReductionPass Creates a “Transform KeyValue” node modifying the tuple to the
reduced tuple.

C.1

AggregateReservoirPass Creates an “Aggregate” node aggregating a certain field of input
tuples with the specified function.

C.2

LocalizationPass Creates a “Merge” node with both the reservoir and shared space
as input. The node is parameterized by the query describing
where value to be merged is located in the shared space (see Ap-
pendix A.3).

C.3

ReservoirMaterializationPass + NStar-
MaterializationPass

Creates a “Count Tuples” node, assigning a unique index to each
tuple for each query group, in the end forming PR from input
reservoir R. Also outputs key-value pairs containing the number
of tuples matching each query group for the PR_len subscript-
able.

C.4

DelocalizationPass When delocalizing PR, a duplicate PR_deloc is created. What-
ever I/O node outputs the data of PR (i.e. is tagged with expres-
sion PR) is then also tagged with PR_deloc.

C.5

StructureJaggedSplittingPass Creates a “Jag” node which converts the subscriptable to a jagged
subscriptable. “Transform KeyValue” nodes are linked to that to
perform the structure splitting.

C.6

MergeEliminationPass This is a new pass that only has an effect on the I/O transforma-
tion graphs. It tries to eliminate “Merge” I/O nodes and replace
them with a “Transform Tuple” I/O node, computing the desired
output directly from some shared ascendant I/O node.

C.7

ConcretizationPass Creates a “Write Value” node that actually writes resulting values
to a concretized data structure.

C.8

Table 3.4: Generators produced by various transformations. Descriptions here
extend the behaviour of the original transformation passes described in Ta-
ble 3.1.
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structure after the ReservoirMaterializationPass and NStarMaterializationPass
have been applied on A (recall that ∗Z will yield a stream of the key-value pairs
in Z, i.e. the number of tuples that match each query). In this figure, “Any
I/O node” indicates the node that generates the data of A can be any node:
regardless of it the same new nodes are attached to its output socket. Note
how a “Count Tuples” node has two outputs: one will represent PA' its data
and one will represent PA_len its data (see also Section C.4). This node can
be compiled top-down, avoiding the need to read the input twice and instead
producing data for both connected I/O nodes at the same time.

Any I/O node

Count Tuples
t

⟨∗t, Z[t.row] + +⟩ ∗Z

⟨row, col⟩

Tuple to KeyValue
t

key: [t.row, t.k], value: t

⟨row, col, k⟩

[2D], ⟨row, col, k⟩

[1D], int PA_len

PA'

A

Figure 3.2: Example I/O transformation applied after performing a Reservoir-
MaterializationPass on A and the NStarMaterializationPass on N*.

The ConcretizationPass is another interesting case. This pass will introduce
two nodes in the input transformation graph, as illustrated in Figure 3.3. The
“Jag” node is used to ensure space exists (and potentially allocate it) in the
CPA data structure so that CPA[k[0], k[1]] is writable. The “Write Value”
node is then used to write the actual value to this allocated slot. Note that
the “Jag” node is tagged with CPA[_, _]: this indicates that the output of the
“Jag” node is local to CPA[_, _], i.e. all keys of CPA are locked down. The
“Write Value” node will thus only receive a value with a zero-dimensional key
and writes this to the locked down index CPA[k[0], k[1]]. The “Jag” node
can also be used to lock down a limited number of dimensions only using the
StructureJaggedSplittingPass, creating a jagged data structure, as described in
Section C.6.

3.5.2 Initialization

In order to initialize the I/O transformation graphs, initial graph nodes have
to be created. These nodes have to be tagged with the tuplespace or shared
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Any I/O node

PA, CPA

Jag
k, v

key: k[2 :], value: v

[2D], sometype

CPA[_, _]

Write Value
assert(k == []), v

[0D], sometype

Figure 3.3: Example input transformation applied after performing a Con-
cretizationPass on PA.

space represented by a node. To provide input data, the I/O nodes “DataS-
treamReader” and “ConstantStream” can be used. The “DataStreamReader”
takes an (external) generator coroutine as input, which can be used to, for
example, read data from a file. The “ConstantStream” simply generates tu-
ples with constant values (v0, v1, . . .) on each shared space storage location
(0 . . . x0, 0 . . . x1, . . . , 0 . . . xn−1), where x, n and v are parametrizable. It is mostly
used to, for example, zero-initialize an output shared space.

The I/O node “DataStreamWriter” can be used to export any data after the
algorithm has been executed. It takes an (external) callback function that is
invoked for each tuple sent to this I/O node. This is mostly used to export the
data of a shared space. Note that in many cases it is easy to inline this callback.

Let us consider an example I/O initialization for the sparse matrix-vector
multiplication. We use the standard sparse matrix-vector multiplication speci-
fication as shown in Listing 3.11. The host language here is C++. Let us assume
that A is an N × N sparse matrix and we start indexing from 0. So B and C both
contain N elements. C is zero-initialized while B is initialized using doubles
from 1 to n. The data for shared space A and tuplespace NZ is read from a sim-
ple COO-like file storing triplets. We thus have to split off the value into shared
space A and only store the coordinates in tuplespace NZ.

1 forelem nz in NZ:
2 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing 3.11: Sparse matrix-vector multiplication specification in tUPL.

We can use a “DataStreamReader” to load data for A, NZ and B (where A
and NZ share the same “DataStreamReader”). C can simply be initialized us-
ing a “ConstantStream”. Listing 3.12 shows a possible coroutine that generates
triplets of data from a text input file containing triplets of numbers. Listing 3.13
shows a possible generator for the integers 0 to count − 1, each put in a single-
ton tuple.
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1 struct tuple_row_col_val {
2 uint64_t row;
3 uint64_t col;
4 double val;
5 };
6
7 Stream<tuple_row_col_val> coo_loader(std::ifstream

coo_file) {
8 tuple_row_col_val triplet;
9 while (coo_file >> triplet.row && coo_file >> triplet

.col && coo_file >> triplet.val) {
10 co_yield triplet;
11 }
12 }

Listing 3.12: Coroutine to load data sparse matrix triplet data for A and NZ.

1 struct tuple_n {
2 uint64_t n;
3 };
4
5 Stream<tuple_n> coo_loader(size_t count) {
6 for (int n = 0; n < count; ++n) {
7 co_yield {n};
8 }
9 }

Listing 3.13: Coroutine to load vector index data for B.

We can use this to construct the input graph as shown in Figure 3.4. The
upper “DataStreamReader” streams data produced by the coroutine from List-
ing 3.12 and the lower one the data produced by the coroutine in Listing 3.13.
The unconnected sockets remain unconnected: transformations on the input
specification will result in automatically generated I/O nodes connecting to
these sockets.

Note that in this case we can also connect another “Tuple to KeyValue” to
the lower “DataStreamReader” to zero-initialize C, instead of using the “Con-
stantStream” utility. Figure 3.5 shows this alternative zero-initialization ap-
proach for C.

For the output graph we want to export the data in C to, for example, the
standard output. Before we can use the “DataStreamWriter” we have to specify
an (external) callback routine that is invoked for each tuple of data sent to this
writer. The input of this node will be a two-tuple containing the 1D location
and the value at that location in C, so this callback function needs to take this
as input. Listing 3.14 shows a possible callback function.

1 struct tuple_n_val {
2 uint64_t n;
3 double val;
4 };
5
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DataStreamReader
⟨row, col, val⟩

Tuple to KeyValue
t

key: [t.row, t.col], value: t.val

⟨row, col, val⟩

Transform Tuple
t

⟨t.row, t.col⟩

⟨row, col, val⟩

ANZ

DataStreamReader
⟨n⟩

Tuple to KeyValue
t

key: [t.n], value: t.n + 1.0

⟨n⟩

B

ConstantStream
key: [0 ≤ c0 < N], value: 0

C

Figure 3.4: Initial input graph for tuplespace NZ and shared spaces A, B and C
for the sparse matrix-vector multiplication specification.

6 void coo_writer(tuple_n_val c_value) {
7 printf("At␣%ju:␣%f.\n", c_value.n, c_value.val);
8 }

Listing 3.14: Callback function that dumps the contents of C to the standard
output.

Figure 3.6 shows a possible initial output graph, using the callback function
in Listing 3.14 for the “DataStreamWriter”. Note how the “KeyValue to Tuple”
node converts the input key and value into this node (representing each storage
location and value in C) to a two-tuple, without explicit key, that can be used
as input to the “DataStreamWriter”.

3.5.3 Generating imperative code for transformation graphs

Before we can use the code generator to generate the output of the compila-
tion process (Section 3.6), the input and output transformation graphs are con-
verted to a tUPL AST without tUPL-specific constructs: each transformation
graph then becomes a single function (load and unload). Each I/O node has
its own conversion routine and will decide on its own how to invoke child

23



DataStreamReader
⟨n⟩

Tuple to KeyValue
t

key: [t.n], value: t.n + 1.0

⟨n⟩

B

Tuple to KeyValue
t

key: [t.n], value: 0

⟨n⟩

C

Figure 3.5: Alternative initial input graph (only displaying the initialization of
B and C).

KeyValue to Tuple
k, v

⟨k[0], v⟩

DataStreamWriter
t

⟨n, val⟩

C

Figure 3.6: Initial output graph.

node conversion routines. After converting the two graphs the standard code
generators can be used to convert the language-agnostic tUPL code to a target
language.

Generally the implementation of these conversion routines is trivial. Each
conversion routine takes a number of symbols as input in which the data is
stored of the parent I/O nodes. The routine then creates new symbols contain-
ing the data that will be sent to the child I/O nodes. Typically these nodes
are always compiled top-down. We start with the top (root) nodes that have no
input sockets. These nodes will push data downwards, applying some trans-
formation at each node. This is unlike the previous generator approach, where
data would always need to be pulled from a parent generator. This tends to
produce highly linear code. We rely on lower level compilers to optimize this
code further by performing, for example, forward substitution and dead code
elimination.

Details about how each I/O node is converted and examples can be found
in Appendix D. Table 3.3 enumerates all implemented I/O nodes. The last
column in this table refers to subsections in Appendix D containing details
about its conversion routine.
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3.6 Code generation

Once the ConcretizationPass has been performed, a code generator can be used
to convert the output-agnostic transformation tree node containing the con-
cretized algorithm specification and load/unload objects to some target lan-
guage (see also Figure 2.1). Such code generators can be used to generate, for
example, C++ output. This output can be compiled to an executable or library
using, for example, clang.

After the various transformation passes have been applied the algorithm
will only consist of basic constructs, such as while and for statements; whilelem
and forelem statements have been eliminated. Additionally, all symbols refer-
enced are now of simple types: concretized subscriptables or primitive scalars.
This allows code generators to generate code in a straight-forward way as typ-
ical target languages support similar constructs too. Implementations of the
low-level concretized subscriptables are part of the libtupl runtime, which al-
lows target languages to manipulate such concretized subscriptables through
a simple API.

When using the I/O approach with generators various coroutines can be
produced. While it is possible to flatten these coroutines to low-level impera-
tive code, many target languages support coroutines themselves too (and their
compilers flatten simple coroutines as well). We thus generally do not elimi-
nate coroutines, but let the lower level compilers optimize them away as they
please instead.

The I/O approach using transformation graphs will output load and un-
load functions with basic constructs once the graphs have been transformed
into imperative code as described in Section 3.5.3. It is thus also trivial to tran-
spile this to a target language.

3.7 Sparse matrix-vector multiplication example

In the previous sections the examples were all primarily from sparse matrix-
vector multiplication. In this section we will look at the complete output of a
possible compilation of this algorithm using the transformation graph based
I/O approach (which we generally prefer over the generator based approach).
Initially the specification typically looks like the one shown in Listing 3.15. Let
us assume the input transformation graph is initialized as in Figure 3.4 and
the output graph as in Figure 3.6. After a simple algorithmic optimization
process, transforming the specification such that the tuples being iterated row-
by-row, the code in Listing 3.16 could be the output. The exact process behind
algorithmic optimization is out of the scope of this thesis.

1 forelem nz in NZ:
2 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing 3.15: Example initial sparse matrix-vector multiplication example.

1 forelem row in NZ.row:
2 forelem nz in NZ where nz.row == row:
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3 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing 3.16: Example initial sparse matrix-vector multiplication example after
algorithmic optimization.

After algorithmic optimization, data structure optimization follows. In this
example we will work towards a jagged data structure (i.e. a data structure
whose elements are subscriptable data structures): an array indexed by row
at the top level. Then, for each row two arrays are stored: one in which the
column indices are stored and one in which the value is stored for each nonzero.
Key advantage of such a structure over a non-jagged 2D array is that we do
not have to pad each row to the maximum amount of nonzeros that occurs in a
row anymore, potentially saving a significant amount of memory. Furthermore,
splitting the column and nonzero values into two separate arrays could allow
for better vectorization.

Let us first perform the EncapsulationPass on the code in Listing 3.16, fol-
lowed by the LocalizationPass, localizing shared space NZ into tuplereservoir
A on [row, col], forming NZ_merge_A. Then, let us perform the AggregateReser-
voirPass on this NZ_merge_A, aggregating values for field row for function max.
At this point the specification will look like the one shown in Listing 3.17, while
the input transformation graph will be changed to Figure 3.7. The output trans-
formation graph does not change during these first few transformations.

1 forelem row in [0, aggr_NZ_merge_A_max_row]:
2 forelem nz in NZ_merge_A where nz.row == row:
3 C[nz.row] += nz.merged_val * B[nz.col]

Listing 3.17: Algorithm specification after performing three transformations.

Let us now continue with the materialization of the data structures. First we
perform the QueryForwardSubstitutionPass to avoid reading t.row from the
tuples t: this value is always equal to row in the inner loop. After that we con-
tinue with the ReservoirMaterializationPass of NZ_merge_A into PNZ_merge_A
and the NStarMaterializationPass to fully materialize the NZ_merge_A tuplespace
into PNZ_merge_A' and PNZ_merge_A_len. Finally we perform the SharedSpace-
MaterializationPass twice, once for B (into PB) and once for C (into PC). These
passes will transform the algorithm to the code shown in Listing 3.18. The in-
put transformation graph will become the one visualized in Figure 3.8. The
only change to the output transformation graph of Figure 3.6 is that we also
tag the “KeyValue to Tuple” node with PC. No additional I/O nodes are intro-
duced in this output transformation graph.

1 forelem row in [0, aggr_NZ_merge_A_max_row]:
2 forelem k in [0, PNZ_merge_A_len[row]-1]:
3 PC[row] += PNZ_merge_A'[row, k].merged_val * PB[

PNZ_merge_A'[row, k].col]

Listing 3.18: Algorithm specification after performing five additional
transformations.

Before concretizing everything we first perform the HorizontalIterationSpac-
eReductionPass to remove the unused row and k tuple fields from the subscript-
able PNZ_merge_A' storing the tuples, which results in PNZ_merge_A''. Ad-
ditionally we perform a MergeEliminationPass to eliminate the “Merge” I/O
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DataStreamReader
⟨row, col, val⟩

Tuple to KeyValue
t

key: [t.row, t.col], value: t.val

⟨row, col, val⟩

Transform Tuple
t
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⟨row, col, val⟩

ANZ

Merge
t k, v → X[k] = v

⟨∗t, X[t.row, t.col]⟩

⟨row, col⟩ [2D], double

Aggregate
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key: [], value: max(t.row)

⟨row, col, merged_val⟩

aggr_NZ_merge_A_max_row

NZ_merge_A
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Tuple to KeyValue
t

key: [t.n], value: t.n + 1.0

⟨n⟩

B

ConstantStream
key: [0 ≤ c0 < N], value: 0

C

Figure 3.7: Input transformation graph corresponding with Listing 3.17 after
performing three transformations.
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Figure 3.8: Input transformation graph corresponding with Listing 3.18 after
performing six additional transformations.
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node in the input transformation graph. Then we perform a StructureJagged-
SplittingPass on PNZ_merge_A'' to split the tuples ⟨col, merged_val⟩ stored in
this subscriptable into the groups [⟨col⟩, ⟨merged_val⟩] at offset 1. To finish the
data structure transformation process we perform the ConcretizationPass to
concretize everything. This will yield the code in Listing 3.19 (note the con-
version to C-style for loop specification) and the input transformation graph
from Figure 3.9. The ConcretizationPass also changed the output transforma-
tion graph, as shown in Figure 3.10.

1 for row = 0, row <= aggr_NZ_merge_A_max_row, row += 1:
2 for k = 0, k <= PNZ_merge_A_len[row]-1, k += 1:
3 CPC[row] += CPNZ_merge_A'''[row].__merged_val[k].

merged_val * CPB[CPNZ_merge_A'''[row].__col[k].col]

Listing 3.19: Algorithm specification after performing all transformations.

Finally the output code is generated using the C++ code generator. This
code generator will also invoke routines to translate the transformation I/O
graphs to tUPL code before converting those to C++ as described in Section 3.5.3.
For reference, the full C++ output code of this example is provided in Ap-
pendix E.
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Figure 3.9: Input transformation graph corresponding with Listing 3.19 after
performing all transformations.
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Figure 3.10: Final output transformation graph corresponding with List-
ing 3.19.
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Chapter 4

Tython

In order to be able to easily use tUPL code in projects we have developed
Tython, a front-end for libtupl. A key goal of Tython is to allow tUPL to be
used within any existing Python 3 project wherever necessary, such as in func-
tions demanding high performance, without burdening the user with a lot of
interfacing hassle between Python and the libtupl output.

We introduce additional keywords to specify tUPL functions using a Python-
like syntax. The Tython compiler can parse Tython code and compile the tUPL
code blocks. All standard Python statements are compiled just like they would
be if they were compiled with CPython directly. After compilation of Tython
code the resulting Python compiled program (.pyc) can be directly executed
using the standard CPython Python interpreter, or imported as a module in
other Python or Tython programs just like normal Python modules. This makes
Tython easily integrable in existing Python projects, as practically any Python
program is compilable with the Tython compiler and Tython its output is al-
ways compatible with CPython.

We distinguish two compilation modes: debug compilation and release compi-
lation. With debug compilation (Section 4.2) we compile all special Tython con-
structs to the output .pyc file directly, allowing end-users to test specifications
quickly. When using release compilation (Section 4.3) all Tython constructs will
be compiled to optimized C++ code using libtupl. This C++ code is then com-
piled to a Python C extension and invoked from the .pyc file automatically.

4.1 Syntax & parsing

In order to ensure high compatibility with Python, we have chosen to (auto-
matically) extend the existing Python grammar and abstract syntax tree with
the Tython constructs. Using CPython their own pgen tool, a parser can be
generated from this grammar [6]. Additionally, the CPython project also devel-
oped a script to convert Abstract-Type and Scheme-Definition Language (ASDL)
definitions to C header and source files that describe all AST nodes. Only
some additional C code is then necessary to convert the parse tree into the
AST for the newly introduced syntax. This yields us a highly robust Tython
parser and semantic analyzer based upon the existing Python parser and se-
mantic analyzer. Because we use the same tooling as the CPython project does
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to generate parsers, AST definitions and semantic analyzers, existing compila-
tion functions in the CPython project that parse text into Python ASTs can also
be used to parse text into Tython ASTs.

In Tython we can specify sparse matrix-vector multiplication using, for
example, the code in Listing 4.1. In this code we define a Tython module
“MatVec” using the newly introduced tdef keyword. It consists of a tuplespace
(Reservoir) and three shared spaces (SharedSpace), defined on lines 2—5 us-
ing the ctxdef keyword. This keyword can be used to define shared spaces
and reservoirs for the entire specification. For example, Reservoir[{row:
int, col: int},] indicates the reservoir contains tuples of type {row: int
, col: int}, and SharedSpace[2, int] indicates the shared space has a
two-dimensional index and contains integers. Within this module we define
the “matvec” tUPL function on line 17, which operates on these spaces. Ad-
ditionally, “load” and “unload” functions have been defined on lines 7 and 14
respectively. These functions are only symbolically analyzed and used to ini-
tialize the I/O state (in the case of release compilation this initializes the I/O
transformation graphs, as described in Section 4.3, allowing libtupl to trans-
form the I/O transformation graphs as it applies transformations). On line 9
we initialize shared space A from the input stream Values. For each tuple v in
Values a value is inserted into A with index (v.row, v.col) and value v.val.
Initialization of the other structures is similar. On line 15 we define how a data
structure should be unloaded. Here, for each key-value pair k, v in C a tuple
(k[0], v) is sent to the output stream CVals.

1 tdef MatVec:
2 ctxdef NZ: Reservoir[{row: int, col: int},]
3 ctxdef A: SharedSpace[2, int]
4 ctxdef B: SharedSpace[1, int]
5 ctxdef C: SharedSpace[1, int]
6
7 def load(Values: InStream[{row: int, col: int, val:

int},],
8 BVals: InStream[{i: int, val: int},]):
9 BindSharedSpace(A, Values, lambda v: (v.row, v.

col), lambda v: v.val)
10 BindSharedSpace(B, BVals, lambda v: (v.i,),

lambda v: v.val)
11 BindReservoir(NZ, Values, lambda v: (v.row, v.col

))
12 BindSharedSpace(C, BVals, lambda v: (v.i,),

lambda v: 0)
13
14 def unload(CVals: OutStream[{i: int, v: int},]):
15 BindSharedSpaceOut(CVals, C, lambda k, v: (k._0,

v))
16
17 def matvec():
18 forelem t in NZ:
19 C[t.row] += C[t.row] + A[t.row, t.col] * B[t.

33



col]

Listing 4.1: Sparse matrix-vector multiplication in Tython.

In order to actually invoke this tUPL code we can use standard Python code
as shown in Listing 4.2. Whenever loading data, any Python iterable can be
used as input, like a list (and is compatible with an InStream in Listing 4.1).
Any container to which a tuple key can be assigned, like a dict, can be used
to unload results into (such objects are compatible with an OutStream in List-
ing 4.1).

1 # like instantiating an instance of a class
2 matvec = MatVec()
3 # load data into the spaces
4 matvec.load(
5 [(0, 0, 1), (5, 2, 4), (1, 3, 12.4)],
6 [5, 6, 7, 8, 9, 10]
7 )
8 # run the algorithm
9 matvec.matvec()

10 # unload data to Python data structures
11 C = {}
12 matvec.unload(C)
13 print(C)

Listing 4.2: Invoking the sparse matrix-vector multiplication in Tython.

In Python, the ast module allows easy inspection and manipulation of the
AST of Python code within Python scripts [18]. Similarly to this, we have cre-
ated a new Python module tast that allows this for Tython code. Additionally,
some utility routines to parse a string to such a Tython AST are included in
this tast module. The Tython compiler will convert the Tython AST code to
a standard Python AST by iterating through all Tython AST nodes using this
tast module and creating equivalent Python AST nodes using the ast module
(which is built into Python). For Tython-specific syntax (tdef blocks), a spe-
cial compilation process takes over and replaces these Tython AST nodes with
Python AST nodes. This process is described in more detail in the next two
sections as this process differs between Tython its debug and release mode.

4.2 Debug compilation

The debug compilation mode transpiles all Tython specific syntax into equiva-
lent Python code performing the same algorithm. We do not apply any special
code transformations on this. Generally this leads to sub-optimal code, but it
is useful to quickly test whether or not the specification works. This transpi-
lation is fully implemented in Python, which generates a Python AST for the
algorithm specification that is finally compiled to a .pyc file. It thus has no
dependency on libtupl.

Each tdef is converted to a Python class, in which each Reservoir is rep-
resented as a Python set and each SharedSpace as a Python dict (indexed by
tuples of integers). Python equivalents of the load and unload definitions can
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be defined. In the case of debug compilation, BindSharedSpace(A, Values
, lambda v: (v.row, v.col), lambda v: v.val) will insert, for each tu-
ple t in Values, value (lambda v: v.val)(t) at key (lambda v: (v.row,
v.col))(t) in dict A. BindSharedSpaceOut(CVals, C, lambda k, v: (k
._0, v)) will, for each key k and value v in dict C, insert the key and value (
lambda k, v: (k._0, v))(k, v) into the CVals Python structure (typically
a dict).

Now the algorithm can be transpiled. The algorithm in Listing 4.1 will be
transpiled into a Python AST equivalent to the Python code shown in List-
ing 4.3. The forelem loop is simply converted into a for-loop and the sub-
scripts into the dicts are now explicit Python tuples.

1 class MatVec:
2 . . .
3 def matvec(self):
4 for t in self.NZ:
5 self.C[(t.row,)] = self.C[(t.row,)] + self.A

[(t.row, t.col)] * self.B[(t.col,)]

Listing 4.3: Transpiled sparse matrix-vector multiplication.

whilelem loops will pseudo-randomly select tuples to execute from the tu-
plespace until no more tuples are enabled, then terminate. For example, the
sorting specification in Listing 4.4 will compile to something roughly equiva-
lent to the Python code in Listing 4.5.

1 tdef Sort:
2 . . .
3 def sort():
4 whilelem adj in ADJS:
5 if A[adj.left] > A[adj.right]:
6 tmp = A[adj.left]
7 A[adj.left] = A[adj.right]
8 A[adj.right] = tmp

Listing 4.4: Stable sorting in tUPL.

1 class Sort:
2 . . .
3 def sort(self):
4 __all_tuples = set(itertools.product(self.ADJ,

range(1)))
5 __enabled = set(__all_tuples)
6 while __enabled:
7 adj, __exec_seq_idx = random.sample(__enabled

, 1)[0]
8 __enabled.remove((adj, __exec_seq_idx))
9 if __exec_seq_idx == 0 and self.A[adj.left] >

self.A[adj.right]:
10 tmp = self.A[adj.left]
11 self.A[adj.left] = self.A[adj.right]
12 self.A[adj.right] = tmp
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13 __enabled = set(_all_tuples)

Listing 4.5: Transpiled sort.

Note how the whilelem loop has been transpiled to a while-loop that keeps
iterating a random tuple as long as the __enabled set of tuples and sequential
code block pairs is nonempty. Whenever any tuple is selected it is removed
from the enabled set. However, whenever any tuple successfully executes the
__enabled set is reset back to __all_tuples, causing all previous disabled
tuples to be attempted again.

The debug compiled whilelem loop does not check if the program ends
up in a state to which it is always possible to return. The program should ter-
minate in such a state, but when using debug compilation such specifications
may never terminate.

4.3 Release compilation

Tython libtupl

.tpy

Tython AST

Python AST

.pyc

tUPL AST + I/O graphs

C++ library

CPython module (.dll/.so)

parse
(via tast.compile)

rewrite each tdef. . .
(via tast iterator + ast)

. . . into a Import AST node

initialize tUPL AST + I/O graphs

(via b
rid

ge)

generate
(via C++ code generator)

compile
(via marshall)

linked/loaded into
(plus Python bindings etc.)

imported into

optimize

Figure 4.1: Data flow during the release compilation.

Whenever we compile using release mode we use libtupl to perform opti-
mizations on the specified tUPL code. Figure 4.1 illustrates how data flows
between each subsystem while the remainder of this section describes this
process in more detail textually. As the Tython parser and utilities are imple-
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mented in Python to allow rapid development, Python bindings are necessary
for libtupl to allow Tython to interface with libtupl. This bridge exposes vari-
ous libtupl classes to Python using Boost.Python [4]. It includes, for example,
functions to define static types and symbols, functions to create AST nodes for
tUPL code and functions to create I/O transformation graph nodes to allow
constructing I/O transformation graphs from Python. The bridge also enables
the various optimization transformations to be performed on the tUPL code
and I/O graphs. Additionally, it exposes code generators, allowing it to dump,
for example, C++ output. Some utilities are also exposed to, for example, de-
termine the static result type of a tUPL AST expression.

For each tdef code block a separate tUPL compilation is performed (each
tdef is a single CompilationInstance in Figure 2.1). First, the compiler will
initialize the root node of the transformation tree, starting by copying the defi-
nitions of the shared spaces and tuplespaces that are defined through ctxdef
to this node.

The load and unload function signatures are then analyzed statically. Each
parameter of the load and unload functions, which must all be of type InStream
and OutStream respectively in Tython, are converted to “DataStreamReader”

and “DataStreamWriter” I/O node respectively. Tython constructs a generator
for each “DataStreamReader” that iterates the values of any Python data struc-
ture and converts each value to a C++ struct which the generator will then
yield1. For each “DataStreamWriter” Tython will generate a callback function
that inserts each output tuple into a Python data structure.

Once these reader and writer I/O nodes have been initialized, tUPL will
analyze the contents of the load/unload functions. Invocations to “Bind...”
functions are then converted to I/O nodes. For example, BindSharedSpace(A
, Values, lambda v: (v.row, v.col), lambda v: v.val) will create a
“Tuple to KeyValue” node linking to the “DataStreamReader” loading the data
of Values, with the two lambda-functions respectively specifying the key and
value of each element in the shared space. BindReservoir behaves similarly to
BindSharedSpace, just using a “Transform Tuple” I/O node. ConstantInit
(C, 0, (1000,)) will lead to the initialization of a “ConstantStream” (root)
I/O node, which will stream key-value pairs for which the value is always
0. Tuples are produced for each of the one-dimensional keys ⟨k⟩ where 0 ≤
k < 1000. This “ConstantStream” node is then tagged with the shared space
symbol expression C. BindSharedSpaceOut(CVals, C, lambda k, v: (k.
_0, v)) is practically the reverse of BindSharedSpace. It takes the key-value
data from C, converts it to a singular tuple using a “KeyValue to Tuple” I/O
node (which is tagged with the symbol expression C), then links its output to
the “DataStreamWriter” I/O node previously created for CVals. The load def-
inition from Listing 4.1 is converted to the input transformation graph in Fig-
ure 3.5. The output definition is converted to the output transformation graph
in Figure 3.6.

Finally, after initializing the I/O transformation graphs, the compiler will
translate the Tython algorithm definition to a tUPL AST. The Tython and tUPL
ASTs are quite similar, so this is a mostly straight-forward translation.

Now Tython will invoke the optimization routines on the fully initialized
root transformation tree node. Once a concretized algorithm has been gener-

1The C++ code generator will generate structs for each tUPL (named) tuple.
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ated Tython can invoke the C++ code generator to generate the optimized C++
implementation. Tython will add various additional C++ functions, such as
the generator and callback routines that the “DataStreamReader” and “DataS-
treamWriter” need. Additionally, Tython generates Python C extension mod-
ule specific code (such as a function bindings and other necessary runtime
code) to allow compiling all generated code to a shared object that can be im-
ported as a Python C extension module. This is then compiled using any C++
compiler, such as clang++ or g++.

Tython substitutes the tdef Tython AST node with a Python AST node that
imports this generated module to allow invoking the optimized tUPL algo-
rithm straight from Python. Once the compilation is completed the Tython
AST is thus converted to a Python AST, which has been marshalled into a .pyc
file. Additionally, for each tdef block Tython has generated and compiled a
Python C extension that contains the optimized tUPL code, which is imported
from the .pyc file.
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Chapter 5

libtupl extensions

In order to support the experiments in Section 6, the set of transformations
available in libtupl is extended by a number of additional experimental trans-
formations. First we consider a simple algorithmic transformation that allows
constructing hybrid algorithms, then a transformation to (safely) trivially paral-
lelize the execution of loops, after that we take a look at a few adjustments to
the I/O transformation trees to allow for runtime I/O and finally we take a
look at dimensionality reduction.

The examples in this section operate on the example specification in List-
ing 5.1, in which sparse matrix-dense matrix multiplication (SpMM) is specified,
with VECCOUNT being the number of columns in the dense matrix.

1 forelem i in [0, VECCOUNT-1]:
2 forelem nz in NZ:
3 C[i, nz.row] += A[nz.row, nz.col] * B[i, nz.col]

Listing 5.1: SpMM specification in tUPL.

We also use these transformations to derive CSR and Diagonal-CSR hybrid
data structures from the SpMM specification in Sections 5.5 and 5.6 respec-
tively.

5.1 Hybrid algorithms

It is possible to duplicate forelem loops and execute them separately in se-
quence while ensuring that each of the forelem loops iterate a different part of
the tuplespace through forelem loop conditions. This can, for example, trans-
form Listing 5.2 into Listing 5.3. Note that the tuples iterated in both forelem
loops do not overlap, all tuples are still iterated only once.

1 forelem t in X:
2 . . .

Listing 5.2: Scenario in which we can construct a hybrid algorithm.

1 forelem t in X where t.field0 == 0:
2 . . .
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3
4 forelem t in X where t.field0 != 0:
5 . . .

Listing 5.3: Possible resulting code after constructing a hybrid algorithm.

The advantage of constructing hybrid algorithms is that certain scenarios
can get more specialized implementations. For Listing 5.1 a possible hybrid
variant could be as shown in Listing 5.4.

1 forelem i in [0, VECCOUNT-1]:
2 forelem nz in NZ where nz.row == nz.col:
3 C[i, nz.row] += A[nz.row, nz.col] * B[i, nz.col]
4
5 forelem nz in NZ where nz.row != nz.col:
6 C[i, nz.row] += A[nz.row, nz.col] * B[i, nz.col]

Listing 5.4: Hybrid SpMM specification in tUPL.

Note how in the first forelem loop we iterate all nonzeros on the main di-
agonal. If a matrix has many tuples on the main diagonal, this hybrid variant
could be useful. With some additional transformations (such as the algorith-
mic transformation letting us iterate the upper loop row-by-row and localizing
A into the tuplereservoir) the upper forelem loop can be transformed to the
specification shown in Listing 5.5. Note how NZ is practically being split into
two separate parts during this process (NZ and PNZ_merged_A'), indirectly per-
forming reservoir splitting [7].

1 forelem i in [0, VECCOUNT-1]:
2 forelem row in [0, max(NZ.row)]:
3 C[i, nz.row] += PNZ_merged_A'[row].merged_val * B[i,

nz.col]
4
5 forelem nz in NZ where nz.row != nz.col:
6 C[i, nz.row] += A[nz.row, nz.col] * B[i, nz.col]

Listing 5.5: Hybrid SpMM specification in tUPL after additional
transformations.

As shown in Listing 5.5, we will in the end iterate the diagonal matrix val-
ues in a dense fashion, which often is much faster if the diagonal consists of
primarily nonzeros. Note how we can transform the upper and lower forelem
loop separately from one another: we may have localized A into PNZ in the

upper forelem loop (and constructed an extended tuplespace), the bottom
forelem loop still uses the original tuplespace without having the values of
A merged into it.

5.2 Trivially parallelizing execution of loops

Although forelem loops are parallel by definition, in many cases special care
must be taken by the compiler to ensure that the loop body is always executed
atomically, such as when data dependencies exist across loop iterations. The
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compiler can, for example, apply synchronization techniques to ensure this.
However, certain loops may be able to be trivially parallelized, like when the
execution of any iteration of some loop only has read-read data dependencies
with other loop iterations. In Listing 5.6 we are about to concretize the specifica-
tion. It is easy to see that we can execute the outer loop in parallel without the
need of additional synchronization techniques because writes to PC directly de-
pend on the loop iterator i. In the end, loop blocking can be applied to divide
the iterations among multiple processors [7].

1 @ p a r a l l e l i z e

2 forelem i in [0, VECCOUNT-1]:
3 forelem k in PNZ_len[]:
4 PC[i, PNZ'[k].row] += PA[PNZ'[k].row, PNZ'[k].col] *

PB[i, PNZ'[k].col]

Listing 5.6: Trivially parallelizable SpMM specification in tUPL.

5.3 Runtime I/O

Runtime I/O allows loading and unloading data while the algorithm is being
executed. One way to achieve this is by exposing a chunk of (externally allo-
cated) memory to tUPL. tUPL can then directly access the data from this chunk
of memory and read or write to it. In the case where this chunk of memory is,
for example, a memory mapped file, this can lead to runtime I/O from persistent
storage.

To enable accessing such external chunks of memory we can introduce a
“View” I/O node. Figure 5.1 visualizes how such a node can be used. The
transformation graph is transformed as usual by all transformation passes.

When compiling a “View” node we do not actually iterate through all data
in the load/unload routine, but instead just attach some external chunk of
memory (pointer, i.e. M in Figure 5.1) to each subscriptable whose data is
sourced from this “View” node. Each access to the subscriptable is transformed
depending on the nodes on the path between the “View” node and the “Write
Value” node and will then directly access the memory behind it.

For example, a read B[x]will be compiled to (double)(*(M + x * sizeof
(double))) + 1.0 in C++, where M is some external (untyped) memory pointer.
Note that the “Transform KeyValue” node will cause + 1.0 to be executed for
each read access to shared space B1. No data structure will be generated for
shared space B anymore, all accesses directly access the external memory.

In the case of SpMM this is mostly applicable to the large dense data con-
tainers B and C. The “Transform KeyValue” node can transform the key to, for
example, [k[0] % N, k[0] � N], to transform the 1D (memory) index k to a 2D
(shared space) index. Note that a [k[0] % N, k[0] � N] key transformation im-
plies that the dense matrix data is stored column-major, and [k[0] � N, k[0] % N]
implies that it is stored row-major. This key transformation is reversed for each
access to the subscriptable: B[x, y] will be compiled to (double)(*(M + (
x + y * N) * sizeof(double))) + 1.0 in C++ (for the column-major key

1This can cause complications if B is also writable. We assume B is read-only here.
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View
key: [a], value: ∗(M + a ∗ sizeo f (double))

Transform KeyValue
k, v

key: k, value: v + 1.0

[1D], double

Jag
k, v

key: k[1 :], value: v

[1D], double

CPB[_]

B, PB, CPB

Write Value
assert(k == []), v

[0D], double

Figure 5.1: Simple input transformation graph utilizing a “View” node.

transformation). Runtime I/O prevents us from having to perform a lot of ex-
pensive copying to large generated data structures for B and C: we can just
directly read and write to the external memory.

Note that not all key transformations can be reversed. For example, trans-
forming the key k to [k[0] � 2] cannot be reversed as λk : k � 2 is not injective:
we cannot recover the original k after the [k[0] � 2] transformation.

5.4 Dimensionality reduction

Using the dimensionality reduction transformation we can convert two-dimensional
structures accessed through a double loop into a one-dimensional structure [11].
This is best illustrated through an example. Figure 5.7 lists a specification on
which dimensionality reduction can be effective. Note how the inner loop it-
erates tuples in PNZ' while the first subscriptable index remains locked to row.
In other words, we just iterate a single dimension of the subscriptable using the
inner loop.

1 forelem i in [0, VECCOUNT-1]:
2 forelem row in [0, max(PNZ.row)]:
3 forelem k in PNZ_len[row]:
4 PC[i, row] += PNZ'[row, k].val * PB[i, PNZ'[row, k

].col]

Listing 5.7: SpMM specification in tUPL after algorithmic optimization on
which dimensionality reduction can be effective.
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Rather than storing the tuples in a two-dimensional structure as in List-
ing 5.7, we can decide to place the values in each dimension one after another
in a one-dimensional structure (without padding tuples). This is illustrated in
Listing 5.8. A new one-dimensional subscriptable PNZ''_ptr then indicates
where the data begins and ends in the one-dimensional PNZ'' for each row.

1 forelem i in [0, VECCOUNT-1]:
2 forelem row in [0, max(PNZ.row)]:
3 forelem k in [PNZ''_ptr[row], PNZ''_ptr[row+1] - 1]:
4 PC[i, row] += PNZ''[k].val * PB[i, PNZ''[k].col]

Listing 5.8: SpMM specification in tUPL after performing dimensionality
reduction.

5.5 Deriving a CSR implementation

The specification in Listing 5.1 can be transformed to an implementation using
a CSR data structure [3] for the sparse matrix. We do not modify the PC and PB
dense matrix data structures.

This data structure can be constructed by performing algorithmic optimiza-
tion such that the tuples are iterated row-by-row, then the EncapsulationPass,
AggregateReservoirPass, LocalizationPass, QueryForwardSubstitutionPass, Reser-
voirMaterializationPass, NStarMaterializationPass, SharedSpaceMaterialization-
Pass, HorizontalIterationSpaceReduction, Dimensionality reduction, Delocal-
izationPass and the ConcretizationPass. Loops are trivially parallelized when
possible. Runtime I/O is performed as well for all data structures when possi-
ble (i.e. for the CPNZ_zipped_A'' array (containing the nonzero values) when
the input format is the COO format, and the dense matrices). Listing 5.9 illus-
trates the resulting algorithm roughly.

1 for i in [0, VECCOUNT-1]:
2 for row in [0, max_NZ_row-1]:
3 for k in [CPNZ_zipped_A_ptr''[row], CPNZ_zipped_A_ptr

''[row+1] - 1]:
4 CPC[i, row] += CPNZ_zipped_A''[k] * PB[i,

CPNZ_zipped_A''_deloc[k]]

Listing 5.9: SpMM implementation using a CSR data structure for the sparse
matrix in tUPL.

5.6 Deriving a Diagonal-CSR hybrid implementa-
tion

As an example of the generation of a hybrid algorithm, we can derive an im-
plementation which stores certain diagonal bands more efficiently. Nonzero
elements that do not fit in such a diagonal band are demoted to an entry in the
secondary CSR data structure.

This data structure can be constructed by first transforming the algorithm
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to a hybrid algorithm, as in Listing 5.4 (where we split only the center diagonal
band into a separate loop). Both loops can now be transformed independently
of one another. The CSR implementation is derived like previously for the
loop where nz.row != nz.col. It is here also decided that we only insert
tuples for which where nz.row != nz.col holds into the CSR data structure,
eliminating the need for the where nz.row != nz.col query.

The loop where nz.row == nz.col is transformed by first performing al-
gorithmic optimization such that the tuples are iterated row-by-row. Forward
substitution is performed inside of the loop, replacing all occurrences of nz.
colwith nz.row. Then, the EncapsulationPass, AggregateReservoirPass, Query-
ForwardSubstitutionPass, ReservoirMaterializationPass and NStarMaterializa-
tionPass are performed. Because only one tuple exists in each row, the NZ reser-
voir is materialized to a 1D Subscriptable. Finally, the SharedSpaceMaterial-
izationPass, HorizontalIterationSpaceReduction and ConcretizationPass (to a
dense array for the values) are performed.

Listing 5.10 illustrates a possible resulting algorithm. Note that various
minor transformations can still be applied, such as loop interchange, splitting
or merging. Additionally, multiple diagonals can be transformed to such a
dense array.

1 for i in [0, VECCOUNT-1]:
2 for row in [0, max_NZ_row-1]:
3 CPC[i, row] += CPNZ''[row] * CPB[i, row]
4
5 for row in [0, max_NZ_row-1]:
6 for k in [CPNZ_zipped_A_ptr''[row], CPNZ_zipped_A_ptr

''[row+1] - 1]:
7 CPC[i, row] += CPNZ_zipped_A''[k] * CPB[i,

CPNZ_zipped_A''_deloc[k]]

Listing 5.10: SpMM implementation using a Diagonal-CSR hybrid data
structure for the sparse matrix in tUPL.
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Chapter 6

Experiments

In order to show that solely using the transformations we have previously
defined implementations can automatically be derived that perform compet-
itively, we have conducted various experiments on four derived implementa-
tions. For these experiments we look at SpMM and compare a few of our de-
rived implementations with highly hand-optimized SpMM implementations.
Listing 5.1 shows a base SpMM implementation in tUPL.

6.1 Experimental configurations

We performed various experiments on the SpMM algorithm. Generally we do
not transform the B and C data structures from their storage formats and uti-
lize runtime I/O for these large dense matrices by memory mapping files con-
taining their data. We do vary column-major and row-major storage for these
two dense matrix data structures and different implementations are derived
for both variants. We do derive various different data structures for A, which
may lead to runtime I/O for this sparse matrix becoming unfeasible, forcing us
to convert the sparse matrix to the desired format in memory before starting
the algorithm itself. This format conversion is done at runtime. A is always
stored in a file in three disjoint arrays (row, column and value) of equal length.
Within these experiments we always order the elements by row, then column.
All three arrays are aligned to 32 bytes. Sometimes (part of) these arrays can
be used directly without any additional conversion, in which case runtime I/O
still is performed. For example, the value and column arrays need no conver-
sion when a CSR-like data structure is desired for A. Conversion routines are
not parallelized.

We primarily consider four of our implementations as enumerated in Ta-
ble 6.1: CSR (Derived CSR) and a Diagonal-CSR hybrid (Derived Hybrid) for
both row major and column major inputs, as described in Sections 5.5 and 5.6
respectively. Preliminary experiments have shown that resorting the sparse
matrix data for, for example, a CSC format is generally unfeasible and COO
formats are additionally not competitive as conversion to CSR is very cheap.
These derived implementations are compared with the Intel Math Kernel Li-
brary (MKL) their new Inspector-Executor sparse BLAS routines for CSR ma-
trices (MKL CSR) [9]. We similarly do not consider COO here. Due to current
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performance issues with MKL their CSC implementation we will not consider
input that is sorted by column, then row in our experiments1.

See also

Derived CSR (For column major dense matrices) Section 5.5
Derived CSR (For row major dense matrices) Section 5.5
Derived Hybrid (For column major dense matrices) Section 5.6
Derived Hybrid (For row major dense matrices) Section 5.6

Table 6.1: The four derived implementations.

For the Derived Hybrid variant it is generally desired to minimize the amount
of explicit zeros in the stored diagonal bands. If a diagonal band thus has few
nonzeros, we elect to just store them in the secondary CSR data structure in-
stead.

Clang 7 is used to compile the C++ code with -O3 -march=native
-ffast-math. We rely on clang to perform low-level optimizations such as
vectorization. The code generator could insert a limited number of compiler
hints such as restrict and assume_aligned, which we can mechanically de-
rive from the property that subscriptables do not share memory and that sub-
scriptable data is always allocated at 32-byte boundaries. 64-bit doubles and
64-bit integers are used everywhere. We do not perform low-level (manual)
optimizations that require extra domain knowledge.

All experiments are have been executed on the DAS-5 cluster at Leiden Uni-
versity [2]. Each node consists of two Intel Xeon E5-2630 v3 CPUs at 3.2 GHz.
Each processor has 8 cores. While we will consider multi-processor computa-
tion (via NUMA), we do not consider simultaneous multithreading or multi-
node computation. All matrix data is read from and written to a separate file
server, which is connected to the compute nodes via a FDR InfiniBand inter-
connect. MKL version 2019.0.117 is used.

In the result figures each bar shows the mean runtime of the algorithm in
a certain scenario. Each bar also is split into three parts with different shades.
The bottom (lightest) part shows the initialization time. This consists of opening
input files, creating and opening a new properly-sized output file2 (or allocat-
ing memory in the heap and initializing the input array), memory mapping the
files and converting the sparse matrix data to the desired format. The middle
part of each bar shows the actual SpMM runtime. The top (darkest) part shows
the cleanup time, which includes closing files and freeing allocated memory.
Note that error bars are also drawn for each bar, but these are sometimes too
small to be visible.

1The CSC sparse matrix-dense matrix multiplication routine in MKL is more than a magnitude
slower than a naive CSC implementation. Additionally, as of this writing MKL only supports
column major dense matrices in this configuration.

2This implicitly results in a zero-initialization of the output, but the implementations still do
not assume any initialization for the output data.
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(a) Mallya/lhr34c (b) Fluorem/HV15R (c)
SNAP/sx-stackoverflow

(d)
Bourchtein/atmosmodl

(e) Rajat/rajat30

Figure 6.1: The five sparse matrices used for the overview experiments.

Width/height Nonzeros Kind

Mallya/lhr34c 35 152 764 014 Chemical Process Simulation Problem
Fluorem/HV15R 2 017 169 283 073 458 Computational Fluid Dynamics Problem
SNAP/sx-stackoverflow 2 601 977 36 233 450 Directed Temporal Multigraph
Bourchtein/atmosmodl 1 489 752 10 319 760 Computational Fluid Dynamics Problem
Rajat/rajat30 643 994 6 175 244 Circuit Simulation Problem
Kim/kim2 456 976 11 330 020 2D/3D Problem
Schenk_IBMSDS/matrix_9 103 430 1 205 518 Semiconductor Device Problem
Muite/Chebyshev4 68 121 5 377 761 Structural Problem
Simon/raefsky3 21 200 1 488 768 Computational Fluid Dynamics Problem
Bourchtein/atmosmodl-2 2 979 504 41 279 040 (Derived)
Bourchtein/atmosmodl-3 4 469 256 92 877 840 (Derived)

Table 6.2: Properties of all tested sparse matrices.

6.2 Overview experiments

We first consider five matrices with different sparse structures and compare
the performance of a variety of implementations on these matrices. The test
sparse matrices are all sourced from The University of Florida sparse matrix collec-
tion [5]. These first five matrices used are shown in Figure 6.1. Some additional
properties of these matrices are shown in Table 6.2. Sparse matrix values are
always converted to doubles. If a matrix its values are complex numbers, the
imaginary part is discarded in a preprocessing step.

All SpMM implementations are executed in a few different scenarios. We
first vary the number of columns in the dense matrices. Additionally, we also
vary the CPU configuration the threads are run on, considering 2, 4 and 8
threads, but also 4 + 4 and 8 + 8 threads in a NUMA configuration (i.e. in the
case of 8 + 8 we run 8 threads on both NUMA nodes/processors). The input
dense matrix consists of random doubles in the interval [0, 500). We also test
the scenario where the dense matrices are memory mapped separately from the
scenario where dense matrices are fully in-memory (and initialized in-memory
to a constant value too, in parallel). Sparse matrices are always loaded from
memory mapped files, but they are generally much smaller in size than the
dense matrices. We run each experiment at least 12 times and discard the first
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two runs to reduce variety.
For the NUMA cases we use the local memory allocation policy. Due to the

parallel initialization of the input dense matrix this will result in the first half
of the data being on NUMA node 0 and the second half on NUMA node 1. The
output data is not initialized, so the algorithms will determine the actual mem-
ory binding runtime instead (allocations are based on which thread triggers
the allocation through a page fault). If the input and output dense matrices
are memory mapped instead of heap-allocated the exact allocation behavior
depends on the OS kernel instead. Preliminary experiments have shown that
duplicating the shared sparse matrix data structures such that both NUMA
nodes have a local copy does not improve performance significantly.

It is generally expected for the sparse matrices with obvious diagonals to
have improved performance when using the Derived Hybrid algorithm com-
pared to the Derived CSR implementation. We expect the Derived CSR im-
plementation to perform slightly worse than the hand-optimized MKL CSR
implementation.

Results Let us first look at the performance of sx-stackoverflow. Figure 6.2
shows the timings of the tested algorithms in various scenarios. Interestingly,
the Derived CSR implementation generally outperforms MKL CSR in the col-
umn major scenarios. This could be due to the highly irregular structure of the
sparse matrix: some rows are extremely dense and others are very spare, with-
out obvious grouping. The MKL CSR may not be optimized to handle such
matrices well. Interestingly, the MKL CSR performance worsens severely in
the NUMA scenarios too, for this matrix. In the 256 columns, 8 + 8 scenario
Derived CSR even is nearly three times as fast as MKL CSR. When consider-
ing memory-mapped dense matrices, though, these significant gains start to
fade, as shown in Figure 6.3. There likely is a major I/O bottleneck in this case.
For the row major cases the differences are much smaller and MKL CSR tends
to slightly outperform Derived CSR in most cases, being between 0.0 and 0.7
times faster.

The atmosmodl matrix contains more dense diagonal bands (unlike sx-
stackoverflow), so we also test the Derived Hybrid implementation in this case.
Figure 6.4 shows the results without memory-mapped dense matrices. Clearly,
for the column major scenarios, the hybrid implementation significantly out-
performs the Derived CSR implementation, for example being 31% faster in
the 512 columns, 2 threads configuration. The Derived Hybrid implementa-
tion also comes close or even beats the MKL CSR implementation while the
Derived CSR implementation does not. For example, in the 512 columns, 8 + 8
threads scenario, it has a total running time of about 75% MKL its running time.
Note that this is again in a NUMA scenario. However, in scenarios with few
columns, the Derived Hybrid implementation may have a too high initializa-
tion time for the hybrid implementation to be worth it: converting the initial
COO format to Derived CSC or the MKL CSC format is measurably faster than
converting it to the Derived Hybrid format. This is, for example, visible in the
32 columns, 8 threads scenario, where the light shaded bottom section (initial-
ization time) is where the majority of the total running time is spent.

For the row major scenarios the Derived Hybrid format is slightly slower.
Derived CSR is on par with MKL CSR, though, in the worst case being up
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Figure 6.2: Performance on the sx-stackoverflow matrix where the dense matri-
ces are not memory mapped.
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Figure 6.4: Performance on the atmosmodl matrix where the dense matrices
are not memory mapped.

to 5% slower. Alternate hybrid data structures may be beneficial to try here
instead due to the different iteration order, such as one where the 2D array
containing the diagonal data is transposed. Just like with the sx-stackoverflow
matrix, memory mapping the matrices will reduce the performance differences
between the scenarios significantly, as shown in Figure 6.5. This is a common
pattern among all tested matrices, although usually less extreme than for this
matrix as most other matrices have more nonzeros per row, reducing the I/O
time – CPU time ratio.

The lhr34c matrix has somewhat expected results: MKL CSR generally out-
performs Derived CSR. The hybrid implementation does not apply here as
there are no diagonal bands.

With the rajat30 matrix there are three diagonal bands, but only about 20%
of the values fall in these bands. Additionally, these bands are not very dense.
As shown in Figure 6.6, the Derived CSR implementation sometimes even
outperforms the Derived Hybrid implementation, most likely because of this.
In some NUMA scenarios, such as the 1024 columns, 8 + 8 threads scenario
with column major dense matrices, Derived CSR does outperform MKL CSR.
These significant differences disappear when the dense matrices are memory
mapped, as shown in Figure 6.7. Note how the cleanup time is significantly
higher for the Derived Hybrid variant in Figure 6.7. This is most likely because
the Derived Hybrid implementation does two passes over the dense matrix
data for the diagonal and remaining CSR data, naturally worsening the perfor-
mance of it, as output dense matrix pages written back during the diagonal
data pass will have to be written back again once the CSR pass modifies it dur-
ing the second pass. This results in more pages that have to be written back
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Figure 6.5: Performance on the atmosmodl matrix where the dense matrices
are also memory mapped.

during the cleanup phase rather than during the algorithm its own runtime.
This is, for example, clearly visible in the 1024 columns, 8 or 4 threads scenar-
ios with column major dense matrices. Additionally, because not a lot of data
is in the diagonal data array, a lot of time is spent waiting on the input matrix
data to be loaded during the first pass: most operations on each dense matrix
element occur in the second pass instead (the CSR pass), during which all data
has already been loaded. MKL CSR and Derived CSR are mostly on par here,
though.

Performance for the HV15R matrix is similarly to the rajat30 matrix, with
only about 11% of the nonzeros being in a diagonal band, although when the
dense matrices are memory mapped a significant performance improvement
can be seen through the Derived Hybrid variant in the column major cases
compared to Derived CSR, as shown in Figure 6.8, for example being twice as
fast in the 512 columns, 4 threads scenario. MKL CSR still outperforms Derived
Hybrid here, though, taking only 60% the amount of time Derived Hybrid does.
The row major cases have low performance variance, but Derived CSR outper-
forms MKL CSR in the majority of the cases, for example being 14% faster in
the 512 columns, 2 threads scenario. This matrix is a very large matrix with
many nonzeros per row, but many nonzeros are not located in dense diagonal
bands. Unlike rajat30, the HV15R matrix has 17 diagonal bands. As a result,
the first Derived Hybrid pass is not as I/O bottlenecked as this first pass is for
the rajat30 matrix.
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Figure 6.6: Performance on the rajat30 matrix where the dense matrices are not
memory mapped.
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Figure 6.7: Performance on the rajat30 matrix where the dense matrices are also
memory mapped.
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Figure 6.8: Performance on the HV15R matrix where the dense matrices are
also memory mapped.

6.3 Diagonal experiments

The Derived Hybrid variant, as expected, has a positive influence on perfor-
mance compared to Derived CSR if many nonzeros are in (dense) diagonals of
the sparse matrix. In this followup experiment we study these cases in more de-
tail. Figure 6.9 displays the matrices used in these experiments. Table 6.2 also
lists some additional information about these matrices. We perform the same
experiments on the diagonal matrices as we did on the overview matrices.

Results We have previously already seen and analyzed the performance of
the atmosmodl matrix. The kim2 matrix performs very similarly to this matrix.
Like the atmosmodl matrix, the kim2 matrix has dense diagonal bands and no

(a)
Bourchtein/atmosmodl

(b) Kim/kim2 (c)
Schenk_IBMSDS/matrix_9

(d) Muite/Chebyshev4 (e) Simon/raefsky3

Figure 6.9: The five sparse matrices used for the diagonal experiments.
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Figure 6.10: Performance on the Chebyshev4 matrix where the dense matrices
are not memory mapped.

additional nonzeros outside of a clear diagonal band. The kim2 matrix does
have 25 diagonal bands, though, whereas the atmosmodl matrix only has 7.

The Chebyshev4 matrix has obvious diagonal bands, but only close to 31%
of the nonzeros are located in these diagonal bands, all other elements are thus
located in the secondary CSR format when using the Derived Hybrid format.
As shown in Figure 6.10, the performance of the Derived Hybrid format does
not come as close to the MKL CSR performance compared to the performance
with the atmosmodl matrix in the column major scenarios with 16384 columns
(roughly 40%–50% times slower than MKL CSR), but the Derived Hybrid im-
plementation still significantly outperforms the Derived CSR implementation
in many scenarios, even with such a small amount of nonzeros being located
in diagonal bands, such as in the 16384 columns, 4 threads scenario, where it is
28% faster. Interestingly, with fewer columns, such as in the 4096 columns sce-
narios, Derived Hybrid often outperforms both Derived CSR and MKL CSR,
being twice as fast in the 8 + 8 and 8 threads scenarios. In the row major sce-
narios MKL CSR is in many scenarios much faster: up to two times as fast in
the 8 + 8 threads scenarios. This matrix also has various dense rows at the top
of the matrix: a triple-hybrid format may improve performance further for this
matrix.

The raefsky3 matrix performs somewhat similar to Chebyshev4, as shown in
Figure 6.11. For this matrix, more elements fit in the diagonal bands when us-
ing the Derived Hybrid format, close to 89%. However, most of these diagonal
bands are not dense, like with rajat30. Although there still is a measurable per-
formance improvement when using the Derived Hybrid implementation in the
column major scenarios compared to Derived CSR, it may also be more bene-
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Figure 6.11: Performance on the raefsky3 matrix where the dense matrices are
not memory mapped.

ficial to not store certain diagonal bands in the diagonal data array if many
explicit zeros are required and instead store them in the secondary CSR format.
MKL CSR tends to outperform the derived implementations significantly in
most scenarios, although the performance differences are much smaller in the
row major scenarios.

For the matrix_9 matrix the Derived Hybrid format generally performs worse
than the Derived CSR format as shown in Figure 6.12. Many diagonal bands
are not dense in this matrix when using the Derived Hybrid format, some only
consist of about 1

3 nonzeros, leading to a lot of explicit zeros, causing this re-
duced performance. Additionally, this matrix has a range of nonzeros in the
last few columns too, outside of any diagonal band.

6.4 Duplicated matrix experiments

Clearly the Derived Hybrid implementation can, in a range of scenarios, per-
form better than the Derived CSR implementation and in several cases even
better than MKL CSR. The Derived Hybrid implementation generally sees a
significant reduction in execution time over Derived CSR and MKL CSR when
a fair amount of nonzeros are in this diagonal data structure and when the
secondary CSR structure contains a low amount of explicit zeros.

Within this section we will look at effects of this balance on performance.
We look at the atmosmodl matrix, for which we previously used the 7 diago-
nal bands -39204, -198, -1, 0, 1, 198 and 39204. These bands were fairly densely
filled with nonzeros. We duplicate the atmosmodl matrix and derive atmosmodl-2
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Figure 6.12: Performance on the matrix_9 matrix where the dense matrices are
not memory mapped.

and atmosmodl-3. For atmosmodl-2 we perform a two-duplication, in which
every nonzero becomes four nonzeros in a square shape (with the same value),
as visualized in Figure 6.13. For atmosmodl-3 each nonzero becomes nine
nonzeros. Whenever performing a X-duplication, the matrix its width and
height thus get multiplied by X, while the total number of nonzeros gets mul-
tiplied by X2.

a b

c

a a

a a

b b

b b

c

c

c

c

Figure 6.13: A two-duplication of the matrix elements visualized.

These duplications of matrices will result in new, not as dense diagonal
bands appearing, next to the originally dense diagonal bands. For example, in
atmosmodl, the 39204 band is nearly completely dense. In atmosmodl-2 this
diagonal band is shifted over to 78408 and is still as dense. However, the two
diagonal bands next to it, at 78407 and 78409, will be half as dense. Table 6.2
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Figure 6.14: Performance on the atmosmodl-3 matrix where the dense matrices
are not memory mapped.

shows some properties of these derived matrices.

Results First, we will look at the results of atmosmodl-3. Figure 6.14 displays
the performance of the derived implementations on this matrix. We consider
three variants of the Derived Hybrid implementation: one which considers all
31 diagonals, one only considering the 21 densest diagonals and finally one con-
sidering the 11 very dense diagonals only. Variants with fewer diagonal bands
have nonzeros stored in the secondary CSR format. This allows us to analyze
the performance effect of including sparse diagonal bands in the dense diago-
nal storage format (introducing explicit zeros as a result). Note how, when we
use column major dense matrices, the Derived Hybrid format performs best
when we remove the boundary diagonal bands from the diagonal matrix, i.e.
reducing the amount of stored diagonal bands in the diagonal format from 31
to 21: these outer bands are only 1

3 full, only having between 0.6–0.8 times the
original runtime. For example, in the 256 columns, 8 + 8 threads scenario this
nearly matches MKL CSR performance. For such sparse bands it is thus bet-
ter to store the data in the secondary CSR format. Removing the second-outer
band as well, which here is about 2

3 full, usually leads to a slight reduction in
performance. For the row major dense matrix cases it is similar: considering
21 diagonals leads to the best performance in most cases, up to two times as
fast in for example the 16 columns, 8 + 8 threads scenario. Derived CSR and
MKL CSR outperform the Derived Hybrid variants here, though. Derived CSR
is 3 times as fast as Derived Hybrid in the 16 columns, 8 threads scenario, for
example.
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Figure 6.15: Performance on the atmosmodl-3 matrix where the dense matrices
are also memory mapped.

Figure 6.15 also considers memory mapped dense matrices. Interestingly,
for the row major variants with large dense matrices, the variant in which we
consider all 31 diagonal bands for the Diagonal Hybrid performs significantly
better compared to the other Diagonal Hybrid formats, possibly due to the
I/O overhead outweighing the relatively large number of wasted operations
on explicit zeros. The other implementations also have to perform a second
pass over the dense matrix data to process the secondary CSR data, which is
no longer bounded by input load times, as the first pass already caused all
data to be loaded into memory: for the implementations where secondary CSR
data is stored the termination time (upper bar) can be seen to be much higher.
Additionally, when the dense matrices are small, the conversion to the Derived
Hybrid format can cause a much larger overhead when all data is converted to
the diagonal storage format.

Figure 6.16 shows the results on the atmosmodl-2 matrix. From the column
major cases it becomes clear that including diagonals which are only 50% dense
reduces performance marginally in a few scenarios, such as in the 256 columns,
8 threads scenario. In many other scenarios they perform about even, like in the
256 columns, 2 threads scenario. Interestingly, in the row major cases consid-
ering just 9 diagonals is significantly slower than considering all 19 diagonals.
It is, for example, 32% slower in the 256 columns, 8 threads scenario. This is
in contrast with the performance on the atmosmodl-3 matrix, where consider-
ing just a subset of the diagonals performs better than considering all of the
diagonals. This may be because the outer diagonals are still 50% dense, unlike
on the atmosmodl-3 matrix where these bands are only 33% dense. Improved
caching may also have an effect, as only 19 elements are accessed each itera-
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Figure 6.16: Performance on the atmosmodl-2 matrix where the dense matrices
are not memory mapped.

tion instead of not 31. Considering 19 bands on the atmosmodl-2 matrix will
also often have three diagonal bands next to one another, whereas considering
31 bands on the atmosmodl-3 matrix will often have five diagonal bands next
to one another. This may lead to improved vectorization, as at most 4 packed
doubles can be multiplied at once on Intel Xeon E5-2630 v3 processors.

In general there are various scenarios in which the Derived Hybrid imple-
mentation outperforms Derived CSR, even though the Derived Hybrid imple-
mentation has a longer initialization time and needs to perform two passes
over the dense matrix data. In some cases that overhead can cause Derived
CSR to outperform Derived Hybrid, though. This can also happen when the
diagonals stored in Derived Hybrid are not very dense: about half of the el-
ements in a diagonal band should be nonzero for it to be worth considering
the Derived Hybrid implementation when the dense matrix data is in-memory.
When dense matrices are loaded from files additional nonzeros do not nega-
tively affect performance as much. In fact, avoiding the second CSR pass en-
tirely in such cases can improve performance. Generally, the Derived Hybrid
format is much less effective when the dense matrices are row major compared
to column major dense matrices.

The derived implementations in some cases outperform MKL CSR. There
is no clear pattern in which cases this occurs, but it is interesting to note that
MKL does not always perform well in especially NUMA scenarios. In many
cases the Derived Hybrid implementation comes closer to the MKL CSR per-
formance.
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Chapter 7

Conclusions

Within this section we conclude the project. Additionally some future work
will be suggested.

7.1 Summary

In this thesis we have described libtupl: a library to optimize tUPL programs.
It can perform data structure optimization by performing various simple trans-
formations, constructing a transformation tree in the process.

libtupl also keeps track of transformations that have to be done on the algo-
rithm its input and output to make it compatible with the automatically gener-
ated data structures, generating load and unload routines automatically. Two
ways have been explored to keep track of such data transformations: one in
which each transformation is described through a coroutine generator and one
in which we construct a higher-level I/O transformation tree.

We have seen that the coroutine generator approach has the disadvantage
that, for example, the input may be read multiple times unnecessarily. This
is because each generated data structure will try to fill the data of this data
structure completely on its own: if multiple data structures are based on the
same input, this leads to the input being read multiple times during the load
phase, once for each data structure. The coroutine generator approach does
have a lot of control over merging multiple input streams into one, though.

I/O transformation trees do not explicitly define how the tree is actually
converted to imperative code, but we generally convert them in a way such
that the input sources push data towards the generated data structures (the
coroutine generator approach always does this the other way around, pulling
data from input sources). This avoids problems where the input may be read
multiple times and has the additional advantage that I/O transformation trees
are much easier to transform further, yielding more optimized load and unload
routines.

Additionally, we have developed Tython, an extension of Python 3, to serve
as a front-end for libtupl. Tython code can contain tUPL code blocks in addi-
tion to standard Python code. These tUPL code blocks can be optimized by the
Tython compiler using libtupl. Tython outputs compiled Python files which
automatically invoke the optimized implementations, which can then be exe-
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cuted using the standard CPython interpreter or imported from any Python or
Tython script. Any Python project can thus easily integrate tUPL code using
Tython.

Finally, to illustrate the effectiveness of the data structures that are auto-
matically derived using the presented framework, we have performed various
experiments on derived SpMM implementations using an extended version of
tUPL: also considering parallelization and runtime I/O. We have seen that De-
rived Hybrid implementations (hybrids of CSR and compressed diagonal stor-
age) of sparse matrix-dense matrix multiplication from a simple input specifica-
tion can result in performance that, for various sparse matrix structures, signif-
icantly improves performance over the simpler Derived CSR implementations,
sometimes being twice as fast. Such Derived Hybrid implementations can also
be very competitive with state-of-the-art hand-optimized implementations, in
certain scenarios being about 50% faster than MKL CSR. These differences are
mostly noticeable with column major dense input matrices; with row major
dense input matrices Derived Hybrid implementations are generally slower
than Derived CSR and MKL CSR. Performance differences tends to be more
apparent in NUMA scenarios. Additionally, the Derived Hybrid format per-
forms best when the stored diagonal bands primarily consist of nonzeros: if
more than about half of the values in a band consists of zeros it is suggested to
store that band in the secondary CSR format instead.

7.2 Future work for the derivation of data structures

We have measured the performance of various SpMM implementations we
have derived in the experiments in Section 6. Some suggestions for future re-
search are enumerated in this section to potentially improve the performance
even further.

MKL CSR tends to perform worse in NUMA configurations. It could be in-
teresting to investigate if it is possible to automatically optimize the generated
implementations for NUMA configurations, as currently we re-use the same
implementation for each thread configuration. Optimized implementations for
other parameters, such as dense matrix column count, may be interesting to ex-
plore too. It might be beneficial to use a different iteration order when there
are very few dense matrix columns, for example.

Storing diagonals with few explicit zeros in a dense data structure can yield
improved performance. Some matrices have other dense structures, such as
dense rows, columns or blocks. It could be interesting to construct hybrid data
structures with such dense rows, columns or blocks too. For the Chebychev4
matrix a triple-hybrid may be interesting, for example: there are dense diago-
nals, dense rows and parts without a dense structure.

There are a wide range of small variations that can be applied on the cur-
rently derived implementations. Investigating the value of transformations
such as loop interchange, loop blocking or permuting dimensions of multidi-
mensional arrays in greater detail could help optimize performance further.

It would also be interesting to use the tUPL framework to derive implemen-
tations for other sparse matrix algorithms, such as triangular solve. Algorithms
like LU decomposition present additional challenges: the sparse structure be-
comes writable. Finding techniques to automatically minimize problems such
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as fill-in would be valuable to research.
Another interesting case could be to derive efficient indexing data struc-

tures to perform certain data queries quickly. For example, we could specify
a query that finds all distinct persons that are at least 30 years old that own a
boat that has a value of at least 500 using the tUPL code in Listing 7.1. This is
similar to the work done by Dr. K.F.D. Rietveld in [10], where he transformed
SQL queries into specifications for the forelem framework.

1 forelem boat in Boats where boat.value >= 500:
2 forelem person in Persons where person.age >= 30 and

boat.owner_id == person.id:
3 ExpensiveBoatOwners.add(person) # ExpensiveBoatOwners

is a tuplespace (set) too

Listing 7.1: Data query example in tUPL.

7.3 Future work for the transformation framework
& implementation

Tython and libtupl can be extended with a large amount of additional features
to improve the compiler. In this section a number of suggestions are enumer-
ated.

Tython and libtupl do not currently support fully automatic exploration:
the user has to input a number of transformations to be applied. The compiler
can be extended to support automatically iterating the possible implementa-
tions (in some sort of a guided way using heuristics), trying to automatically
find implementations that perform well on some test inputs. This can be taken
a step further by allowing generation of new optimized algorithms during the
runtime of an algorithm, similar to how JIT compilers work.

It could be considered to merge the ReservoirMaterializationPass and the
NStarMaterializationPass. Currently, in order to materialize a reservoir one
must always execute both of these passes and additional passes in-between
the two to later influence the NStarMaterializationPass are currently not pos-
sible. The NStarMaterializationPass practically finishes the partly-completed
materialization of the reservoir.

Currently the StructureJaggedSplittingPass does two things: split the struc-
ture (tuple) into multiple parts and convert the subscriptable in which these
structures are located to a subscriptable of subscriptables (of subscriptables. . . )
in which the split structures are located (i.e. a jagged subscriptable). Although
this is a highly useful transformation, it could be split into two independent
passes performing simpler operations instead, where one splits the structure
and the other cuts a subscriptable at a certain offset, transforming it into a
jagged subscriptable.

The I/O transformation graph is currently always compiled to a tUPL AST
top-down: I/O nodes do not have control of when they receive input data like
the coroutines have with the generator I/O approach. A hybrid of the two I/O
approaches could be valuable in some cases too. For example, a “Merge” node
could then try to partially consume data from the shared space input socket un-
til it finds the input that is to-be-merged. I/O nodes could then support to be

62



compiled like a generator (child node needs to be request this generator to pro-
duce data) or traditionally (outputs data/invokes children as data is pushed to
the node).

Whenever the boundaries of data structures are not known in advance a lot
of reallocations may be required as new data is loaded, like when concretizing
into a dense array. These reallocations can be very expensive. Additional input
passes could be generated to try to determine data structure index boundaries
before allocating these structures if they are not known beforehand, which can
be much cheaper than reallocating the data every time to accommodate for
larger sizes. If the input data is ordered in some way, data structure bound-
aries may be able to be determined much faster too. Note that more than one
additional pass may be required to avoid reallocations. For example, CPNZ
may be a (max(t.row) + 1)×max(CPNZ_len) dense array. Here the data struc-
ture CPNZ_len is a one-dimensional array with max(t.row) + 1 values. Using
an initial pass only max(t.row) can be determined without reallocations: only
then we know the dimensions of CPNZ_len. The second pass allows filling
CPNZ_len and computing max(CPNZ_len) as well without reallocations. A
third pass can then finally fill CPNZ without reallocations, now that the dimen-
sions of that two-dimensional dense array are known.

In Section 5.3 we looked at runtime I/O and coined the “View” node. This
concept can be extended to support random access iterators instead of just a
pointer to raw memory. Such a random access iterator can be indexed directly
to obtain a random value, just like accessing a random value in raw memory
using the “View” node, but it can also be iterated through sequentially, like an
InStream can. This allows a compilation flow where runtime I/O is consid-
ered, i.e. where each data structure access is directly mapped to this random
access iterator, but also still allows generating optimized data structures.

An alternative approach for runtime I/O is embedding the streaming op-
erations (i.e. iterating through InStream or emitting data to OutStream) right
into the algorithm itself, also eliminating the need for a generated concretized
data structure. This would also allow, for example, reading data from a file
without requiring a full random access iterator (or a pointer to raw memory)
during the algorithm itself.
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Appendix A

Transformation passes

Various passes have been implemented that affect the algorithm its code spec-
ification. This appendix contains a more detailed description of these imple-
mented passes.

A.1 EncapsulationPass

If we iterate through a tuplespace its possible field values, like “forelem row
in NZ.row”, the EncapsulationPass can try to substitute this with a range

iterator, like “forelem row in [0, max(NZ.row)]”. The advantage of such
a range iterator is that it can in the end be concretized to a plain for-loop and
we do not have to materialize the sequence of possible field values (i.e. NZ.row)
at all if we also apply the AggregateReservoirPass, which we will see later. This
is only allowed if the iterator value (i.e. row) is solely used in equals conditions
of loops over the same tuplespace (i.e. NZ) on the same field (i.e. nz.row ==
row) or inside of loop bodies of such loops. This can, for example, transform
the code in Listing A.1 into the code in Listing A.2.

1 forelem row in NZ.row:
2 forelem nz in NZ where nz.row == row:
3 C[row] += A[row, nz.col] * B[nz.col]

Listing A.1: Example scenario on which the EncapsulationPass can be applied.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[row] += A[row, nz.col] * B[nz.col]

Listing A.2: Resulting code after applying the EncapsulationPass.

In Listing A.3 the EncapsulationPass cannot be applied: transforming NZ.
row into [0, max(NZ.row)] could reset additional C[row] values to zero for
values of row that are not also in NZ.row. Loop splitting could be applied here,
splitting the reset off of the actual sparse matrix-vector multiplication, after
which the EncapsulationPass can be applied on the second loop.
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1 forelem row in NZ.row:
2 C[row] = 0
3 forelem nz in NZ where nz.row == row:
4 C[row] += A[row, nz.col] * B[nz.col]

Listing A.3: A situation in which the EncapsulationPass cannot be applied on
the outer loop.

A.2 AggregateReservoirPass

The AggregateReservoirPass can be used to transform aggregations of tuplespace
fields into a single scalar value. This can allow us to, for example, transform
the code in Listing A.4 into Listing A.5.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[row] += A[row, nz.col] * B[nz.col]

Listing A.4: Example scenario on which the AggregateReservoirPass can be
applied.

1 forelem row in [0, max_NZ_row]:
2 forelem nz in NZ where nz.row == row:
3 C[row] += A[row, nz.col] * B[nz.col]

Listing A.5: Resulting code after applying the AggregateReservoirPass.

The computation of the value of max_NZ_row is, as a result of applying this
pass, delegated to a value that is loaded in load routine, which we will look at
in Section C.2. Key advantage of this is that max(NZ.row) no longer has to be
computed before running the loop: this value can be computed while reading
the input. In other words, we do not have to iterate NZ.row another time just
to determine the maximum value if we just do it during the load routine.

A.3 LocalizationPass

The LocalizationPass can copy the values of a shared space into a new field
of all tuples in a tuplespace (i.e. localize the values in the shared space). This
typically eliminates the shared space completely and the values of the shared
space are then retrieved from tuple fields directly: the shared space is prac-
tically merged into the tuplespace. The only requirement is that this shared
space is solely indexed using tuple fields from tuples in the tuplespace into
which we are going to merge the shared space. For example, if A is accessed
through A[nz.row, nz.col] only, with nz being tuples from NZ, then we can
merge safely. If A[row, nz.col] were used to access the shared space, sub-
stituting A[row, nz.col] with a merged value would not necessarily be safe.
Additionally, we typically do not merge shared spaces into the tuplespace if
the shared space is writable to avoid complications.
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The LocalizationPass can be used to, for example, merge shared space A
into tuplespace NZ in Listing A.6. This will produce the code in Listing A.7. Tu-
plespace NZ now thus contains tuples ⟨row, col, merged_value⟩, where merged_value
= A[row, col] for each tuple. We call this [row, col] the query of the Lo-

calizationPass. In other words, for each tuple t in the tuplespace NZ we look up
the value in the shared space that is to-be-merged using the query. That value
thus is A[t.row, t.col] here.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += A[nz.row, nz.col] * B[nz.col]

Listing A.6: Example scenario on which the LocalizationPass can be applied.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += nz.merged_value * B[nz.col]

Listing A.7: Resulting code after applying the LocalizationPass.

Note that applying the LocalizationPass does not necessarily eliminate the
shared space entirely. For example, the specification in Listing A.8 accesses
shared space A in two locations, but with different address functions. We can,
in this example, only replace shared space accesses with the merged value in
the tuple if the address function output matches the merge query. After a
single application of the LocalizationPass with query [row, col], as shown
in Listing A.9 the tuple has been changed to ⟨row, col, merged_value⟩, where
merged_value contains merged_value = A[row, col].

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += A[nz.row, nz.col] + A[nz.col, nz.row]

Listing A.8: A scenario in which a single application of the LocalizationPass
does not eliminate the shared space.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += nz.merged_value + A[nz.col, nz.row]

Listing A.9: A single application of the LocalizationPass did not eliminate the
shared space.

Additionally applying the LocalizationPass a second time with query [col,
row] will merge the shared space access with the other address function into

the tuplespace, as shown in Listing A.10. The tuples will then get a second
merged value: merged_value_2 = A[col, row]. The shared space A now is
fully eliminated.
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1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += nz.merged_value + nz.merged_value_2

Listing A.10: Two applications of the LocalizationPass do eliminate the shared
space entirely.

A.4 QueryForwardSubstitutionPass

The QueryForwardSubstitutionPass tries to perform forward substitution based
on the query (i.e. condition) of a loop. For example, in Listing A.11, we have
the query where nz.row == row on tuplespace NZ. Clearly, nz.row can be
substituted with just row in the inner loop body, which leads to Listing A.12.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[nz.row] += A[nz.row, nz.col] + A[nz.col, nz.row]

Listing A.11: A scenario where applying the QueryForwardSubstitutionPass is
beneficial.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[row] += A[row, nz.col] + A[nz.col, row]

Listing A.12: The resulting code after applying the
QueryForwardSubstitutionPass.

Note that after performing the QueryForwardSubstitutionPass in this exam-
ple scenario we no longer read field row from any tuple in tuplespace NZ. Later
on in the data structure optimization process the HorizontalIterationSpaceRe-
ductionPass can be applied to reduce the amount of data we have to store in
the tuplespace. In Section A.8 we will look at this pass.

A.5 ReservoirMaterializationPass

The ReservoirMaterializationPass can transform a tuplespace into a materialized
tuplespace. In other words, we now assign storage indices to each tuple in the
tuplespace. We do not define an actual data structure in which the tuplespace
data is truly stored yet, though.

This entails creating a new subscriptable symbol in which the tuple data can
be looked up (virtually through the assigned storage indices). We will denote
such derived symbols by prefixing the name with a P. Their type is always a
Subscriptable. Looping structures and tuple accesses are then transformed
to use this subscriptable instead of the non-materialized tuplespace.

We will illustrate what this pass truly does using an example. Listing A.13
can be transformed into Listing A.14 using the ReservoirMaterializationPass,
materializing the NZ tuplespace. The subscriptable PNZ is created in which
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data can be looked up. The equals query from the original forelem loop (i.e.
NZ where nz.row == row) is here moved into first dimension of the PNZ sub-
scriptable. Additionally, the subscriptable gets an additional dimension in
which we pass the new iterator value k: an offset. Generally speaking the
amount of equal queries the loop has, plus one dimension for the offset value
k, will be the total number of index dimensions of the resulting subscriptable.
We also extend each tuple in the tuplespace with this new offset value k.

1 forelem row in [0, max(NZ.row)]:
2 forelem nz in NZ where nz.row == row:
3 C[row] += A[row, nz.col] * B[nz.col]

Listing A.13: Example scenario on which the ReservoirMaterializationPass can
be applied.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in N*:
3 C[row] += A[row, PNZ[row, k].col] * B[PNZ[row, k].col

]

Listing A.14: Resulting code after applying the ReservoirMaterializationPass.

If n tuples match the query NZ where nz.row == row, then each of those
n tuples has some (typically distinct) offset value k so that the tuple can be re-
trieved through PNZ[row, k]. The exact offset value k assigned to each tuple
depends on N*: a tuplespace that will iterate the offset values (potentially dif-
ferent offset values depending on the outer loop). How N* (and indirectly PNZ)
will look will be determined through the NStarMaterializationPass.

A.6 NStarMaterializationPass

The NStarMaterializationPass can be seen as a continuation of the Reservoir-
MaterializationPass. The ReservoirMaterializationPass produced a N* reser-
voir containing the offsets at which each tuple is stored. The NStarMaterializa-
tionPass materializes this reservoir and determines what this reservoir actually
looks like.

Materializing the N* reservoir from Listing A.14 could yield the code in
Listing A.15. Here we assign each tuple an offset value between 0 and PNZ_len
[row]-1 and the inner loop iterates a varying number of times depending on
row. PNZ_len[row] then contains an integer indicating the number of tuples
that originally matched the query where t.row == row for that row. This
technique of materializing the N* reservoir can always be applied. Note how
assigning the offset values of each tuple will define what PNZ will actually look
like, so PNZ also becomes PNZ' (they are practically the same in the code, but
we know more information about the PNZ' subscriptable).

70



1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 C[row] += A[row, PNZ'[row, k].col] * B[PNZ'[row, k].

col]

Listing A.15: Possible result code after applying the NStarMaterializationPass.

Alternatively, one could materialize the N* reservoir to the specification in
Listing A.16. This is only possible if either the same number of tuples match
the query where t.row == row for each row iterated (in the above example
for all values of row in the range [0, max(NZ.row)], because previously the
EncapsulationPass was applied), or if padding tuples could be inserted into the
materialized reservoir PNZ such that executing these padding tuples does not
change the outcome of the algorithm. This may require introducing new val-
ues into shared spaces as well to prevent changing the behavior of the algo-
rithm. For example, the tuple values ⟨row, max(NZ.col) + 1⟩ could be used as
padding. Iterating this tuple still matches the original query where t.row
== row, but no other tuple uses this col value. Do note that we now have to
introduce values at A[row, max(NZ.col)+1] and B[max(NZ.col)+1]. Stor-
ing 0 at these locations will ensure executing these padding tuples are a no-op,
so in this case it is possible to use this alternative N* materialization. Because
we also change the data in A and B, we create derived shared spaces A' and B'.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [min(PNZ_len), max(PNZ_len)]:
3 C[row] += A'[row, PNZ'[row, k].col] * B'[PNZ'[row, k

].col]

Listing A.16: Possible alternative result code after applying the
NStarMaterializationPass.

Generally a key advantage of the latter N* materialization is that the inner
loop iterator bounds no longer depend on the outer loop iterator row. This
allows us to, further down the line, perform a loop interchange. However,
detecting when this kind of N* materialization can be applied safely can be
very complicated.

A.7 SharedSpaceMaterializationPass

The SharedSpaceMaterializationPass can materialize a shared space. Similarly
to the ReservoirMaterializationPass we now generate a subscriptable symbol
for the shared space. The indices for this subscriptable symbol can directly be
derived from the address function used to access the shared space.

In the case of Listing A.17 we can apply the SharedSpaceMaterialization-
Pass three times to materialized all three shared spaces. This transforms the
specification into Listing A.18. Although this visually does not change much
because we use shorthand notations for shared space indexing, omitting the
explicit address function, the address function is now converted into code to
index the subscriptables directly: no address function exists anymore (i.e. the
type of A is a SharedSpace while that of PA is a Subscriptable).
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1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 C[row] += A[row, PNZ[row, k].col] * B[PNZ[row, k].col

]

Listing A.17: Example scenario on which the SharedSpaceMaterializationPass
can be applied.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[row] += PA[row, PNZ[row, k].col] * PB[PNZ[row, k].

col]

Listing A.18: Resulting code after applying the
SharedSpaceMaterializationPass.

A.8 HorizontalIterationSpaceReductionPass

If subscriptables contain tuples with tuple fields which are not accessed any-
where, the HorizontalIterationSpaceReductionPass can eliminate that field from
the tuples, reducing the width of each tuple. For example, in Listing A.19, PNZ
is the direct result of reservoir materialization and contains tuples ⟨row, col, k⟩.
We only read the field col from tuples in this subscriptable, so the Horizontal-
IterationSpaceReductionPass will create a new subscriptable PNZ' in which we
only store tuples with a single field: ⟨col⟩.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[row] += PA[row, PNZ[row, k].col] * PB[PNZ[row, k].

col]

Listing A.19: Example scenario on which the
HorizontalIterationSpaceReductionPass can be applied.

A.9 DelocalizationPass

The DelocalizationPass splits accesses to a subscriptable symbol containing tu-
ples off into a duplicate of that subscriptable symbol for a certain set of tuple
fields. For example, Listing A.20 can be transformed into Listing A.21 using a
DelocalizationPass, splitting accesses on tuple fields {col} off into PNZ_deloc.
Typically the HorizontalIterationSpaceReductionPass is executed afterwards to
try to reduce both subscriptables their containing tuples into smaller tuples to
not duplicate the tuple data.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 C[row] += PNZ[row, k].merged_value * B[PNZ[row, k].

col]
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Listing A.20: Example scenario on which the DelocalizationPass can be
applied.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 C[row] += PNZ[row, k].merged_value * B[PNZ_deloc[row,

k].col]

Listing A.21: Resulting code after applying the DelocalizationPass.

A.10 StructureJaggedSplittingPass

The StructureJaggedSplittingPass is similar to the DelocalizationPass, but has
more capabilities. It can transform expressions in the form of Subscriptable[
_, _, _].field into, for example, Subscriptable[_, _].fieldgroup[_].
field, where fieldgroup is an array of tuple types containing at least field,
but potentially additional tuple fields (i.e. a jagged structure). Aside from the
expression the pass is applied on, the offset at which we split the subscriptable
(in the previous example 2) and the previously described field groups are param-
eters of this pass. The offset must be between 0 and the number of dimensions
of the subscriptable (exclusive upper bound).

We will illustrate the exact behavior through an example. Listing A.22
shows a possible scenario. We apply the StructureJaggedSplittingPass on ex-
pression PNZ with offset 1 and groups [⟨row⟩, ⟨col, val⟩]. This leads to the code
shown in Listing A.23. Note how we now have a 1D subscriptable PNZ' (in-
dexed with row), with at each location a tuple ⟨__row, __col_val⟩. At each tuple
location __row we have another 1D subscriptable storing tuples ⟨row⟩, where
row is a scalar value. Similarly, at each __col_val a 1D subscriptable is stored
containing tuples ⟨col, val⟩.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[PNZ[row, k].row] += PNZ[row, k].val * PB[PNZ[row,

k].col]

Listing A.22: Example scenario on which the StructureJaggedSplittingPass can
be applied.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[PNZ'[row].__row[k].row] += PNZ'[row].__col_val[k].

val * PB[PNZ'[row].__col_val[k].col]

Listing A.23: Possible result after applying the StructureJaggedSplittingPass
on PNZ with offset 1.

Note how applying the StructureJaggedSplittingPass on Listing A.22 with
offset 0 and groups [⟨col, val⟩, ⟨row⟩] is roughly equivalent to a Delocalization-
Pass plus HorizontalSpaceReductionPasses. The only difference is that the root
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is now a symbol PNZ′ containing a struct of two elements rather than two en-
tirely disjoint symbols, as shown in Listing A.24.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[PNZ'.__row[row, k].row] += PNZ'.__col_val[row, k].

val * PB[PNZ'.__col_val[row, k].col]

Listing A.24: Possible result after applying the StructureJaggedSplittingPass
on PNZ with offset 0.

Note that it can be beneficial to apply this pass multiple times with dif-
ferent parameters to construct more advanced data structures. For example,
we can apply the pass on PNZ'.__col_val[_, _] with offset 1 with groups
[⟨row⟩, ⟨col⟩] on the code in Listing A.24. The result is shown in Listing A.25.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[PNZ''.__row[row, k].row] += PNZ''.__col_val[row].

__val[k].val * PB[PNZ''.__col_val[row].__col[k].col]

Listing A.25: Possible result after applying the StructureJaggedSplittingPass
on PNZ'.__col_val[_, _] with offset 1.

It is also reasonable to just use a single group containing all tuple fields
whenever applying the pass at a nonzero offset. For example, applying the
pass on Listing A.22 again with offset 1, but groups [⟨row, col, val⟩] will yield
the code in Listing A.26. Here we change the 2D subscriptable to a 1D sub-
scriptable containing single (separate) 1D subscriptables at each location, with-
out performing any additional grouping. In the end this could be concretized
as an array of arrays (regular jagged array) in which the tuples are stored.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[PNZ'[row].__row_col_val[k].row] += PNZ'[row].

__row_col_val[k].val * PB[PNZ'[row].__row_col_val[k].
col]

Listing A.26: Possible result after applying the StructureJaggedSplittingPass
on PNZ with offset 1, but using only a single group.

A.11 ConcretizationPass

The ConcretizationPass will concretize all subscriptables. A concretized sub-
scriptable, whose name we typically prefix with a C, will have a defined con-
cretization, such as an array or linked list. Nested data structures, such as an
X-dimensional array containing linked lists, can be achieved through applying
the StructureJaggedSplittingPass before the ConcretizationPass. For example,
for the code in Listing A.26, PNZ' could be concretized as a linked list while
PNZ'[_].__row_col_val could be concretized as an array. libtupl currently
always concretizes everything as an array.
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Additionally, the ConcretizationPass will convert all tUPL-based looping
structures to more traditional looping structures. For example, range-based
forelem loops can be converted to a for-loop.

Let us concretize the code from Listing A.24. This will yield the code in
Listing A.27. The exact data structures of CPC, CPNZ' and CPB are not visible
in this code, but tUPL concretizes these data structures to dense arrays. CPC
and CPB thus become 1D arrays of doubles. CPNZ' is then concretized to a

1D array containing a tuple of two 1D arrays at each location (i.e. CPNZ'[_].
__row and CPNZ'[_].__col_val are concretized to 1D arrays containing 1D
and 2D tuples respectively).

1 for row = 0, row <= max(NZ.row), row += 1:
2 forelem k = 0, k <= PNZ_len[row]-1, k += 1:
3 CPC[CPNZ'[row].__row[k].row] += CPNZ'[row].__col_val[

k].val * CPB[CPNZ'[row].__col_val[k].col]

Listing A.27: Possible result after applying the ConcretizationPass.
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Appendix B

I/O generation through
generators

Certain transformation passes will also have to transform the input/output
data. When using the I/O generation approach through generators, transfor-
mations may create new generators defining how the data generated by other
generators should be transformed. In this appendix the produced generators
are described for various passes. We mostly focus on loading generators, un-
loading generators are typically similar.

B.1 HorizontalIterationSpaceReductionPass

Horizontal iteration space reduction simply reduces the width of tuples inside
of a subscriptable structure. The produced generators look like the example
in Listing B.1. As this transformation is performed on subscriptables, a key
and value is passed in. This transformation does not modify the key at all, but
constructs a new, smaller NTuple for each input value.

1 λ(input: Generator[Tuple[int, int], NTuple[a: int, b: int
, c: int]]) -> Generator[Tuple[int, int], NTuple[a:
int, b: int]]:

2 while input:
3 key, value = input.next()
4 yield key, (value.a, value.b)

Listing B.1: A generator adjusting the data in a subscriptable after horizontal
iteration space reduction, removing the c field from the value tuple.

B.2 LocalizationPass

The LocalizationPass relates data from a shared space to tuples in a tuplespace.
Multiple variations for the LocalizationPass are possible, each relating the data
in different ways.

A naive approach is to simply write each shared space value to an interme-
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diate data structure that allows looking up values by keys, practically convert-
ing this stream of data to a temporarily concretized data structure. This always
works but can be highly inefficient, especially if this utility data structure is
chosen is unsuitable for the keys of the shared space. Listing B.2 shows such a
possible implementation.

1 λ(tr: Generator[NTuple[a: int, b: int]], ss: Generator[
Tuple[int, int], double]) -> Generator[NTuple[a: int,
b: int, merged_val: double]]:

2 # convert shared space to some immediate lookup table
3 lut = {}
4 while ss:
5 key, value = ss.next()
6 lut[key] = value
7
8 # finally stream through the reservoir: appending the

merged tuple value
9 while tr:

10 tuple = tr.next()
11 yield (*tuple, lut[tuple.a, tuple.b])

Listing B.2: A generator merging the data in a shared space into a tuplespace.

Often it is possible to merge both generators together more efficiently. As
this generator can control on its own when to advance each generator, it could
decide to advance both at the same time. This only works well when the
value to be merged from the shared space is at the same stream offset as the
stream offset of the tuple in the reservoir stream into which the value should
be merged. Listing B.3 shows such a generator.

1 λ(tr: Generator[NTuple[a: int, b: int]], ss: Generator[
Tuple[int, int], double]) -> Generator[NTuple[a: int,
b: int, merged_val: double]]:

2 # finally stream through the reservoir: appending the
merged tuple value

3 while tr:
4 tuple = tr.next()
5 key, value = ss.next()
6 assert(tuple.a == key[0] and tuple.b = key[1]) #

either prevent this from happening using an additional
analysis pass or fall back to another approach once this
occurs

7 yield (*tuple, value)

Listing B.3: A generator merging the data in a shared space into a tuplespace
without an intermediate lookup table.

B.3 ReservoirMaterializationPass + NStarMaterial-
izationPass

Whenever applying the ReservoirMaterializationPass, followed by a NStarMa-
terializationPass on the produced N* reservoir, we have to assign indices to
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each tuple in the tuplereservoir to convert it to a subscriptable, usually starting
from 0. Usually we also produce the associated _len subscriptable, indicating
how many tuples match a certain query. Let us assume that is the case in the
following example too.

For the materialized reservoir the generator shown in Listing B.4 generates
the key-value data for the subscriptable. The associated _len subscriptable is
generated in a highly similar fashion, as shown in Listing B.5. Note how the
data in the _len reservoir cannot be yielded until all tuples have been counted,
as the input order of tuples is generally undefined. Additionally note that we
need two separate generators for the two subscriptables. Both of them are
very similar: they both have to count the tuples and read the exact same in-
put stream. As a result, production of the _len subscriptable requires reading
the input stream twice as the input generator is practically duplicated. Using
the generator approach it is not possible to merge these two generators and
generate data for both data structures at once, as the control lies at the bottom.

1 λ(tr: Generator[NTuple[a: int, b: int]]) -> Generator[
Tuple[int, int], NTuple[a: int, b: int]]:

2 counts = {} # some sort of lookup table, default value of
0 if key does not yet exist

3 while tr:
4 tuple = tr.next()
5 query = (tuple.a,)
6 yield (*query, counts[query]), (*tuple, counts[

query])
7 counts[query] += 1

Listing B.4: A generator materializing a tuplereservoir.

1 λ(tr: Generator[NTuple[a: int, b: int]]) -> Generator[
Tuple[int, int], NTuple[a: int, b: int]]:

2 counts = {} # some sort of lookup table, default value of
0 if key does not yet exist

3 while tr:
4 tuple = tr.next()
5 query = (tuple.a,)
6 counts[query] += 1
7
8 for query, count in counts:
9 yield query, count

Listing B.5: A generator materializing a N* reservoir into a _len subscriptable.

B.4 DelocalizationPass

Although the DelocalizationPass does not truly change data, it does basically
duplicate a subscriptable, aside from changing the algorithm in a sensible way.
The subscriptable being delocalized had a Generator generating key-value
pairs for this subscriptable. For the delocalized subscriptable this generator is
cloned and will in the end be executed twice to generate data for both subscript-
ables. A delocalization thus also leads to reading the input multiple times.
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B.5 ConcretizationPass

The ConcretizationPass actually writes data to the desired data structures. For
example, the function in Listing B.6 may be produced to concretize subscript-
able PA into CPA.

1 λ(tr: Generator[Tuple[int, int], NTuple[a: int, b: int]])
:

2 while tr:
3 key, value = tr.next()
4 CPA.ensure_writable(*key)
5 CPA[*key] = value

Listing B.6: A function concretizing a subscriptable.

Note how this function will consume a generator completely and write the
data to a concrete data structure. The implementation of the concretized data
structure is part of the libtupl runtime, which implements things like subscript-
ing a data structure and the ensure_writable method.

For the output a generator is produced instead, enumerating all key-value
pairs in the concrete data structure, as shown in Listing B.7.

1 λ() -> Generator[Tuple[int, int], NTuple[a: int, b: int
]]:

2 for dim0 in range(0, CPA.bounds<0>()):
3 for dim1 in range(1, CPA.bounds<1>()):
4 yield (dim0, dim1), CPA[dim0, dim1]

Listing B.7: A generator deconcretizing a concretized subscriptable. Here we
assume the subscriptable is concretized as some dense data structure.
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Appendix C

I/O generation through
transformation graphs

C.1 HorizontalIterationSpaceReductionPass

Whenever we perform horizontal iteration space reduction on a subscriptable,
we reduce the width of the value tuple and leave the key unchanged. Fig-
ure C.1 shows a “Transform KeyValue” node reducing the tuple its width. Such
an I/O node can arbitrarily transform a key and value based on the expressions
it has been parameterized with. Here, the output key is equal to the input
key and the output value becomes ⟨t.col⟩ where t is the input value. Because
we performed the HorizontalIterationSpaceReductionPass on subscriptable A
(whose associated I/O node is not shown here, but could be located above the
“Transform KeyValue” I/O node in Figure C.1) we tag this node with A' as a
result.

Transform KeyValue
k, v

key: k, value: ⟨t.col⟩

[2D], ⟨row, col⟩

[2D], ⟨col⟩ A'

Figure C.1: Example I/O transformation applied after performing a Horizon-
talIterationSpaceReductionPass on subscriptable A.

C.2 AggregateReservoirPass

We can aggregate values from a reservoir of tuples using the AggregateReser-
voirPass. An “Aggregate” I/O node is then used to actually perform this ag-
gregation. Figure C.2 illustrates this. For “Aggregate” nodes only the function
that should be used for the aggregation (such as min, max, + and ×) and the tu-
ple field to be aggregated are parameterizable. Typically this node is compiled
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to something that completely processes the input passed to it and whenever
all input has been processed a scalar value is output. This pass also outputs a
zero-dimensional key (the output of this I/O node is always stored for which
some sort of key is required later down the line — alternatively, a “Tuple to
KeyValue” node could also be used to create this zero-dimensional key).

Aggregate
t

key: [], value: max(t.row)

⟨row, col⟩

[0D], int aggr_A_max_row

Figure C.2: Example I/O transformation applied after performing an Aggre-
gateReservoirPass on tuplespace A.

C.3 LocalizationPass

The LocalizationPass will use a “Merge” node to merge the value of a shared
space into a new tuple field for all tuples sent to this node. Figure C.3 illus-
trates this. “Merge” nodes are parameterized by an expression that indicates
what shared space value should be merged into each tuple, in this example
[t.row, t.col] for each tuple t. Although the “Merge” node in Figure C.3
is visualized using an intermediate lookup table X, the implementation of a
“Merge” node may not have to use such a lookup table. Sometimes “Merge”
nodes can be eliminated entirely too using the MergeEliminationPass, as we
will see later.

Merge
t k, v → X[k] = v

⟨∗t, X[t.row, t.col]⟩

⟨row, col⟩ [2D], double

[2D], ⟨row, col, merged_val⟩ T_merged_A

Figure C.3: Example I/O transformation applied after performing a Localiza-
tionPass on tuplespace T and shared space A.

C.4 ReservoirMaterializationPass + NStarMaterial-
izationPass

Figure C.4 shows the resulting partial I/O graph after executing the Reservoir-
MaterializationPass and the NStarMaterializationPass. Here we introduce a
“Count Tuples” I/O node, which is parameterized by the query. In this exam-
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ple, [row] is the query. It outputs two things: first a stream of tuples which
mirrors the input steam, but with the generated offset value appended to each
tuple. The “Tuple to KeyValue” node then transforms this to the desired key-
value stream for the subscriptable PNZ'.

The second “Count Tuples” output is a key-value stream which indicates
the number of tuples matching each unique query value. This output repre-
sents subscriptable PNZ_len.

Count Tuples
t

⟨∗t, Z[t.row] + +⟩ ∗Z

⟨row, col⟩

Tuple to KeyValue
t

key: [t.row, t.k], value: t

⟨row, col, k⟩
[1D], int

[2D], ⟨row, col, k⟩ PNZ'

PNZ_len

Figure C.4: Example I/O transformation applied after performing a Reservoir-
MaterializationPass on NZ and the NStarMaterializationPass on on N*.

Note how this “Count Tuples” I/O node can compute the two outputs si-
multaneously (depending on the actual implementation, which we discuss in
Section D.6). This is unlike the generator I/O approach, for which two disjoint
generators are required, each computing one output at a time.

C.5 DelocalizationPass

The DelocalizationPass on its own only duplicates a subscriptable symbol and
tries to let different pieces of code use different data structures. Thus, no actual
data transformations need to take place. HorizontalIterationSpaceReduction is
usually performed after a DelocalizationPass to create two simpler data struc-
tures, which is visualized in Figure C.5.

C.6 StructureJaggedSplittingPass

Whenever we perform a StructureJaggedSplittingPass on a subscriptable we
split the index of the subscriptable into two pieces. For example, jagging A[
_, _, _] at offset 2 will yield A[_, _][_]. Additionally, tuple fields are re-
grouped. Together, this can transform A[_, _, _].a + A[_, _, _].bwhere
A contains tuples ⟨a, b⟩ into, for example, A[_, _].__a[_].a + A[_, _].__b
[_].b (a and b split apart) or A[_, _].__a_b[_].a + A[_, _].__a_b[_].b
(a and b grouped together). For the index splitting we introduce a “Jag” node
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Any I/O node

Transform KeyValue
k, v

key: k, value: ⟨t.row⟩

[2D], ⟨row, col⟩

[2D], ⟨row⟩

Transform KeyValue
k, v

key: k, value: ⟨t.col⟩

[2D], ⟨row, col⟩

[2D], ⟨col⟩

A, A_deloc

A' A_deloc'

Figure C.5: Example I/O transformation applied after performing a Delocal-
izationPass on A followed by two HorizontalIterationSpaceReductionPasses.

and for the field grouping we use previously introduced “Transform KeyValue”
nodes.

Let us look at the simple example in Listing C.1. Applying the Structure-
JaggedSplittingPass with offset 1 and groups [⟨col, val⟩, ⟨row⟩] on this code
will produce the code in Listing C.2. This pass also produces a single “Jag”
I/O node and one or more “Transform KeyValue” I/O nodes, as shown in Fig-
ure C.6.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[PNZ[row, k].row] += PNZ[row, k].val * PB[PNZ[row,

k].col]

Listing C.1: Example scenario on which the StructureJaggedSplittingPass can
be applied.

1 forelem row in [0, max(NZ.row)]:
2 forelem k in [0, PNZ_len[row]-1]:
3 PC[PNZ'[row].__row[k].row] += PNZ'[row].__col_val[k].

val * PB[PNZ'[row].__col_val[k].col]

Listing C.2: Possible result after applying the StructureJaggedSplittingPass on
PNZ with offset 1.

The “Jag” node will cut offset dimensions off of the key, in this example just
one. Here, this I/O node then represents PNZ'[_]: the output only has one key
dimension left as first key dimension is locked down by this I/O node (hence
the “_” placeholder).

“Jag” I/O nodes will guarantee the existence of a certain integer key in the
data structures represented by the node (regardless of how the data structure
will be concretized eventually). The “Jag” node in Figure C.6 will thus guar-
antee the existence of PNZ'[k[0]] for each k that is pushed to the node. The
node does not fill the contents of the node with explicit values yet. It may, how-
ever, initialize inner data structures in a data-independent way, i.e. invoke the
default constructor of these inner structures.
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Any I/O node

Jag
k, v

key: k[offset :], value: t

[2D], ⟨row, col, val⟩

Transform KeyValue
k, v

key: k, value: ⟨t.row⟩

[1D], ⟨row, col, val⟩

[1D], ⟨row⟩

Transform KeyValue
k, v

key: k, value: ⟨t.col, t.val⟩

[1D], ⟨row, col, val⟩

[1D], ⟨col, val⟩

PNZ

PNZ'[_]

PNZ'[_].__row PNZ'[_].__col_val

Figure C.6: Example I/O transformation applied after performing a Structure-
JaggedSplittingPass on PNZ with offset 1.

C.7 MergeEliminationPass

The MergeEliminationPass is a pass that is specific for the transformation graph
I/O generation approach. This pass does not transform the algorithm its spec-
ification in any way, but instead changes the I/O graph only. This pass tries to
eliminate “Merge” nodes, typically produced by the LocalizationPass.

Let us illustrate the behavior of this pass through an example. Figure C.7
shows an I/O graph in which a “Merge” node exists. Note that the inputs
of this “Merge” node are a “Transform Tuple“ and “Tuple to KeyValue” node,
which have a shared I/O node (which outputs tuples of data). The MergeElim-
inationPass can realize that in this scenario we can avoid complicated merging
logic by bypassing the “Transform Tuple” and “Tuple to KeyValue” nodes en-
tirely and immediately generating the desired merged output through a single
“Tuple to KeyValue” node directly linking to the shared source node. This will
yield the I/O graph in Figure C.8. The existing I/O nodes that represent T
and A have their output no longer connected to the previous “Merge” node,
but may still have their outputs connected to other I/O nodes. If this is not the
case, future dead code elimination will just eliminate the effect of these I/O nodes
entirely.

Caution must be taken when implementing this MergeEliminationPass, as
it cannot always eliminate a “Merge” node, even when a shared I/O node ex-
ists. Every time a tuple is produced as input for the “Merge” node, the value at
X[t.row, t.col] must be produced at the shared space input in Figure C.7.
Static symbolic analysis can guarantee this.

Here, whenever the shared I/O node produces value t0 = ⟨a, b, c⟩, the
“Merge” node will receive t = ⟨a, b⟩ from the “Transform Tuple” node (which
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Any I/O node
⟨row, col, val⟩

Transform Tuple
t

⟨t.row, t.col⟩
Tuple to KeyValue

t

key: [t.row, t.col], value: t.val

⟨row, col, val⟩ ⟨row, col, val⟩

Merge
t k, v → X[k] = v

⟨∗t, X[t.row, t.col]⟩

⟨row, col⟩ [2D], double

⟨row, col, merged_val⟩ T_merged_A

T A

Figure C.7: Example I/O graph on which the MergeEliminationPass is effec-
tive.

just eliminates the latter value c). The “Tuple to KeyValue”, in this case, pro-
duces value v = c for storage on location k = [a, b]. The “Merge” I/O node
wants to merge, for the incoming t = ⟨a, b⟩, the value X[t.row, t.col] = X[a, b] =
v into that tuple. Because this value in X[a, b] = v is produced at the same time
⟨a, b⟩ is streamed to the node (i.e. also produced when t0 is output by the
shared I/O node), it is safe to eliminate the “Merge” node here.

For example, when the “Transform Tuple” node in Figure C.7 would trans-
form the input tuple t to ⟨t.col, t.row⟩ (now also flipping row and col), the
“Merge” node cannot be eliminated safely. When the shared I/O node would
produce the value t0 = ⟨a, b, c⟩, the “Merge” node will now receive t = ⟨b, a⟩,
k = [a, b] and v = c. The “Merge” node wants to try to merge X[t.row, t.col] =
X[b, a] into the tuple, but the “Tuple to KeyValue” node will produce only the
value v at the key k = [a, b], which is not [b, a]. Thus the MergeEliminationPass
cannot eliminate the “Merge” node safely in this case.

C.8 ConcretizationPass

The ConcretizationPass will also have to actually write data to the data struc-
tures selected. For this, we introduce a “Write Value” I/O node. This I/O node
can only write scalar values to some previously fixed storage location, though,
so we first use a “Jag” node to remove (or actually, fix) the key entirely. Note
that due to the parent/child relations between the I/O nodes the concrete stor-
age location this “Write Value” node should write to will be passed down to
this node via the “Jag” node implicitly (all children of this “Jag” node will have
a limited scope in which subscriptable keys are locked down).

Let us consider an example in which we concretize PA, a two-dimensional
subscriptable containing doubles. Figure C.9 shows the resulting I/O graph.
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Any I/O node
⟨row, col, val⟩

Transform Tuple
t

⟨t.row, t.col⟩
Tuple to KeyValue

t

key: [t.row, t.col], value: t.val

⟨row, col, val⟩ ⟨row, col, val⟩

Transform Tuple
t

⟨t.row, t.col, t.val⟩

⟨row, col, val⟩

⟨row, col, merged_val⟩ T_merged_A

T A

Figure C.8: I/O graph after applying the MergeEliminationPass.

As the output socket of the “Jag” node has been tagged with CPA[_, _], the
“Write Value” will write the incoming values to this CPA concretized subscript-
able.

Note that, for unloading data structures, we need to “deconcretize” the data
structures too in the unload I/O transformation graph. For this we introduce
a “Deconcretize” node, which reads all key-value pairs in a subscriptable and
streams them out. Such a “Deconcretize” node is a root I/O node in the unload
graph, as shown in Figure C.10.
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Any I/O node

Jag
k, v

key: k[2 :], value: t

[2D], double

Write Value
assert(k == []), v

[0D], double

PA, CPA

CPA[_, _]

Figure C.9: I/O graph after the concretization of PA.

Deconcretize
key: k, value: v

Any I/O node

[2D], double
PA, CPA

Figure C.10: Unload transformation graph after the concretization of PA.
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Appendix D

Imperative code generation
for I/O nodes

I/O nodes need to be converted to imperative code during the code genera-
tion step. This appendix describes how various I/O nodes are converted to the
output-agnostic internal AST before the output-specific code generator tran-
spiles it to the desired target language.

D.1 Transform Tuple

The “Transform Tuple” I/O node takes a single symbol as input, transforms the
data in this depending on the anonymous function (expression) this node has
been parameterized with and then stores this in a new symbol that the child
I/O nodes will then use.

Let us assume the input tuple is of the format ⟨row, col⟩ and we want to
reduce the width of the tuple, i.e. the output will be ⟨col⟩. Then, the “Transform
Tuple” has been parameterized by the function lambda t: (t.col,). For this
example, Listing D.1 shows the code generated by this I/O node.

1 ...
2 input_symbol = ... # assigned to by parent I/O node
3 output_symbol = (input_symbol.col,) # this line of code is

generated by the conversion routine
4 ...

Listing D.1: Code generated by the “Transform Tuple” conversion routine.

D.2 Transform KeyValue

The “Transform KeyValue” I/O node is just like the “Transform Tuple” node,
except for that this node is parameterized by two anonymous functions, each
taking a key and value from the parent I/O node. This node generates two
new symbols: one for the output key and value. Based on the anonymous
functions and the key and value symbols of the parent I/O node, these two

88



output symbols are assigned to and the symbols are forwarded to all child
nodes.

D.3 DataStreamReader

The “DataStreamReader” node is always a root node of the I/O graph (i.e.
this node has no input sockets) and is parameterized by an external genera-
tor coroutine only. This node will create a loop to iterate the entire external
generator until it is exhausted and push the generated elements to the child
I/O nodes. Listing D.2 shows the code generated by this I/O node during this
conversion process.

1 ... # other disjoint root node code
2 while input_stream:
3 output_symbol = input_stream.next()
4 ... # child nodes
5 ... # other disjoint root node code

Listing D.2: Code generated by the “DataStreamReader” conversion routine.

D.4 ConstantStream

The “ConstantStream” node is, just like the “DataStreamReader”, always a root
node of the I/O graph. It will generate a constant value for a range of keys. List-
ing D.3 shows the code generated by this I/O node. N here is one less than the
number of desired key dimensions. limit describes the limits of each key for
each key dimension, such as (1000, ) for a one-dimensional “ConstantStream”
of 1000 constants.

1 ... # other disjoint root node code
2 for dim0 in range(0, limit[0]):
3 for dim1 in range(0, limit[1]):
4 ...
5 for dimN in range(0, limit[N]):
6 output_symbol_key = [dim0, dim1, ...,

dimN]
7 output_symbol_value = constant_value
8 ... # child nodes
9

10 ... # other disjoint root node code

Listing D.3: Code generated by the “ConstantStream” conversion routine.

D.5 Aggregate

The “Aggregate” node will process all the tuples streamed to it (in fact, only
processes a single field of the tuples streamed to it), then finally produce a sin-
gle scalar output. Some scalar aggregator is initialized to initial_value, de-
pending on the aggregate function (often 0, but when multiplying this would
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be 1, for example). Then for each tuple the value in the to-aggregate field is
taken and the aggregate function is applied on the current aggregator and the
incoming value, updating the aggregator value. The final aggregator value is
sent to all child I/O nodes once all tuples have been processed. Listing D.4
shows the code generated by this I/O node.

1 aggregator = initial_value
2 ...
3 # data iterators...:
4 ...
5 input_symbol = ... # assigned to by parent I/O node
6 aggregator = aggregate_func(aggregator, input_symbol.

target_field)
7 ...
8 ...
9 # after all data has been iterated

10 output_symbol_key = []
11 output_symbol_value = aggregator
12 ... # output socket 0 code
13 ...

Listing D.4: Code generated by the “Aggregate” conversion routine.

D.6 Count Tuples

The “Count Tuples” node has two output sockets: one on which the numbered
tuples per offset are streamed out and one on which the total number of tuples
per group is streamed out. In all cases, the “Count Tuples” node can do both
of these tasks in a single pass over the input data. Listing D.5 shows the code
generated by the “Count Tuples” node.

1 counts = {} # some sort of lookup table, initialized to 0 if
element not found

2 ...
3 # data iterators...:
4 input_symbol = ... # assigned to by parent I/O node
5 query = (input_symbol.queryfield1, input_symbol.

queryfield2, ...)
6 counts[query] += 1
7 output_symbol = (*input_symbol, counts[query])
8 ... # output socket 0 code
9 ...

10 # after all data has been iterated
11 for query, count in counts:
12 output_symbol2_key = query
13 output_symbol2_value = count
14 ... # output socket 1 code
15 ...

Listing D.5: Code generated by the “Count Tuples” conversion routine.
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In some cases it is possible to generate more efficient output code, like when
one would know in advance that the input query would be ordered. This
would eliminate the need for a full fledged lookup table, such as counts in
Listing D.5. The code at output socket 1 could also be executed immediately
once we move on to another query value, rather than forcing us to wait until
all tuples have been processed.

D.7 Jag

The “Jag” I/O node will generate code to ensure space is allocated to write at the
index of the key that has been split off. The exact implementation may vary
depending on the underlying data structure. For example, let us assume a flat
array is used and the “Jag” splits a 4D index ⟨a, b, c, d⟩ at offset 2 and is tagged
with symbol expression CPNZ'''. The node will then ensure that CPNZ'''[a
, b] is writable. It will also pass on a reference to child I/O node generation
routines that ⟨a, b⟩ is the index that data should be written on (i.e. further limit
the scope of child I/O nodes).

The “Jag” node does not actually write data, but only (re)allocates it. It may
initialize inner data structures, though, through a data-independent default con-
structor. The “Jag” node does not modify or use the value passed to the node,
but does pass the value symbol reference on to child I/O nodes. Listing D.6
illustrates the code generated by this I/O node.

1 ...
2 input_symbol_key = ... # assigned to by parent I/O node
3 ensure_writable(CPNZ''', input_symbol_key.a,

input_symbol_key.b)
4 output_symbol_key = (input_symbol_key.c, input.symbol_key

.d)
5 ...

Listing D.6: Code generated by the “Jag” conversion routine.

In the above example, another “Jag” I/O node can be generated as some
descendant of the previous “Jag” I/O node as part of the concretization. The
remaining two index values ⟨c, d⟩ will then also be split off and locked down.
This descendant “Jag” node will be tagged to generate data for CPNZ'''[_,
_].__a_b. The two placeholder slots here will be occupied by the referenced
indices from the ancestor “Jag” node: a and b. The code generated by this
second “Jag” node will thus roughly look like the code shown in Listing D.7.

1 ...
2 input_symbol_key = ... # assigned to by some ancestor I/O

node
3 ...
4 input_symbol2_key = ... # assigned to by parent I/O node
5 ensure_writable(CPNZ'''[input_symbol_key.a,

input_symbol_key.b].__a_b, input_symbol2_key.c,
input_symbol2_key.d)

6 output_symbol2_key = ()

91



7 ...

Listing D.7: Code generated by the second “Jag” conversion routine.

D.8 Write Value

The “Write Value” I/O node simply writes a scalar value (which may be a tuple
containing multiple scalars) to a storage location. This storage location must
be allocated in advance by a “Jag” node. Let us assume a “Write Value” node is
writing to CPNZ'''[_, _].__a_b[_, _] (i.e. the parent “Jag” node has been
tagged with that expression). Then Listing D.8 is the code that is generated by
this node.

1 ...
2 input_symbol_key = ... # assigned to by some ancestor I/O

node
3 input_symbol2_key = ... # assigned to by some ancestor I/O

node
4 ...
5 input_symbol3_key = ... # assigned to by parent I/O node
6 input_symbol3_value = ... # assigned to by parent I/O node
7 assert(input_symbol3_key == ())
8 CPNZ'''[input_symbol_key.a, input_symbol_key.b].__a_b[

input_symbol2_key.c, input_symbol2_key.d] =
input_symbol3_value

9 ...

Listing D.8: Code generated by the “Write Value” conversion routine.

D.9 Deconcretize

The “Deconcretize” I/O node will read all the data out of a concretized data
structure and pushes each key and value to child I/O nodes. Let us assume that
CPA is being deconcretized and that CPA is concretized as some N-dimensional
dense data structure. Then Listing D.9 is the code generated by this I/O node
to deconcretize the data.

1 ... # other disjoint root node code
2 for dim0 in range(0, CPA.bounds<0>()):
3 for dim1 in range(1, CPA.bounds<1>()):
4 ...
5 for dimN in range(N, CPA.bounds<N>()):
6 output_symbol_key = (dim0, dim1, ..., N)
7 output_symbol_value = CPA[*

output_symbol_key]
8 ... # child nodes
9 ... # other disjoint root node code

Listing D.9: Code generated by the “Deconcretize” conversion routine for CPA.
Here we assume the subscriptable is concretized as some dense data structure.
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D.10 DataStreamWriter

The “DataStreamWriter” I/O node simply consumes each tuple streamed to it
and invokes a callback function with (a reference to) this tuple as parameter.
Listing D.10 is the code that can be generated by this node.

1 ...
2 input_symbol = ... # assigned to by parent I/O node
3 callback_func(input_symbol)
4 ...

Listing D.10: Code generated by the second “DataStreamWriter” conversion
routine.
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Appendix E

Example C++ output

Example C++ output for the sparse matrix-vector multiplication example com-
pilation process in Section 3.7.

1 struct _tuple__col_int___ {
2 int _col;
3 };
4 struct _tuple__zipped_val_int___ {
5 int _zipped_val;
6 };
7 struct

_tuple____col_FlatArraySubscriptablem1mm_tuple__col_
int___m______zipped_val_FlatArraySubscriptablem1mm_
tuple__zipped_val_int___m___ {

8 FlatArraySubscriptable<1, _tuple__col_int___> ___col;
9 FlatArraySubscriptable<1, _tuple__zipped_val_int___>

___zipped_val;
10 };
11 struct _tuple__row_int___ {
12 int _row;
13 };
14 struct _tuple__0_int___ {
15 int _0;
16 };
17 struct _tuple__row_int____col_int____val_int___ {
18 int _row;
19 int _col;
20 int _val;
21 };
22 struct _tuple__i_int____val_int___ {
23 int _i;
24 int _val;
25 };
26 struct _tuple_ {
27 };
28 struct _tuple__row_int____col_int____zipped_val_int____k_
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int___ {
29 int _row;
30 int _col;
31 int _zipped_val;
32 int _k;
33 };
34 struct _tuple__row_int____k_int___ {
35 int _row;
36 int _k;
37 };
38 struct _tuple__row_int____col_int____zipped_val_int___ {
39 int _row;
40 int _col;
41 int _zipped_val;
42 };
43 struct _tuple__0_int____1_int___ {
44 int _0;
45 int _1;
46 };
47 struct _tuple__col_int____zipped_val_int___ {
48 int _col;
49 int _zipped_val;
50 };
51 struct _tuple__i_int____v_int___ {
52 int _i;
53 int _v;
54 };
55 class MatVec {
56
57 private:
58 FlatArraySubscriptable<1, int> _PB;
59
60 private:
61 FlatArraySubscriptable<1,

_tuple____col_FlatArraySubscriptablem1mm_tuple__
col_int___m______zipped_val_FlatArraySubscriptablem1mm
_tuple__zipped_val_int___m___> _PNZ_zip_Ammm;

62
63 private:
64 FlatArraySubscriptable<1, int> _PC;
65
66 private:
67 FlatArraySubscriptable<0, int>

_accum_NZ_zip_A_row_max;
68
69 private:
70 FlatArraySubscriptable<1, int> _PNZ_zip_A_len;
71
72 public:
73 void _matvec() {
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74 _tuple__row_int___ _rowval;
75 _tuple__0_int___ _kv;
76
77 for (_rowval._row = 0; _rowval._row <=

_accum_NZ_zip_A_row_max.get(); ++_rowval._row) {
78 if (true) {
79 for (_kv._0 = 0; _kv._0 <= (

_PNZ_zip_A_len.get(_rowval._row) - 1); ++_kv._0) {
80 if (true) {
81 _PC.get(_rowval._row) = (_PC.get(

_rowval._row) + (_PNZ_zip_Ammm.get(_rowval._row).
___zipped_val.get(_kv._0)._zipped_val * _PB.get(
_PNZ_zip_Ammm.get(_rowval._row).___col.get(_kv._0).
_col)));

82 }
83 }
84 }
85 }
86 }
87
88 public:
89 void _load(InStream<

_tuple__row_int____col_int____val_int___>& _Values,
InStream<_tuple__i_int____val_int___>& _BVals) {

90 _tuple__0_int___ _tmp_26;
91 int _tmp_25;
92 int _tmp_23;
93 _tuple_ _tmp_6;
94 int _tmp_35;
95 int _tmp_27;
96 int _itr0;
97 _tuple_ _tmp_34;
98 _tuple__0_int___ _csgen_key;
99 _tuple__0_int___ _tmp_31;

100 int _tmp_33;
101

_tuple__row_int____col_int____zipped_val_int____k_int___
_tmp_10;

102 _tuple__row_int____k_int___ _tmp_9;
103 int _tmp_5;
104 _tuple__0_int___ _tmp_24;
105 int _tmp_17;
106 _tuple__row_int____col_int____zipped_val_int___

_tmp_3;
107 _tuple_ _tmp_29;
108 int _tmp_2;
109 int _tmp_32;
110 _tuple__row_int____col_int____val_int___ _tmp_0;
111 _tuple__0_int___ _tmp_14;
112 FlatArraySubscriptable<1, int> _tmp_7;
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113 int _csgen_value;
114 _tuple__i_int____val_int___ _tmp_30;
115 _tuple_ _tmp_22;
116 _tuple__0_int____1_int___ _tmp_1;
117 _tuple__row_int____k_int___ _tmp_11;
118 int _tmp_21;
119 _tuple__col_int____zipped_val_int___ _tmp_12;
120 _tuple_ _tmp_36;
121 int _tmp_13;
122 _tuple__0_int___ _tmp_15;
123 _tuple_ _tmp_18;
124 int _tmp_28;
125 _tuple__0_int___ _tmp_19;
126

_tuple__row_int____col_int____zipped_val_int____k_int___
_tmp_8;

127 _tuple__col_int___ _tmp_16;
128 _tuple__zipped_val_int___ _tmp_20;
129
130 _tmp_5 = 0;
131 while (_neof(_Values)) {
132 _tmp_0 = _read(_Values);
133 _tmp_1 = (_tuple__0_int____1_int___){_tmp_0.

_row, _tmp_0._col};
134 _tmp_2 = _tmp_0._val;
135 _tmp_3 = (

_tuple__row_int____col_int____zipped_val_int___){
_tmp_0._row, _tmp_0._col, _tmp_0._val};

136 _tmp_5 = _max(_tmp_5, _tmp_3._row);
137 _ensure_writable(_tmp_7, _tmp_3._row);
138 _tmp_8 = (

_tuple__row_int____col_int____zipped_val_int____k_int___
){_tmp_3._row, _tmp_3._col, _tmp_3._zipped_val, _tmp_7
.get(_tmp_3._row)};

139 _tmp_7.get(_tmp_3._row) = (_tmp_7.get(_tmp_3.
_row) + 1);

140 _tmp_9 = (_tuple__row_int____k_int___){_tmp_8
._row, _tmp_8._k};

141 _tmp_10 = _tmp_8;
142 _tmp_11 = _tmp_9;
143 _tmp_12 = (

_tuple__col_int____zipped_val_int___){_tmp_10._col,
_tmp_10._zipped_val};

144 _tmp_13 = _tmp_11._row;
145 _ensure_writable(_PNZ_zip_Ammm, _tmp_11._row)

;
146 _tmp_14 = (_tuple__0_int___){_tmp_11._k};
147 _tmp_15 = _tmp_14;
148 _tmp_16 = (_tuple__col_int___){_tmp_12._col};
149 _tmp_17 = _tmp_15._0;
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150 _ensure_writable(_PNZ_zip_Ammm.get(_tmp_13).
___col, _tmp_15._0);

151 _tmp_18 = (_tuple_){};
152 _PNZ_zip_Ammm.get(_tmp_13).___col.get(_tmp_17

) = _tmp_16;
153 _tmp_19 = _tmp_14;
154 _tmp_20 = (_tuple__zipped_val_int___){_tmp_12

._zipped_val};
155 _tmp_21 = _tmp_19._0;
156 _ensure_writable(_PNZ_zip_Ammm.get(_tmp_13).

___zipped_val, _tmp_19._0);
157 _tmp_22 = (_tuple_){};
158 _PNZ_zip_Ammm.get(_tmp_13).___zipped_val.get(

_tmp_21) = _tmp_20;
159 }
160 while (_neof(_BVals)) {
161 _tmp_30 = _read(_BVals);
162 _tmp_31 = (_tuple__0_int___){_tmp_30._i};
163 _tmp_32 = _tmp_30._val;
164 _tmp_33 = _tmp_31._0;
165 _ensure_writable(_PB, _tmp_31._0);
166 _tmp_34 = (_tuple_){};
167 _PB.get(_tmp_33) = _tmp_32;
168 }
169 for (_itr0 = 0; _itr0 <= 1137; ++_itr0) {
170 _csgen_key = (_tuple__0_int___){_itr0};
171 _csgen_value = 0;
172 _tmp_35 = _csgen_key._0;
173 _ensure_writable(_PC, _csgen_key._0);
174 _tmp_36 = (_tuple_){};
175 _PC.get(_tmp_35) = _csgen_value;
176 }
177 _ensure_writable(_accum_NZ_zip_A_row_max);
178 _tmp_6 = (_tuple_){};
179 _accum_NZ_zip_A_row_max.get() = _tmp_5;
180 for (_tmp_23 = 0; _tmp_23 <= (_tmp_7.bound<0>() -

1); ++_tmp_23) {
181 _tmp_24 = (_tuple__0_int___){_tmp_23};
182 _tmp_25 = _tmp_7.get(_tmp_23);
183 _tmp_26 = _tmp_24;
184 _tmp_27 = _tmp_25;
185 _tmp_28 = _tmp_26._0;
186 _ensure_writable(_PNZ_zip_A_len, _tmp_26._0);
187 _tmp_29 = (_tuple_){};
188 _PNZ_zip_A_len.get(_tmp_28) = _tmp_27;
189 }
190 }
191
192 public:
193 void _unload(OutStream<_tuple__i_int____v_int___>&
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_CVals) {
194 int _tmp_37;
195 _tuple__0_int___ _tmp_38;
196 _tuple__i_int____v_int___ _tmp_40;
197 int _tmp_39;
198
199 for (_tmp_37 = 0; _tmp_37 <= (_PC.bound<0>() - 1)

; ++_tmp_37) {
200 _tmp_38 = (_tuple__0_int___){_tmp_37};
201 _tmp_39 = _PC.get(_tmp_37);
202 _tmp_40 = (_tuple__i_int____v_int___){_tmp_38

._0, _tmp_39};
203 _write(_CVals, _tmp_40);
204 }
205 }
206 };
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