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Abstract

Aquatic plants serves as a great environmental indicator of overall water body health. Cur-

rently, Rijkswaterstaat conducts vegetation monitoring every three years. The method,

however, is manual, expensive and time consuming. Remote sensing data has the poten-

tial to improve the cost effectiveness of the monitoring significantly by image classification.

After a comparison of different sources of remote sensing data, this study uses free satel-

lite Sentinel-2 data and selects Randmeren as our study area. A validation map is obtained

by projecting field samples to the image after region-based segmentation. The image pre-

processing and segmentation are done using different tools in QGIS. Spectral features, in-

cluding reflectance of each band and vegetation indices, and texture features, including

Local Binary Patetrns and Gabor Filters, are extracted. Principal component analysis is

then applied to reduce the dimension of the combined feature vectors. A supervised algo-

rithm Random Forest classifier and an unsupervised algorithm K-means clustering are em-

ployed for multiple classification tasks respectively. The six classes that are classified are:

water, low density plants, floating plants, characeae, submerged plants and pondweed. The

unique features of individual species including Doorgroeid fonteinkruid and Kransblad are

also investigated in this study. The experimental results showed that the Random Forest

classification achieved higher accuracy compared to K-means clustering, with an average

accuracy of 87%. Spectral features contributed most in all classification tasks, with an av-

erage importance of 44.3% for vegetation indices and 37.3% for reflectance, while texture

features contributed least. This research proved that Sentinel-2 data can be used as a tool

for efficient aquatic vegetation monitoring in shallow water bodies. For complex regions,

however, airborne images are required for more details.

assumptions
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1
Introduction

1.1. Aquatic plants

Aquatic plants are plants adapted to life in water. Their distribution and abundance are controlled

by many factor, such as water temperature, water quality, and nutrient enrichment (Dar et al., 2014).

Aquatic plants can be grouped into four common class types based on their morphological appear-

ance, as shown in Figure 1.1: algae, floating plants, submerged plants and emerged plants, accord-

ing to the positioning of their roots and leaves (Lembi, 2009). Algae have no roots, stems or leaves.

Their size can range from the microscopic (microalgae), to large seaweeds (macroalgae). Algae usu-

ally explode in water with abundant nutrients. A microscopic algae population that colors the water

green or yellow green is called a “bloom”. Floating plants can be divided into floating-leaved plants

and free-floating plants (Freedman and Lacoul, 2006). Free-floating plants are not rooted in the

soil. They suspend on the water surface, freely to be moved by wind and water currents. Common

species include water-lettuce and duckweed. Floating-leaved plants are rooted in the soil with their

leaves floating on the water surface. Common species include water lily and floating pondweeds.

Submerged plants are rooted in the soil and grow up through water column. Common species in-

clude pondweed and hydrillas. Submerged plants stabilize bottom sediment and reduce turbidity.

Emerged plants are rooted in the soil and grow above the water surface. These plants need constant

exposure to sunlight. Examples include cattails. Emerged plants attenuate the wave energy and

protect shoreline from erosion (Tschirky et al., 2001).

1.2. The role of aquatic plants in aquatic ecosystems

An aquatic ecosystem is a habitat where organisms live and interact within a water body. Familiar

examples are lakes, rivers, and wetlands. Aquatic ecosystems contain a wide variety of organisms

1



1.3. The importance of aquatic plants monitoring 2

(a) Algae (b) Floating plants

(c) Submerged plants (d) Emerged plants

Figure 1.1: Four common types of aquatic plants

including microorganisms such as bacteria and fungi; plants such as macrophytes and riparian veg-

etation; invertebrates such as worms and insects; vertebrates such as fish and reptiles.1 Aquatic

ecosystems are vital sources of fish for human consumption, are repositories of bio-diversity and

are crucial to the functioning of the hydrological cycle (S.K.Jain and V.P.Singh, 2003). Human popu-

lation growth accompanied by intensified industrial, commercial and residential development, has

added pressure to these ecosystems (Council, 1992). Phosphorus fertilizers, toxic chemicals and

plastic pollution from human activities are all threats to aquatic species and their habitat. Overex-

ploitation makes fish species increasingly scarce. At the same time, invasive species can cause the

extinction of native species and disrupt ecosystem functioning (Chatterjee, 2017). Aquatic plants

are a natural part of every ecosystem and serve many purposes in a lake. They produce leaves

and stems as food for aquatic organisms, provide oxygen through photosynthesis, aid in nutrient

cycling, and provide habitat for invertebrates and fish (Carpenter and Lodge, 1986). All these func-

tions contribute to the diversity of aquatic ecosystems. Therefore, aquatic plants serves as a great

environmental indicator of overall water body health.

1.3. The importance of aquatic plants monitoring

Monitoring of aquatic plants is becoming increasingly important to document distribution, and

abundance of aquatic plants over time (Bartodziej and Ludlow, 1997; Sytsma, 2008), via regular data

1http://www.ramp-alberta.org/river/ecology/life.aspx

http://www.ramp-alberta.org/river/ecology/life.aspx


1.4. Remote sensing data for monitoring aquatic plants 3

collection of species and respective habitats of plant communities. Changes include loss of native

plants, spread of nonnative plants and habitat alteration. Some species are known as "key species"

as they provide food or habitat for animal species. They are vital for the survival of other species

through the actions they perform for the maintenance of these species. Their loss or disappear may

cause a major chaos in the functioning of the ecosystems and thus are essential to maintain one or

more communities. In conservation biology, the term bio-indicator is used for species whose pres-

ence or the fluctuation of whose population reflect changes in the environment or in communities

of other species (Diop, 2010). Thus it is necessary to quantify plant populations and understand

distributions of plant communities. Monitoring can help detect negative changes in early stage and

plot control strategies in time.

1.4. Remote sensing data for monitoring aquatic plants

Traditional field-based monitoring of aquatic plants face several challenges, including inaccessi-

bility of areas for boats to collect field samples, vegetation dynamic changes in species and distri-

butions, and budget constraints on field survey (Jakubauskas et al., 2012). These constraints, on

the other hand, have increasingly boosted applications of remote sensing data from aircraft and

satellite for aquatic vegetation analysis and monitoring. Chen et al. (2018) applied GF-1 satellite

data (of four bands and 16 m resolution) to extract submerged aquatic vegetation and obtained an

overall accuracy of 91% on four classes classification. This study utilized a decision tree model by

first identifying land using red band, identifying emerged vegetation using reflectance difference

in green and red bands and NIR peak, then identifying Huangtai algae using NDVI and finally ex-

tracting submerged aquatic vegetation by using a concave–convex decision function. However, this

study was conducted in a small shallow lake of depth ranging from 0.5 to 2.5 m. The spectral signal

of aquatic plants is affected by water turbidity and water depth. This study also discussed that NIR

peak and concave characteristic disappeared at 0.5 m with high turbidity, which shown difficulties

in extracting aquatic plants underwater. Different with the approach above, Luo et al. (2017) in-

volved life history information of seven submerged plant species from February to October when

using satellite images. These seven species reached maximum biomass and died in different sea-

sons. Only three to four species of different biomass were dominant in Taihu lake at the same time.

Based on their life information, species were extracted from the satellite image from the month that

they reached maximum biomass, and these areas were ignored for further processing. After extrac-

tion of all species had finished, separate maps were combined into one map to demonstrated the

distribution of submerged plants, and this map reached 68% overall accuracy. Although they gave a

novel direction to involve plant life history information, multi-temporal satellite images may have

various qualities; besides it was a knowledge-based approach which would be sensitive to weather

changes and invasive species, and therefore it was hard to apply to other lakes. In general, airborne

images are of higher spatial resolution than satellite images, this gives the ability to extract texture

features and to segment images into regions of different aquatic plant species. Husson et al. (2016)
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applied Unmanned Aircraft Systems (UAS) images with 5 cm resolution for non-submerged aquatic

vegetation classification. Their results shown that combining spectral and texture features would

increase classification accuracy as compared to using spectral and texture features alone. Pande-

Chhetri et al. (2014) shown that airborne hyperspectral imagery with narrow band-width (7.4 nm)

could be an efficient tool for classifying macrophyte communities.

1.5. Project description and research objectives

Rijkswaterstaat (RWS) is the executive agency of the Ministry of Infrastructure and Water Manage-

ment in the Netherlands. Its main task is working on the management and maintenance of the

system of waterways.2 In 2018, a pilot location has been selected in consultation with RWS. The

choice was made for the Eemmeer and the Veluwemeer based on field knowledge and the fact that

the regular monitoring was also carried out in the Randmeren in 2018. Figure 1.2 shows the spa-

tial relations of Eemmeer and Veluwemeer in Randmeren. The Eemmeer and Veluwemeer together

cover a very diverse vegetation pattern, with the Eemmeer being characterized by a fountain herb

composition and the Veluwemeer is dominated by wreath algae.

Figure 1.2: Randmeren in Satellite image

2https://nl.wikipedia.org/wiki/Rijkswaterstaat

https://nl.wikipedia.org/wiki/Rijkswaterstaat
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The development in multispectral and hyperspectral sensors have boosted their applications in

monitoring vegetation in terrestrial and small-scale water systems (Allan, 1990). These sensors are

used in combination with different platforms: satellite and aircraft. The satellite images are rel-

atively easy to obtain, but may not have the desired spatial resolution. The aircraft images may

be relatively more labor intensive and expensive to obtain, but of a higher spatial resolution. An

assessment must therefore be made of which method would give the most optimal results, and

which types of images most closely matches the aim of actually making the monitoring more effi-

cient.

In this project, two types of images have been taken from an airplane, including multispectral and

hyperspectral images of high resolution (0.2×0.2 m), and most of test sections have been flown suc-

cessfully. However, the switch from small regions to entire water body has not been entirely suc-

cessful. Scarce bank reference in the middle of large water bodies led to difficulty in obtaining a flat

and fully covered scene. On the other hand, satellite images such as Sentinel-2, though with coarse

resolution (10×10 m), are free and flat-covering the whole region of interest. Therefore, Sentinel-

2 data can be the first step to explore the practical applicability of remote sensing technologies in

aquatic vegetation mapping.

With the current situation stated above the research objectives are:

1. To classify aquatic plant species in Randmeren using Sentinel-2 satellite images, estimate its

interpretation and classification accuracy of aquatic plant species by using field observations

as validation data and then discuss whether Sentinel-2 data can be an alternative of mapping

and monitoring aquatic vegetation.

2. To compare the performance and cost-efficiency of Sentinel-2 images, airborne multispec-

tral images and airborne hyperspectral images. Since airborne images only cover small parts

of Randmeren, they are not used for classification all plant species, but for the comparison

of feature quality, segmentation quality with satellite images at locations that they are over-

lapped. Then discuss the potentials and possibilities that whether and on which aspects two

types of airborne images can improve the classification accuracy.

1.6. Research questions

1. What are the unique properties to discriminate aquatic plant species?

2. Can we extract those unique properties from Sentinel-2 images?

3. What classification result can Sentinel-2 images yield?

4. Are field data necessary in remote sensing techniques?
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5. To what extent do spectral and spatial resolution influence the classification result respec-

tively?

6. Can Sentinel-2 data be an alternative to airborne images?

7. Can remote sensing techniques be used for the large water bodies as a tool to achieve faster

and more efficient monitoring of the vegetation?

1.7. Outline

Chapter 2 explains background of remote sensing and processing techniques that are related to

this project. Chapter 3 gives detailed description of materials and methods we used. Chapter 4

describes the results from those methods in detail. The results are discussed in chapter 5 and a final

conclusion with answers to the primary research questions and recommendations for future works

are given in chapter 6.



2
Background

2.1. Field surveys and sampling methods

2.1.1. Sampling design

An appropriate sampling design makes sure that collected data are suitable for quantifiable analy-

ses (Madsen and Wersal, 2012). The most common sampling designs for ecological data are random

sampling, stratified sampling, and systematic sampling as shown in figure 2.1. The completely ran-

dom design removes biases caused by the subjective selection of sampling locations. However, the

points selected from this method may be placed in inaccessible areas and thus the completely ran-

dom design is not suitable for large water bodies. A stratified random design places sample locations

in homogeneous sections which are typically divided by a stream channel. In each section, points

are randomly distributed. The systematic sampling design places sample locations based on a grid

and covers the entire water body.

(a) completely random (b) stratified random (c) systematic designs

Figure 2.1: Common sampling designs (Madsen and Wersal, 2012)

7
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2.1.2. Sampling methods

Field surveys are conducted based on a given sampling design. Methods can be quantifiable and

non-quantifiable. Visual observation above water surface is the simplest way to estimate aquatic

plant cover. This method, however, is non-quantifiable, subjective and highly variable among ob-

servers. Two common quantitative methods are point intercept and line intercept. Examples are

shown in figure 2.2. Point intercept is designed to avoid subjectivity, by making measurements at

pre-selected and regularly spaced grid points, with the help of a Global Positioning System (GPS)

and Geographic Information Systems (GIS) technologies. On each point a plant rake is used to sam-

ple submerged vegetation; floating and emerged vegetation are recorded as well. The grid interval

between points depends on the size of study sites (Madsen, 1999). Line intercept method is similar

to the point intercept method, however, with transects to collect data. Line intercept method re-

quires less technology than the point intercept method. Generally, several transects are deployed in

the study area to determine the percent occurrence of the species in the plant community. The point

intercept survey works well to estimate the cover and distribution of submerged plants in whole lake

monitoring (Hauxwell et al., 2019). However, the line intercept can be more effective in monitoring

and assessing emerged and floating plants in small areas as their distributions are typically more

concentrated than submerged plants. RWS uses the grid-based point intercept methods for regular

monitoring and details will be explained in chapter 3.

(a) Point intercept

(b) Line intercept

Figure 2.2: Two common quantitative methods1

1https://www.webpages.uidaho.edu/veg_measure/Modules/Lessons/Module%208(Cover)/8_3_

Points.htm

https://www.webpages.uidaho.edu/veg_measure/Modules/Lessons/Module%208(Cover)/8_3_Points.htm
https://www.webpages.uidaho.edu/veg_measure/Modules/Lessons/Module%208(Cover)/8_3_Points.htm
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2.2. Remote sensing principles

2.2.1. Optical remote sensing

Optical remote sensing takes images of the earth’s surface by detecting the solar radiation reflected

from materials on the ground, as illustrated in figure 2.3. The solar radiation is measured by use of

visible, near infrared (NIR) and short-wave infrared (SWIR) sensors, as shown in figure 2.4. Materials

with different attributes such as surface texture, color, and structure may have different reflectence

patterns at different wavelengths. Thus, unique spectral reflectance signatures of different types of

materials can be extracted in the remotely sensed images.

Figure 2.3: Illustration of remote sensing principles

2.2.2. Remote sensing imagery

Remote sensing data are available from a range of sources and data acquisition techniques, which

can be collected from the ground, the air using aircraft or from space using satellite. Both satellite

imagery and aerial photography provide rich sources of information of the earth surface.

Satellite Imagery
Satellites orbit around the earth continuously and are capable to map a large area in relatively small

amount of time. Satellite imagery can take images of anywhere on the earth without the need to

cross border or get access to restricted areas. Satellite data are often of a lower spatial resolution

than aerial photographs, as satellites are generally hundred kilometers above. Military satellite more

likely have a higher resolution but this imagery has not become publicly available. Most satellite im-

agery is between 5m and 1000m in resolution (Liang et al., 2012). Due to the position in orbit and
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Figure 2.4: The electromagnetic spectrum

large scale of area covered, satellites have more weather conditions to cope with than aerial photog-

raphy. Another problem is that when improved technology is released it is hard to change sensors

in satellites in orbit. The cost of satellite data is straightforward and there are lots of satellite data

freely available. Satellite imagery is cost-effective is often used by governments, large corporations

and educational institutions for large-scale scientific applications.

Aerial Photography
Aerial photography is a time consuming process as an airplanes fly back and forth to take over-

lapping images. Traveling time and procedure of getting access procedure in some cases may also

cause a delay for airborne data acquisition teams. Aerial photography has its advantage of being

closer to the subject, as the flying height can be adjusted according to the required level of detail.

The pixel size can be 1-3m or less. High-resolution imagery, however, also requires a suitable system

for storing a complete collection of images, and the ability to handle the large data files and process

them. Aerial photography can wait for an improved weather and post-processing stage can rectify

effects from thin or high level cloud. Latest cameras or sensors can be utilized easily in aerial pho-

tography. The cost of aerial photography depends on many variables such as location, resolution

and accuracy (Buchroithner, 2000). Thus, aerial photography is suitable for small-scale commercial

applications due to its high cost per unit area of ground coverage (Buchroithner, 2000).

2.2.3. Data characteristics

Spatial, spectral and temporal resolutions are main qualities of remote sensing data.

Spatial resolution represents the square area on the ground that each data point covers. It describes

how much detail in an image is visible to human eyes. Smaller pixels in a raster image show more
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details on the ground, while larger pixels appear more coarse. High resolution is suitable for texture

analysis. For instance, Tsai and Chou (2006) took advantages of high resolution (2m and 0.61m)

satellite images to extract texture features for the detection of invasive plant species.

Spectral resolution refers to the spectral width of a dataset that contains a certain number of spec-

tral bands. For instance, the sensor of panchromatic imagery is a single channel detector and the

resulting image contains only one band. Multispectral images that usually contains a few spectral

bands are created using a multichannel detector. Hyperspectral imagery acquires images in hun-

dreds of continuous spectral bands. These narrow numerous can show subtle variations in reflected

energy across the entire electromagnetic spectrum. Therefore, hyperspectral images shows more

spectral characteristics of vegetation than multispectral images (Adam et al., 2010).

Temporal resolution refers to the amount of time needed to revisit and acquire data for the exact

same location. In the case of the Sentinel-2 satellites, the temporal resolution is five days, while

aerial photography is generally one-time operation.

2.2.4. Data preprocessing

Preprocessing is a crucial step and normally conducted prior to the main data analysis and varies

depending on the type of sensor used. Below are common preprocessing steps:

Geometric correction corrects platform distortions due to the movement and noise and improve

the positional accuracy of images. Real world coordinates and relating information are embedded

into raw images in the georeferencing process.

Radiometric calibration takes into accounts directional measurements such as the position of the

sensor and the sun, irradiance measurements and camera model (Kobayashi and Sanga-Ngoie,

2009). These considerations are intended to interpret the digital values as physically meaningful,

quantitative value like radiance or reflectance.

Atmospheric correction eliminates the effects of atmospheric scattering on energy measured by

sensors and determines the true surface reflectance values (Hadjimitsis et al., 2010).

2.3. Spectral properties of vegetation

The solar radiance, emitted from the Sun hits a target on the ground and then is transmitted, ab-

sorbed or reflected. The characteristics of the reflectance behaviors vary among different groups

of photosynthetic organisms in the visible and near infrared spectral region (Kiang et al., 2007).

Satterwhite and Henley (1990) studied the spectral curves of vegetation, soils, rocks, and human -

made materials and demonstrated their unique spectral properties. Generally, the reflectance of

vegetation is relatively low in the visible region. This feature is caused by plant pigments such as

chlorophyll. Chlorophyll strongly absorbs energy in the blue and red wavelengths and reflects more
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green wavelengths. That is the reason why human eyes perceive healthy vegetation as green. In

the near infrared region, the reflectance is much higher due to the cellular structure of the leaves,

specially mesophyll. Thus, vegetation can be identified by the high NIR reflectance and low visible

reflectance. In the shortwave infrared wavelengths, the reflectance refers to the water content of the

vegetation and its structure. Water absorbs light at wavelengths around 1.45, 1.95 and 2.50 µm. The

characteristic of reflectance patterns is illustrated in figure 2.5. Clear water can be easily recognised

due to the high absorption of wavelengths longer than 0.8 µm. Therefore, aquatic plants are distin-

guishable from water body and plant species can be identified if the spectral resolution of remote

sensing data is sufficient to distinguish its spectrum from those of other species.

Figure 2.5: Vegetation spectral reflectance curves2

The use of appropriate features to differentiate plant species is fundamental for classification prob-

lems. From the literature review, the use of vegetation indices is dominant method for interpreting

aquatic vegetation properties from remote sensing data. Vegetation indices combine reflectance in

two or more spectral bands to model plants. Vegetation indices accentuates the spectral properties

of green plants and serve as a good spectral feature for differentiating plant species. For example,

Tian et al. (2010) differentiated aquatic plant communities using Normalized Difference Vegeta-

tion index (NDVI), near-infrared (NIR)-Green Angle index (NGAI) and normalized water absorption

depth (DH) and achieved an overall accuracy of 79%. Ma and Zhou (2018) constructed indices such

as Slope index and Angle index and shown better performance than conventional vegetation in-

dices.

2http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson2-1/vegetation.html

http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson2-1/vegetation.html
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2.4. Influence of water depth and turbidity

The distinctive spectral characteristics of plant species has been used to develop vegetation indices.

With the advance of remote sensing imagery, plant species are distinguishable by extracting vege-

tation indices from high-quality remote sensing images. Aquatic plants and their spectral charac-

teristics, however, may not as easily distinguishable as terrestrial vegetation because the overlying

water interferes with the vegetation signals. The energy from the sun is partially absorbed by wa-

ter and the reflectance from aquatic plants underwater is scattered from water column. Lyzenga

(1978) proposed a model called Depth Invariant Index (DII) to reduce the effect of light attenuation

in the water column. This technique has been tested on various water environment using vari-

ous imageries with satisfactory accuracies. However, Manessa et al. (2016) pointed out that the DII

method is not capble to remove the water column effect in complex shallow water environments.

A slight water quality variation (0.2-0.25 mg/m3) shows an significant effect on the performance of

the DII model. Sagawa et al. (2010) proposed a new index for radiometric correction called Bottom

Reflectance Index (BRI). The BRI overcomes the problem of DII when transparency decreases. The

BRI utilizes attenuation coefficient of each band in different depths. These coefficients are mea-

sured by Profiler Reflectance Radiometer. In his experiments, Sagawa proved that BRI improved

the accuracy of DII from 65% to 83% in the same case study. Turbidity, an water quality indicator,

is caused by suspended organic and non organic sediments, and chlorophyll, etc. Water turbidity

physically block the penetration of irradiance through the water column. Suspended sediments in-

crease the radiance emergent from water surface in the visible and NIR spectrum (C Ritchie et al.,

2003). Chlorophyll-a is an indicator of algae bloom. Algae floats on above underwater plants, which

makes monitoring aquatic plants more difficult. A number of publications have studied water qual-

ity monitoring using remote sensing images (Arabi et al., 2016; Perivolioti et al., 2016). However, the

literature on removing the spectral impacts of water turbidity is still scarce.

2.5. Texture features

When classifying individual plant communities, spectral features are usually used without consid-

ering mixed plant communities. Some studies have presented the efficiency of texture for inter-

preting the internal construction of different regions and improving vegetation classification accu-

racy (Wang et al., 2018). Texture features give us community structure information about specific

region, not only colors, but the spatial arrangement of the colors or intensities. The Grey Level

Co-occurrence Matrix (GLCM) is a commonly used texture operator and has been successfully ap-

plied to vegetation classification (Maillard, 2005). GLCM computes spatial relationship of pixels by

extracting statistical measures (contrast, correlation, entropy, homogeneity) (Haralick et al., 1973).

Local Binary Pattern (LBP) is a powerful visual descriptor and is widely used in computer vision

applications, such as pedestrian detection (Yang et al., 2012) and crowd density estimation (K Pai

et al., 2017). LBP analyses the grey value changes between a pixel and its neighbours, rather than
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following one pixel in a particular direction. Studies applying LBP to the field of vegetation clas-

sification also shown great performance and got 85% overall accuracy (Wang et al., 2018). Gabor

filters, claimed to be similar to human visual systems, are orientation-sensitive filters. Gabor Fil-

ters can effectively characterize repetitive structure in the Fourier domain. Chaki (2012) classified

plant species by discriminating leaf shapes using Gabor filters. As the Gabor filters usually cover

all possible orientations and produce large feature size, this technique also requires dimensions

reduction.

2.6. Managing high dimensionality of feature space

Combining multiple texture features may cause high-dimensional mathematical problems. Dealing

with these problems requires high computational time and the large amount of memory. More

feature do not necessarily improve classification accuracy. In some cases, as the number of feature

grows, the performance of our classifier would actually be degraded, if there are only a fixed number

of training samples . This phenomenon is illustrated in figure 2.6.

The high dimensionality problem has pushed usage of dimensionality reduction techniques (Jin-

dal and Kumar, 2017). Dimensionality reduction techniques aim at reducing or transforming the

original feature space into another space of lower dimensionality. Principal Component Analysis

(PCA) is a well-known dimensionality reduction technique. PCA uses an orthogonal transformation

to transform original features into lower dimensional feature space by linearly combining original

features. These new set of features are known as principle components and are uncorrelated. The

first principal component has the largest possible variance. PCA is sensitive to the scale of features.

Minimum Noise Fraction (MNF) transformation was first introduced by Green et al. (1988) as an ex-

tension of PCA. MNF is invariant with respect to scale changes in features. Studies have shown that

MNF performs better than PCA in hyperspectral imagery denoising, as MNF maximizes the ratio of

the signal to noise while PCA not necessarily (Ibarrola et al., 2017; Luo et al., 2016).

2.7. Image segmentation

Differentiating plant species in aquatic environments by traditional pixel-based image classifica-

tion may be challenging. First, heterogeneity in local pixel values, spectral similarities among plant

species and variable water transparency and often lead to noises in discrimination of classes (Wang

et al., 2004). Second, 10-60 m resolution Sentinel-2 data is insufficient to detect fine-scale aquatic

plant features and community boundaries; and mixed spectral reflectance pattern of different com-

munities at pixel scales may reduce classification accuracy (C. Frohn et al., 2009; Dronova, 2015).

Finally, pixel-based approaches may be limited by the lack of ecologically meaningful information

on spatial context and class neighbourhood relationships in the pixel scale (Autrey and Reif, 2011).

3http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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Figure 2.6: As the dimensionality increases, the classifier’s performance increases until the optimal

number of features is reached. Further increasing the dimensionality results in a decrease in classi-

fier performance.3

In recent years, image segmentation has become popular in image classification, as a number of

studies have proven to have better results than that from the pixel-based image analysis (Blaschke,

2010). Segmentation is a process that partitions an image into non-overlapped segments in image

space by considering reflectance values, texture features and locations. Individual plant commu-

nities are expected to be segmented as individual segments by incorporating both texture variables

and spectral values. Local variations can be smoothed by which noise can be relatively reduced

(Kim et al., 2011).

There are three strategies for segmentation: Point-based segmentation; Edge-based segmentation

and Region-based segmentation. In point-based segmentation, pixels are allocated to segments

by applying threshold operations, which combine pixels that are similar in the range of values in

which a pixel lies. However, this strategy is not suitable for remote sensing data, due to the varying

reflectance within the image. Edge-based segmentation uses edge-detection algorithms. Pixels that

are completely surrounded by edges are allocated to a segment. This strategy results in two types of

pixels: edge pixels and segment pixels. Small segments may end up with complete edge pixels. Thus

this strategy is not suitable in areas with varying density vegetation. Region-based segmentation

splits entire image into lots of small polygons, then separate polygons are interatively merged to one

segment as long as it satisfies the homogeneity criteria. In remote sensing applications, this criteria

looks at the spectral homogeneity. In our project, region-based segmentation was adopted and

processed in QGIS. The software QGIS will be introduced in detail in the end of this chapter.

Image segmentation has been used in machine learning techniques. Features can be extracted from

segments or sliding windows and then serve as input of the classifier (Cheng and Han, 2016). Com-
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monly used features in remote sensing applications are reflectance, vegetation indices, and texture

features. Reflectance is digital value from satellite or airborne images that have been calibrated and

atmospherically corrected as described in section 2.2.4. Vegetation indices are spectral character-

istics of different materials, as described in section 2.3. Texture features refers to the appearance

of a segment given be the shape, density and spatial arrangement, including GLCM and LBP. In

segment-level feature extraction, spectral features are processed as statistics, including mean, stan-

dard deviation and moments (Li et al., 2010; Wood et al., 2012); arbitrary-shaped segments are ex-

tended to rectangular area by padding zero or mean value when extracting texture features (Li et al.,

2010). The feature vector of each segment serves as an input of the classifier. In sliding-window fea-

ture extraction for vegetation mapping, features are extracted for individual pixels. For each pixel,

its features are extracted in a user-defined window size such as 7×7 (Murray et al., 2010). The win-

dow is moving until features of all pixels are extracted (Wang et al., 2018). The feature vector of each

pixel serves as an input of the classifier.

2.8. Classification of aquatic plant species

Various supervised classifiers have been used to classify aquatic plant species. The Maximum Like-

lihood (ML) classifier calculates the likelihood that a pixel belongs to a specific class and assigns

the pixel to the class with maximum probability (Pande-Chhetri et al., 2014). The Support Vector

Machine (SVM) maps input data from the initial space to a usually significantly higher dimensional

space, then find hyperplanes with the largest margin to separate from the whole training data (Li

et al., 2010). The Spectral Angular Mapper (SAM) calculates the angle between the two spectra and

compares the angle with reference spectrum, and assigns the pixel to the reference class that yields

the smallest angle (Kruse et al., 1993; Pande-Chhetri et al., 2014). Random Forest (RF) classifier is an

ensemble classifier based on a large number of decision trees, in which each tree contributes one

vote, and the final classification results are obtained by maximum voting (Zhou et al., 2018). Pande-

Chhetri et al. (2014) found that SVM and SAM performed better than the traditional ML classifier

in classifying (of 10% higher accuracy) and detecting (of 20% higher accuracy) aquatic vegetation.

The choice of classifiers is very important for the identification of vegetation classes. The RF classi-

fier has shown to be able to achieve high classification accuracy even when applied to analyze data

with stronger noise (Breiman, 2001; Dietterich, 2000). This advantage can be beneficial for large wa-

ter bodies with various local conditions. These noise, on the other hand, may affect the process of

selecting the SVM hyperparameters and further decrease the SVM performance (Nalepa and Kawu-

lok, 2018). Therefore, we are going to explore the possibilities of RF classifier for aquatic vegetation

mapping application.
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2.9. QGIS

QGIS is a free and open-source geographic information system (GIS) desktop application4 with a

graphical user interface. QGIS can be used to display map layers of the real world such as forests

or lakes; embed spatial information into non-geographical images; edit and analysis geographical

images. QGIS supports many types of data, such as vector data and raster data. Vector data is used

to represent points, lines and areas in a certain Coordinate Reference Systems (CRS) such as using

latitude and longitude data. Raster data consist of grid cells from aerial photography or satellite

imagery, where each cell contains information such as reflectance. Web services, open-source GIS

packages, including GRASS GIS, and MapServer, and many APIs such as Python, C and GDAL are

also integrated into QGIS.

2.9.1. Raster analysis

QGIS allows various analysis based on rasters. For example, calculations based on existing raster

pixel values, such as vegetation indices calculations, can be performed in Raster Calculator func-

tion. Several raster inputs can be re-projected to the same CRS and resampled to the same cell size

or spatial resolution. In QGIS, users can also do conversions between vectors and rasters; create

polygons from a raster and export shapefiles; and clip regions of interest using coordinates or a

mask layer.

2.9.2. Semi-Automatic Classification

The Semi-Automatic Classification Plugin (SCP) is a free open source plugin for QGIS. It provides

several tools for the download of free and commonly used satellite images (Landsat, Sentinel-2,

Sentinel-3, ASTER, MODIS). It also allows preprocessing and classifications of satellite images.

2.9.3. GRASS GIS

GRASS GIS is also a Geographic Information System (GIS) software and can be integrated in QGIS.

Generally, QGIS more focuses on simple raster calculations and visualization, while GRASS GIS is

more suitable for larger scientific data computations, such as segmentation.

4https://en.wikipedia.org/wiki/QGIS

https://en.wikipedia.org/wiki/QGIS


3
Materials and Methods

3.1. Study area

The Randmeren, also called border lakes in English, are a series of lakes around the Flevopolder

that aim to isolate the water management of the polder from the surrounding land. The Randmeren

consist of the following lakes: IJmeer, Gooimeer, Eemmeer, Nijkerkernauw, Nuldernauw, Wolder-

wijd, Veluwemeer, Drontermeer, Vossemeer, Ketelmeer, Ramsdiep, Zwarte Meer, Kadoelermeer and

Vollenhovermeer1. Rijkswaterstaat (RWS) takes responsibility to maintain the clearness and avoid

full spread in Randmeren based on European law requirements. Regular monitoring is carried out

in the Randmeren every three years. Every time the field survey spends two months. This workload

makes it impossible to detect the dynamic vegetation changes during the year. The Randmeren

was selected as our study area because there is a need to improve the monitoring efficiency. The

whole Randmeren measure 60 kilometres length and 49.8 kilometres width. The water transparency

ranges from 0.2 m to 7.3 m with average transparency of 1.1 m. Figure 3.1 shows the region of inter-

est highlighted in dark orange. As the Randmeren consist of several water bodies, local water quality

varies a lot. For instance, the avergae water depth of Veluwemeer is 1.55 m. It is fairly shallow and

crystal clear; while water in Eemmeer east is often fully covered by algae which makes the water

turbidity higher than Veluwemeer.

3.2. Field data

The current vegetation survey is conducted by Rijkswaterstaat every three years from mid June to

mid July. Systematic sampling design was applied in this field survey. 2889 study plots were selected

1https://nl.wikipedia.org/wiki/Randmeer_(water)
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Figure 3.1: The region of Flevoland is highlighted in light orange in upper left map of Netherlands.

The study site is highlighted in dark orange. Island area have been masked.

in 2018. These point measurements were carried out on a fixed grid of 200 * 200m, where after a

number of empty observations the edges were not measured any further. Each plot covered 1× 1

square meter, as illustrated in figure 3.2. For each plot, the field survey team recorded its coordi-

nates in Amersfoort coordinate system, water depth, water transparency, cover of 31 plant species

and total vegetation cover. The total vegetation cover of all plots and distribution of all aquatic

plant species were visualized as shown in figure 3.3. There are four dominant species: Doorgroeid

fonteinkruid (DF), Kransblad (KB), Draadwier and Schedefonteinkruid. DF and KB grow the whole

water column, which makes shipping harder. Therefore, mapping and monitoring these species is

urgent and significant.

Figure 3.2: The red blocks represent the study plots. Each study plot cover 1×1 square meter. The

black lines represent the grid where these plots were carried out. All these plots have a fixed distance

of 200 m with their neighbor plots.
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(a) The total cover of each plot ranges from 0 to 100 percent. For veluwemeer region, only edge area

were recorded, with knowledge that inner area were also 100 percent covered by the same species.

(b) For mixed plots, species with maximum cover were assigned. The blue, red, green and yellow

area represent the dominant species: Doorgroeid fonteinkruid, Kransblad, Draadwier and Schede-

fonteinkruid.

Figure 3.3: Field observations
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A comparison of the field observations in 2015 and 2018 is shown in figure 3.4. In order to view

changes clearly, a linear interpolation was utilized. Vegetation cover has extended severely in these

three years, especially in two end of Randmeren. Site 1 and site 2 were dominant by Doorgroeid

fonteinkruid and Kransblad respectively. They are submerged plants that grow up through water

column. Explosive growth of these two species may interfere with the movement of boats and im-

pede the flow of water.

(a) 2015 Randmeren (b) 2018 Randmeren

(c) 2015 site1 (d) 2018 site1

(e) 2015 site2 (f) 2018 site2

Figure 3.4: Comparison of total vegetation cover in 2015 and 2018
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3.3. Remote sensing data

The data was collected on two platforms: satellite and airplane. For satellite images, the product

of Sentinel-2 satellites was selected as it was not only of high quality and covered the whole Rand-

meren, but also freely available. Especially when airborne images were only collected from two test

locations and not sufficient for large area study, Sentinel-2 data gave the chance to provide a rough

view of the efficiency of remote sensing technologies on aquatic vegetation mapping. Airborne data

collection and processing were done by DRO Remote Sensing, a Dutch company that is specialised

in acquisition and processing of aerial photos using drones and from manned aircraft. Eemmeer

and Veluwemeer were chose as test locations for this pilot, due to the cost, time and access con-

straints to flying over large open area. Two types of airborne images was collected: hyperspectral

images and multispectral images. The file size of both two types of airborne images is very large,

which makes storage and processing more difficult than satellite images. The extent of sentinel-2

and two types of airborne images is demonstrated in figure 3.5. Tables below provide an overview

of the data collected (table 3.1), the sensor characteristics used (table 3.2) with a general summary

of the advantages and disadvantages of the characteristics of these data sources. The images from

each source have their own characteristics and data processing methods, which will be described in

detail below.

Platforms Datasets Camera Time of collection Collected area
Number

of bands
Coordinate systems

Satellite Sentinel-2 images MSI
2018-07-02

Randmeren 13
WGS84/ UTM zone 31N

EPSG: 326312018-08-06

Airplane
Multispectral images

CanonEOS-100D
2018-08-03

Parts of the Eemmeer

and Veluwemeer
4

WGS84/ UTM zone 31N

EPSG: 32631SONY ICX445

Hyperspectral images
Sony

IMX_273
2018-08-03

Small parts of the Eemmeer

and Veluwemeer
288

WGS84

EPSG: 4326

Table 3.1: Basic information regarding the data sources per platform

Camera Wavelength Resolution Advantages Disadvantages

MSI
13 bands:

443-2190nm
10m,20m,60m Large range of wavelengths Low resolution

CanonEOS-100D 3 bands:RGB 0.2 - 0.5m
High resolution Limited amount of bands

SONY ICX445
1band:

Near infrared
0.5 - 1.3m

Sony IMX_273
288 bands:

449-944 nm
1.2 - 2m Having a higher level of spectral detail Not suitable for large areas

Table 3.2: Detailed information about the cameras used

3.3.1. Sentinel-2 images

The Sentinel-2 mission comprises a constellation of two polar-orbiting satellites placed in the same

sun-synchronous orbit, phased at 180° to each other, launched as part of the European Commis-
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Figure 3.5: The yellow frames show the extent of hyperspectral images. ’hyper 1’ represents the hy-

perspectral image that was collected in Eemmeer and ’hyper 2’ represents the hyperspectral image

that was collected in Veluwemeer. The red frames show the extent of multispectral images. ’multi 1’

represents the multispectral image that was collected in Eemmeer and ’multi 2’ represents the mul-

tispectral image that was collected in Veluwemeer. The background image was clipped from the

True Colour Image (TCI) built from the B02 (Blue), B03 (Green), and B04 (Red) Bands of Sentinel-2

data, which covered the whole region of interest.

sion’s Copernicus program on June 23, 2015. The mission provides a global coverage of the Earth’s

land surface (within the latitude range of -56º to +83º) every 10 days with one satellite and 5 days

with 2 satellites, which allows to reach a 5-day revisit time and makes the data of great use in on-

going studies. The satellites are equipped with a Multispectral Instrument (MSI) of a 290 km wide

swath. The Sentinel-2 mission offers 13 spectral bands from visible light, via near-infrared (NIR) to

short wave-infrared (SWIR) with different resolutions varying from 10 to 60 meters on the ground as

shown in table 3.3. The Sentinel-2 data are georeferenced in UTM/WGS84 projection. The launch

of Sentinel-2 satellites aims at land management (inland waterways and coastal areas), agricultural

production and forestry, and monitoring of natural disasters.

The Sentinel-2 data were acquired from July 2 and Aug 6, 2018. Data from August were only used
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for testing purpose. This is to estimate the applicability of our approach on future days because

data from the future cannot be used in the training process of our model. The sentinel-2 data were

downloaded from EarthExplorer for free. The Sentinel-2 data here had been processed in Level-1C.

Level-1C processing includes radiometric and geometric corrections along with ortho-rectification

to generate highly accurate georeferenced products. Figure 3.6a shows the example of True Color

Image (TCI) of Sentinel-2 data and the area in the red frame was the region of interest in this study.

All the 13 bands were clipped into this area and resized to 10m resolution of 4800× 6000 dimen-

sions(figure 3.6b).

Band

name

Resolution

(m)

Central

wavelength(nm)

Band

width(nm)
Purpose

B01 60 443 20 Aerosol detection

B02 10 490 65 Blue

B03 10 560 35 Green

B04 10 665 30 Red

B05 20 705 15
Vegetation

classification

B06 20 740 15
Vegetation

classification

B07 20 783 20
Vegetation

classification

B08 10 842 115 Near infrared

B08A 20 865 20
Vegetation

classification

B09 60 945 20 Water vapour

B10 60 1375 30 Cirrus

B11 20 1610 90
Snow / ice /

cloud discrimination

B12 20 2190 180
Snow / ice /

cloud discrimination

Table 3.3: Overview of 13 bands information in Sentinel-2 data

3.3.2. Airborne multispectral images

To capture the multispectral images, three separate cameras were used simultaneously to capture

the multispectral images: an RGB camera and two separate cameras for the NIR 735 and NIR 850

bands. The RGB images were taken with a Canon EOS-100D camera with a 24 mm lens.

https://earthexplorer.usgs.gov/


3.3. Remote sensing data 25

(a) Sentinel-2 images cover very large area, the region used in this study is indicated in the red frame

and other areas were ignored.

(b) Sentinel-2 data: all the 13 bands have been clipped into the same region.

Figure 3.6: Sentinel-2 images
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The images were captured with a fixed exposure time of 1ms and automatic ISO and F number

adjustment. The NIR 735 and NIR 850 images were taken with a SONY ICX445 camera with a 6 mm

c-mount lens and an F8 aperture setting. The images are georeferenced in UTM/WGS84 coordinate

system by time synchronization with GPS data. Separate overlapping images were stitched together

with the help of georeferencing. The raw RGB images were then binned 3x3 to lower the resolution

and increase signal to noise ratio. GPS positions were synchronised with capture time and imported

for mapping with Pix4D. Pix4d processed the orthomosaic maps and finally exported them as Geo

TIFF images. The 12 bit raw NIR images were exported to 16 bit gray-scale tiff images together with

their GPS positions to be imported for mapping with Pix4D. Pix4D processed the orthomosaic maps

and finally exported them as Geo TIFF images.

Airborne multispectral images in Eemmeer and Veluwemeer are shown in figure 3.8. The blank

areas inside the multispectral images in Eemmeer was caused due to difficulties in stitching NIR735

image with super dark area or large difference in signal between the banks and the water. Table 3.4

gives information about resolution and dimensions in detail. As we can see, the resolution varies as

it depends on the altitude that was flown and the flight height was about 300 m for the Eemmeer and

about 500 m for the Veluwemeer. The resolution of the images is on average about 0.22×0.22 m for

the RGB bands in the Eemmeer and 0.5×0.5 m in the Veluwe due to the flight height, which differed

for the Eemmeer and the Veluwemeer. For the 735 nm, a resolution of approximately 0.4× 0.4 m

was achieved in the Eemmeer and 1.3×1.3 m in the Veluwemeer. Because the airplane flew higher

above Veluwemeer, it was also easier to pitch the images and therefore the 850nm band could also

be stitched.

3.3.3. Airborne hyperspectral images

The hyperspectral camera selects the middle scan line from a 2D image using an entrance slit in

the camera. This thin strip of light is broken down in the camera by a prism on a spectral axis. 500

scan lines are collected with a shutter speed of 60 images per second. This creates a hyperspectral

data set containing 2 spatial axes and 1 spectral axis. Data of these 500 scan lines were then split

into 288 bins ranging from 449 nm to 944 nm as 288 bands in total. The resolution of these images

is, depending on the flown height, between 1×1 and 2×2 meters, as shown in table 3.5. The hy-

perspectral images were collected for small parts of the Veluwemeer and Eemmeer to see whether

the vegetation types could be better distinguished with these images than with the multispectral

cameras. Figure 3.9 shows an example of this data in a gray-scale image. The image is somewhat

distorted, which is the characteristic of these images because a line-scanner hyperspectral camera

has been used, and is caused by the pitch and roll of the aircraft. The hyperspectral data is not

presented as radiometric output. To normalize the hyperspectral data the data had been processed

to relative spectral reflection with the use of a white reference. The Relative Spectral Reflection is
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Locations Wavelength Spatial resolution Dimensions

Eemmeer

Eemmeer west
RGB 0.2296m

X:57067

Y:29665

Bands: 3

735nm 0.56873m

X:16398

Y:12493

Bands: 1

Eemmeer east
RGB 0.22527m

X:47224

Y:18433

Bands: 3

735nm 0.27955m

X:37278

Y:15672

Bands: 1

Veluvemeer

RGB 0.5m

X:20899

Y:20363

Bands: 3

730nm 1.30673m

X:8468

Y:9362

Bands: 1

850nm 1.30016m

X:8305

Y:9045

Bands: 1

Table 3.4: Overview of airborne multispectral images(the resolution differs as it depends on the flight height.)

processed as follows:

Rel ati ve Spectr al Re f l ect i on = (RawDat a −Dar kLevel )

(W hi teRe f Dat a −Dar kLevel )
(3.1)

Locations Wavelength Spatial resolution Dimensions

Eemmeer 449-944nm 1.97124m

X: 1079

Y: 943

Bands: 288

Veluvemeer 449-944nm 1.23193m

X:1801

Y:998

Bands: 288

Table 3.5: Overview of airborne hyperspectral images(the resolution differs as it depends on the flight height.)
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(a) RGB bands (b) NIR735 band

Figure 3.7: Airborne multispectral images in Eemmeer of total 4 bands

(a) RGB bands (b) NIR730 band (c) NIR840 band

Figure 3.8: Airborne multispectral images in Veluwemeer of total 5 bands

(a) Hyperspectral images of 288 bands

in Eemmeer

(b) Hyperspectral images of 288 bands in

Veluwemeer

Figure 3.9: Airborne hyperspectral images in Eemmeer and Veluwemeer
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3.4. Methods

This section described our works in two parts. The first part is to compare the basic differences be-

tween Sentinel-2 data and airborne data. This part will give hints to the research question that

whether Sentinel-2 data can be an alternative to airborne data. Detailed approach is discussed

in section 3.4.1. The second part, which is also the main part of our work, describes classifica-

tion approaches in details in section 3.4.2-3.4.8. This part aims to answer the research questions

that whether we can extract unique properties from Sentinel-2 data and what classification results

Sentinel-2 data can yield, meanwhile, the contributions of spectral and texture features will also be

analyzed.

Part I

3.4.1. Remote sensing data comparison

Figure 3.10: Part I workflow of remote sensing data comparison

As general information of remote sensing data introduced in section 3.3, we have known that air-

borne multispectral data are of highest spatial resolution while airborne hyperspectral data are of

highest spectral resolution. Sentinel-2 data, however, are of moderate quality in both aspects. This

section aims to investigate whether these properties may lead to large differences on the perfor-

mance. Therefore, we compared spectral differences between Sentinel-2 and airborne hyperspec-

tral data, and spatial differences between Sentinel-2 and airborne multispectral data.

Figure 3.10 is the workflow of data comparison. The regions covered by airborne multispectral data

contain several classes, including water body, Pondweed, floating plants and Characeae. Four sites

were selected for spatial comparison in both Sentinel-2 data and airborne multispectral data.(figure 3.11).

As water, aquatic plants and island in veluwemeer were easier to be visually discriminated using
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hyperspectral data, a site in veluwemeer was selected for reflectance comparison with Sentinel-2

data(figure 3.12). Hyperspectral data in Eemmeer covered a smaller region than that in Veluwemeer,

the whole region that covered by hyperspectral data was selected for NDVI distribution comparison

with Sentinel-2 data.

(a) Sites in Eemmeer: the area highlighted in red

grew Pondweed; the area highlighted in blue con-

tained little vegetation and was regarded as water

body; the area highlighted in orange grew floating

plants.

(b) Sites in Veluwemeer: the area highlighted

in green grew Characeae.

Figure 3.11: Sites for spatial comparison: the background image is Sentinel-2 TCI while the front

image is airborne multispectral RGB image. The same sites were clipped from both Sentinel-2 data

and airborne multispectral data.

Figure 3.12: Sites for spectral reflectance comparison: this is a false color hyperspectral image. The

areas in these three yellow circles were water, island and aquatic vegetation respectively. The same

sites were clipped from both Sentinel-2 data and airborne hyperspectral data.
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Part II

Figure 3.13: Part II workflow of aquatic plant species classification

The overview of the methodology and workflow are presented in figure 3.13. The remote sensing

data we used were Sentinel-2 images, as airborne images only cover small parts of Randmeren and

are insufficient to differentiate all categories. The main methodological procedures are as follows:

(1) Process field data; (2) pre-process Sentinel-2 images by using the SCP plugin in QGIS; (3) par-

tition the Sentinel-2 images into meaningful segments by using GRASS GIS toolbox in QGIS, select

the optimal parameter and assign labels with the help of field samples; (3) extract spectral features

including reflectance and vegetation indices, and texture features including Local Binary Pattern

and Gabor filters; (4) normalize and reduce dimensions of reflectance and texture feature vectors
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respectively; (5) perform two classification tasks separately including vegetation class classification

and individual species detection, where in the first task both a supervised (Random Forest classifier)

and an unsupervised (K-means clustering) machine learning methods were applied and compared;

(6) assess the results using 5-fold cross validation, test pre-trained RF model using another date,

compare predicted map with map derived from segmentation using confusion matrix and analysis

the feature importance.

3.4.2. Field data processing

Figure 3.14 showed the occurrence of all recorded species. The occurrence was calculated by adding

percent of cover of each species in all plots. As we can see, Randmeren was mainly dominated by

a few species and most of the species have a very tiny cover which is insufficient to be differen-

tiated based on remote sensing data. Thus, study plots with less than 5% total vegetation cover

were regarded as water plots, with a total vegetation cover between 5% and 50% were regarded as

low density plants while study plots with more than 50% total vegetation cover were regarded as

the species with maximum cover. According to this rule, study plots were assigned by 20 specific

species, water and low density plants, as listed in table 3.6. Based on morphological properties and

amount of samples of these species, they are divided into six classes:

Figure 3.14: The x axis is the frequency of aquatic plant species and was calculated by the sum of

cover in all plots and then rounded to the nearest integer. The y axis is the plant species ranking

from lowest frequency to highest frequency.
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1. Water: of less than 5% total vegetation cover;

2. Low density plants: of total vegetation cover between 5% and 50%;

3. Floating plants: mainly consist of Darmwier and Draadwier from algae family;

4. Characeae family: mainly consist of Kransblad and Sterkranswier;

5. Submerged plants: mainly consist of Hydrocharitaceae and Pondweed families.

6. Pondweed family: mainly consist of Doorgroeid fonteinkruid.

Study plots of mixed plant communities were assigned only by the species with maximum cover. In

order to estimate the purity of each plot, average percent of the assigned species in total vegetation

cover of all plots were calculated, as explained in equation 3.2. The higher the purity is, the higher

the assigned species is concentrated in one plot, and the higher accuracy the plot is assigned with.

The purity ranged from 24% to 97% with the average of 70%.

Pur i t yspeci es = 1

n
·

n∑
i=1

Cassi g ned

Ctot al
(3.2)

where Cassi g ned represents the cover of assigned species in plot i , Ctot al represents the total vege-

tation cover in plot i , n is the number of plots that were assigned by the same species.

Kransblad in Characeae family and Doorgroeid fonteinkruid in Pondweed family are two species

that cause most problems. Therefore, we also classified Kransblad within Characeae family and

Doorgroeid fonteinkruid within Pondweed family respectively.

Species Family Number of samples Purity Groups Total number of samples in groups

Total vegetation<=5% 1042 Water 1042

5%<Total vegetation<50% 577 Low density plants 577

Darmwier Algae 28 0.62

Floating plants 219

Draadwier Algae 186 0.71

Gele plomp Water lilies 2 0.71

Pijlkruid Water-plantains 1 0.5

Watergentiaan Water lilies 2 0.97

Boomglanswier Characeae family 1 0.4

Characeae family 509Kransblad Characeae family 410 0.88

Sterkranswier Characeae family 98 0.82

Aarvederkruid Haloragaceae 55 0.68

Submerged plants 136

Brede waterpest Hydrocharitaceae 12 0.6

Grof hoornblad Hornwort 4 0.66

Smalle waterpest Hydrocharitaceae 12 0.8

Snavelruppia Ruppiaceae 2 0.95

Waternetje Algae 51 0.81

Doorgroeid fonteinkruid Pondweed family 190 0.84

Pondweed family 406

Gekroesd fonteinkruid Pondweed family 1 0.24

Puntig fonteinkruid Pondweed family 4 0.63

Schedefonteinkruid Pondweed family 106 0.68

Tenger fonteinkruid Pondweed family 88 0.74

Zannichellia Pondweed family 17 0.73

Table 3.6: Overview of field samples.
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The coordinate system of these samples was converted from Amersfoort to UTM/WGS84. Thus

these samples were in the same coordinate system as Sentinel-2 images. Within 13 bands of Sentinel-

2 data, there are three resolutions, including 10 m, 20 m and 60 m. Bands that are larger than 10 m

were resized to 10 m-resolution. Then we could locate these samples in Sentinel-2 images. The

coverage of one field sample plot was 1 square meter and the coverage of one pixel in Sentinel-2

images was 10 square meters. One pixel could only contain at most one field sample, based on the

knowledge that samples were collected on the grid of 200 square meters. Therefore, we assumed

that the whole area of 10 square meters contained the same plant species as field samples indicated

in individual pixels, and there were 2889 labeled pixels in total;

3.4.3. Image Preprocessing

Sentinel-2 product are already processed in Level-1C, including radiometric and geometric correc-

tions using a Digital Elevation Model (DEM) when it is released, together with a metadata file con-

taining details about the scene and bands. Semi-Automatic Classification (SCP) Plugin in QGIS of-

fers further preprocessing of Sentinel2 images. SCP was applied to convert all bands from radiance

to reflectance. In addition, Dark Object Subtraction (DOS) was also applied all 13 bands with the

help of the information in the metadata file. The DOS is a simple empirical atmospheric correction

method for satellite imagery, which assumes that reflectance from dark objects includes a substan-

tial component of atmospheric scattering. It searches each band for the darkest pixel value. The

scattering is removed by subtracting this value from every pixel in the band. This simple technique

is effective for haze correction in multispectral data.

3.4.4. Image segmentation

Image segmentation identifies meaningful objects over the remote sensing image and is a critical

procedure in the workflow of OBIA. The segmented objects are groups of adjacent pixels that de-

scribe particular regions. In case of aquatic environment it could be a region dominated by float-

ing plants or a clear water body for example. In this project, segmentation was done by apply-

ing GRASS GIS. GRASS GIS is a Geographic Information System (GIS) software and is integrated in

QGIS. i.segment is an segmentation tool in GRASS GIS and was applied in this study. We selected

four bands from Sentinel-2 images, including blue, green, red and near infrared bands. In addi-

tion, a region growing algorithm was selected, which starts at random points with one-pixel objects

and then merges them into bigger objects based on their similarity. The similarity between current

object and its neighbors was calculated according to Euclidean distance. Smaller distance values

indicate a closer match. During the processing, objects are merged only when the similarity is lower

than a threshold. The threshold must to be between 0 and 1. A threshold of 0 would allow only one-

pixel objects to be merged, while a threshold of 1 would allow everything to be merged. Here we set

the threshold to 0.5. The minimum number of cells in a segment refers to the minimum number of
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pixels in an object.

After the segmentation process was finished, each individual object was labeled by the maximum

categories if there were pixels labeled by field samples located within the this object, while if there

were no labeled pixels located within the object, the object would not be labeled. Below are two

example objects after segmentation process (figure 3.15). Objects were labeled based on the as-

sumption that all pixels in individual objects were from the same categories. Purity was used here

to estimate homogeneity for each labeled object. The purity was calculated as explained in equa-

tion 3.3. In the first classification task, objects were labelled by six categories: water, low density

plants, floating plants, characeae, submerged plants and pondweed. In the second task, objects la-

belled by characeae were then re-labelled by Kransblad and other characeae, while objects labelled

by pondweed were then re-labelled by Doorgroeid fonteinkruid and other pondweed. Other objects

were ignored in this problem species detection task.

Pur i t yob j ect =
n

N
(3.3)

where n is the number of pixels labeled by the maximum category and N is the total number of

pixels labeled in all categories.

Different parameter settings can lead to segmentation results of different quality. The minimum

number of pixels in an object indicates the minimum scale of vegetation distribution pattern and

thus is necessary to choose the optimal value. Given three settings of the minimum number of pixels

in an object, including 1 , 10 and 30, we compared the segmentation results in following aspects: (1)

the number of objects that can be labeled, as the more labeled objects we have, the more objects

can be used for validation; (2) average purity of each category, as the higher the purity is, the better

it matches the assumption that all pixels in individual objects are from the same categories; (3)

differences with field observations. Then the value with best performance was selected.

3.4.5. Feature selections

Sentinel-2 images contain only 13 bands and are of moderate spatial resolution. They are neither of

high spectral resolution as airborne hyperspectral images nor of high spatial resolution as airborne

multispectral images. Therefore, spectral features and texture features corresponding to these two

characteristics respectively were investigated to see how well these features extracted from Sentinel-

2 images perform in aquatic plant classification. Two types of spectral features were selected includ-

ing reflectance and vegetation indices, and two types of texture features were selected including

Local Binary Patterns and Gabor filters.

Spectral reflectance
Sentinel-2 images contain thirteen bands in visible and NIR and SWIR spectrum. Some of these

spectral bands are likely to be closely correlated with others, which may end up with much redun-

dant information. This redundant information can significantly reduce classification accuracy as
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(a) A low-purity object: there are 45 pixels

that are labeled by field samples, including

17 pixels labeled by low density plants, 8

pixels labeled by floating plants, 2 pixels la-

beled by submerged plants and 18 pixels la-

beled by pondweed family. Pixels labeled by

pondweed family category counts the most.

Therefore this object is labeled by pondweed

family. The purity of this object is 0.4.

(b) A high-purity object: there are 65 pixels

that are labeled by field samples, including

61 pixels labeled by water, 2 pixels labeled

by low density plants and 2 pixels labeled by

characeae. Pixels labeled by water category

counts the most. Therefore this object is la-

beled by water. The purity of this object is

0.94.

Figure 3.15: Two examples of object assignment and their purity calculations

well as increase the computational resources required to carry out the classification process (Mur-

ray et al., 2010). Thus, a dimensionality reduction method was applied and will be introduced in the

next section.

Vegetation indices
Vegetation Indices (VIs) are combinations of surface reflectance at two or more wavelengths. Each

of VIs is designed to accentuate a particular vegetation property. More than 100 VIs have been pub-

lished in scientific literature and implemented in a variety of applications using different satellite

and airborne platforms (Jinru and Su, 2017). These indices can be grouped into many categories

such as broadband greenness, narrowband greenness and canopy water content. The broadband

greenness VIs are designed to measure the quality of photosynthetic material and vigor in vegeta-

tion, which is essential for understanding the state of vegetation. Broadband greenness VIs com-
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pare reflectance peak in NIR range to reflectance in the red range, allowing sounding of the total

amount of green vegetation in the column until the signal saturates at very high levels. The nar-

rowband greenness VIs combine reflectance in red and NIR regions to sample red edge portion of

the reflectance curve. This curve is caused by the trainsition from chlorophyll absorption and NIR

leaf scattering. Measurements in red edge allows narrowband greenness VIs to be more sensitive

to smaller changes in vegetation health than broadband greenness VIs. The canopy water content

VIs measure the amount of water contained in the foliage canopy. These indices use reflectance

in NIR and SWIR regions to take advantage of known absorption features of water and the pen-

etration depth of light. In our study, nine indices were selected including Enhanced Vegetation

Index (EVI), Green Normalized Difference Vegetation Index (GNDVI), Percentage Vegetation Index

(PVI) and Normalized Difference Vegetation Index (NDVI) from broadness greenness VIs, Modified

Chlorophyll Absorption Ratio Index (MCARI) from narrowband greenness VIs, Moisture Stress In-

dex (MSI) and Normalized Difference Water Index (NDWI) from canopy water content VIs, and two

Angle Index (Ma and Zhou, 2018). They were calculated as equations 3.4-3.12:

EV I = 2.5× N I R −RED

(N I R +6×RED −7.5×BLU E)+1
(3.4)

GN DV I = N I R −GREE N

N I R +GREE N
(3.5)

PV I = N I R −a ∗RED −bp
1+a2

(3.6)

N DV I = N I R −RED

N I R +RED
(3.7)

MC ARI = ((B5−B4)−0.2× (B5−B3))× (
B5

B4
) (3.8)

MSI = B11

B8
(3.9)

N DW I = N I R −SW I R

N I R +SW I R
(3.10)

Ang leB3 = ar ccos
~B2B3 · ~B3B4

| ~B2B3|× | ~B3B4|
(3.11)

Ang leB4 = ar ccos
~B3B4 · ~B4B5

| ~B3B4|× | ~B4B5|
(3.12)

where the parameters of PVI were set to be a=0.96916, b=0.084726 according to literature (Seo et al.,

1998), NIR refers to the band in NIR spectrum region, B5 refers to band 5 in Sentinel-2 data, ~B2B3

refers to the vector from band 2 to band 3 in wavelength-reflectance dimensions, and similar way

for other variables.

As each of these indices is already a combination of spectral bands and has a particular purpose, we

will not process it by demension reduction as other features.
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Local Binary Patterns
Local Binary Patterns (LBP) is simple yet efficient texture descriptor. It is known by invariance to

gray-scale changes and high discriminative power. For each pixel in an image, the LBP value is

computed by considering an 8-neighbourhood around a center pixel and then comparing the value

of this pixel with the eight neighbouring pixels. If the reflectance value of the neighbouring pixel is

greater than the center pixel, then ’1’ is assigned for this location, otherwise a ’0’. An 8-bit binary

pattern is obtained by traversing the 8 neighbours clockwise or anti-clockwise, which is then con-

verted to integer, as demonstrated in figure 3.16. Processing entire images similarly will then result

in an LBP feature matrix.

Texture features are typically applied to each of bands in case of multispectral images. The disad-

vantage is the increased size of the feature vector and highly correlated texture features because

of the redundancy between spectral bands. In particular, we computed the normalized difference

vegetation index (NDVI) image as our target image and extracted texture features from it. we ex-

tracted LBP features using a sliding window of size 7×7. A histogram was computed for the center

pixel in each sliding window to obtain a 256-dimensional feature vector, there were 28 combina-

tions of binary codes in the case of 8-neighbourhood. For edge pixels or pixels around island, their

sliding windows may contain pixels that have been masked. In this case, padding mean value in

these locations was adopted, which has shown better performance padding zero (Liu et al., 2006). A

sparse feature matrix will be obtained because each 256-dimensional feature vector is derived from

a sliding window of only 49 pixels. Therefore it is necessary to reduce its dimensions.

Gabor filters
Gabor filters are linear filters used for texture analysis. An advantage of Gabor filters is their invari-

ance to scale and rotation. Gabor filters encodes edges, where each is sensitive to a different orien-

tation and scale, generates multiple responses for all textures in the image. It has been claimed that

simple cells in the visual cortex of mammalian brains can be modeled by Gabor functions (G. Daug-

man, 1985). A 2D Gabor filter can be viewed as a sinusoidal wave plane of particular frequency and

orientation, which is the product of the Fourier Transform and a Gaussian centered at the origin, as

given in equation 3.13. The impulse response of a Gabor filter is obtained by convolving with target

image, and the convolution function is given by equation 3.14. A strong response can be given using

Gabor filters only if its direction matches with the direction of the edges in the target image.

gθ,λ,σ,γ,ψ(x, y) = exp(−x ′2 +γ2 y ′2

2σ2 )si n(2π
x ′

λ
+ψ) (3.13)

where

x ′ = (x −xo)cosθ+ (y − yo)si nθ

y ′ =−(x −xo)si nθ+ (y − yo)cosθ

In this equation, gθ,λ,σ,γ,ψ(x, y) represents the filter value in location (x, y) under the parameter set-

ting θ,λ,σ,γ,ψ. θ refers to normal orientation of the parallel lines of Gabor function, its value is
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Figure 3.16: Computation of LBP value for a pixel (K Pai et al., 2017)

specified in degrees betwwen 0 and 360, λ refers to the wavelength of the sinusoidal factor, σ is

standard deviation of the Gaussian function and it characterizes the spatial extent and bandwidth

of the filter, γ is the spatial aspect ratio that determines the shape of the ellipse of the Gabor function

and ψ is the phase offset and its value is in degrees between -180 and 180. (xo , yo) is the center pixel

in the 2D Gabor filter kernel matrix.

G(x, y) = g ∗ I (x, y) =∑
s

∑
t

I (x ′, y ′)g (s, t ) (3.14)

where

x ′ = x − (so − s)

y ′ = y − (to − t )

In this equation G(x, y) is the Gabor feature value in location (x, y), g is the Gabor filter kernel com-

puted from above equation, I (x, y) is the original image that you want to extract features from.

(so , to) is the center pixel in the 2D Gabor filter kernel matrix.
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In particular, NDVI image was used as target image for Gabor feature extraction. We had four ori-

entations, at 45-degree intervals, two wavelengths and two standard deviations in order to cover

sufficient texture features, phase offset were set to 0 and spatial aspect is set to 1. Filters at different

parameter combinations are shown in figure 3.17. Therefore 16-dimensional Gabor feature vectors

were resulted from these combinations. As the Gabor filters usually cover excessively possible orien-

tations and produce large feature size, this technique also requires dimensionality reduction.

Figure 3.17: Gabor filter kernels: there are 16 combinations in total of four orientations including

π,π/2,3π/4 and π, two wavelengths including 20 and 4, and two standard deviations including 1

and 3.
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3.4.6. Principal component analysis

As we mentioned in feature selections section, there is often significant redundancy between spec-

tral bands, and it is desirable to reduce the number of bands being analysed. Each 256-demensional

LBP feature vector is extracted from a 7×7 sliding windowa, which will result in a highly sparse fea-

ture matrix, and the Gabor filters usually have excessively kernels in order to cover sufficient possi-

ble texture features. Thus, LBP and Gabor filters also require dimensionality reduction.

Principal Component Analysis (PCA) is a well-known technique used for dimensionality reduction.

The goal of PCA is to find a new coordinate system in which all the dimensions are orthogonal

and data are spread out across each dimension and hence independent. Variance is a measure of

how spread the data set is, as given in equation 3.15 and covariance is measured between two di-

mensions, as given in equation 3.16. The goal of PCA is accomplished by following steps. First it

calculates the covariance matrix (equation 3.17) of input features and then calculates eigen vec-

tors and corresponding eigen values (equation 3.18). The first k eigen vectors are sorted according

to their eigen values or variance in decreasing order. The new coordinate system is obtained by

transforming the original n dimensional feature space into k dimensions which are called principal

components (PCs). So that the first component has the highest variance, the second component

the second-most variance, and so on. Therefore, the first few PCs containing most of the useful in-

formation, and the later PCs containing mostly noise which can be removed without significantly

affecting the information content of the image.

var (x) =
∑

(xi − x̄)

N
(3.15)

cov(x, y) =
∑

(xi − x̄)(yi − ȳ)

N
(3.16)

Ci , j = (cov(di ,d j )) (3.17)

[Covar i ancematr i x] · [Ei g envector ] = [ei g envalue] · [Ei g envector ] (3.18)

where N is the number of samples in each dimension d and xi and yi refer to the ith element in x

and y dimensions respectively. The value in location (i , j ) of covariance matrix is calculated by the

covariance of the ith dimension and the jth dimension.

However, PCA is sensitive to the scale of the original variables. A disadvantages of the PCA mecha-

nism is that original variables with larger ranges will dominate over those with small ranges, which

will then lead to biased results. So it is critical to perform standardization prior to PCA, as given in

equation 3.19.

z = x −µ
s

(3.19)

where µ and s are the mean and standard deviation of the samples respectively. z is the standard

score.
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In this work, we first standardized feature vectors including reflectance, LBP and Gabor features of

training samples and then applied PCA to reduce the dimensionality. To make it fair, spectral fea-

tures and texture features had the same dimensions in total. The number of PCs that were selected

for each type of features is shown in table 3.7. Reflectance PCs, vegetation indices, LBP PCs and

Gabor PCs were then concatenated together to produce the final feature vector with dimension 28.

The decision to set the length of final vector as 28 is based on variance while it should also to make

sure that the number of spectral features and texture features are the same, in order for further

comparison of their importance. The scaler model and PCA model were then applied for testing

samples.

Spectral features Texture features
Total

Reflectance VIs LBP Gabor filters

Before 13 9 256 16 294

After 5 9 7 7 28

Table 3.7: Number of PCs for each type of features. VIs represents vegetation indices and its number

stays unchanged because PCA was not applied to it.

3.4.7. Aquatic plant species classification

Training data
The segmentation method is described in detail in section 3.4.4. The segmentation results were

used to assume the homogeneity of individual segments and label pixels for training and valida-

tion. Segments that represent the same species in different regions may have different features. For

example, characeae grows in both deep water and shallow water. Some water bodies are covered by

algae while others are crystal clear. Therefore, the training data should cover all segments because

of the various local environments. In this project, pixels in the segments that were labeled by field

samples were used for training, in which process 20% pixels were randomly taken out for testing.

Pixels in the segments that were not labelled by field samples were only used for predicting.

Random Forest Classifier
Random Forest (RF) are a combination of tree classifiers in which each tree contributes one vote,

and the final classification label is obtained by maximum voting. This ensemble classification is

often more accurate than any one from the ensemble (Breiman, 2001). RF is relatively robust to

training dataset noise and does not overfit due to the Law of Large Numbers (Zhou et al., 2018).

As a result, the RF classifier is widely used in processing remote sensing data. A random forest

is comprised of a set of decision trees, each of which is trained on a randomly selected subsets

of components of the feature vector by using a random vector θk for the k-th tree and resulting

in a classifier h(x,θk ), where x is an input vector. The random vector is independent of the prior
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random vectors θ1, ..., θk−1. Each tree grows by using the best split of a random subset of input

features or predictive variables in the division of every node (Ho, 1998; Rodriguez-Galiano et al.,

2012). Gini impurity is calculated to decide the variable to split a node. Meanwhile, for each tree

of the forest, the sum of the Gini decrease is accumulated every time that variable is chosen to

split a node. Therefore, an average , obtained by dividing the sum by the number of trees, is then

equivalent to the variable importance. In our study, the importance of different types of features

was analyzed based on this logic. Although weakening the strength of very single tree, it reduces

the correlation between the trees and the generalization error (Rodriguez-Galiano et al., 2012). The

predicted category of an observation is calculated based on the majority vote of the trees in the RF

model, as defined in equation 3.20.

H(x) = ar g maxγ
k∑

i=0
I (hi (X ,θi ) = γ) (3.20)

where I (·) is the indicator function, h(·) is a single decision tree, andγ is the output variable, ar g maxγ

denotes the γ value when maximizing
∑k

i=0 I (hi (X ,θi ) = γ).

K-means clustering
Labels are an essential ingredient to supervised algorithms. However, conducting a field survey not

only costs time but money. This experiment aims to answer the research question that whether

field data is necessary in remote sensing techniques. Unsupervised algorithms only utilized input

vectors without referring to known or labelled outcomes. Therefore, in this project, we also want to

investigate the performance of an unsupervised algorithm. K-means clustering is one of the sim-

plest and popular unsupervised machine learning algorithms. A pre-defined k refers to the number

of centroids in the dataset. A point x(i ) from set x(1), ..., x(m)is allocated to a particular cluster and

labelled by c(i ) if it is closer to that cluster’s centroid than any other centroid as euqation 3.21 and

the centroid is updated every time a new point is added. The K-means algorithm starts by initial-

izing cluster centroids µi ,µ2, ...,µk randomly, then performs iterative calculations to optimize the

positions of the centroid as equation 3.22. Repeat the process until centroids have stabilized or it

reaches the maximum number of iterations. For every point i , set

c(i ) := ar g mi n
j

||x(i ) −µ j ||2 (3.21)

For each centroid j , set

µ( j ) :=
∑m

i=1 1{c(i ) = j }x(i )∑m
i=1 1{c(i ) = j }

(3.22)

Two classification tasks
The first and main task is vegetation class classification. Vegetation classes included water, low den-

sity plants, floating plants, Characeae, submerged plants, and Pondweed. In this task , we conducted

RF classifier and K-means clustering respectively.
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The second task is individual species classification, which is to classify DF and other species within

Pondweed family and classify KB and other species within Characeae family. As there are only two

dominant species in Characeae, which are KB and Sterkranswier. It can be also regarded as classi-

fying between KB and Sterkranswier. DF and KB are two plants that grow the whole water column.

Their distributions are also expanded in recent years. This grow pattern pose a serious problem for

boaters and others using the water for recreation. Boat propellers can very easily get stuck in the

plant’s stalks. Therefore, it is necessary to detect these two species particularly. In this task, pixels

that were labelled by Characeae and Pondweed were taken out respectively. The same feature selec-

tion method as the first task. RF classifier was then applied to conduct the classification.

(a) Doorgroeid fonteinkruid (b) Kransblad

Figure 3.18: Two problem plant species

3.4.8. Assessment and feature importance

Cross validation
Cross-validation is a re-sampling procedure used in this project to evaluate RF classifier on a limited

data sample. The procedure has a single parameter called k that refers to the number of groups that

a given data sample is to be split into. This parameter was set to 5 in this case and this procedure can

also be called 5-fold cross validation. 5-fold cross validation starts by shuffling the dataset randomly,

then splitting the dataset into 5 groups. A stratified criteria was adopted in this work that each

fold has the same proportion of observations with a given categorical value. For each group, it is

considered as a test set and remaining groups are considered as a training set to fit the RF model.

This model will then be evaluated on the test set. The accuracy will be retained and the model will be

discarded. This procedure generally results in a less biased or less optimistic estimate. The overall

accuracy is the average of the five evaluations.
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Confusionmatrix
Classification accuracy alone can be misleading especially when the dataset is imbalanced and have

more than two classes in the dataset. Confusion Matrix is a performance measurement for machine

learning classification. A confusion matrix is a specific layout that allows the visulization of the

performance of an algorithm. Each row of the matrix represents the instances in an actual class

while each column represents the instances in a predicted class. This can then give a better idea of

which class can be easily classified and which class is mixed with others. Two confusion matrix will

be calculated: one is calculated by the number of pixels classified into each class, by which we will

know the exact number of correctly classified pixels; and another is normalized confusion matrix,

by which we will know the percentage of accurately corrected pixels in each class.

In the classification process, four types of features were extracted including spectral reflectance,

VIs, LBP and Gabor Filters. Feature importance can give insight into the performance of these fea-

tures.

Testing on another date
In practical applications, pre-trained model is usually applied to new data acquired under different

conditions, such as different solar irradiance, different cloud cover, species changes and so on. It is

necessary to discuss the applicability of this approach. Thus, Sentinel-2 data from Aug 6 were used

for evaluation of pre-trained model. We chose this day because it is close to July 2 and of low cloud

cover. We assumed that in the period of July to Aug, the state of aquatic plants remain unchanged.

The same region was clipped in QGIS and the same feature selection strategy was adopted. Then

pre-trained RF model was applied.

Baseline
As aquatic vegetation classification studies in the literature were conducted under different condi-

tions, it is impossible to find a study to compare with. Therefore, majority classifier is used in this

research as the baseline. The majority classifier simply classifies all samples into the class with max-

imum occurrence. This classification results serve as the baseline for other classification approach.

If proposed approach performs worse than this baseline, it can be concluded that the proposed

approach does not work in this classification task.
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Results

4.1. Remote sensing data comparison results

Figure 4.1 shows images of four classes clipped in airborne multispectral image and Sentinel-2 im-

age. The water and submerged Sentinel-2 images are almost black for human visual system. This

is because that the Pondweed and soil are all in the water bottom. Reflectance from water bottom

is hardly to be captured by Sentine-2 imagery because of water depth and orbit altitude, while for

airborne imagery more details can be captured because of much lower flight height. For floating

plants and Characeae classes, Sentinel-2 images have a greenish layer above. This layer can be seen

because vegetation grew close to the water surface, which makes them distinct from Pondweed

and water classes. This comparison result indicated that airborne multispectral images might be

more easier for human visual system to directly discriminate different classes than Sentinel-2 im-

ages.

The reflectance of water, island and aquatic vegetation classes in Sentinel-2 images matched that in

hyperspectral images (figure 4.2a). In general, land vegetation had higher reflectance in NIR region,

while water body and aquatic vegetation have lower reflectance in NIR region. Aquatic vegetation

have higher reflectance in visible region while water body had lower. These patterns can be found

from both hyperspectral and Sentinel-2 spectrum. From figure 4.2b, Sentinel-2 images have sim-

ilar NDVI distribution as that in hyperspectral images, though there exists a tiny shift. In general,

the NDVI of land vegetation is greater than zero, while NDVI of water body is smaller than zero.

Two main parts, which refer to land vegetation and water body respectively, can be easily seen in

both NDVI distributions. Also, there are two peaks in the above-zero part in both hyperspectral and

Sentinel-2 data NDVI distribution, which is because that island and land vegetation may have NDVI

distribution. From the spectral comparison, Sentinel-2 data can relatively show accurate spectral

properties of different classes.

46
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(a) Pondweed in airborne image (b) Pondweed in Sentinel-2 image

(c) Water in airborne image (d) Water in Sentinel-2 image

(e) Floating plants in airborne image (f) Floating plants in Sentinel-2 image

(g) Characeae in airborne image (h) Characeae in Sentinel-2 image

Figure 4.1: Spatial comparison results

From all the remote sensing comparison results, Sentinel-2 data can be an alternative to airborne
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hyperspectral data, and narrow bands collection is therefore not necessary. In spatial aspect, how-

ever, Sentinel-2 data are insufficient to directly discriminate classes by human visual system and

cannot replace airborne multispectral data. Whether this spatial drawback can impact on classifi-

cation performance will be revealed in following sections.

(a) Reflectance of three classes (b) NDVI distribution

Figure 4.2: Spectral comparison results

4.2. Segmentation results

In this study, three minimum number of cells in a segment or an object settings including 1, 10 and

30 were compared, in the aspects of total number of labelled objects, average purity, and compar-

ison with field observations. From table 4.1 and table 4.2, segmentation result with parameter 10

had most number of labelled objects and the highest purity or highest homogeneity in an object

among these three parameter settings. This also indicated that the segmentation result matched

our assumption that all pixels in individual objects were from the same categories.

Minimum number of cells in a segment 1 10 30

Water 38 137 144

Low density plants 37 125 117

Floating plants 11 35 37

Characeae 23 99 88

Submerged plants 8 37 29

Pondweed 25 90 92

Total number of segments 142 523 507

Table 4.1: Segmentation comparison in aspect of number of labeled objects

There were total 2297 objects, out of which there were 523 objects that can be labelled by field sam-

ples. Blank areas were unlabelled objects and we had no knowledge which category they were from.
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Minimum number of cells in a segment 1 10 30

Water 0.84 0.90 0.90

Low density plants 0.78 0.89 0.86

Floating plants 0.62 0.79 0.77

Characeae 0.86 0.92 0.91

Submerged plants 0.88 0.84 0.80

Pondweed 0.86 0.88 0.90

Average purity 0.81 0.87 0.85

Table 4.2: Segmentation comparison in aspect of average purity

Pixels from these areas were not used for training and assessment. We also selected two sites from

the segmented map to compare with field observations. In site 1 (figure 4.4), we compared the seg-

mentation results with interpolated ground truth image. The interpolated ground truth image was

total vegetation cover map obtained by linearly interpolating data among field samples. Blue area

indicated water and red area indicated high density vegetation. Segmentation with parameter 30

failed to show the water area in this site. Therefore, segmentation with parameter 10 outperformed

that with parameter 30. In site 2 (figure 4.5), we compared the segmentation results with field ob-

servations in that region. This region was mixed with all categories, however, the segmentation with

parameter 1 showed large cover of water, which was inconsistent with field observations.

After analysis of the appropriate parameter, labelled pixels in the segmented image were used to ex-

tract feature vectors for classification. The number of pixels in each category was listed in table 4.3.

The number of pixels that were used in problem plant species classification task was showed in

table 4.4.

Water Low density plants Floating plants Characeae Submerged plants Pondweed

564230 137953 87209 307633 42288 134159

Table 4.3: Number of pixels in each category

Pondweed Characeae

DF Others KB Others

75353 58806 181983 125650

Table 4.4: The number of pixels in Pondweed and Characeae families
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Figure 4.3: Segmentation results with minimum 10 cells in a segment

Figure 4.4: Comparison in aspect of total vegetation cover

Figure 4.5: Comparison in aspect of vegetation distribution
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4.3. Vegetation class classification results

In this section, we showed the results of supervised algorithm (RF classifier) and unsupervised clas-

sification (K-means clustering) respectively. In this classification task, there are six classes, includ-

ing water, low density plants, floating plants, characeae, submerged plants and pondweed. The

Seninel-2 data used in this section was obtained from July 2 2018.

4.3.1. Supervised classification using RF classifier

Table 4.5 shows the accuracy in 5-fold stratified cross validation, and the average accuracy is 87%.

The confusion matrix (figure 4.6) was generated from all five test sets in the cross validation proce-

dure. The left confusion matrix were obtained by counting the number of pixels that were classified

into each class. The number of correctly predicted pixels of water class and characeae class are ob-

viously higher than other classes. This is because that the total number of pixels in water class and

characeae class are much higher than other classes. Thus, a normalized confusion matrix was also

calculated as the right figure. This normalized confusion matrix demonstrated that the model had

evenly performance on each class. All these pixels were then projected to an aquatic vegetation map

(figure 4.7).

1 2 3 4 5 Average accuracy

86.7% 86.5% 86.4% 86.5% 86.6% 87%

Table 4.5: Vegetation class classification accuracy

Figure 4.6: Confusion matrix of RF classifier. Each row represents the true label while each column

represents the predicted label. The left figure shows the number of predicted pixels in each category,

while the right figure is normalized confusion matrix and the values in the diagonal are classification

accuracy of each category.

Figure 4.8 presents all features ordered by normalized feature importance. Out of total 28 features,
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Figure 4.7: Predicted aquatic vegetation map using RF classifier (data from July)

top half features in this figure are spectral features, except one from Gabor filter component. The

most important feature in this classification task is GNDVI (Green Normalized Difference Vegeta-

tion Index). This index is more sensitive to chlorophyll concentration than NDVI. Texture features,

however, showed less significance in this task.

4.3.2. Unsupervised classification using k-means clustering

The overall accuracy is 46%. The overall accuracy was calculated using equation 4.1.

Over al l accur ac y = Tot al number o f cor r ect l y cl assi f i ed pi xel s

Tot al number o f al l pi xel s
(4.1)
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Figure 4.8: Normalized feature importance. Prefix ’Refl’ refers to reflectance feature, prefix ’GB’ refers

to Gabor filters and suffix ’PC’ refers to principal component.

Figure 4.9: Confusion matrix of K-means clustering

K-means clustering classified pixels into only two classes, which were water and characeae, and

failed to classify pixels from other four classes. As low accuracy of vegetation class classification,

we want to see whether K-means clustering can at least classify between water and aquatic plants.

Therefore, we grouped pixels from water and low density plants classes into water class and grouped

others into aquatic plants class. Figure 4.11 shows the classification results. The overall accuracy is

55%. This result indicates that unsupervised algorithm is not suitable to classification in large water

bodies. Field data is still necessary in remote sensing techniques.
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Figure 4.10: Predicted aquatic vegetation map using K-means clustering (data from July)

Figure 4.11: Water-vegetation classification using K-means clustering (data from July)
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4.4. Individual species classification results

In the second classification task, two experiments were conducted. One was to detect DF from

Pondweed family and another was to detect KB from Characeae family. The same approach as

vegetation class classification was applied. Table 4.6 shows the accuracy in 5-fold stratified cross

validation, and the average accuracy is 96% for DF classification and 95% for KB classification re-

spectively.

1 2 3 4 5 Average accuracy

DF 96.4% 96.3% 96.6% 96.8% 96.3% 96%

KB 95.5% 95.3% 95.4% 95.5% 95.3% 95%

Table 4.6: Individual species classification accuracy

We projected all pixels into the Pondweed map (figure 4.12). Figure 4.14a was obtained by re-

labelling objects using field samples, while figure 4.14b was our prediction.

(a) Target map (b) Predicted map

Figure 4.12: Doorgroeid fonteinkruid classification

Figure 4.13 presents all features ordered by normalized feature importance. Reflectance PC and

the angle index of Band 3 are the top two most important features. Distributions of DF and other

Pondweed on these two features were plotted in figure 4.14 using all labelled pixels. To neglect out-

liers, we only selected values in the range of 5% to 95% of the ordered feature values and then divided

these values into 20 bins. We can see the first reflectance PC counts 28% importance. DF has much

higher value than other Pondweed, and most DF distributed around -1.5 while other Pondweed dis-

tributed around -2.5 on this feature. The angle index of band 3 is the second important feature, and

in this case, DF has relatively lower value than other Pondweed and they overlapped in the range

of 0.7 to 0.9. Nevertheless, these two features show us very special spectral characteristics of DF

comparing to other Pondweed.
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Figure 4.13: Normalized feature importance for DF classification

(a) Reflectance principal component (b) The angle index of band 3

Figure 4.14: Top two important features for DF classification

Characeae mainly grows in Veluwemeer. There are only two dominant plant species, Kransblad

and Sterkranswier. Classifying Kransblad within Characeae in this case is equivalent to classify

Kransbald and Sterkranswier. We projected all pixels into the Characeae map (figure 4.15). Fig-

ure 4.15a was obtained by re-labelling objects using field samples, while figure 4.15b was our pre-

diction.

Figure 4.16 presents all features ordered by normalized feature importance. Also, reflectance PC and

the angle index of Band 3 are the top two most important features. Distributions of KB and Sterkran-

swier on these two features were plotted in figure 4.17 using all labelled pixels. To neglect outliers,
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we only selected values in the range of 5% to 95% of the ordered feature values and then divided

these values into 20 bins. We can see in both feature distributions that KB covers a larger range and

has two peaks. This is because that KB grows in more complex environment than Sterkranswier and

these two peaks maybe from lower water-depth regions and deeper regions.

(a) Target map (b) Predicted map

Figure 4.15: Kransblad classification

Figure 4.16: Normalized feature importance for KB classification
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(a) Reflectance principal component (b) The angle index of band 3

Figure 4.17: Top two important features for KB classification

4.5. Test on another date

In order to test whether a pre-trained RF model can be applied to other dates, we selected Sentinel-2

data acquired from August 6, 2018. As we have no field data from August, the overall accuracy was

calculated using field samples collected from June to July, based on the assumption that aquatic veg-

etation grows in similar state. The overall accuracy is 39%. From the confusion matrix (figure 4.19),

the model had better performance on water, characeae and pondweed classes than other classes.

However, this result is questionable which will be discussed in discussion chapter.
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Figure 4.18: Predicted aquatic vegetation map using August 6 Sentinel-2 data

Figure 4.19: Confusion matrix using August 6 Sentinel-2 data
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Discussion

Assumptions in our approach

Our approach is based on some assumptions. Firstly, the field samples were collected in mixed-

species condition. We assumed that each field sample only contained one species that had maxi-

mum percentage. The purity ranged from 0.24 to 0.97, which indicated that features extracted from

a pixel with low purity were not typical features from that particular species.

Secondly, the field samples were collected from 1 square meter while the highest resolution of

Sentinel-2 images were 10×10 square meters. We assumed that a pixel in Sentinel-2 data had the

same distribution with the field sample that was located in this area. This assumption may conflict

with species with small distribution pattern or low richness.

Thirdly, we conducted segmentation in GRASS GIS toolbox and then labelled those objects with the

class that had maximum number of field samples in this object. Then we assumed that all pixels in

individual objects were from the same class. Although the average purity showed in the segmen-

tation results was above 0.8 for each class, it remained questionable for large objects because of

various local conditions.

Our last assumption is that aquatic vegetation from July to August remained unchanged, when test-

ing pre-trained RF model using data from August. Based on this assumption, the classification accu-

racy was only 39%. We made a comparison between the predictions in July and August in Eemmeer.

(figure 5.1). Vegetation cover in August was much less than in July, but there still clearly contained

the pattern of two vegetation regions separated by water body.

In order to investigate the vegetation changes in the whole year, we processed Sentinel-2 data from

Janurary to November in 2018 with cloud cover under 10%. The sum of NDVI in Eemmeer was cal-

culated and regarded as total vegetation. From figure 5.2, there is an abrupt increase in May and

drop in July. In principle, this change pattern agrees with the knowledge that aquatic vegetation
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Figure 5.1: Predicted map in Eemmeer in 2018

usually explodes in summer. Therefore, the low classification accuracy could also be caused by in-

appropriate assumption, rather than bad RF model. In other words, it is not necessary to determine

that the low classification accuracy means a bad prediction. Field data in August is needed in order

for further assessment.

Figure 5.2: NDVI changes in Eemmeer in 2018
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Image preprocessing

Satellite image preprocessing is a crucial step of this research. We adopted the simplest atmospheric

correction method provided by the SCP plug-in in QGIS. However, data from different days are ac-

quired under different conditions. For example, the cloud cover on July 2 was 0.0039% while that

on August 6 was 1.5279%. There were also differences in solar irradiance (figure 5.3). As the atmo-

spheric correction method utilizes the darkest pixel value in each band, different solar irradiance

lead to different darkest pixel values in the same bands of different dates. To what extent these dif-

ferences impact on final classification should be explored further. A training model only using data

from one day maybe not easily applicable to other dates.

Figure 5.3: Solar irradiance differences of two dates. The metadata file recorded one solar irradiance

value for each band. This plot was obtained by subtracting solar irradiance of August from July for

each band

Unsupervised classification

We have performed two experiments using unsupervised machine learning approach. In these two

experiments, we used the simple K-means clustering without using any pre-known information,

such as large proportion of water class and tiny proportion of floating plants class. The only input

was feature vectors and the number of clusters, which was set to 6 in the first experiment and 2 in the

second experiment. However, vegetation class classification accuracy was 46% and the prediction

was almost random.

The water-vegetation classification accuracy was 55%. Although this was still not a satisfying result,
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these two sites matched the field observations better (figure 5.4, 5.5), comparing to vegetation class

classification experiments. In Veluwemeer, most pixels were classified as water, as in that region

vegetation grew in deep water and most vegetation was brown colored Characeae, which was not

easily detectable. Therefore, unsupervised classification method maybe not suitable for large water

bodies, due to various water depth and complex location conditions.

(a) K-means results in site 1 (b) Interpolated ground truth in site 1

Figure 5.4: Comparison K-means results with field observations in site 1

(a) K-means results in site 2 (b) Interpolated ground truth in site 2

Figure 5.5: Comparison K-means results with field observations in site 2

Individual species

DF and KB are two species that cause most problems. Using Sentinel-2 data, our approach can

extract unique reflectance patterns of DF, but failed to extract that of KB. The features extracted

from KB were actually the combination of many factors due to complex local conditions. If new

species in characeae family begins to grow in the neighborhood of KB, there will be difficulties in

discriminating KB from other characeae species.

New species in the future

Our approach can only classify vegetation class using in the training process. It cannot predict new

vegetation species that appear in the future. Therefore, it is necessary to update the model regu-

larly.

Airborne images
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Using high spectral resolution such as airborne hyperspectral images is unnecessary in these classi-

fication tasks, as Sentinel-2 can show similar reflectance patterns as hyperspectral images. Airborne

multispectral images can show vegetation details in complex conditions, such as color, depth and

whether there are algae above, while Sentinel-2 data cannot. Also, the details in the multispectral

images can be seen directly by human visual system. This advantage can be beneficial for species

with color that is similar to water bottom, such as brown. Most of VIs are designed based on green

level, because of which brown species are not distinct in Sentinel-2 images. Therefore,



6
Conclusions

6.1. Classification results overview

Results presented in table 6.1 showed that supervised method has much higher accuracy in most

tasks than that of baseline, and performs better in vegetation class classification than unsuper-

vised method. The tasks of individual species classification were to classify DF and other pondweed

within pondweed class, and to classify KB and other characeae within characeae class. The two

tasks reached highest accuracy than others, which are 96% and 95% respectively. The test accuracy

using data from August is 39%, using field data from July as validation data. The accuracy is lower

than baseline, however, this accuracy is questionable due to dynamic vegetation changes during

July and August. Field data from August is needed to get the true performance of pre-trained model.

The unsupervised method has higher accuracy in water-aquatic plants classification task (55%) than

vegetation class classification task (46%). Their accuracy are similar with baseline, which means this

unsupervised approach failed to outperform the majority classifier.

Method Task Accuracy Baseline

Supervised classification

(RF classifier)

Vegetation class 87% 44%

Individual species
DF 96% 56%

KB 95% 59%

Test on another date 39% 44%

Unsupervised classification

(K-means clustering)

Vegetation class 46% 44%

Water - aquatic plants 55% 55%

Table 6.1: Classification results overview

For supervised classification, one of the advantages is high accuracy, and another advantages is
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that money cost can be decreased to a certain extent due to less field samples required. The disad-

vantage, however, is the need of field data, which means labor cost and error caused by vegetation

changes are still unavoidable. On the other hand, new species and large changes cannot be detected

using supervised classification, which means it is necessary to conduct regular field survey. For un-

supervised classification, the biggest advantage is no field data required. The trade-off then is low

accuracy. By weighing between the advantages and disadvantages, supervised classification using

RF classifier is the best method.

6.2. Research questions

1. What are the unique properties to discriminate aquatic plant species?

2. Can we extract those unique properties from Sentinel-2 images?

In Sentinel-2 data aquatic plants is easily discriminated from water body using VIs such as GNDVI.

GNDVI as the most important feature in vegetation class classification is showed in figure 6.1, water

has a relatively low GNDVI, compared to aquatic plants, though there is also a peak around zero

value, which may be caused by the reflectance from algae above water body. Characeae largely

overlapped with water in this distribution, because Characeae grew in very deep region and the re-

flectance was attenuated by water column. Characeae (ranges from -0.4 to -0.1) and floating plants

(ranges from -0.1 to 0.1) showed distinctive GNDVI distributions.

Figure 6.1: GNDVI distribution in six-category classification using RF classifier
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3. What classification result can Sentinel-2 images yield?

When using supervised machine learning algorithms such as RF classifier, an average accuracy of

87% can be reached, with the help of 2889 field samples. All six vegetationn classes had relatively

even classification accuracy. Doorgroeid fonteinkruid and Kransblad that caused main problems in

Randmeren can be detected with accuracy 96% and 95% respectively.

An overall accuracy of 39% was obtained when applying RF model trained based on data from July

to data from August. Water, Characeae and Pondweed got relatively higher accuracy than other

categories, which were 42%, 54% and 49% respectively. However, this test result is questionable

because there might be vegetation changes during July and August. In this case, field data from July

may be not suitable to be used as validation data.

4. Are field data necessary in remote sensing techniques?

When using unsupervised machine learning algorithms such as K-means clustering, however, the

average accuracy was only 46%. Most pixels were classified as water and Characeae. Even in classi-

fication between water and aquatic plants using K-means clustering, only 55% overall accuracy can

be reached. From visually comparison with interpolated total vegetation cover ground truth map,

the K-means results matched better in Eemmeer than other regions. The overall performance in-

dicates that K-means clustering is not suitable for large water bodies. Therefore, field data are still

needed.

5. To what extent spectral and spatial resolution influence the classification result respectively?

From table 6.2, vegetation indices contribute most in vegetation class classification task and KB clas-

sification task, while reflectance principal components contribute most to DF classification. For all

classification tasks, the average importance of vegetation indices counts most, while that of LBP

counts least. Spectral features contribute most in all classification tasks, which indicates the spec-

tral resolution of Sentinel-2 data is sufficient for these classification tasks; while texture features

contribute least due to coarse spatial resolution of Sentinel-2 data.

Features Vegetation class
Individual species Average

importanceDF KB

Spectral features
VIs 44% 37% 52% 44.3%

Reflectance 29% 48% 35% 37.3%

Texture features
LBP 14% 7% 5% 8.7%

Gabor filters 13% 8% 8% 9.7%

Table 6.2: Feature importance in each task

6. Can Sentinel-2 data be an alternative to airborne data?

In shallow water bodies, unique spectral features of each vegetation class can be extracted from

Sentinel-2 data. In this case, Sentinel-2 data can be an alternative to airborne data. When in deep
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water bodies like Veluwemeer, however, it is difficult to analysis its components because of attenu-

ated reflectance. Airborne data with resolution 0.2×0.2 can give more details than Sentinel-2 data.

Thus, Sentinel-2 data cannot replace airborne data in complex conditions.

7. Can remote sensing techniques be used for the water bodies as a tool to achieve faster and more

efficient monitoring of the vegetation?

The average purity of segmentation result is 0.87. For high purity segments such as figure 3.15b,

less field samples are required. Thus, labor cost will be decreased. Suppose that in each segment

region, only one sixth field samples are collected, then the time will be decreased from two months

to ten days. The error caused by vegetation changes during the field survey can also be minimized.

For every month, there are available Sentinel-2 data from two or three separate dates. This means

aquatic vegetation monitoring can be conducted every month, by using remote sensing. It is much

faster than field survey every three years. Therefore, remote sensing techniques can be used for

water bodies as a tool to achieve faster and more efficient monitoring of the vegetation.

6.3. Recommendations

Remote sensing data

Remote sensing techniques can be used as a tool for efficient aquatic vegetation monitoring. Using

satellite Sentinel-2 data with cloud cover less than 10% is sufficient for vegetation class classification

in Gooimeer, Eemmeer and Zwarte Meer. It is better to use Sentinel-2 data from different dates

rather than a single day, in order to improve the robustness of the model. For other water bodies

in Randmeren with complex conditions and deep regions, high spatial resolution airborne images

are recommended, as more details can be observed directly by human visual system. This is a cost-

effective way because free satellite images will be used for most regions and airborne images will

only be taken for small parts of Randmeren.

Image preprocessing

Seninel-2 data preprocessing can be done using Semi-Automatic Classification (SCP) Plugin in QGIS.

However, Sentinel-2 data acquired from different dates usually have different level of cloud cover,

solar irradiance and other parameters. Whether these differences can be normalized in this process

needs further investigation.

Image segmentation and field survey

Segmentation can be conducted in GRASS GIS, using region-based method and setting the mini-

mum number of pixels in a segment as 10. As the resolution of Sentinel-2 images ranges from 10

m to 60 m. Images with resolution 10 m is selected for segmentation. The average purity of the

segmentation result in our study is 0.87. This high purity means in the following years, less field

samples are required. For example, as shown in figure 6.2, segmentation has grouped these pixels

into one segment, which means all these pixels are labelled as the same class. In this segment, 65

samples were collected in which 61 were water class. Water class counts most, so all pixels are la-
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belled as water class. Assume that only four samples are collected and they are from water class,

the segment can still be labelled as water class. Therefore, for high purity segments, decreasing the

number of field samples may not influence the final results.

Feature selection

Our study has shown that texture features contributed little to the classification, while vegetation

indices contributed most. Therefore, it is recommended to select more vegetation indices and

abandon texture features. Harris lists various vegetation indices with different purposes, which may

helpful for discriminating aquatic plant species.

Classification

Unsupervised algorithms are not recommended for large complex water bodies. Although super-

vised algorithms require field data, higher accuracy can be obtained than unsupervised algorithms.

Vegetation dynamic changes

Vegetation species and their distribution may have large changes within three years (figure 3.4).

Pre-trained model cannot detect new species. Therefore, it is necessary to take regular field sur-

vey.

Figure 6.2: Future field collection example. The red crosses refer to possible remained field samples,

other field samples may not be collected in the next field survey.

https://www.harrisgeospatial.com/docs/vegetationindices.html
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