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Abstract

The zebrafish (Danio rerio) is a popular model organism in biomedical and pharmaceutical research. In order to

support this research, high-throughput methods for the analysis of large amounts of zebrafish are continuously

being developed. Among these are methods for segmentation, which is an especially troublesome process

due to the high transparency of the zebrafish. Over the course of 2 years, the Vertebrate Automated Screening

Technology (VAST) BioImager has been pivotal for imaging a sizable amount of zebrafish using the system’s

integrated positioning camera. The use of a Leica microscope camera was important as well, and a smaller

amount of zebrafish have been imaged after adding one to the setup. For the majority of these images,

segmentations have been created using multiple low throughput methods (a MATLAB script, a Python script,

and manual tracing). The resulting segmentations were used to train a convolutional deep neural network in

several ways. By analyzing the predictions of these different networks, we show that only a small amount of

training data is required to achieve sufficient accuracy, and that adding too much or the wrong training images

can have adverse effects. Additionally, we show that applying a grey erosion filter can improve predictions

under certain circumstances, but has a detrimental effect under others. Finally, it has been determined that

images from the VAST camera and the Leica microscope require a different model for segmentation, and for

both cases an optimal model is created.
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Chapter 1

Introduction

The zebrafish (Danio rerio) is a small freshwater fish, commonly found in aquariums around the world.

Zebrafish however are native to South Asia, where they inhabit moderately flowing or stagnant water. When

the zebrafish was first described in literature in 1822 it was noted that they were “beautiful fish”, but that they

were “insipid” and thus of little economical value beyond their beauty [HS22]. However, since their first use

as a model organism in the 1960s, the zebrafish has become increasingly popular among researchers. This

popularity is in part due to the simple and cheap logistics of the zebrafish. They are small (with adults only

reaching a length of up to 4 cm), breed year-round, and are capable of producing hundreds of larvae each time

they mate. This makes it easy to both acquire and store them in bulk. Zebrafish are also among the aquarium

fish which are not very particular about their surroundings which make them much cheaper and easier to

maintain than other fish and mammals. Finally, the larvae and eggs are transparent, which makes it possible

to observe the internals of live specimen using any form of microscopy. Another big reason for the popularity

of the zebrafish is that 84% of human genes associated with disease have an orthologue in the genome of

the zebrafish. A total of 70% of human genes have an orthologue available. This makes the zebrafish very

useful for research into diseases and cures, toxicology, and development. Additionally, zebrafish have a high

regenerative capacity and a capable of repairing damage to almost all their tissues. This includes the heart and

nervous system. Given their similarity to humans, further understanding of this regeneration could lead to

new treatments for tissue damage in humans.

Since the zebrafish is such a useful model organism, several different methods for high-throughput processing

have been devised. One of these methods is the VAST (Vertebrate Automated Screening Technology) BioImager

developed by Union Biometrica. This system can be loaded up with a large amount (1̃00) of prepared zebrafish

larvae, after which the VAST BioImager will image each specimen fully automatically, without killing the

specimen. This imaging involves rotating the specimen as a lot (1̃00) images are being taken from different

angles. These images can be taken by both the camera integrated into the VAST BioImager which is ordinarily

used to position the zebrafish larvae, or any external optical solution such as a bright field microscope with a

camera. After these images are taken, however, they still need to be processed to obtain useful information

about the zebrafish fed to the VAST BioImager, such as the length, surface area, volume, perceived age, etc.
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This consist of three different steps:

1. First, each image is individually segmented in order to separate the fish from the capillaries and

background.

2. Then, all these segmentations for a particular zebrafish larva are combined into a 3D reconstruction of

the concerned specimen.

3. Finally, several properties can be extracted from this 3D reconstruction (length, surface area, volume,

etc.) and others from the images or segmentations themselves (perceived age).

The requirement of these processing steps has led to the envisioning of a fully automated pipeline outlined

in Figure 1.1, which is currently being developed by the section Imaging and Bioinformatics at the Leiden

University. This pipeline begins with a researcher working with zebrafish larvae, who requires the provided

metrics for their zebrafish larvae. After processing their zebrafish larvae with the VAST BioImager, the images

are uploaded through a web portal, indicated by the first two steps in Figure 1.1. A computing cluster will then

automatically perform the three steps mentioned above, that of segmenting, 3D reconstruction, and metric

extraction. This is indicated by the next three steps in Figure 1.1. Finally, these metrics will be presented to the

researcher through the same web portal, after which they can be used to give quantifiable results for a large

number of zebrafish larvae. This is once again indicated by the last three steps in Figure 1.1.

Figure 1.1: Rough overview of a pipeline for the processing of images taken by the VAST BioImager, as envisioned by the
section Imaging and Bioinformatics at the Leiden University.

Naturally, each of the three steps mentioned above is extremely complicated, and a single sentence does not

do them justice. This paper in particular will focus solely on the step of segmenting the images of zebrafish

larvae, which is encircled in Figure 1.1. Whilst many good methods for image segmentation already exist,

these can not be applied to images of zebrafish larvae. First of all, images of zebrafish larvae feature a partially

transparent foreground. For the most part, enough contrast between the specimen and the background remains

for proper segmentation. The tail of the zebrafish larva, however, contains sections with the same colour as
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the background due to its transparency. Additionally, the edges of the capillary which holds the zebrafish

larva during imaging are visible, and have the same colour as parts of the specimen. Proper segmentation

of zebrafish larvae would require a solution for these two features which would pose a problem to generic

segmentation methods.

Prior research on this particular topic has already been done [Guo17] and shows promising solutions to these

problems. However, this research and the resulting method have only taken the single dataset available at

the time into consideration. And although the resulting method works amazingly on this particular dataset,

it might not do so on datasets created under slightly different conditions. Additionally, the created method

relies on MATLAB, and is thus not suited to be transferred to a computing cluster. Part of this problem has

been solved by creating a new method based on deep neural networks, which would make it more flexible

towards future datasets [Ver18]. This new method is also written in Python with the computing cluster taken

into account. However, this method is far from perfect and is still built and tested against the single available

dataset. As such, more research into this topic is still required. And with the recent availability of three

additional datasets, this can also be conducted effectively.

1.1 Research Questions

As mentioned before, the research presented in this paper will focus on the segmentation of the images of

zebrafish larvae. As several methods for this process already exist however, the focus will not be on the

creation of another method. Instead, the three newly available datasets will be used to improve and evaluate

the existing methods. The final goal in mind is to improve and support the processing pipeline explained

above. This leads us to the following primary research question:

RQ: How can an assessment of methods and models for segmentation of zebrafish larvae

contribute to an optimal processing pipeline?

As one of the methods that we are dealing with is based on a deep neural network, it will be very informative

to figure out the principles behind its operation. This can potentially lead to further improvements of the

segmentation method. As such, we include the following research question:

SRQ1: How can the functionality of the DNN·ZF be explained?

Another of the prior methods is the hybrid segmentation method. As this is the oldest and most rigid of the

two, it is relevant to know how well it performs on these three new datasets, leading to the following research

question:

SRQ2: How well does the existing hybrid segmentation method perform on new datasets?
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When a deep neural network is trained, the assumption is that the quality increases over time. At some point

however, this quality will reach a point where additional training will not lead to much of an increase. It is

relevant to prove this is indeed the case for our methods. Additionally, determining the point at which enough

training data is supplied is relevant to determine if specific models have been trained sufficiently. This leads

us to the following research question:

SRQ3: How does the quality of a model change as it is being trained on more data?

Within the total of four available datasets, there is one dataset of which the images have a different aspect

ratio than the other three. It is relevant to determine if this will present any issues when these images are

segmented, leading to the following research question:

SRQ4: Does the aspect ratio of an image affect the quality of its segmentation?

Additionally, among these four datasets, there are many images which have been considered to be ‘bad’. This

category includes images where the zebrafish larva is physically damaged, or the zebrafish larva has been

imaged improperly by the VAST BioImager. Additionally, when training segmentations were created for use

with the deep neural network, a large number of them were segmented incorrectly. Despite the irrelevance

of these images to the general process, it is still interesting to find out what happens when these images are

predicted by the DNN·ZF method. This leads us to the following research question:

SRQ5: How does the DNN·ZF method perform on ‘bad’ input data?

Similarly, although such ‘bad’ images should never be used as training data, it is still interesting to find out

what happens when they are. By doing so interesting insights could be gained, but even just confirming

something seemingly obvious proves that everything works as intended. We also have to consider the situation

where there is not enough good training data available and we have to rely on such ‘bad’ samples. As such,

the following research question is included:

SRQ6: Can ‘bad’ samples still be used as training data?

Among the four available datasets, one of them not only has a different aspect ratio, but also comes from

a different source. Where the other three datasets were taken using the camera integrated into the VAST

BioImager (denoted as VAST images), this fourth dataset was made using the aforementioned external optical

solution: a bright field microscope with an attached camera (denoted as BFM images). These images are

completely different than the others. Not only do they have a different resolution and aspect ratio, but they

also have a different brightness, contrast, and general quality. It is relevant to know if the deep neural network

can handle both sources at once, or if they need to be treated separately. This leads to the following research

question:
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SRQ7: Can a single model make accurate predictions for both VAST and BFM images?

One of the possible ways to improve the deep neural network is to apply a grey erosion filter to both the

images used for training and those that will be predicted. Whether such a filter actually improves results or

not needs to be tested, which naturally leads to the following research question:

SRQ8: What effect does adding a filter to the images have?

Only a single dataset out of the four available consists of the higher quality microscope images. This brings us

to the same issue outlined before this section, which is that any method made for and tested on this dataset

will be relatively biased. Additionally, adapting the existing methods to very different images might present

challenges of its own. These issues are covered under the following research question:

SRQ9: How can the performance of the DNN·ZF for the segmentation of BFM images be

improved?

1.2 Thesis Structure

In this section, a general overview of the structure of this paper will be provided. Chapter 1 introduces the

scope of the performed research and puts it in context to previous works. Additionally, the research questions

are introduced.

Chapter 2 introduces several theoretical principles which are important to one’s understanding of the content

of the paper. These principles were used at vital points during the research and will be referenced several

times. Additionally, the specific deep neural network architecture evaluated in this paper is introduced. Finally,

the systems used to image the zebrafish larvae, as well as the species itself, is explained in greater detail.

Chapter 3 details the proceedings of the performed research. First, the research is divided into several steps

which are presented in a flowchart. Then, each section of the flowchart is expanded upon separately. Choices

regarding the use of certain methods are included in these explanations, as are problems which were faced

and resolved during the research. Additionally, both a concise and detailed overview of all the data used in

this research is presented in this chapter. It should be noted that no specific experiments are described in this

chapter, but that the general methodology for all final experiments is introduced instead, as the only difference

between these experiments is the data which is used for training and testing.

Chapter 4 describes these various final experiments and presents their results. Additionally, these results

are discussed and a preliminary conclusion limited to each experiment is made. Finally, several images are

presented and discussed that will grant a greater understanding of the functionality of the specific deep neural

network architecture evaluated in this paper.
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Chapter 5 answers all the research question presented in Section 1.1 using the results and conclusions from

Chapter 4. These answers are further discussed and, where appropriate, accompanied by recommendations

for further research. The chapter ends with a few concise recommendations in regards to the future treatment

of the most insightful conclusions.
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Chapter 2

Materials & Methods

This chapter will introduce several theoretical principles which are used throughout the presented research.

Most of these are related to image processing, but a more obscure type of plots is also explained. Additionally,

more information is given about the zebrafish as a model organism, and the system used to image them is

thoroughly explained.

2.1 Zebrafish

The zebrafish (Danio rerio) has become an extremely popular model organism over the last few decades, mostly

in biomedical and pharmaceutical research.

Zebrafish larvae are mostly transparent and develop in eggs outside of the parents. This makes it extremely

easy to observe the internals of the fish with both bright field microscopy and fluorescent microscopy. As with

many other model organisms, the genome of the zebrafish has been fully sequenced and is widely available.

What is interesting about the genome of the zebrafish in particular is that about 70% of human genes have

an orthologue in this genome [HCT+
13]. Furthermore, 84% of the human genes associated with disease are

found to have an orthologous gene in the zebrafish. Combined with the fact that zebrafish are vertebrates just

like humans, and thus feature very similar anatomy, this makes them ideal for research into diseases and their

cures. Another very interesting property of zebrafish is that they are capable of regenerating the vast majority

of their tissues, including the heart, brain, and spinal cord [GBHP13]. Given the similarity of zebrafish and

humans, a more complete understanding of the processes behind this regeneration can lead to novel treatment

methods applicable to humans.

In addition to these features which makes the zebrafish useful as a model organism, they are also easy to

handle logistically [Mey18]. As zebrafish are a common freshwater aquarium fish, they can be obtained quite

easily, and methods for their care are well known and distributed. Additionally, zebrafish are a fecund species

which breeds all year round, and develops rapidly, which allows for rapid growth and proliferation of modified
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lines of fish. Due to the small size of the zebrafish, and the even smaller size of their larvae, they are easy to

handle and space-efficient. Combined with their rapid proliferation, any experiment can easily be performed

in bulk to average out inherent biological randomness. Figure 2.1 should give a good idea of the size of the

zebrafish larva, as well as the ease with which experiments can be scaled up.

Figure 2.1: A large amount of zebrafish larvae in a petri dish. The device visible to the right is designed to be hand held.
Source: https://www.unionbio.com/vast/.

2.2 VAST BioImager & Leica Microscope

The VAST (Vertebrate Automated Screening Technology) BioImager1 is a system developed by Union Biomet-

rica. The system is designed to aid researchers in the process of imaging large quantities of zebrafish larvae.

The core of the VAST BioImager consists of a capillary, as can be seen in Figure 2.2. An external feeding system

is used to load zebrafish larvae into this capillary, one at a time. A system of stepper motors can rotate this

capillary at increments of 3
◦ [Uni14], along with the contained specimen. The VAST BioImager also contains

a simple camera (Allied Vision Systems, Pro Silica GE 1050 [Guo17]), which observes the capillary and its

content through a prism. The primary purpose of this camera is to direct the feeding system such that each

zebrafish larva is positioned at the proper location of the capillary. In practice, this camera is also capable

of capturing usable images of the entire specimen loaded into the capillary, at any desired rotation. Due to

the camera’s low resolution (10 µm [Uni14]) and the characteristics of its lenses however, it will do so at a

sub-optimal quality.

In order to use the VAST BioImager, an external feeding system is attached to provide it with zebrafish larvae.

Additionally, the system is mounted onto a Leica microscope. Electrical connections to this microscope allow it

to be controlled by the VAST system. This gives rise to the MM-HTAI architecture as envisioned by Y. Guo.

1https://www.unionbio.com/vast/
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Figure 2.2: The core of the VAST BioImager, mounted on a microscope. Source: https://www.unionbio.com/vast/.

With this architecture, samples are provided from a single conical sample cup, mounted as seen on the right of

Figure 2.3. Imaging of the zebrafish larvae is done both by the positioning camera and the Leica microscope.

The positioning camera is used to capture images of the entire specimen at a low quality. The Leica microscope

is used to capture high-quality images of the loaded specimen, although at high magnifications it is not capable

of capturing the entire specimen at once. Additionally, the Leica microscope is capable of operating with both

bright field microscopy and fluorescent microscopy.

2.3 Image Processing

Several methods of processing images, that is the process of transforming one image into a similar but different

image, have been used.

2.3.1 Morphological Erosion

Morphological erosion [IC18] is the process of computing a local minimum over some kernel for each pixel in

the image. These minima will form a new image of the same dimensions. In effect, this leads to dark areas

becoming dilated, whilst light areas become eroded, as can be observed in Figure 2.4.

2.3.2 Methods used for Image Resampling

Image resampling filters can be used to convert images from one coordinate system into another. These would

take the place of the mapping function. The following filters will be used in this paper:

9
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Figure 2.3: A usable setup consisting of the VAST BioImager, a microscope, and a sample feeder. Source: https://www.
unionbio.com/vast/.

Nearest-neighbor interpolation simply takes the nearest pixel from the input for each pixel in the output.

Bilinear interpolation takes a weighted average over the closest 2x2 pixels from the input for each pixel in

the output.

Bicubic interpolation behaves just like bilinear interpolation, but over a 4x4 area of pixels.

Box sampling considers each pixel in the output as a box over the input, and gives them the value of the

weighted average of all pixel in this box.

The Hamming filter is a windowing filter using the cardinal sine function, with a tapered bell-shaped curve.

The Lanczos filter is a windowing filter using the cardinal sine function, with an untapered lobe-shaped

curve.

A comparison between these filters is presented in Figure 3.9. The filter with the best results in the context of

this research will be selected later.

2.3.3 Simple Thresholding

Segmenting is the process of dividing an image into the foreground and background. The simplest way to

segment an image is to convert it to grayscale first. Then, an arbitrary value can be chosen as a threshold. Any

pixel with a higher value than this threshold is assigned to be one extreme value (black or white), and any

other pixel is assigned to be the other extreme.
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Figure 2.4: Morphological erosion applied to an image with a dark foreground and an image with a dark background.
Source: docs.opencv.org.

2.3.4 Adaptive Thresholding

In the case that lighting conditions differ throughout an image, using a single global value as a threshold

would be unsuitable. This threshold might work for part of the image, but would not work for darker or lighter

areas. In this case, adaptive thresholding can be used, which calculates a threshold for each pixel individually.

A distinction is made between two variations:

Adaptive mean thresholding [IC18] calculates the threshold value as a mean of some neighbouring area,

with an arbitrary constant subtracted from this. This constant can also be zero or negative.

Adaptive Gaussian thresholding [IC18] calculates the threshold value as the weighted sum over some neigh-

bouring area, where the weights are a Gaussian window. An arbitrary constant is then subtracted from

this.

After calculating the local threshold for a pixel, it is compared to the grayscale value of that pixel to determine

which of the two extremes should be assigned. In Figure 2.5, the two methods listed above are compared to

simple thresholding.

2.4 Image Properties

Images and contours have a large number of properties, some of which require further explanation.

11
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Figure 2.5: Comparison between global and adaptive thresholding. Source: docs.opencv.org.

2.4.1 Moments

Image moments [IC18] are very specific weighted sums over all pixels of an image, where the exact meaning

depends on how the weights are chosen. For digital images, the moment is defined as such:

Mij = ∑
x

∑
y

xiyj I(x, y) (2.1)

where I(x, y) is the intensity of the pixel at location (x, y).

If the weights i and j are both chosen to be 0, the moment M00 is calculated as follows:

M00 = ∑
x

∑
y

x0y0 I(x, y) (2.2)

M00 = ∑
x

∑
y

I(x, y) (2.3)

which is simply the sum of all pixel intensities of the entire image. In the case of a binary image, this is

equivalent to the area.

2.4.2 Centroid

The centroid [IC18] of an image is its centre of mass. It is calculated from the image moments according to the

following formula:

{x̄, ȳ} =
{

M10

M00
,

M01

M00

}
(2.4)
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2.4.3 Convex Hull

An arbitrary curve can have sections which are flat, concave or convex. A convex hull [IC18] for such a curve is

another curve consisting only of convex or flat sections, which matches the original curve as closely as possible.

A convex hull can be created by replacing all concave sections of a curve with straight lines. In other words, a

convex hull for a curve is what would be obtained after stretching a rubber band around it.

2.4.4 Convexity Defects

Any deviations between a curve and its convex hull are called convexity defects [IC18]. For each section of the

curve, this can be represented as a point on the curve located the furthest from the convex hull. An example of

a curve, convex hull, and associated convexity defects is given in Figure 2.6.

Figure 2.6: A figure displaying convexity defects. The white object represents the original curve. The green lines represent
the convex hull. The red dots represent the convexity defects. Source: docs.opencv.org.

2.4.5 Solidity

The solidity [IC18] of an object is the ratio of the object area to the object’s convex hull area. This is taken as the

fraction of the object’s convex hull which is actually occupied by the object. Thus, the more concave an object

is, or the more holes it contains, the lower the solidity becomes. This gives an idea of how ‘solid’ an object is.
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2.5 Violin Plots

When using box plots to plot quantitative values across a small number of categories, only the four quartiles

are presented. This gives a general overview of the distribution of the data, but the distribution within each

quartile remains unknown. When the distribution of data contains more than one peak, conclusions based on

box plots might be very misguided. Violin plots [HN98] are a variation of box plots. In addition to displaying

the aforementioned four quartiles, violin plots show the complete distribution of data per category. This

distribution is usually smoothed by a kernel density estimate. Figure 2.7 shows how a box plot and kernel

density estimate can be combined into a single graph.

Figure 2.7: Example of a violin plot which plots the values for total bill against the category day. Source: seaborn.
pydata.org.

2.6 Deep Neural Network

Previous research performed by W. Verhoef explored the use of deep neural networks (DNNs) for the purpose

of the segmentation of zebrafish larvae [Ver18]. Despite using the term deep neural networks, the neural

networks presented in that research are both deep and convolutional. Experiments were performed on two

different architectures, and one was determined to perform better than the other. This architecture, called

the residual architecture [HZRS15], is a total of 31 layers deep. To improve the propagation of information,

various lateral connections and skip-connections have been added. Altogether, the total amount of parameters

is 4,062,689, with the number of trainable parameters being 4,060,705. A more elaborate description of this

architecture can be found in Section 3.2 of [Ver18]. This residual architecture will be further evaluated and

analyzed in this paper and will be referred to with the term DNN·ZF. It should be noted that from the

perspective of this paper, this architecture will be treated as a black-box algorithm. As such, a detailed analysis
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of the structure of the residual architecture will be omitted here. Any other work which can only be done by

interacting with the content of the architecture will also be ignored.
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Chapter 3

Implementation

The research presented in this paper is divided into two very distinct blocks. The first block concerns the

gathering, processing, and organizing of various datasets. The second block concerns the use of these datasets

to evaluate and improve the DNN·ZF method created by W. Verhoef. Both blocks are themselves divided into

multiple steps, leading to the flowchart presented in Figure 3.1.

Figure 3.1: Flowchart outlining the performed research.

The first block concerning the gathering of data is fully explained in Section 3.1. Within this block, images from

four different sources are considered separately and are outlined as such in the flowchart. All four sources are

explained in a dedicated subsection, of which the numbers are also included in the flowchart.

The second block regarding the work with the DNN·ZF method is a lot more involved. In Section 3.2, a

full explanation regarding the functional implementation of the DNN·ZF method is given. Additionally,

the methods which are used to evaluate the DNN·ZF method are described here. This section covers the

outlined area labelled as such in the flowchart. The next phase of this block concerns the answering of one

of the research questions. Based on this answer, one or two ideal models are selected for future use. This
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is also outlined in the flowchart and is expanded upon throughout Chapter 5. The remaining items on the

flowchart indicate the new high-throughput segmentations generated by the ideal model or models. These are

of relevance to future research but do not warrant any special attention in this paper.

3.1 Data Collection

Available for use were four datasets consisting out of images of zebrafish larvae, which were created using the

VAST BioImager and Leica microscope. The zebrafish larvae used for imaging varied between 3dpf and 5dpf in

age. Even though the ages of the zebrafish larvae were known at the time of imaging, there are still variances in

their phenotype due to genetic and environmental factors, as would be expected from any organism. Research

by H. Spaink [Spa18] has shown that within each age category outliers exists which present a phenotype more

typical of another age category.

3.1.1 Old VAST Images

This dataset was created in 2017 using the previously outlined MM-HTAI architecture. For this dataset, the

internal VAST camera was used to obtain images of the zebrafish larvae. Each zebrafish larva has been imaged

a total of 84 times, with those images being equally distributed around a full rotation of the specimen. All

images were saved as TIFF [GP02] images with a resolution of 1024px by 250px. A total of 60 different zebrafish

larva were imaged in this way, of which 12 specimens were 3dpf, 24 specimens were 4dpf, and 24 specimens

were 5dpf. For one such 4dpf specimen, four of these images are presented in Figure 3.2.

As part of the research performed by Y. Guo in 2017 [Guo17], these images have been segmented using a

hybrid method implemented in MATLAB. This produces segmentations such as those presented in Figure 3.2.

The hybrid method first creates two different segmentation candidates, one using the mean shift algorithm,

and one using an improved level set method [ZMSM08]. It then combines and refines these two candidates to

create the final hybrid segmentation.

3.1.2 New VAST Images

This dataset was created in 2018 using the same MM-HTAI architecture and internal VAST camera. For this

dataset, a total of 123 zebrafish larvae were imaged, with 39 specimens being 3dpf, 36 specimens being 4dpf,

and 48 specimens being 5dpf. This time, the majority of zebrafish larvae were imaged a total of 100 times

distributed around one full rotation. A total of three specimens, however, were improperly positioned by the

VAST BioImager which caused the imaging to fail for a few of their angles. Once again, all images were saved

as TIFF images with a resolution of 1024px by 250px. For one of the properly imaged 4dpf specimens, four of

these images are presented in Figure 3.3.
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Figure 3.2: Bright field images of four views (ventral, left lateral, dorsal, right lateral) from a typical 4dpf zebrafish larva in
the first dataset, as well as their corresponding low-throughput segmentations. The purple line in the bright field images
indicates the boundary of the segmentation.

Of particular note is that this dataset contained several specimens for which the images were classified as

useless due to several different reasons:

• Certain zebrafish larvae were accompanied by a large amount of debris after being positioned in the

capillary, such as the specimen in Figure 3.4a.

• Other zebrafish larvae, after being positioned into the capillary, were closely accompanied by one or

more other zebrafish. This would generally cause parts of multiple zebrafish larvae to show up in the

same image, such as in Figure 3.4b. In other cases, the VAST BioImager would switch back and forth

between the two specimens as it was taking the images at different angles, which caused the set of

images to become inconsistent.

• Due to the forces exerted on the zebrafish larvae by the MM-HTAI architecture several of them were

damaged severely, such as the specimen in Figure 3.4c.

Since image sets for specimens with one of the properties listed above would either significantly deviate from

the norm or be unsuitable for the construction of a sensible three-dimensional model they were discarded and

labelled as a separate dataset. A total of 29 image sets have been discarded in this way.

To use this dataset to train and validate the DNN·ZF, ground truth segmentations need to be made. As the

accuracy of the hybrid segmentation method developed by Y. Guo has already been proven, the decision was

made to use it to segment this new dataset. This method, however, was developed and optimized for only the

single dataset created in 2017. As such, its performance on this new dataset was less than desirable. The five

initial problems are outlined below:

1. Some segmentations included the capillary as part of the fish. This can be observed in the first image of
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Figure 3.3: Bright field images of four views (ventral, left lateral, dorsal, right lateral) from a typical 4dpf zebrafish larva
in the second dataset, as well as their corresponding low-throughput segmentations. The purple line in the bright field
images indicates the boundary of the segmentation.

Figure 3.5a.

2. Some segmentations were off by a sliver of fairly constant height. This can be observed in the first three

images of Figure 3.5a.

3. Sometimes only a very small section was segmented as part of the fish. This can be observed in the last

image of Figure 3.5a. It should be noted that this effect is not limited to only the tip of the tail.

4. Sometimes the very tip of the tail was incorrectly segmented. This can be observed in the second image

of Figure 3.5a.

5. Some images failed to be segmented at all, these were mostly images were the zebrafish larva was

positioned too close to the edge of the view. Out of the 12288 images which were available in this dataset,

only 10841 were successfully segmented.

It was also discovered that the preprocessing code of the hybrid segmentation method did not properly remove

the capillaries from images in this new dataset. In some cases, this would lead to the capillaries not being

entirely removed, which in turn would cause the first issue outlined above. In other cases, this would lead to

part of the fish being removed along with the capillary, causing the second and third issues outlined above.

After fixing the code responsible for removing the capillaries, these three issues were also fixed, leading to the

segmentations displayed in Figure 3.5b.

Even though the hybrid segmentation method has solved the issue of segmenting the extremely transparent

tail of the zebrafish larvae, it has only done so for the single dataset from 2017. On the new dataset, this

method still has trouble with segmenting the transparent section of the tail. This indicates that the hybrid

segmentation method is not flexible enough to be used on any future datasets as is, and this is what prompted
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(a)

(b)

(c)

Figure 3.4: Lateral bright field images of three 4dpf specimens from the second dataset which have been discarded for
different reasons, as well as their corresponding low-throughput segmentations. The purple line in the bright field images
indicates the boundary of the segmentation. Specimen (a) has been discarded due to an overabundance of debris in the
capillary. Specimen (b) has been discarded due to the presence of another zebrafish larva in the images. Specimen (c) has
been discarded due to extensive damage.

the development of an alternative, more general method. As can bee seen in the right lateral views of Figure 3.5,

the tail is segmented improperly even after modifying the hybrid segmentation method for this new dataset.

As such, a large number of images in this new dataset are in fact improperly segmented and thus unsuitable as

reliable training data. This mostly affects lateral views, in which the tail is the most transparent. To resolve this

issue, all images were manually verified and any improperly segmented views were separated into a different

dataset. A total of 81 zebrafish larvae were affected (out of 123), and 2790 segmentations were separated

(out of 10841). Additionally, to compensate for the comparatively small amount of lateral views, 50 of the

lateral images which were improperly segmented, spread out over 23 specimens, were manually traced and

segmented by R. Megens. An additional four zebrafish larvae were selected and had all improperly segmented

views manually segmented using Sefexa, totalling an additional 194 segmentations. One such specimen is

presented in Figure 3.6.

3.1.3 Newer VAST Images

Similar to the previously described dataset, this dataset was created later in 2018 using the same MM-HTAI

architecture and internal VAST camera. A total of 35 zebrafish larvae of unknown age have been imaged, with

each specimen being imaged 100 times distributed around one full rotation. This time around, a total of six

zebrafish larvae had the images for several angles missing as they were being positioned improperly by the

VAST BioImager. Once again, all images were saved as TIFF images with a resolution of 1024px by 250px. An

overview of one of the properly imaged zebrafish larvae from this dataset is presented in Figure 3.7.
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(a) (b)

Figure 3.5: Bright field images of four views (ventral, left lateral, dorsal, right lateral) from a typical 3dpf zebrafish larva in
the second dataset. The purple line in the bright field images indicates the boundary of the segmentation. The images of
segmentation (a) were made with the original version of the hybrid segmentation method. The images of segmentation (b)
were made with the modified version.

As described in the previous section, the hybrid segmentation method that is used to generate the training

segmentations for the DNN·ZF generalizes poorly to new datasets. Additionally, at the moment this dataset

became available it had already been determined that adding more training data beyond a certain point would

not improve the quality of the model, as concluded from Figure 4.2. The previous datasets already provide

more than enough training data sourced from the VAST BioImager’s internal camera to train any model to

the maximum accuracy. As the creation of a new set of training data is extremely time-consuming and not

necessary in this case, the decision was made to not segment this dataset using the hybrid segmentation

method and instead use it to solely evaluate the metrics which do not require the presence of a ‘truth’

segmentation.

3.1.4 Newer BFM Images

This dataset was created in 2018, using the same specimens as the previous dataset (Newer VAST Images).

Unlike the other datasets discussed until this point, this dataset was not created using the internal positioning

camera of the VAST BioImager. Instead, the MM-HTAI architecture was fully realized by using the imaging

capabilities of the Leica microscope that the system is mounted on. A total of 32 zebrafish larvae of unknown

age were imaged by the Leica microscope. This time, each zebrafish larva was imaged 101 times distributed

around a full rotation, with eight of the specimens partially failing and not having images provided for all

their angles. All images were saved as TIFF images with a resolution of 2560px by 1920px.

The deep neural network created by W. Verhoef was made to accept images from the VAST BioImager’s
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Figure 3.6: Bright field images of four views (ventral, left lateral, dorsal, right lateral) from a typical 3dpf zebrafish larva
in the second dataset, as well as their corresponding manual segmentations. The purple line in the bright field images
indicates the boundary of the segmentation.

Figure 3.7: Bright field images of four views (ventral, left lateral, dorsal, right lateral) from an typical zebrafish larva in the
third dataset. Note that these images are taken from a specimen also displayed in Figure 3.8.

internal camera. As the amount of input nodes for any given neural network is static, this DNN·ZF used will

only accept images with a resolution of 1024px by 250px. Since the images of this dataset have a resolution of

2560px by 1920px, they need to be downsampled before they can be used in conjunction with this DNN·ZF.

Additionally, the segmentations created by the DNN·ZF will also have a resolution of 1024px by 250px, and

will thus need to be upsampled afterwards. To select the most suitable resampling algorithm for these tasks,

an arbitrary BFM image was downsampled to the input size of the DNN·ZF, and upsampled back to its

original size, for each algorithm supported by OpenCV version 3.4.5.20. The resulting images are organized in

Figure 3.9. Since the image that was processed with the Lanczos resampling algorithm looks the most like the

original, this was selected for use in any resampling tasks performed on input or output for the DNN·ZF.

Not only do the BFM images from this dataset have a different resolution than the input of the DNN·ZF, but

they also have a different aspect ratio. While the aspect ratio of the images from the VAST BioImager’s internal

camera and thus the input of the DNN·ZF is 512:125 or 4.096:1, the aspect ratio of the images produced by

the Leica microscope is 4:3 or 1.3:1. This means that the images are squashed vertically by a factor of 3.072
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Figure 3.8: Bright field microscopy images of four views (ventral, left lateral, dorsal, right lateral) from an typical zebrafish
larva in the fourth dataset. Note that these images are taken from a specimen also displayed in Figure 3.7.

when they are resized to match the input of the network. This changes the shape of the zebrafish larvae in the

images relative to those in the other datasets, potentially affecting the quality of the model or the predictions.

Additionally, as can be observed in Figure 3.10a, some of the BFM images contain a digitally introduced scale

in the top left corner. As such, it is relevant to determine if these properties play a role in the quality of the

predicted segmentations for these images, or in the effectiveness of these images as training data. For this

purpose, a copy of this dataset was created with all of the BFM images cropped to the aspect ratio of the VAST

images, such as the image presented in Figure 3.10b.

At this point, it was obvious that the hybrid segmentation method would not be able to provide acceptable

training segmentations for this dataset. However, due to the novelty of this dataset over the others, it could

not simply be ignored like the previously discussed dataset. As such, it was necessary to develop a new

segmentation method which would work on the majority of this new dataset. The new method is outlined in

Figure 3.11, and explained in detail below. This method was used to generate training segmentations for this

dataset of BFM images, as well as the dataset of cropped BFM images.

original image The process starts by ensuring that all BFM images are cropped to an aspect ratio of 512:125,

the same aspect ratio as the VAST images. This does not affect images from the pre-cropped BFM dataset,
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(a)

(b)

Figure 3.9: Comparison of various algorithms for the interpolation of BFM images of zebrafish larvae. (a) presents the
original image which has been interpolated, with a resolution of 2560px by 1920px. (b) presents several images which
have been down sampled to 1024px by 250px and up sampled back to the size of the original, both steps with the marked
algorithm. The presented times are the duration of ten individual rounds of down sampling followed by up sampling for
each marked algorithm.

as they already are at this aspect ration. In addition to ensuring consistency between the two variants

of the dataset, this cropping step removes a large amount of the background as well as the digitally

introduced scale, which would otherwise be detrimental to the later steps.

grayscale Afterwards, the images are converted to grayscale. For this process, there is no particular value in

having three different colour channels over just one, and this conversion simplifies the following steps.

remove capillaries Now, the capillaries are removed from the image in such a way that any overlapping

parts of the zebrafish larva are not affected. This is done separately for both sides (top and bottom)

of the image. For each vertical line of pixels, a search starts for the outer edge of the capillary. This

edge is determined by searching for a sharp decrease in pixel intensity relative to the previous pixel.

Additionally, to prevent issues with dark pieces of debris or air bubbles outside the capillaries, the

location of this new edge is clamped within a certain range of the edge found in the previous column.
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(a) (b)

Figure 3.10: An image from the fourth dataset before and after cropping. (a) presents a BFM image as it was originally
captured, with a resolution of 2560px by 1920px. (b) presents a BFM image after cropping an equal height from the top
and bottom, with a resolution of 2560px by 625px.

Afterwards, an interval starting at this edge and going inwards for a certain distance is considered, and

the location of the pixel with the highest intensity in this interval is extracted. The length of the interval

depends on the average pixel intensity of another static interval inwards. This process is designed such

that when a zebrafish larva partially overlaps the capillary, such as in the example in Figure 3.11, the

dynamic interval is much shorter. In turn, this causes the selected lightest pixel to fall in between the

zebrafish and the capillary, instead of falling somewhere within the body of the zebrafish. Finally, an

appropriate background colour is calculated, and the interval from the edge of the image to the selected

lightest pixel is set to this colour.

grey erosion After removing the capillaries, grey erosion is applied. This erosion will cause the black areas

of the image to expand according to a kernel, thereby filling any holes which might be present in the

specimen. To conform to the morphology of the zebrafish larvae, a circular kernel is used.

adaptive Gaussian thresholding After the capillaries are removed and any holes in the specimen are filled,

thresholding can occur. After some experimentation, it was determined that using adaptive Gaussian

thresholding with a block size of 1111 provides the best results.

revert grey erosion Now, the earlier applied grey erosion needs to be reverted. This is done by eroding the

foreground of the threshold with the same kernel used earlier. In doing so, the threshold belonging to

the zebrafish larva is reduced to the actual size of the specimen.

select fish segmentation Finally, the full segmentation can be generated. First, a new black image with the

same dimensions as the input is created, thereby undoing any cropping. Afterwards, the threshold

belonging to the fish is selected from among the several disconnected thresholds and is placed on the

new background at the appropriate location.

This method ended up working extremely well for the majority of BFM images. However, with certain images

the novel method failed spectacularly, such as for the image in Figure 3.12, indicating reliability issues. As such,
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Figure 3.11: An overview of a novel method for the segmentation of zebrafish larvae in BFM images. (1) if necessary, the
image is cropped to an aspect ratio of 512:125. (2) the image is converted to grayscale. (3) the capillaries are removed
from the image, without affecting any overlapping parts of the larva. (4) grey erosion is applied to fill any holes. (5)
adaptive Gaussian thresholding is used for an initial segmentation of the image. After this, the initial cropping is also
reverted. (6) the previously applied grey erosion is reverted. (7) the segmentation belonging to the zebrafish larva is
isolated from the others. (8) an overview is created from the original BFM image. The purple line represents the boundary
of the segmentation. The blue lines represent a start and end point related to removing the capillary.

it is more desirable to train the DNN·ZF method on all the successful segmentations, and use that method

instead.

Figure 3.12: Failed segmentation of a BFM image using the novel method, with the corresponding bright field image. The
purple line in the bright field image indicates the boundary of the segmentation.

3.1.5 Dataset Summary

To make the remainder of this paper easier to understand, a concise summary of the processed datasets is

provided.
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Source Name # of Specimen # of Images Has Segmentations?

Old VAST Images raw data 60 5040 3

New VAST Images raw new data 123 12288 7

raw new data bad 81 2790 3

raw new data broken 29 1926 3

raw new data good 79 6125 3

raw new data manual 27 271 3

Newer VAST Images raw newer data vast 35 3403 7

Newer BFM Images raw newer data bfm 32 2730 3

raw newer data bfm cropped 32 2730 3

Table 3.1: A listing of all the available datasets along with their most important properties.

raw data A dataset of VAST images which was finalized prior to this research.

raw new data A dataset of VAST images with no segmentations.

raw new data bad A dataset of VAST images with incorrect segmentations made by the hybrid segmentation

method.

raw new data broken A dataset of VAST images containing physically damaged zebrafish larvae with seg-

mentations made by the hybrid segmentation method.

raw new data good A dataset of VAST images with segmentations made by the hybrid segmentation method.

raw new data manual A dataset of VAST images with segmentations which were manually traced.

raw newer data vast A dataset of VAST images with no segmentations.

raw newer data bfm A dataset of unmodified BFM images with segmentations made by the novel method.

raw newer data bfm cropped A dataset of cropped (to the aspect ratio of the VAST images) BFM images with

segmentations made by the novel method.

As these datasets were being created, four collections of datasets were designed which would likely work well

as training data based on prior knowledge and initial observations. Starting with only the old VAST images,

each further collection would add one additional dataset. These promising collections are as follows:

1. raw data

2. raw data+raw new data good

3. raw data+raw new data good+raw new data manual

4. raw data+raw new data good+raw new data manual+raw newer data bfm cropped
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Additionally, a fifth collection was considered containing only BFM images, as using VAST images for training

could potentially be detrimental for the prediction of BFM images:

5. raw newer data bfm cropped

3.2 Segmentation

After the creation of all the datasets was completed, the DNN·ZF method was evaluated. This was done by

generating many different sets of training and testing data from those datasets in several different ways.

3.2.1 Model Generation and Training

To evaluate any deep neural network with a certain architecture, models need to be created, trained, and tested

on certain metrics. The properties of these models will be outlined below:

Architecture The architecture which will be evaluated is a residual architecture developed by W. Verhoef,

which is described in Section 4.1 of [Ver18].

Input Dimensions The input to the network is three dimensional, with a width of 1024, a height of 256, and

a depth of 3. This corresponds to an image with a resolution of 1024px by 256px, and three colour

channels.

Output Dimensions The output from the network is two dimensional, with a width of 1024 and a height of

256. This corresponds to a grayscale image with a resolution of 1024px by 256px.

Optimizer The optimizer used when training the models is one called Adam [KB15]. The only parameter

changed from the defaults as discussed in the paper is the learning rate, which has been decreased to

0.0001.

Loss Function The loss function used when training the models is the binary cross-entropy1. This function

works well in networks where each output node predicts a value between 0 and 1.

When training the model, it is always trained one image at a time. Additionally, each of those images is given

a separate epoch, thus there is only one step per epoch.

3.2.2 Preprocessing and Postprocessing

Before any images were used as input for the DNN·ZF, they had to be processed, which was done in

two different ways. Images and segmentations which were used to train the DNN·ZF would undergo data

augmentation first. This included shifting, rotating, zooming, and flipping. Naturally, these modifications

1https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html#cross-entropy
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would be the same for an image and its related segmentation. Afterwards, both the image and the segmentation

would be resized to a resolution of 1024px by 256px using the Lanczos interpolation algorithm, which was

required to match the input dimensions of the DNN·ZF. Images and segmentations which were used to test

the DNN·ZF only underwent resizing to the input dimensions of the DNN·ZF and did not undergo data

augmentation.

Of particular note is that every evaluation on this DNN·ZF was performed twice. Once with the preprocessing

as described above, and once with a filter applied. This filter was applied before the data augmentation and

resizing and would be applied to both the training and testing image, but not the segmentations. The filter

used was a grey erosion filter with a circular kernel. For the images used, this filter would increase the area of

any dark parts, causing the effect observed in Figure 3.13. Since this filter was not applied to the segmentations

used as training or evaluation data, any model trained with this filter enabled would still be motivated to

predict segmentations of the correct size and shape.

Figure 3.13: Image of a zebrafish larva before and after the application of a gray erosion filter with a circular kernel. The
purple lines indicate the boundaries of the segmentations predicted by a model trained on only the raw data dataset.

The output which was predicted by any trained model also needed to be processed before it would be a proper

segmentation. First of all, the predicted output consisted of floating-point values between 0 and 1. To create

a binary segmentation, a simple rounding operation was performed. Any pixel with a value of <= 0.5 was

rounded off to 0, indicating the background. Any pixel with a value > 0.5 was rounded off to 1, indicating the

foreground. Afterwards, all separated parts of the segmentation would be identified, and only the part with

the biggest area would be selected as the final segmentation. Additionally, any fully enclosed holes in this

segmentation would be filled in.

3.2.3 Metrics

To evaluate the predictions made by any particular model, several different metrics were implemented. These

metrics were calculated from the final segmentation after the postprocessing step described above. Special care

was taken to provide metrics which are relevant in regards to the contents of the predictions, rather than just

the values of the different pixels.

Accuracy

An accuracy metric was implemented to get a grasp on the similarity between the segmentations made by the

model and the curated segmentations made by the various other methods. This metric was implemented as
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the fraction of pixels with the same value between these two segmentations. Note that after the postprocessing,

both segmentations are binary images.

Tail Solidity

As the most prevalent problem of the various segmentation methods is the segmentation of the tail, which is

extremely transparent, a metric was implemented to measure the quality of the segmentation in this area. To

calculate this metric, the orientation of the zebrafish larva needs to be determined first. This is done by taking

the centroid of the segmentation, which is generally located near the yolk sac. If this point is located to the left

of the centre of the bounding box of the segmentation, it indicates that the zebrafish larva is orientated with its

head on the left side. If the centroid is located on the right, the opposite is true. Once the orientation of the

fish is known, the segmentation of the tail of the larva is isolated. More specifically, the image is cut vertically

at 15% inwards from the tail end of the bounding box. Once only the segmentation of the tail is remaining, the

area of that segmentation as well as the area of the convex hull of that segmentation is determined, from which

the solidity is calculated. A solidity close to 1 will indicate that the entirety of the tail has been detected in the

segmentation, as in Figure 3.14b. If the tail has been segmented incorrectly, it will lead to a notch missing from

the segmentation of the tail, leading to a lower value for this metric, as the tail is now less ‘solid’. This can be

observed in Figure 3.14a.

(a) (b)

Figure 3.14: Overview of the various image properties used during the calculation of the tail solidity metric. The green
rectangle represents the bounding box of the segmentation. The cyan dot is the centre of this bounding box. The yellow
dot represents the centroid of the segmentation. The blue rectangle represents the part of the image which has been
determined to contain the tail of the zebrafish larva. Finally, the red line outlines the segmentation of this tail, and the
purple line represents the convex hull of this segmentation.

3.2.4 Evaluations

Three different methods were used to train and evaluate models for this DNN·ZF, which will be described

below.

K-fold cross-validation

Due to its versatility, 5-fold cross-validation was used to evaluate the DNN·ZF. For this method, any single

dataset or combination of datasets could be used. All the samples in the selected datasets would be separated

into five folds. Here, a sample refers to all the images taken of a single zebrafish larva, and not an individual
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image/segmentation pair. For each fold, a new model would be created and trained on all the samples for that

fold. Then, this model would be evaluated on all the samples from the four other folds.

The results of the evaluations were saved in a .csv file, in which each evaluated image/segmentation pair

received its own entry. Since the separation into folds was done at the level of specimens rather than images,

and the number of images per specimen contained some variation, the models for certain folds had more

training data available than others. As such, this information was also saved with each entry so that any

further processing could be weighted depending on the amount of training data used.

Incremental k-fold cross-validation

To get a good image of how the quality of a model changes as more training data is added, a variation on

5-fold cross-validation was used. For this incremental variation, the selected datasets were divided into folds

as described above. Once again, the processing of each fold starts with the creation of a new model. Then, until

all the samples in the fold have been processed, this model undergoes many rounds of training and testing.

For each round, the model is first trained on all images belonging to only a single sample. Then, this partially

trained model is evaluated on all samples from the four remaining folds. Each iteration of this process builds

upon the model from the previous rounds.

The results of this process are saved in the same manner as the non-incremental k-fold cross-validation, which

is described above. This means that every entry also contains the number of training images used for the

model which was evaluated.

Train/Test split

As many of the available datasets are completely independent of each other, it is possible to split training from

testing data using this existing separation of datasets. For this method, any single dataset or combination

of datasets was selected as training data. Then, any single dataset or combination of datasets that does not

intersect the training data was selected as testing data. After the selection of training and testing data, a single

model was created, trained, and evaluated.

The evaluation results for this method are saved in the same manner as the other two methods, as described

above. The amount of images used to train the model is also included.
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Chapter 4

Results

In this chapter all our experimental results will be presented. Most of these results come from the experimental

setup explained in Chapter 3. Depending on the goal of the evaluation, different datasets are used for training

and testing, which will allow us to draw varying conclusions. Additionally, a set of experiments is presented

where metrics were gathered on models trained with increasing amounts of data. Finally, an experiment is

presented which will give some insight into the functionality of the DNN·ZF method.

4.1 Evaluating with increasing amounts of training data

In order to visualize what happens to the model as more training data is added, as well as to find a potential

maximum for the amount of training data needed, incremental k-fold cross-validation was used with the five

promising collections of datasets. The results for the raw data dataset are visualized in Figure 4.1, those for

raw data+raw new data good in Figure 4.2, for raw data+raw new data good+raw new data manual in Fig-

ure 4.3, for raw data+raw new data good+raw new data manual+raw newer data bfm cropped in Figure 4.4,

and for raw newer data bfm cropped in Figure 4.5. In each of these figures, the results from the five different

folds are combined into a single line, with an error band around each line indicating the confidence interval.

As can be seen in Figure 4.2, Figure 4.3, and Figure 4.4, all metrics stabilize after the model has been trained

on 3000 images. This is equivalent to roughly 30 fish. The results in Figure 4.1 also match this observation,

although with lower certainty. After this point, training on additional images will provide no significant

changes to the quality of the model. Each new image used as training data will still cause changes in the

model, but over time this will lead to oscillations in the metrics, rather than a change towards either direction,

as can be observed in the figures.

The model evaluated in Figure 4.5 however, which is being trained on BFM images only, never reaches

3000 training samples. Generally speaking, this graph follows the same trend as the others, and will most

likely exhibit the same behaviour after reaching 3000 training images. A big difference, however, is that the
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(a) (b)

Figure 4.1: Results for evaluating a model using different metrics during the training process. This model is being trained
with the raw data dataset.

(a) (b)

Figure 4.2: Results for evaluating a model using different metrics during the training process. This model is being trained
with the raw data and raw new data good datasets.

oscillations of the metrics in this model are much more significant than those in the other models.

4.2 Evaluation of models based on different training data

One of the most important questions that this research aims to answer is if one model is sufficient for

the prediction of both images from the VAST and the BFM source, or if two separate models are required.

Additionally, the most ideal or two most ideal models need to be identified. For this purpose, the five models

trained with the most promising datasets were evaluated on only VAST images in Figure 4.6, and evaluated

on only BFM images in Figure 4.7. After combining all the relevant data, each of the five models is associated

with a large number of numbers for both metrics, which were plotted as violin plots. This way, in addition

to the four quartiles, information about the distribution of data both within and outside these quartiles is
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(a) (b)

Figure 4.3: Results for evaluating a model using different metrics during the training process. This model is being trained
with the raw data, raw new data good, and raw new data manual datasets.

(a) (b)

Figure 4.4: Results for evaluating a model using different metrics during the training process. This model is being trained
with the raw data, raw new data good, raw new data manual, and raw newer data bfm cropped datasets.

available, which allows for more precise and detailed conclusions.

Figure 4.6 applies to the case where we only consider images taken by the VAST’s positioning camera as a

target for segmentation. In Figure 4.6a it can be seen that all models trained using VAST images provide a

similar accuracy, which is in line with our earlier observation that only a small amount of fish are necessary to

provide a stable model. Of particular note is the fact that the filtered model trained on only BFM images also

provides high accuracy and high tail solidity, and would thus be suitable to segment VAST images.

Figure 4.7 applies to the case where we only consider images taken by the Leica microscope camera as a target

for segmentation. As can be seen in Figure 4.7a and Figure 4.7b models trained using VAST images provide

a terrible accuracy and tail solidity for these BFM images, and would be unsuitable to segment them. Both

variants of the model trained with BFM images have much better accuracy and tail solidity. The distribution

for the accuracy for the filtered variant is much narrower and shorter, suggesting this model is more suitable
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(a) (b)

Figure 4.5: Results for evaluating a model using different metrics during the training process. This model is being trained
with the raw newer data bfm cropped dataset.

(a) (b)

Figure 4.6: Overview of all evaluations on only VAST images for several different models.

to segment BFM images.

4.3 Determining the impact of the aspect ratio

Since the images taken by the Leica microscope camera not only have a different resolution than the VAST

images, but also have a different aspect ration, the impact of the asymmetrical scaling was evaluated. This

would allow us to conclude whether a cropping step needs to be added to any preprocessing. To evaluate this

impact, several different models were separately evaluated on BFM images as they were originally taken and

BFM images which were cropped to the same aspect ratio as the VAST images. During testing, images of both

datasets are scaled down to the input of the network, where only the BFM images not cropped in advance

would be scaled asymmetrically. Both of these evaluations are associated with a large number of numbers for

each metric, which are once again plotted as violin plots. The results are displayed in Figure 4.8.
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(a) (b)

Figure 4.7: Overview of all evaluations on only BFM images for several different models.

(a) (b)

Figure 4.8: Results when using two datasets with different aspect ratios as testing data.

Using images with a different aspect ratio than the input of the network causes these images to be scaled

to this new aspect ratio. This causes the shape of the fish to change. As can be seen in Figure 4.8a, using

such images as testing data leads to a distribution where a lot of images are segmented with low accuracy. If

these images are cropped to the correct aspect ratio before using them as testing data, the shape of the fish

is maintained. This leads to a much nicer distribution with a higher median for the accuracy. In Figure 4.8b

it can be seen that the distribution for the tail solidity also has a much flatter tail for cropped images and

that more images are segmented with a high tail solidity. This leads us to believe that cropping images to the

aspect ration of the network to maintain the shape of the fish is a necessary step to improve the quality of the

segmentation.
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4.4 Using bad data as testing samples

The second VAST data set had been divided into four parts based on the quality of the low-throughput

segmentations.

1. Images which were segmented incorrectly by the low-throughput method. Such images were generally

segmented like the image in Figure 4.10.

2. Images which contained a physically damaged or otherwise abnormal fish.

3. Images which were normal and segmented correctly by the low-throughput method.

4. Images which had a manually traced segmentation available.

Images which were segmented incorrectly were ignored in all other experiments, as their incorrect segmenta-

tions would be detrimental to any models trained with them, as well as meaninglessly lower the results of any

evaluations in which they were included. However, it is still relevant to quantify the loss in metrics which

would occur when using such images as testing data. Images which contained a physically damaged fish

were also excluded from all other experiments, as their irregular nature and often incorrect segmentations

could once again be detrimental to both evaluations were they are used as training data, as those where they

are used as testing data. Furthermore, all images for a damaged fish hold little meaning altogether, as the

damage to the fish would cause it to be discarded from the original experiment in its entirety, and its images

would never make it to the segmentation step. It is however still interesting to measure the accuracy with

which such images would have their segmentation predicted, as this gives us more information about the

DNN·ZF method itself. For these reasons, several models were evaluated separately on the raw new data bad

and raw new data broken datasets. The same models were also evaluated on the two remaining datasets

created from the new VAST images combined, namely raw new data good+raw new data manual, for the sake

of providing a control. Once again, each of these evaluations is associated with a large number of numbers for

both metrics, which are plotted as violin plots. The results are displayed in Figure 4.9.

(a) (b)

Figure 4.9: Comparison between good and bad samples as testing data of the same data set.

As can be seen in Figure 4.9, segmenting images with physically damaged fish leads to only a small decrease
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in accuracy and a similar tail solidity. This indicates that our method would have no additional issues with

segmenting such images.

Images for which the predicted segmentations are validated against incorrect ‘truth’ segmentations would

be expected to give a much lower accuracy than normal. This would happen regardless of how correct the

predicted segmentations are. This can indeed be observed in Figure 4.9a. As the tail solidity metric is calculated

solely from the predicted output and does not use this incorrect ‘truth’ data, it is still indicative of the quality

of the predictions. In Figure 4.9b it is observed this metric is lower and has a longer tail than the control,

which indicates that this new method performs worse on images which were segmented incorrectly by the

low-throughput method.

Figure 4.10: Example of an image with an incorrect segmentation. The purple line indicates where the image has been
segmented.

4.5 Using bad data as training samples

Not only is it relevant to quantify the loss in metrics when incorrectly segmented images are used as testing

data, but it is also relevant to quantify the loss of quality when a model is trained using such images. Similarly,

it is also interesting to observe the effect the use of images containing damaged fish as training data has on the

quality of a model. Not only will this give us more insight into the DNN·ZF method itself, but it will also

allow us to determine if such images would be acceptable to use as training data, if the alternatives are not of

sufficient quality or quantity. In order to accomplish this, a model trained on the raw new data bad dataset

and a model trained on the raw new data broken dataset were evaluated on all other segmented images.

Another model trained on the remaining datasets created from the new VAST images combined, namely

raw new data good+raw new data manual was also evaluated to provide a control. Once again, each of these

evaluations is associated with a large number of numbers for both metrics, which are plotted as violin plots.

The results are displayed in Figure 4.11.

As can be seen in Figure 4.11, the model trained using images of physically damaged fish provides a similar

accuracy and tail solidity for segmentation as the model trained using normal images. This indicates that

images with physically damaged fish are still suitable for training a good model.

When a model that has been trained on images with incorrect training segmentations is evaluated on images

with good ‘truth’ segmentations, the expectation is that the predicted segmentations are also incorrect and will
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(a) (b)

Figure 4.11: Comparison between good and bad samples as training data of the same data set.

cause a significant drop in accuracy. But as can be seen in Figure 4.11a, the accuracy remains similar to that of

a normal model evaluated on the same data. However, in Figure 4.11b it is made clear that the tail solidity for

the predictions of this model are much lower than those for the normal model, indicating that many of these

segmentations are incorrect none the less.

4.6 Explaining the functionality of the DNN·ZF method

The inner workings of any deep neural network are always vast and complex. In the case of the architecture

evaluated in this paper, a total of 4,060,705 variables are involved. Additionally, the connections between these

variables need to be considered as well. It should be easy to understand that by simply looking at the structure

and weights of such a large neural network, its processes can not be easily understood. Several methods

already exist for the visualization and understanding of large neural networks [ZF14] [SVZ14]. However, as

these methods interact with the content of the architecture, they are deemed unsuitable for the presented

research.

Even so, an attempt was still made at understanding the method by which this architecture performs

segmentations. This was done by providing some models with simplified or modified inputs and observing

the properties of the produced segmentations. To improve the visualization of the predicted segmentations,

the postprocessing step which keeps and fills only the largest segmented part has been disabled for these

experiments.

The first experiment was performed by considering the model trained on only the dataset containing old

VAST images. A series of images which start with a rough approximation of a zebrafish larva and gradually

become more refined were provided as input to this model, and the predicted segmentations are visualized in

Figure 4.12. Additionally, this series was created on a background both with and without any visible capillaries

in an attempt to discover the reaction of the DNN·ZF. As can be seen in Figure 4.12, the images containing
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only the background have not been segmented at all. In the images containing a box and a thin outline, it

can be observed that the DNN·ZF method aggressively tries to find the larva at both sides of the image, but

does not care that much about the thin lines at the top and bottom which have the same thickness as the

line segment on the right. Only once the thickness of these lines have been doubled, they are included in

the segmentation. Additionally, the segmentation extends well beyond the line segment on the right of the

images, but not beyond the lines at the top and bottom, or the box on the left. Once we start to more closely

emulate the anatomy of the zebrafish larva with only the two darkest areas (eye and yolk sac) as well as an

outline, these results stay mostly the same. Both of the dark areas are selected as part of the segmentation.

Additionally, the outline at the right of the image, as well as an area extended inwards is included. The top

and bottom are only fully included when the thickness of the line has been increased. Once a gradient is

added to the inside of the outline in a fashion similar to that of the actual zebrafish larva, the entire outlined

area is included in the segmentation, regardless of the thickness of the line. The final observation we can make

is that when the series of images without the capillaries is considered relative to the series with capillaries, all

of the segmentations have become more ‘narrow’. As in, they extend less far upwards and downwards.

The same model was also provided with a collection of images modified from a single base image. In addition

to gaining insight into the functionality of the DNN·ZF, this will also help determine features which could

prevent the model in question from working with future datasets. The predicted segmentations for these

images are visualized in Figure 4.13. As can be seen in the figure, the original image, which is displayed in

the top left, is segmented as desired. In this particular case, the especially troublesome tail is also properly

segmented. Once several black bars are added, they are simply included in the segmentation. This does

however cause a hole to form just before the tip of the tail. Blurring the image does not affect the segmentation

much, with the exception of the appearance of a notch in the tail. Decreasing the brightness will cause the

segmentation to include much more than just the zebrafish larva. In addition to including some of the now

much darker background noise, parts of the capillaries are also included. Interesting is that some of the

included parts of the background noise appear green, and have low values on the blue and red colour channels.

If the capillaries are manually cleaned from the image, the same effect described in the previous paragraph is

observed. That is, the segmentation extends less far up and down. These missing sections also cause a hole

to form in the tail. Raising the contrast of the image causes parts of it to become much brighter than before,

which are then excluded from the segmentation. Inverting the image does not cause the segmentation to invert.

Instead, only the previously darkest areas are excluded from this new segmentation. If the zebrafish larva is

deformed in regards to its shape then the segmentation properly fits this new shape, save for the areas which

are blurred in addition to deformed. Filling in the tip of the tail of the zebrafish larva causes the slight dimple

in its segmentation to disappear, but does not affect the segmentation otherwise. Finally, if the darkest areas of

the zebrafish larva are removed, the rest is still properly segmented. The only exception is the few lines which

have become extremely thin as a result, which matches the observation regarding the thickness of lines made

in the previous paragraph.

The same collections of images have also been segmented using a model trained with much more training

images. In addition to the old VAST images, this also includes some of the new VAST images and the newer
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BFM images. The BFM images especially have a much different contrast and brightness when compared to the

VAST images. The predicted segmentations for the series of approximations for this new model are visualized

in Figure 4.14, and are mostly the same as those for the previous model. Some differences are still present

however. Regarding the rectangular approximations, the segmentations have changed to no longer include

an area inwards from the right line segment. The top lines are also no longer included. Instead, a part of the

bottom line is included in the segmentation, where the thinner lines include a greater length. Regarding the

zebrafish larva shaped approximation, the only change is that in the variant without gradient, a much larger

section of the tail is included in the segmentation.

Naturally, this model has also been used to segment the collection of modified images, visualized in Figure 4.15.

Once again, the majority of the segmentations have not undergone any notable changes between the models.

The segmentations for the images where the brightness and contrast have been modified however have

improved quite a bit. The segmentation of the tail area has also been performed better overall.

The final model on which this experiment has been performed is a model only trained with the newer BFM

images. Additionally, the grey erosion preprocessing filter had been enabled. When the segmentations for

the series of approximations are predicted using this setup, this leads to the visualization in Figure 4.16.

The segmentations predicted by this model are very different from the previous two models. In all of the

rectangular approximations, the entirety of the solid box is still included in the segmentation. This time

however, in the variant with thin lines only the bottom right corner is included, whereas in the variant with

thicker lines both the bottom and right lines are included entirely. Once the shape of the zebrafish larva is

approximated with an outline and two dark areas, the opposite happens. In addition to including both dark

areas in the segmentation, like with the previous models, the top of the outline is included as well. This

is unlike the results for the other two models, and also unlike the other results for this model, where the

segmentations tended to include the bottom of the outline. Furthermore, the segmentation of the tail no longer

extends inwards. When a gradient is added to the inside of the outline, the segmentations made by the other

two models included the zebrafish larva in its entirety. The segmentation made by this model, however, misses

a significant portion of the bottom of the tail.

Once again, this same model has been used to predict segmentations for the collection of modified images,

leading to the visualization in Figure 4.17. Unlike with the previous two models, the segmentation predicted

by this model for the original image is slightly off from what it should be, but correctly segments the tip of

the tail. When black bars are added, the same effect as with the other two models is observed, where the

bars are included but the tip of the tail is separated from the rest of the segmentation. Where blurring the

image provided a detrimental effect to the segmentations predicted by the other models, the prediction made

by this model is unaffected. Decreasing the brightness provides the same effect on the segmentation as with

the first model, where parts of the background and the capillaries are now included. If the capillaries are

removed, the segmentation extends less far up and down, and the quality of the segmentation of the tail

decreases slightly. This is the same for the other two models. Increasing the contrast, just as with the other two

models, causes parts of the image to become much brighter than before, which are subsequently excluded

from the segmentation. Whereas segmenting the inverted image with the previous two models only caused the
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now brightest two areas of the zebrafish larva to be excluded from the new segmentation, the segmentation

predicted by this model excludes almost the entire fish. Only the now darkest part of the tail is still included.

When the shape of the zebrafish larva is deformed the segmentation follows these deformations pretty well

with only some issues caused by the additional blurring, just as with the previous models. As the very tip

of the tail is already properly segmented in the original image, filling it in provides no significant change.

Of particular note however is that the tiny hole present in the original segmentation is still present after

the tail is filled in, despite its proximity to the now pitch-black area. Finally, the removal of the two darkest

areas of the zebrafish larva causes those areas to be excluded from the segmentation, along with any parts

which have turned into thin lines as a result, just like with the previous two models. Unlike the segmentation

predicted by those models however, the segmentation predicted by this model is also affected in other ways.

More specifically, the dip in the segmentation above the yolk sac has disappeared, and the segmentation

also includes a part of the capillary extending beyond the head. Overall, the segmentation directly above the

missing parts has been increased in height, whilst the segmentation of the tail is entirely unaffected.
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Figure 4.12: Results of segmentations performed by a model trained on the raw data dataset. The purple lines indicate
the boundaries of the segmentations. The segmentations have been performed on several shapes approximating that of a
zebrafish larva.
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Figure 4.13: Results of segmentations performed by a model trained on the raw data dataset. The purple lines indicate the
boundaries of the segmentations. The segmentations have been performed on several modified images of a zebrafish larva.
The image in the top left is the original image.
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Figure 4.14: Results of segmentations performed by a model trained on the raw data, raw new data good,
raw new data manual, and raw newer data bfm cropped datasets. The purple lines indicate the boundaries of the segmen-
tations. The segmentations have been performed on several shapes approximating that of a zebrafish larva.
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Figure 4.15: Results of segmentations performed by a model trained on the raw data, raw new data good,
raw new data manual, and raw newer data bfm cropped datasets. The purple lines indicate the boundaries of the segmen-
tations. The segmentations have been performed on several modified images of a zebrafish larva. The image in the top left
is the original image.
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Figure 4.16: Results of segmentations performed by a model trained on the raw newer data bfm cropped dataset, with the
gray erosion filter applied. The purple lines indicate the boundaries of the segmentations. The segmentations have been
performed on several shapes approximating that of a zebrafish larva.
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Figure 4.17: Results of segmentations performed by a model trained on the raw newer data bfm cropped dataset, with the
gray erosion filter applied. The purple lines indicate the boundaries of the segmentations. The segmentations have been
performed on several modified images of a zebrafish larva. The image in the top left is the original image.
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Chapter 5

Conclusions & Discussions

Using the results presented in Chapter 4, we can answer the research questions asked in Chapter 1. Each

research question will be answered and discussed separately. Recommendations for future work are also made.

This chapter concludes with a concise summary of the most important results and recommendations.

5.1 How can the functionality of the DNN·ZF be explained?

Combining the information obtained from the various collections of testing images, we can reason about the

principles that the DNN·ZF bases its segmentations on. A consistent action across all images was that large

‘dark’ areas of the image are always included in the segmentation. Areas which are mostly ‘dark’ on the green

channel count as well. After this, the somewhat darker outline of the zebrafish larva is included as well, with a

specific focus on the bottom corners. From there, a part of the area enclosed by the outline is included, which

will help with the segmentation of the transparent tail.

It has also been discovered that the shape of the zebrafish larva is not crucial to a successful segmentation.

By comparing the segmentations of images with capillaries to those with the capillaries removed, we can

also reason how the DNN·ZF deals with these capillaries. A notable difference when considering the images

without capillaries is that their segmentations not only extend less far up and down, but some of the lighter

areas which would otherwise be enclosed are excluded as well. This indicates that the segmentation is not

simply trimmed down after the fact. Instead, the segmenting itself outright ignores certain parts of the image.

This would cause the outer edge of the content to be ignored when the capillaries are missing, which in turn

causes certain areas to no longer be enclosed, leading to the observed changes.

An understanding of the functionality of the DNN·ZF method can lead to solutions to a problem which

is still partially present, which is that of a notch missing from the segmentation of the tail. Given our

current understanding, priority should be given to enclosing this section of the tail with some sort of

outline. Alternatively, the very tip of the tail which is generally segmented and thus located correctly can be

51



coloured black. Applying a filter that accomplishes either of these properties could improve the quality of the

segmentations. Further research could determine if this is indeed the case.

5.2 How well does the existing hybrid segmentation method perform on

new datasets?

As his research has shown, the hybrid segmentation method developed by Y. Guo provides exemplary results

when used to segment the dataset it was developed for (old VAST images). However, it is completely unsuitable

for the segmentation of any other datasets, as discussed in Chapter 3.

As such, the hybrid segmentation method should be abandoned in favour of the DNN·ZF method. However,

there is still a need for the creation of low throughput training segmentations. Given that a relatively small

number of training images is already sufficient, our advise is that the hybrid segmentation method is applied

to any images it happens to work on and that the remainder is segmented by manual tracing.

5.3 How does the quality of a model change as it is being trained on

more data?

Initially, after more images are used to train a network, its accuracy increases. After about 3000 images,

however, the maximum accuracy of the model will be reached, and further training will not have much of

an effect. This amount of images is equivalent to about 30 fish to be used for training. Because such a small

amount of fish is sufficient to reach the maximum accuracy of the network, it is possible to manually select

the 30 most desirable fish from all available data sets to train a more desirable network. It is also very doable

to create manual segmentations for all 3000 images to ensure the resulting model produces the most ideal

predictions. Future research could use the data produced by this research to determine which samples caused

the largest increase in metrics and are thus the most desirable.

5.4 Does the aspect ratio of an image affect the quality of its segmenta-

tion?

When images with a different resolution than the input of the network are used they are resized to match this

input. In the case that the aspect ratio differs between the two, changes will occur in the zebrafish larva during

the resizing. As has been concluded from Figure 4.8, this negatively impacts both the accuracy and quality of

the predicted segmentations and should be avoided. This can be achieved by simply cropping each image to

the aspect ratio of the network before using them.
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When an image is rescaled, the shape of the zebrafish larva in it changes. As it has already been concluded

that the shape of the zebrafish larva does not affect the quality of the predicted segmentation, the observed

drop in quality would be the result of other changes in the image. For example, the change in the shape

in the capillaries, or a loss of quality in an unexpected way. The exact cause of the loss in quality could be

determined in future research, although we reason that whatever the conclusion might be, it will not provide

useful insight into improving the segmentations.

5.5 How does the DNN·ZF method perform on ‘bad’ input data?

As has been outlined previously, there are two kinds of ‘bad’ samples:

1. Images which were segmented incorrectly by the low-throughput method. Such images will have a ‘truth’

segmentation which does not match the desired result.

2. Images which contained a physically damaged or otherwise abnormal fish. The majority of these images

have been properly segmented, but the fish themselves do not hold much meaning.

As has been concluded from Figure 4.9, this method has no additional issues with segmenting images of

damaged fish. Since the analysis of the functionality of the network has shown that the shape of the fish does

not matter, this comes at no surprise. However, as damaged fish do not contribute accurate data to the original

research, they should be discarded before they ever reach the segmentation step. The method with which

images will be discarded as well as its implementation into the pipeline is a matter for future research.

Images which happened to be incorrectly segmented by the low-throughput method also seem to perform

worse than average with this new method, as has been concluded from Figure 4.9b. The accuracy metric for

these images is uninformative as any prediction which would give a high accuracy is an incorrect prediction,

and vice versa. As the tail solidity metric does not depend on these incorrect segmentations, it is still valid

and shows a decrease in performance. This indicates that the properties of these images that made the

low-throughput method fail to correctly segment them (high tail transparency) still affect this new method,

albeit to a much smaller degree. This indicates that the DNN·ZF method in its current state still has one

significant drawback, which needs to be solved in the future. Section 5.1 has outlined several possible solutions.

5.6 Can ‘bad’ samples still be used as training data?

From Figure 4.11 it has been concluded that images of damaged fish are still suitable as training data. However,

as long as the trained model will not be used to segment images of damaged fish, there is no need to use such

images for training. These images should only be used if no other training data is available, but given that the

images of 30 fish are already sufficient, this will never be the case.

It should be clear that using images with incorrect ‘truth’ segmentations as training data will lead to a decrease

in the quality of the model, as this will cause the model to be explicitly trained to give incorrect results. From
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Figure 4.11 it has been concluded that this is indeed the case. As such, incorrectly segmented images need to

be manually removed from any training data, or be manually re-traced. Future research could lead to better

methods for the creation of training segmentations. For example, the tail solidity metric could be used to

identify and discard incorrect segmentations.

5.7 Can a single model make accurate predictions for both VAST and

BFM images?

Out of the currently available models, the model trained only on the cropped BFM images and with the grey

erosion filtered is the only model which provides acceptable results when segmenting the BFM images. Other

models are unsuitable for this task. This model provides decent results when used to segment VAST images,

but is outdone by the other available models. More specifically, for the segmentation of VAST images the

model trained on the raw data and raw new data good datasets with the gray erosion filter enabled seems to

perform best.

At the moment, it is advisable to use a separate model for the segmentation of VAST and BFM images. The

aforementioned model most suitable for the segmentation of BFM images, however, comes close to being able

to handle both cases. Further research into this model, along with the availability of more BFM training data,

could lead to the creation of a single general-purpose model in the future.

5.8 What effect does adding a filter to the images have?

The effect varies wildly per model. Some combinations of datasets for training benefit from the use of the grey

erosion filter, whereas others do not. There is however no clear correlation between the data used for training

and the usefulness of the grey erosion filter. Whether the filter should be used or not must be separately

evaluated for each set of training data.

Future research can identify filters which do provide a positive effect at all times. In addition to the candidates

mentioned in Section 5.1, mean shift and texture-based filters might prove useful.

5.9 How can the performance of the DNN·ZF for the segmentation of

BFM images be improved?

When comparing the evaluation of the model most suitable for the segmenting of VAST images with the

evaluation of the model most suitable for segmenting BFM images, we can see that the segmentation of BFM

images is significantly less accurate. In its current state, the DNN·ZF method works extremely well for the
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segmentation of VAST images, but performs only adequately when segmenting BFM images. Part of the issue

is that the number of training images does not reach the recommended 3000 minimum. This could be solved

by using data augmentation or manual tracing which would increase both the number and variety of training

images.

Another major problem is that the structure of the architecture used in the DNN·ZF had been designed around

the use of images with a resolution of 1024px by 250px, the resolution of the VAST images. This means that

BFM images have to be scaled down before they can be processed by the DNN·ZF method, losing much detail

in the process. By redesigning the network such that the input coincides with the resolution of the BFM images

this detail can be kept, which could lead to significant improvements in the quality of the segmentations. More

research is required into this matter however, as an entirely new architecture has to be designed and evaluated.

It should also be noted that in the future the aim is to take BFM images at a higher magnification. As a higher

magnification means that less of the specimen is visible, multiple images would need to be taken and stitched

together. This process might introduce several artefacts into the final image. Additionally, each of the stitched

segments would have the same resolution as the current BFM images, which means that the final image is of a

much higher resolution. Research needs to be done to determine whether these artefacts introduce additional

problems. More importantly, as the input of a neural network has a fixed size, an ideal input resolution needs

to be determined which can handle VAST images, BFM images, and stitched BFM images.

5.10 How can an assessment of methods and models for segmentation

of zebrafish larvae contribute to an optimal processing pipeline?

Finally, we will provide a concise answer to the primary research question introduced at the beginning of

the paper. In addition to presenting the two most suitable models for segmentation, we will provide a list of

recommendations regarding the implementation and further improvements of these models.

First of all, we will once again focus on the only question in the flowchart from Figure 3.1. At the moment, the

answer is that a separate model is needed for both image sources. The most ideal models are as follows:

VAST images The model trained on the raw newer data bfm cropped dataset with the gray erosion filter.

BFM images The model trained on the raw data+raw new data good datasets with the gray erosion filter.

Secondly, we will present recommendations regarding the implementation of this model into the processing

pipeline:

1. Any images presented to the segmentation step must be cropped to the aspect ratio of the network input

(4.096:1).

Thirdly, we will provide a list of crucial optimizations which should be made to the processing pipeline and

the DNN·ZF method.
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1. Physically damaged zebrafish larvae need be detected and discarded early in the pipeline.

2. The architecture comprising the DNN·ZF method needs to be updated such that it supports images of

a much higher resolution. When doing so, consideration needs to be made for any future increases in

resolution as increasingly magnified images are stitched together.

3. New models or even a single new model need to be trained, using only manually traced images from 30

randomly selected undamaged specimen.

4. Other image filters need to be evaluated, possibly providing features similar to those discussed in

Section 5.1.

During the creation of these modifications it is important to be aware of how the segmentations will be used.

As the next step in the processing pipeline is the generation of 3D models from these segmentations, they

need to exhibit properties suitable for this process.
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