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1. Introduction

Over the last few years, Monte Carlo Tree Search (MCTS) has been successfully used to create Artificial

Intelligence (AI) agents for a variety of games. The most prominent example of MCTS being used is in Google’s

AlphaGo and AlphaZero, where it was used in conjunction with Deep Learning [1]. Go is a perfect information

game, but MCTS has also successfully been used to play imperfect information games, for example Poker [2].

MCTS has also been used in some video games to create the AI agents [3].

The game of Cops & Robbers is a general hide-and-seek game, of which Scotland Yard is a specific variant. In

the variant of Cops & Robbers that we will study the cops try to find a robber, who is hidden for a certain

amount of turns. The specific rules will be explained in Chapter 2. In Chapter 3, we will discuss related research.

In Chapter 4, we will discuss in-depth the strategies used for the various AI agents. In Chapter 5, we will present

the results of our experiments. Chapter 6 contains the conclusion and suggestions for future research. Cops

& Robbers is an asymmetric game, where the robber has perfect information and the cops have imperfect

information. It is interesting to see if MCTS can be used to create AI agents for this game, both for the cops

and for the robber(s).

The goal of this project is to create an agent for the robber and an agent for the cops using MCTS. The difficulty

lies in some players having perfect information, the robber, and some having imperfect information, the cops.

Based on experiments it seems that a rule based algorithm plays the game better than the MCTS agents. This

project was done as a bachelor thesis at Leiden Institute of Advanced Computer Science (LIACS) at Leiden

University and was supervised by W.A. Kosters and M.J.H. van den Bergh.
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2. The game

In this chapter, we describe the game rules and other important information relating to the way the game is

played.

2.1 Scotland Yard

Scotland Yard is played on a board with 199 stations in London. These stations are connected by one or

more means of transport, where each has its own ticket type. These means of transport are the taxi, bus and

underground. The robber, called “Mr. X”, also has two additional types of tickets. One of those is a double move

ticket, which allows Mr. X to move twice in one turn. The other type of ticket is the black ticket, which works as

any other type of ticket and has the benefit of hiding the type of transport for the cops. The black ticket is also

the only ticket that can be used to travel with the river boat.

Figure 2.1: Scotland Yard game board and travel log with tickets, Ravensburger [4]
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2.2. ABSTRACT RULES 3

To give some information to the cops, Mr. X places his/her1 played tickets onto a travel log where everyone

can see them. Additionally, on the 3rd, 8th, 13th and 18th move, Mr. X has to show himself on the board. The

following turn, Mr. X removes himself from the board again. At the start of the game each cop gets 10 taxi

tickets, 8 bus ticket and 4 underground tickets. Mr. X gets 4 taxi tickets, 3 bus tickets, 3 underground tickets, 2

double move tickets and 1 black ticket for each cop in the game. When a cop moves, she has to give her ticket

to Mr. X. This causes Mr. X to have almost an infinite supply of cards. If a cop cannot use any tickets, she

becomes stuck at her spot for the rest of the game. When taking turns Mr. X moves first and then the cops

move in clockwise order. The cops win the game if one of them shares a station with Mr. X. Mr. X wins when

no cop can move or when the last sport in his travel log is occupied by a ticket[5].

2.2 Abstract rules

In our version of Cops & Robbers, there is only one type of connection, which means that there are no

transport cards in play and thus also no black cards. The robber does not have the ability to move more than

once per turn. Furthermore the game lasts t rounds. We will use t = 24 for this project. The robber is visible

every Rv moves and we will use Rv = 4 for this project. With Rv = 4 and t = 24 this results in the robber being

visible in turn 4, 8, 12, 16, 20 and 24. The amount of cops playing is denoted by C and the amount of robbers

by R; we will use C = 3 and R = 1 in this project.

The game board consists of an undirected connected graph G = (V,E), where V is the set containing all vertices

or positions and E is the set containing all edges. Note that, if the graph was not connected, only the part of

the graph where the robber is present would be of interest. A move consists of a cop or robber moving along one

edge connected to the current position. The set Vc ⊆ V denotes the set containing all positions of the cops and

|Vc| = C = 3 during the whole game, which means that the cops can never share a location. The set Vr is the set

containing the position of the robber and |Vr| = R = 1. In this project |V | ≥ |Vc|+ |Vr|, which ensures that each

cop and each robber can and will start on a separate node. At the start of the game, we have Vc ∩ Vr = ∅, and

the game ends when Vc ∩ Vr 6= ∅ or the t-th move is made by the cops. At the start of the game, the starting

position is randomly chosen. Every turn, each cop and each robber has to move to a neighbouring node. Each

turn, the robber moves first and then the cops. All cops move at the same time, which means Vc except the

current node of a cop is a valid target for each cop.

c1 c2

Figure 2.2: Two cops moving to a new position.

2.2.1 Special situations

Because all the cops move at the same time, there are some special situations regarding the possible moves. We

will discuss these situations in the following subsections.

1In the rest of the thesis we will be using him for the robber and her for the cops to have a clear distinction between the two.



4 CHAPTER 2. THE GAME

Because the cops all move at the same time, it is possible for them to target the old position of another cop. If

two cops chose the position of each other, we say they swap places. Since all cops are identical to each other,

this has the same effect as both cops staying on their place. An example of this is given in Figure 2.3. The nodes

in the example can be connected to any amount of other nodes.

c1 c2

Figure 2.3: Swapping of two cops.

Even though all the cops move at the same time, there are still situations where cops can block each other

from moving and thus halting the game. Figure 2.4 shows the simplest situation where cops block each other’s

movement. Since the cops cannot stay in their position, both cops only have the same node as a possible target.

Because of this, the current game situation is unplayable. This can only happen in the starting situation, since

otherwise there is a move possible, namely all the cops moving back to their previous positions.

c1 c2

Figure 2.4: Simplest situation of cops blocking each other.

Because the middle node cannot be reached in a legal move, any type and size subgraph may be connected to

that node. For subgraphs connecting to the nodes of the cops, some constraints are in place. The most important

constraint is that the connecting node of the subgraph may not be a valid target for either cop. As soon as one

of the cops in Figure 2.4 can move to another node, the situation becomes playable.

2.3 Graph types

As game board, we will use several different types of graphs. This way we can see if and how the graph affects

the effectiveness of the different AI strategies. The various graphs will be discussed below.

2.3.1 Ladder graphs

One type of graphs that will be used is the ladder graph. This graph consists of two parallel lines of nodes

that are connected at certain intervals. Each ladder graph we use has two properties: length ` and spacing

s. The length denotes the amount of nodes that are present in each of the parallel lines. The spacing is the

amount of nodes in between each connection, so, let say if s = 0 then every node of one line is connected to the

corresponding node in the other line. With s = 1, every other node is connected (see Figure 2.5 for an example);

with s = 2 there are two free nodes in between and so forth.
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Figure 2.5: Ladder graph with ` = 7 and s = 1.

Van den Bergh has proven [6] that it is possible for three cops to always catch a robber on these types of graphs

given perfect information. It will be interesting to see how the different strategies and the imperfect information

affect the chances of the cops catching the robber.

2.3.2 Circle graphs

When drawn, the circle graph contains a ring of c nodes, where each node is connected to two neighbours which

form the ring when drawn. Each node is also connected with the nodes resulting from skipping every s nodes

clockwise, with a given s such that s + 1 is a factor of c; There are s+1 inner rings formed. See Figure 2.6 and

Figure 2.7 for some examples.

Figure 2.6: Circle graph with c = 12 and s = 1. Figure 2.7: Circle graph with c = 13 and s = 3.

2.3.3 Modified Scotland Yard board

Another graph we will use is the graph representing a modified version of the game board of Scotland Yard.

Since the graph G is an unweighted graph, we only have one type of connection. This means the graph contains

all edges for each means of transport. It also might be interesting to vary the graph by excluding the edges of

certain means of transport, creating different graphs. For this project, we will use the graph containing all means

of transport except the ferry. The graph of this board can be seen in Figure 2.8.
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3. Related work

In this chapter, we discuss some work that is used to create AI agents for Cops & Robbers.

In 2012, Browne et al. present a survey of different Monte Carlo Tree Search (MCTS) methods [8], which

shows the state of the research into MCTS methods at the time. The survey contains a brief summary of the

background of MCTS research. Furthermore, the core algorithm of MCTS is explained together with multiple

enhancements and variations of MCTS. The authors also show multiple applications of MCTS such as real-time

games, non-deterministic games and various non-game applications. This survey will in the sequel function as

the basis for creating the MCTS agents for the cops and the robber.

In 2012, Nijssen and Winands apply MCTS to the board game Scotland Yard[9]. They use Upper Confidence

Bounds for Trees (UCT), enhanced with what they call progressive history as their selection policy. They

use several techniques to implement domain-specific knowledge into the algorithm. One of these techniques is

ε-greedy playouts. This means that, in the selection phase of the MCTS algorithm, a random move is chosen

with a chance of ε. When there is not a random move chosen, a heuristic is applied for choosing the best move.

For the robber, this means maximizing the number of moves the closest cop needs to do to catch the robber.

For the cops, this could be one of two heuristics: they can minimize the sum of the distance to all possible

locations, or the cops chase the location they assume the robber is on. To predict the location of the robber more

accurately, determinization and location categorization is used. For the location categorization there are three

different types explored: minimum-distance, average distance and station type. With minumum distance, the

locations are categorized by the distance to the nearest cop. With average distance, the locations are categorized

by the average distance to all the cops. With station type, the locations are categorized by station type. The last

category is not applicable to our case, since we only have one station type. Both these strategies might also

improve the quality of our MCTS algorithm.

In his master thesis [6], Van den Bergh provides a way to calculate the amount of cops needed to win a game of

Cops & Robbers with perfect information. To calculate this number, Van den Bergh assumes the cops are

using a guarding strategy, which is proved to be winning for certain types of graphs. It would be interesting to

see if this concept of guarding can be applied to a version of Cops & Robbers with imperfect information.
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4. Algorithms

In this chapter, we will discuss the specifics of the implementation. We will talk about the algorithms used and

the implementation of the various AI strategies that are used. To get a better understanding of these strategies

a few important concepts will also be explained.

4.1 Simulation software

The straightforward game engine we use for this project was written from scratch in C++. It is responsible for

keeping track of the state of the game, checking for the win conditions and executing the various AI algorithms.

At the start of the game, the engine is also responsible for determining the starting positions of the players. The

program takes a space separated adjacency matrix (example in Figure 4.1), the size of the graph, the number of

cops and the amount of rounds to be played as input. The adjacency matrix is stored in a two-dimensional array.

When using MCTS based agents, the amount of play-outs that is to be used is also specified as an input. The

software is also responsible for multiple play-outs and reporting back the results of the experiments. This will be

explained in more detail in Chapter 5.

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 0 1 0 0

4 1 1 0 0

Figure 4.1: Input file for graph Ge from Figure 4.2.

1 2 3

4

Figure 4.2: Example graph Ge.

4.2 Information set

We want to create an AI agent for the cops, that has to deal with imperfect information. It is important to

understand what information the cops have and how their decisions are affected by having imperfect information.

At any time, all players know the positions of all cops and the last position where the robber was visible. Since

the robber always knows his own position, he has access to perfect information throughout the game. The cops

only have access to perfect information on turns where the robber is visible, since the last known location of the

robber is also the current location. When creating an AI agent, we have to make sure that the agent can deal

with both situations. In any given turn, the possible locations for the robber are denoted by the set Vp ⊆ V . In

turns where the robber is visible, Vp is equal to Vr and |Vp| = 1. In the turn following the one where the robber

8



4.3. GENERAL MOVEMENT OF THE COPS 9

was visible, the set Vp is equal to the neighbouring positions of Vp minus Vc and Vr. This is the case, because

the game would be over if the robber is on a node in Vc, and cannot be on Vr since he has to move. Each turn,

the neighbours of the previous Vp constitute the new set Vp and Vc is excluded from that for the same reason as

before. The maximum size of Vp is dependent on the graph used and the amount of turns the robber is hidden.

With each additional turn the robber is hidden, the set usually grows, because for each turn, all the neighbours

of the set are added. The graph used influences the amount of positions that are added each turn to Vp. The size

of Vp can never be larger than |V | − C, since the robber cannot be on a position with a cop, because otherwise

the game would be over and the position of the robber would be known.

We provide an example of the growth of the information set. For this example, we will assume that the robber is

only visible in the first turn. Given the graph in Figure 4.3 is the game board and given the current position of

the robber, being node 5, Vp = {5}. In the next turn the robber is hidden and Vp = {3, 4, 6, 7}: Vp contains all

nodes connected to node 5. The node 5 is excluded since the robber had to move away from that node. In the

following turn Vp = {1, 2, 3, 4, 5, 6, 7, 8, 9}. In this turn the nodes that were in the previous set Vp are in the set

again, because they were reachable from another node in the set. For example, node 4 was reachable from both

node 3 and node 6. As can be seen, depending on the type of graph, the size of set Vp can quickly increase.

1

2
3

4

5

6

7

8
9

10

11

12

Figure 4.3: Circle graph with c = 12 and s = 1.

4.3 General movement of the cops

All cops move at the same time. To decide which node each cop will move to, we have to determine the new

position of each cop using an AI agent. To reduce the time cops block each other, the cop with the fewest possible

moves chooses a new node first using the current strategy. Then we determine for the other cops which one has

the fewest moves and she then chooses a target node. We continue with this until all the cops have chosen a

target node and then they all move at the same time. When a cop has chosen a target node, that node gets

reserved and other cops are not allowed to choose that node as a target. If a cop cannot move because of a

reservation of a previous cop, the cop that chose a target last, chooses a new node. If none of the other choices

result in a possible move for the next cop, the cop before the current cop choose a new node.
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4.4 Random player

The simplest agent we use is the random player. This agent is the same for both the cops and for the robber.

The first step is determining which nodes are a valid target to move to; for the cops, the nodes reserved by other

cops have to be excluded from the possible target nodes. For the robber, no nodes are excluded and the set of

possible moves is identical to the set of connected nodes. We then randomly choose a node from that set as a

move. Because the choice is completely random, the robber could end up moving onto a cop and thus losing the

game.

4.5 Chasing algorithm for the cops

As an improvement to the random moves, we incorporate some information in the decision making. The cops

will now move towards the last known location of the robber, until they are within n moves of that position. To

determine the path, a cop will take breadth-first-search is used. While the cops are within n moves of the last

known position, they will start to move randomly until the robber is visible again or they move further than n

nodes away. We think that incorporating the last location of the robber will improve the chance of finding the

robber with random moves. It will be important to find a value of n that directs the cops towards the robber,

but also takes into account the movement of the robber. It might be interesting to see what the effect will be if

n is determined by the distance to the last known position of the robber.

1 2 3 4 5

6 7 8 9 10

Figure 4.4: Ladder graph with ` = 5 and s = 1 and the positions of the players.

-

To clarify, we work through an example situation with two cops on a ladder graph with ` = 5 and s = 1. The

graph and the positions of the cops are given in Figure 4.4 with the cops being the green nodes and the last

visible position of the robber being red. For this example, we will use a range n = 2. First, we need to determine

the move order of the cops. We will use the method described in Section 4.3. In this case, this results in the cop

on node 7, which we will call C7 for convenience, moving first, followed by the cop on node 3, called C3. Cop C7

only has two possible moves, node 6 and node 8, while C3 has three moves, node 2, node 4 and node 8.

We then determine a, shortest path from node 7 to node 5, the last known position of the robber. In this case

there are two shortest paths from node 7 to node 5 with length 4, namely 8→ 3→ 4→ 5 and 8→ 9→ 10→ 5.

Both paths are longer than search range 2, so we randomly follow on of the found paths. Since both paths have

node 8 as the first move, C7 reserves node 8 for her move.

Now, we determine the move for C3. Since C7 reserved node 8 for her move, we exclude that node from the

breadth-first-search. For C3, there is only one shortest path with length 2, namely 4→ 5. Since the path length

is within the search range, we choose a move for C3 using the random agent, for example node 2. The state

resulting from the moves of the cops is given in Figure 4.5.
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1 2 3 4 5

6 7 8 9 10

Figure 4.5: The situation resulting from the cops in Figure 4.4 moving.

4.6 Avoiding algorithm for the robber

The avoiding strategy for the robber uses the location of the cops to decide the best node to move to. For

each possible move without a cop, we determine the total distance to all the cops. To determine the distances,

breadth-first-search is used. A move with the highest total distance to the cops is chosen. If there is a tie, then we

choose the node with the most neighbors. If there is still a tie, we randomly choose a move from these candidates.

We go through an example with the same situation as in the example of Section 4.5, which is shown in Figure 4.4.

The robber, denoted in red, has two possible moves, node 4 and node 10. We determine the total distance to all

cops for each move. This results in a total distance of 4 for node 4, because the cop on node 3 is one move away

and the cop on node 7 is three moves away. The move to node 10, has a distance of 6, since there are 3 three

moves needed for either cop to reach the position of the robber. The robber will move to node 10 since that

node has a higher total distance.

4.7 MCTS agent

MCTS is a tree search based algorithm [8], which means that the algorithm gradually builds a search tree with

the root representing the current game state. For MCTS, this is done until some computational limit is reached,

in our case this is a certain amount of play-outs. After the limit is reached, the algorithm returns the most

promising child of the root. In our case, this is the child with the highest reward.

Figure 4.6: The different phases of MCTS [8].

The algorithm builds the search tree by repeating the four steps shown in Figure 4.6:

1. Selection: The algorithm recursively selects the best child node, until a non-terminal expandable node is

found. A node is expandable if there are unexplored child nodes.
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2. Expansion: One of the unexplored children is added to the search tree.

3. Simulation: A simulation is performed starting at the expanded node. This can be a simple algorithm, for

example random play-outs, or an advanced algorithm to mimic real players more closely, for example a

neural network [10].

4. Backpropagation: The result of the simulation is used to update the statistics of the selected nodes by

passing the result of the simulation up the tree, usually those in the path from the root to the newly

expanded node.

For the selection phase, we use the Upper Confidence Bounds for Trees (UCT) method [11]. The formula used is:

Qi + Cp

√
2 lnn

ni
.

Here, Qi is the expected reward from child node i, for which we will use the current score of that node. An

unvisited node has a Qi of ∞, which is to ensure that unvisited nodes will always be explored. Here, n is the

amount of times the current nodes has been visited and ni is the amount of time child node i has been visited.

Furthermore, Cp is an exploration constant, which is used to balance the exploitation of high scoring nodes and

the exploration of less visited nodes. For Cp we will use 1√
2

[8].

In the expansion phase, we simply create a child node for every valid move. In the simulation step we use the

random agent described in a earlier section to simulate the moves of the players. The simulation results in either

a win for the cops or for the robber. This result is backed up in the tree in the last step.

The robber always uses the current state of the board as the initial state. Since the cops don’t always know the

current position of the robber, they use the last visible location of the robber as the initial position.



5. Experiments

In this chapter, we discuss the experiments we performed and the reasoning behind them. Furthermore, we will

present the results of those experiments. The experiments will be categorized based on the graph type used.

5.1 Introduction to the experiments

As described in Section 4.1, the program is responsible for both the play-outs of the games as well as reporting

back the moves taken by the agents and the amount of games won by both groups. Since this is a binary statistic,

we only report the winrate of the cops and this winrate is
won games

games . To determine the win rate, we play out

1000 games. The win rate of the robber is equivalent to 100%−winrate of the cops. We will use the experiments

with a random agent for both players as a baseline to compare the other agents to. For the MCTS players

we have to decide on an amount of playouts. With some empirical testing on the Scotland Yard graph, we

determined that we will use 100 playouts for the robber and 150 for the cops. These results will be presented in

the section about the Scotland Yard graph. We also experimentally determined that using a search radius of 0

for the chasing agent, results in the best results for the cops. As described in Section 2.2 we will use one robber,

who is visible every four moves, and three cops.

The software was run on a computer with an i7-4790k at 4 GHz with 16 GB of ram. To simulate both MCTS

agents on the ladder graph with s = 1, took on average 15 ms for ` = 10 and 246 ms for ` = 100. For the chasing

agent versus the evading agent the difference was smaller, with 15 ms on average for ` = 10 and 20 ms for

` = 100. On the circle graph the MCTS vs MCTS experiments needed on average 2 ms for c = 10 and 230 ms for

c = 100. For the rule based experiments a game on c = 10 needed on average 2 ms and a game on c = 100 14 ms.

5.2 Ladder graphs

The first type of graph we look at is the ladder graph. The smallest graph we look at has ` = 10 and the biggest

graph ` = 100. For each length, we have three variants; s = 1, s = 2 and s = 3. For the ladder graph we also

performed some experiments with double the amount of turns, so 48 turns in total. The robber still shows himself

every 4 turns and all other rules also stay as described in Section 2.2

In Figure 5.1 the winrate of the random agent for the cops against the various robber agents is shown. The plot

seems to imply that the spacing has little influence on the success of the cops. It looks there are three trends

present, one for each robber strategy. From the graph, it becomes clear that a bigger graph favours the robber.

What is interesting in this graph is that the evading agent for the robber performs better at smaller sizes of the

graph, while the MCTS agent has a better performance overall. What is remarkable is that between ` = 10 and

` = 25 the winrate of the cops fluctuates quite a bit when playing against the evading robber.

13
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For the other plots, we will only match the cops against the evading robber and the robber using MCTS. First,

we will look how the cop agents perform against the evading robber agent. The results are shown in Figure 5.2

and for the results with 48 turns in Figure 5.3. Again the plots contain a trend for each strategy, two in this case,

which seem to suggest that the spacing of the graph has a very small effect on the relative performance of either

strategy. Furthermore, the differences in winrate between consecutive lengths of the graph is also noticeable.

For both trends, the variance seems to be smaller at the lower and higher end of the plot. This is likely due to

the size of the graph having a smaller impact on the end result of the game. What is interesting to see is that

the chasing agent performs better than the MCTS agent across all distances. When we compare the graph of

the normal game with the graph for the double rounds, we can see that having more round favours the cops

significantly. The variance between beneficial sizes and non-beneficial sizes is also larger. For the MCTS cops

there is about an 10% increase when the amount of rounds are doubled. For the chasing cops this increase is

even larger at about 20%. Also the wintrate of the chasing cops decrease at a slower rate, than when playing

with 24 turns.

Lastly we let the two cop agents play against the MCTS agent for the robber, see Figure 5.4 and Figure 5.5 for

the version with 48 turns. Like before there is a trend corresponding to each strategy, with the chase algorithm

again outperforming the MCTS agent. What is interesting to see is that the chasing agent stays close to a 100%

winrate for bigger sizes than the MCTS agent. Again when doubline the maximum turns played, the winrate

of both startegies increase. However the increase for the MCTS cops is smaller this time, at about 5%. Which

seems to indicate that the MCTS agent benefits less form an increase in turns. On the other hand, the chasing

cops benefit again a lot from the increase in rounds. The cops achieve winrates close to 100% for a much longer

time. Also on average the cops achieve a 30% increase of the winrate compared to playing 24 rounds. Just as

when playing against the evading robber, the rate in which the winrate decreases for the chasing cops is also

much slower.

Something interesting we can see in all graphs and especially Figure 5.2, is that the line makes one big jump

downward every few lengths. The amount of length values between each jump is dependent on the s of the graph.

More precisely every s + 1-th length has a jump down for each graph. As explained in Section 2.3.1 we have

s nodes in between each connection between the two lines. Only when the length of the graph is dividable by

s + 1, there is also a connection on the end of the ladder. Without this connection, the robber can get stuck

in the unconnected ends of the graph, allowing the cops to have a better chance of catching the robber. The

graphs clearly show that the chasing agent for the cops outperforms the MCTS agent in all situations. Since

the curvature of the trends is similar we can conclude that these differences are because of the difference in

effectiveness of both strategies. Which is also indicated by the chase algorithm having a greater increase when

the amount of turns are doubled.

S
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Figure 5.1: Winrate of the random agent for the cops on a ladder graph.
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Figure 5.2: Winrate of the chasing and MCTS agent for the cops against the evading robber on a ladder graph.
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Figure 5.3: Winrate of the chasing and MCTS agent for the cops against the evading robber on a ladder graph

with 48 turns.
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Figure 5.4: Winrate of the chase and MCTS agent for the cops against the MCTS agent of the robber on a

ladder graph.
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Figure 5.5: Winrate of the chase and MCTS agent for the cops against the MCTS agent of the robber on a

ladder graph with 48 turns.

5.3 Circle graphs

The second graph type we will look at is the circle graph. Again we will use s = 1, s = 2 and s = 3 and go

through all the sizes from c = 10 to c = 100. Figure 5.6 shows the results of the random cop against the different

robber strategies. As with the ladder graph discussed in the previous section, each strategy forms a clear trend,

but more separated. However, with the circle graph, it is clear that the value for s has a visible influence on the

winrate of the cops. It is interesting to see that for both the random and the MCTS robber it is the case that a

bigger s increases the winrate of the cops, while the opposite is true for the evading robber where a bigger s

decreases the winrate.

When using a smart strategy for the cops against the evading robber, the winrates of the strategies are more

separated. This can be seen in Figure 5.7. From the graph it it becomes apparent that when playing against

the evading robber, the spacing of the graphs has a significant impact. Especially between s = 1 and the other

spacing values, there is a clear difference. Until c = 50, the MCTS cops perform about the same as the chase

algorithm with the same s, for s = 1 the MCTS algorithm even outperforms the chasing algorithm. For higher

values, it starts to perform significantly worse than the chasing algorithm, especially when s = 1. This seems to

indicate that 150 playouts are not sufficient for circle graphs with c > 50.

When we let the cops play against the MCTS robber each strategy for the cops form its own trend again, as can

be seen in Figure 5.8. It is noteworthy that the cops using the chasing algorithm perform quite a bit better than

the cops using MCTS.
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Figure 5.6: Winrate of the random agent for the cops on a circle graph.
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Figure 5.7: Winrate of the chasing and MCTS agent for the cops against the evading robber on a circle graph.
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Figure 5.8: Winrate of the chase and MCTS agent for the cops against the MCTS agent of the robber on a circle

graph.

5.4 Scotland Yard

The last graph we will look at is the modified Scotland Yard graph. Since this graphs is a modified version of a

game board used in a real game, we used this graph to determine the search radius for the chasing cops and

determine the amount of playouts used by each MCTS agent. First we let both MCTS agents play against a

random player, while varying the playouts used. The results can be found in Figure 5.9. We can see that when

playing against a random player, the amount of playouts used doesn’t seem to have any effect on the winrate.

The fluctuation in winrate is caused by the random start locations each game.

The winrates of the different radii can be seen in Figure 5.10. Here, we can see that the radius has a big influence

on the winrate of the cops and that a higher radius leads to a lower winrate. It is interesting to see that the

winrate doesn’t change much after r = 4. This is the same as the number of rounds where the robber is hidden.

The experimental data doesn’t provide enough evidence to make any conclusions, so further research is required

to see if there any connection. What the data does show is that the cops are most successful when moving to the

last known position of the robber, so n = 0.

The results from the different agents playing against each other are shown in Table 5.1. The table clearly shows

that the chase agent for the cops achieves significant better results than the MCTS agent. Interestingly, for the

robber, it is a different story. There is not as big of a difference between the evade agent and the MCTS agent

for the robber. When playing against the smart agents of the cops, the difference is less than 10%.
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Figure 5.9: Winrate chasing cops against various robber strategies.
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Figure 5.10: Winrate chasing cops against various robber strategies.

Cops

Robber
Random Evade MCTS(100)

Random 42.2% 5.0% 4.9%

Chase(n = 0) 99.6% 71.8% 75.5%

MCTS(150) 65.5% 22.0% 12.3%

Table 5.1: Winrates of the different agents playing against each other, with parameters in parenthesis.

5.5 Summary

To test the effectiveness of the different strategies, we had them play against each other on a multitude of graphs.

For both the ladder and the circle graph, we varied the size and the spacing of the graph. With the ladder graph

the spacing of the graph had a minimal effect on the winrate of either player. Here the size was the determining

factor for the winrate. For the cops, the chasing agent performed better than the MCTS agent against both
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smart strategies of the robber. For the robber, it is the case that the MCTS agent performs better than the

evading agent.

On the circle graph, we got more interesting results. First, it becomes clear that the spacing of the graph has

a much larger influence on the winrate of the cops, especially when the random cop agent is playing against

the various robber agents. Also, when playing against the evading robber, the spacing has a big influence. For

s = 1, the MCTS agent performs better than the chasing agent at certain sizes. Still, for a size greater than 50,

the MCTS agent begins to perform worse than the chasing agent. When playing against the MCTS robber, the

spacing has a much smaller effect. This indicates that the evading agent performs differently for each s chosen.

We used the modified Scotland Yard board as a baseline to test the effectiveness of different playout values for

each MCTS agent. The number of playouts seemed to have little effect on the winrate, but clearly had an effect

on the runtime of the strategy. On this graph too it was the case that the chasing agent performed better than

the MCTS agent.



6. Conclusions and future research

We looked at the game of Cops & Robbers, a hide and seek game with imperfect information for one player,

the cops, and perfect information for the other player, the robber. We created two player specific AI agents and

one common agent. We looked at how these agents perform against each other on three different game board

types. The main goal was to see if Monte Carlo Tree Search (MCTS) can successfully be used as an agent for

the cops.

We have shown that using MCTS does increase the winrate of both players compared to the random agent. In

general we can say that the chase strategy deals better with the imperfect information than the MCTS algorithm

used. On both the ladder graphs and the modified Scotland Yard board, the chase agent for the cops and the

evading agent for the robber performed better than the MCTS counterpart. We concluded that this likely was

because of the value used to determine the score of a move in the MCTS algorithm. On the circle graph, the

differences between the different strategies were more clear cut. The value of the graph parameters had a larger

influence on the different strategies. Especially when playing against the evade strategy of the robber, the value

of s had a big influence in the effectiveness of the strategies. It was also the case that the MCTS and chase

strategies performed similarly for graph sizes smaller than 50.

Given the observation it is interesting to look more into the circle graphs, since they provided the most interesting

results. We are curious to take a closer look as to why the spacing of the graph had such a big influence on

the results. Furthermore it would also be interesting to use different patterns within the circle graph instead of

simply skipping every s nodes.

With regards to the MCTS agent for the cops, it would be interesting to see if we can use the chase or the

evade strategy to improve the simulations of the MCTS agent. Furthermore it should be researched how using a

different score for the MCTS agent can improve its ability to deal with the imperfect information.
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