
Opleiding Informatica

Analysis of submissions of the Dutch Olympiad for

Informatics with a special focus on heuristics

Martijn Strating

Supervisors:
Felienne Hermans & Alaeddin Swidan

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 02/07/2019

www.liacs.leidenuniv.nl


Abstract

We have studied some programming problems from the Olympiad in Informatics, a program-
ming competition for secondary education students, in order to see what contestants had
difficulties with. As a basis, we used the ideas of the mathematician George Polya: solving
problems using four steps. In the submissions, we looked for common ways of solving the
Olympiad problems, as well as common made mistakes. Subsequently we arranged these in
Polyas steps. It was shown that in all steps there was room for the contestants for improve-
ments. For future work, more comprehensive results could be achieved if this research would
be conducted on a larger scale.

Contents

1 Introduction 1
1.1 About the Olympiad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 About Polya 2
2.1 Summary of ‘How to Solve It’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Understanding the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Devising a plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.3 Carrying out the plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.4 Examining the plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 ‘How to Solve It’ translated to Olympiad problems . . . . . . . . . . . . . . . . . . 3
2.2.1 Understanding the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Devising a plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Carrying out the plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.4 Examining the plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Intermezzo: Problem presentation in the Olympiad . . . . . . . . . . . . . . . . . . 5
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Conclusions concerning Polya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Implementation 6

4 Analyzing the questions 7
4.1 Short remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 ’Meest waardevolle object’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 ’Verkiezing’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 ’Waslijnen’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 ’Delercode’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusion and future prospects 23

References 24

A EER diagram Olympiad Database 24

B SQL queries 26



1 Introduction

1.1 About the Olympiad

The International Olympiad in Informatics (IOI) is a yearly held programming competition for
secondary education students. In terms of age, contestants at IOI’n (held in year n) must have
been born on or after 1st July, in the year n − 20 per participating country. [IOI] Per country,
four best contestants are selected after a selection that consists of three rounds. Then, the best
participants compete in an international tournament. The number of contestants of the IOI is small
compared to other Olympiads. For example, in 2019 there were 319 participants in the Netherlands
(a record), whereas the number of participants of the Olympiad in Mathematics was 8150. [wis]
One of the main goals of the Olympiad is to encourage and motivate people to do Informatics.
On the other hand, the Olympiad does not want to lower the level, in such a way that the given
problems can be solved without thorough knowledge and a creative approach. The difficulty of an
Olympiad depends mainly on the level of the questions. In order to assess the difficulty, one has to
examine multiple factors, such as the average grade of a question, but also how exactly the answers
have been coded. Questions are now graded according to their performance on various test cases.
However, a scrutinized look at the submissions themselves can reveal useful insights. There are four
types of questions, see 1. In this research, we focus on questions of type A and C.

Type Description Amount Points
A Preliminary exercises 5 40
B Theoretical exercises 4 50
C Advanced exercises 2/3 100
D Program a game 1 100

Table 1: Overview Olympiad questions

1.2 Overview

Firstly, we report on heuristics, the study of methods of problem-solving (especially the work of
George Polya). It is a viewpoint that is much used in computer science education (more about that
later) and we hope it gives us a useful framework. Problem-solving is seen as a vital, important part
of programming. [PK17] Secondly, we analyze the answers of four Olympiad problems. A database
was obtained from the Dutch Informatics Olympiad, which contains data about the previous made
Olympiad questions. This includes, among others, scores, test cases and the submissions themselves.
An EER diagram of the database can be found in Appendix 5. We hope to find insights in why
contestants find questions hard, and if we can recognize patterns in the submissions with Polyas
ideas in mind.

1



2 About Polya

When we analyze the submissions to the Olympiad, it is useful to have a good understanding of
the problem of which the submission is the answer. Also helpful seems a guiding principle. One
of the most important books of problem solving is How to Solve It, which was published in 1945
by the Hungarian mathematician George Polya, a professor at Stanford University. It is a book
on heuristic, a study about how to solve problems (not to be confused with the heuristics that
are used in algorithms like A* that are techniques to find a quicker solution). It is written on a
high level of abstraction, with purpose of its content being applicable to the most diverse array of
problems. We assume that its content, by this generality, is useful for our study.
According to Polya, one must adhere to four steps when solving a problem. It was his intention to
keep everything simple, to state plain commons sense in general terms The steps are:

1. Understanding the problem

2. Devising a plan

3. Carrying out the plan

4. Looking back

2.1 Summary of ‘How to Solve It’

How to Solve It is based on the four steps mentioned earlier. In this section we will summarize each
step. Later on we will make a comparison between the book and solving programming exercises.

2.1.1 Understanding the problem

In this phase, Polya advises to start with asking three questions:

1. What is the unknown?

2. What are the data?

3. What is the condition?

Additionally, he advises the student to draw a figure, as visualizing the problem leads to a better
understanding. ‘Figure’is a broad notion: it can be a triangle, but also a number of blank spaces to
indicate the length of a word. Furthermore, Polya argues that the student should desire the answer:
if the teacher wants the student to be interested, he should make his questions relevant, not too
easy or too difficult. He states that the question should be presented ‘natural’and ‘interesting’.

2.1.2 Devising a plan

This is considered to be the most important and difficult part of the four devised steps. (Or as Polya
writes it, ‘long and tortuous’.) In this stage, the solver must first ”find the connection between the
data and the unknown. [The solver] may be obliged to consider auxiliary problems if an immediate
connection cannot be found”, and then ”(. . . ) should obtain eventually a plan of the solution.”

2



Additionally, the solver could restate the problem; they should not, like an insect, try many times
hopelessly flying through a windowpane. Instead, they ought to enrich their conception of the
problem. Polya mentions different ways to achieve this, such as seeing the problem from different
angles; setting up new, related questions; or ‘mobilization’- considering multiple theories that could
be useful.
Because of the continuous process of evolving knowledge about the problem, there could arise the
need of introducing auxiliary elements. We find that Polya is somewhat unclear in his explanation
when to use these auxiliary elements. On the one hand, he writes that the solvers can add auxiliary
elements, even when they do not know how or when to use them. On the other hand, he writes
that they should not just be included unhesitatingly.

2.1.3 Carrying out the plan

For Polya, carrying out the plan is ‘boring’process. He says that every step of the plan must be
meticulously performed and checked.

2.1.4 Examining the plan

Polya writes that it is important and instructive for the students to look back upon the obtained
solution, to ”consolidate their knowledge and develop their ability to solve problems”. This is to be
achieved by verification of the answer. Furthermore the plan should be revisited to check if it is
possible to achieve the result in a shorter way. Polya also devises to look for related problems that
could now be solved or better understood. There remains always something to do.

2.2 ‘How to Solve It’ translated to Olympiad problems

In this section, we give a link between Polyas steps and programming. Polya often uses abstract
words like unknown, data, plan, auxiliary element, figure. These words can often be replaced by
more concrete cases. In figure 1, we show how the question ’What is the unknown?’ can be used as
a basis for problem-solving in many different fields.

Figure 1: An abstract question can serve as a basis for more specific questions

3



2.2.1 Understanding the problem

In programming terminology, Polyas three questions could be restated as:

1. What does the program need to return?

2. What is the input?

3. What should the returned abide by?

Drawing a figure does not have a programming equivalent, but it can still be used. We will give an
example while discussing one of the problems.

2.2.2 Devising a plan

Devising a plan looks like writing an answer in pseudocode. We find Polyas idea of looking for
related problems remarkable. This is a method that is already used by Computer Scientists often,
when one observes the popularity of websites like StackOverflow, which is a question and answer
website dedicated to programming. (StackOverflow is the 50st most used website in the world.
Users visit it 5.20 hours a day on average.[Ale]) Polyas auxiliary elements could be compared to
writing functions in code, that could solve or help to solve a subproblem. Additionally, classes can
be seen as auxiliary elements, that help the programmer to store related data in an efficient and
comprehensible way.

2.2.3 Carrying out the plan

Carrying out the plan is compared to coding analogous to running the code. Albeit that running
code costs in general a lot less effort than making a mathematical calculation by hand. Programmers
can keep in mind, that because of this, they can easier test the code they have written so far and
recognize early mistakes.

2.2.4 Examining the plan

Examining the plan could be compared to cleaning up the written code. It encapsulates eliminating
redundant variables, functions, white lines and other elements; removing comments that are not
necessary; and making the solution as simple as possible. It is not a point of focus in this research,
but it would be interesting to see how the results of an Olympiad problem are if it has a maximum
number of lines.
Testing is also a part of examining the plan. Problems of the Olympiad always have strict speci-
fications. For example, from 2019’s question A5: Write a program that reads a number N from
standard input (2 < N < 27). Probably the cases 2 and 27 do not work or give special results. The
answers to the problems are always checked by means of multiple test cases, to examine whether
the program really works. If the program does not return the correct results on certain test cases,
it does not receive all the points.

4



2.3 Intermezzo: Problem presentation in the Olympiad

To continue on Polyas idea of making a question desirable, we consider some questions of the
Olympiad. They often concern puzzles. Recently, puzzle-based learning was investigated by Falkner,
Sooriamurthi and Michalewicz, as a way to attract more students to study computer science, with
a focus on solving problems, to deal with the the shortage of a skilled information technology
workforce, in a program that what was based on Polyas principles. [FSM10] Using puzzles, they
wanted to, next to motivate the students, make sure that they boost their problem-solving skills,
without having all the questions all the time being focused on previously explained material, like
in textbooks, but more in a general way. Their experiments were well-received and indicated
improvement in problem-solving skills.
We have seen that the appearance of the Olympiad questions has changed through the years. This
concerns their subject and lay-out. We would like to zoom in on the look of the questions of type A
and make a small comparison between the appearance of images next to the questions in general,
and the average scores. We choose type A questions, because those are the preliminary questions,
that are made by the most people. However, there does not seem to be any connection. An overview
of our results is given in 2.

Year Number of images
Average points type A questions
(out of 10)

2015 0 8.9
2016 2 8.3
2017 2 8.2
2018 4 8.2

Table 2: Images in type a questions

2.4 Related Work

‘How to Solve It’has proved to be influential to the development of computer science education,
especially since the 80’s. From then on, he was seen to have put the field of heuristic back on
track[New83]. Nowadays How to Solve It is probably the most cited book in the field of mathematical-
and computer science education, (11537 citations) and has also been influential to fields as Artificial
Intelligence[New83] and behavioral sciences[Kap17].
Gradually his ideas were more incorporated into university curriculums, for example in a curriculum
at Carnegie-Mellon[DKM98] and a teaching reform initiative in New Jersey in 1993, which describes
a new teaching method for beginning computer scientists. It devises class sessions which are problem
driven and which use a strict ordering of classical activities. We find it remarkable, because it puts
a lot of focus on the understanding of the given problems in class. Students are only allowed to
code if they first completely thought out their plan - confer how people had to use punched cards
in the 50s.
This way of programming is also acknowledged by Dalbey and Linn, who call the understanding
phase specification, in a literature review about the demands and requirements of programming:
”Most researchers describe programming as consisting of a number of identifiable stages.[LD85] (. . . )
In general, their analyses describe the following tasks : specification, design, coding, and debugging.”

5



We see Polya’s influence in the four task, that look like Polya’s four steps.
Allan and Kolesar from Utah University also recommend the approach, saying that otherwise for
many novices learning programming, rather than learning the basic concepts of the field, their
energies are devoted to learning syntax.[AK96] Furthermore, the link between Plyas four steps and
programming was almost literally stated by Pea and Kurland, in a paper about the cognitive effects
of learning computer programming to children: ”a set of activities is involved in programming
for either novices or experts, which constitutes phases of the problem solving process,” as been
described by Polya.
Since 2017, Polyas problem-solving strategies are included in the official syllabus of the IOI. This
syllabus states the participant requirements. [IOI] However, lately there also rises some criticism.
Bret Victor warns in a speech about immediate connection, that the contemporary conception of
programming, in which a typed-in program needs to be handed to a compiler, looks in essence a
lot like during the period when the earlier mentioned punched cards were used. While, he argues,
modern computers make a much higher level of interactivity possible. Programming does not need
to be as abstract as it is now. At the moment programmers need to be well able to visualize the code
they type, before they compile. But that is not necessary. Using modern Integrated Development
Environments (IDE’s), it possible to have a more immediate connection between the programmer:
to have immediately, while typing, changing results on a separate window. In this way, Polyas
second and third steps would be more intertwined. [Vic]

2.5 Conclusions concerning Polya

Polya’s ideas still have a considerable influence on Computer Science Education. We have seen
that his idea of the four-step-plan is quickly mapped to programming and it is a basis for a lot of
research on what is the best way to learn novices to program. That is why we think How to solve it
is a good guidance to our research. When we are going to examine the Olympiad submissions, we
try to find patterns in the code that indicate a Polyan way of thinking. When we observe incorrect
submissions, we try to find in which step probably the mistake was made.

3 Implementation

Olympiad questions made in C++ and Python. MySQL Workbench and XAMPP for writing
queries and retrieving information from the database. Useful queries can be found in Appendix B
Jupyter Notebook, Python, libraries Pandas and Numpy, for further analysis.

6



4 Analyzing the questions

4.1 Short remarks

We limit ourselves to questions of type A and C, because we do not have access to the answers of
type B, as they do mostly not contain code. For example, a type B question is simulate a Dijkstra
shortest-path search by hand. We are not interested in questions of type D (programming a game)
either, because we believe that students that are able to program a game, already have reasonable
programming skills.
It appears that lots of the submissions look like each other. Sometimes a person has handed in
more than ten submissions, while only one was correct. We do not know the procedure behind this
system of re-attempting, but for problems in which this happens often, it results in misleading
answers of the queries. It is very likely that when a contestant has at least one answer right, he
understands the question, and it is not necessary to take all his previous failures into account. So
we select only the best submission per problem per contestant. The average score of all problems
was 0.74.
We first made the questions that we were about to examine ourselves, to have a better understanding
of the problem.
We decided to focus on four specific problems: per type of question, one with a high score (bigger
than 0.8) and one with a low score (smaller than 0.7), see below 3

Type of question Average points (from 10) Name Year
- 8.4 Meest waardevolle object -
A 6.4 Verkiezing 2015
C 9.4 Delercode 2016
C 5.4 Waslijnen 2015

Table 3: Analyzed problems and their scores

We separated the incorrect submissions on where we think they would fit best in the four steps of
problem-solving. The correct submissions are categorized in a way specific to the problem.
We do not assign mistakes to the carrying-out-phase, as we consider that phase being the task of
the compiler, not of the student.

7



4.2 ’Meest waardevolle object’

According to our first queries, this appeared to be the best made Olympiad problem so far. It had
a score of 0.89 out of 1. It is from an Olympiad older than 2015. We have no access to problems
before 2015, which means we do not know what the problems are. However, this question is still
interesting. Firstly, because the solutions are short, so it is easy to process them fast. Secondly,
because it was clear what the problem was: to return the highest number of a series of numbers.
Probably it was an introductory problem. We encountered four ways the students used solving the
problem.

• max var use a variable that represents the highest value so far encountered (initialize it at a
very low value). Check per newly observed value if it is higher. If so, update its value.

• max func save all the inputted data in an array. Then use a built-in max() function to let it
determine the maximum value.

• Sort save all the inputted data in an array. Sort it in ascending order, and return the last
value.

• Max array first save all the data in an array, and then walk through the array like in max
var.

Answers

We summarized our findings in table 4. The four different algorithms were used in various languages.
We counted how many the algorithms were used per language. We put the numbers of used ways
to get the solution vertically against the used language horizontally. The mistakes were of various

Python C++ C Java C# Pascal PHP Total
max var 12 23 7 8 1 1 1 53
max func 16 3 3 3 2 27
sort 1 3 1 1 6
max array 1 6 1 2 2 12
wrong 3 4 1 1 1 10
Total 30 35 9 14 6 1 3 98

Table 4: Overview ’Het meest waardevolle object’

kinds. We put them here below.

8



1. Use of a wrong helper function. (len() or size() instead of max()). Examples:

(a) Python (b) Java

(c) C++

Figure 2: Illustrations of wrong helper functions.

Probably these students had a wrong understanding of these helper-functions.

2. Output sent to a file instead of std::output

3. C#: Use of the wrong object. Debug instead of Console. (Debug does not write to std::output)

4. Confusion between assignment- and equal-to-operators. See figure 3 This is syntactically
correct, but not semantically.

5. Mixing up between string and int-datatypes, for example A (int) >0 (string) see line 7 in
the example below (4)

6. In Python: Not save the outcome of input(), which returns the input as string, but use
input() again. Also, see 4

7. No code to process the input. See figure 5 This student forgot to let x be a value from standard
input. This could be prevented by testing.

9



Figure 3: == instead of =

Figure 4: Unclear comparison with string types

Figure 5: No code to process the input

10



Discussion

Not all students understand what the problem was, Polya’s step one. Some returned the length of
the input-array instead of the maximum value (mistake 1). This could be helped by asking What is
the unknown? - the maximum value of the array. Some programs did not have any output (mistake
2 and 3). They could have asked: What is the condition? - The maximum value should be printed.
There were no signs of trouble with step two, devising a plan, and step three, carrying out the plan.
But some students missed step four, the looking-back-phase (mistake 4-7). All these algorithms
returned the wrong answers, but they could be repaired by small changes. For example by changing
== into = (mistake 4). Or by changing int x into x = int(input()).

4.3 ’Verkiezing’

This problem simulates an election. Every voter has a favorite list. The winning candidate should
have more than half of the votes. If there is no winner, the candidate with the least number of
votes must leave. If there are two or more candidates, the last candidate must leave. If he is on a
favorite list, the next candidate on his list will be selected. We made this question ourselves, and
encountered some things that contestants could find difficult:

• It is a long question, there are relatively many rules the program has to abide by.

• When all code is put in the same function, (for example the main function), that function
could consist of many lines and statements, and the program could be hard to read. Use of
functions could make things clearer.

• When arrays are used, it is wise to use 1-indexing instead of 0-indexing which means that
the first element of the array is at position 1. It is convenient to use extra arrays, one to count
the votes per contestant and one to keep track of the contestants that where voted out. When
0-indexing is used, everything becomes more complicated, when for example contestant 1 is
placed on position 0, contestant 2 on position 1 etc.

There were 62 submissions. We decided to limit ourselves to analyzing the submissions made in
Python. In table 5, an overview is shown of how the question was made in different languages.

Mean score (out of 40) Median (out of 40) Amount of submissions
Python 23,7 20 27
C++ 27,14 40 14
HS 35 35 2
PHP 27,5 35 4
C# 23,33 20 3
Java 26,25 30 8
C 35 40 4

Total: 62

Table 5: Overview ’Verkiezing’

It is noticeable that the medians of C++ and C were of 40 points, the maximum score. The
relatively low mean score at C++ indicates that the C++ programmers that did not have a perfect

11



score, immediately had a comparatively much lower score, and probably had difficulties with the
array-management. Haskell has a very good score, but only 2 submissions.

Answers

Solutions to this problem all look like each other. Instead of the previously described waslijnen-
problem, which leaves much space for the solver, here all contestants have to follow the same steps,
namely, the rules of the election. That is why we decided not to classify the good solutions.
27 Submissions were made in Python. 10 of them had a perfect score.
We put the kind of submissions that were downgraded below.

1. Not giving right answers on all test cases. For example, a contestant used the following code
to put the input in a list 6: However, this program only works for < 10 candidates. According

Figure 6: Wrong input handling

to the problem statement, there can be up to 20 candidates. Here, the replace-function deletes
spaces between numbers. So candidate 10 would not be separated as the number 10, but as
1 and 0. There were nine submissions that worked for the example case, but not for some
test cases. Not working on all test cases sometimes overlaps with other types of mistakes (see
mistake 3 and mistake 5).

2. Working well but did not get all the points for an unclear reason.

3. Incomprehensible code as result of bad variable names. Two examples 7:

12



(a) (b)

Figure 7: Illustrations of incomprehensible variable names.

4. Wrongly formatted output. Printing of an extra line (print()) in figruimtecre.

Figure 8: Printing of an extra line

5. 5. Incorrect application of the election-rules. For example, removing of the contestant with
the smallest number (instead of the highest number). Or removing the first contestant with
less votes than the maximum votes (this strategy works accidentally on the test case). Or,
declaring a winner when he has half of the votes (in stead of more than half). Example 9:

13



Figure 9: Wrong winner declaration

It should be if((len(v)/2) < max(x)).

6. Incomplete code. For example 10:

(a) Multiple print-statements (b) Empty declarations

Figure 10: Illustrations of incomplete code

7. Submission of a different problem

Discussion

There were some submissions that did not show a good understanding of the problem. For example,
they printed extra lines (mistake 4). This could have been prevented if they had asked: What is
the unknown? because the program only needs to output the number of the winner. The incorrect
application of the election-rules could have been avoided by asking What is the condition? (mistake
5), also part of step one. In step two, devising a plan, the problem-solvers should also be aware, that
subsequently they have to check their results. When submissions have bad variable names (mistake
3), this becomes difficult. A few algorithms passed over step four: they did not give good results
on all test cases (mistake 1). The contestants did not have many difficulties with the indexing of

14



the arrays, as we hypothesized. We think an average score of 0.64 is quite low for an introductory
question. However, most mistakes were made not because of the difficulty of the problem, but
because of misunderstanding of the question, and the negligence of test cases.

4.4 ’Waslijnen’

In this problem, there are several washing lines and some pieces of clothing. The question is: how
to hang up all the garments while using the least amount of washing lines. The program has a
time limit of 2 seconds. It is a difficult problem; it is practically a restatement of the bin-packing
problem, which is NP-complete. [KK82] [Fil07]
The time limit forces the student to use a different way of solving than brute-forcing. Fortunately,
there are some restrictions on the length of the washing lines (B) and width of the garments (N): it
should work for cases where 5 < B < 1000 and 3 < N < 20. Furthermore, it should work for a
group where 5 < B < 65 en 20 < N < 40.
To solve this problem, it would be useful for the students to know about NP-completeness, the bin
packing problem, or algorithms like dynamic programming. If the student does not know about
this, he could find it difficult where to start, ’to devise a plan’, and to search for related problems.
On the other hand, because it forces the students to think without foreknowledge or textbooks, the
students have to come up an answer by themselves, like they should also be able to when they have
finished their studies. [FSM10]
The mean score of this problem was 0.55 out of 1.

Mean score (out of 100) Median score (out of 100) Amount of submissions
Python 47,27 30 26
C++ 66,15 70 13
Haskell 93,33 100 3
PHP 65 65 2
Pascal 20,9 30 12
C# 70 70 2
Java 74,29 100 7
C 96,66 100 3

Total: 68

Table 6: Scores of ’Waslijnen’ in different programming languages

We decided to focus on the submissions made in Python.

Answers

We have discerned multiple ways the students used to solve this problem, summarized in table 7

1. Next fit decreasing: try to fill up the lines one for one, by taking always the smallest
remaining garment and hang that on the current line. This was used by one student, who
made a small mistake by writing if sum(clothesline)+min(nb) < int(B): instead of : if
sum(clothesline)+min(nb) <= int(B): so he could never fill up his lines completely.

15



Method Used by contestants Points
1. Next fit decreasing 1 0
2. First fit decreasing 6 100
3. Combinations 3 60/30
4. Random 1 70
5. Trick 7 20/30
6. Incomplete 4 0
7. Other 3 100

Totaal: 25

Table 7: Overview ’Waslijnen’

2. First fit decreasing: Sort the garments in descending order. After placing one on a line, sort
all the lines with garments in descending order. So, every time the largest garment left is
placed in the largest possible bin. However, this approach does not work all the time. For
example, when you take the following six garments, with a washing line length of 200: 100,
60, 60, 60, 50, 50, this algorithm gets you 3 washing lines, with bins (100, 60) (60, 60, 50)
(50) but the optimal solution is 2, with bins (100, 50, 50), (60, 60, 60). Thus, this solution is
not an optimal solution. Nonetheless, it works for all the test cases, so contestants that used
this approach generally got all the points. As an example, see 11.

Figure 11: Example First-fit decreasing algorithm

3. Combinations: This solution uses a combinations-function to list all combinations of garments
from 1 to the total number of garments. The idea is, that among these combinations are
the right solutions. See figure 12Keep up a counter. While there are garments left, look for
the greatest fitting combination, delete all the garments belonging to that combination, add
1 to the counter. However, when the number of garments increases, so does the number of
combinations. Then this algorithm does not stay in the time limit.

16



Figure 12: Characteristic detail of a ’combinations’-algorithm

4. Random: Build up solutions 100 times, each time beginning with adding random garments
until their sum is bigger than B the biggest value. Then add up the remaining clothes,
beginning with the smallest. When the next garment does not fit anymore, use the same
strategy for the remaining clothes. Every time the present solution is compared with the best
so far, and eventually it replaces the best. This algorithm could, because of its application of
randomness, give an optimal solution for every case, but also fail. See figure 13

Figure 13: Example of a ’random’-algorithm

5. Trick: This solution divides the total length of all the clothes by their quantity and rounds up.
There were some variants, see for example figure 14, in which the total is multiplied by 1.02.

17



Figure 14: Example of a ’trick’-algorithm

6. Incomplete: these were incomplete solutions, often containing comments and too many print
statements. See figure 15, which for example contains redundant print-statements.

Figure 15: Example of an incomplete solution

7. 7. Other: These were mostly adjustments of the first fit decreasing algorithm. One solution
was for example: First search for the biggest suitable value, then check whether there are not
two possible values bigger. If no garment can be added, take a new line and repeat until all
the garments are hung up.

Discussion

All of the students who sent in a working program passed Polyas step one. They understood what
the problem was. They were aware that they could not have found an optimal solution. The most
trouble here contestants had was to devise a plan. Except for them who used the trick or whose
solutions were incomplete, the contestants solved a subproblem: how to optimally fill one line?
Polya calls this decomposing. They found out different ways: By continuously adding the largest
garment possible (first fit decreasing); by searching through all possible combinations of the clothes
and see which ones have the least space left (combinations); or by trying randomly (randomly).

18



Then they built up their algorithms accordingly. But when all contestants (except the random
algorithm) had tested more, Polyas step four, they would have found out that their algorithms did
not work for all cases.

4.5 ’Delercode’

The question of type c with the highest average score was delercode: 0.95 to 1. The objective is to
revert a series of swaps that change a word of length N to another, following a specific rule: for
numbers G from 2 to N, if N is divisible by G, put all letters on positions G and multiples first,
then follow up the rest. There is given one example 16:

Figure 16: Example ’Delercode’

Below is a table 8 that shows how the question was made in different programming languages.

Language Mean (out of 100) Median (out of 100) Amount of submissions
Python 89.15 100.0 50
C++ 99.58 100.0 24
C 94.29 100.0 7
Java 100.0 100.0 15
C# 100.0 100.0 6
PHP 100.0 100.0 3
Haskell 100.0 100.0 3

Table 8: Overview ’Delercode’

Answers

Only eight submissions of 110 were not given all the points, four of those had zero points. Because
this problem is in essence to program the retrograde of a set of given rules, the good submissions do
not differ much: for all contestants these rules are the same, and have to be used in the same order.
Below we have written down the made mistakes.

19



1. 1. Incomplete code. Two examples:

(a) This algorithm shows signs of a plan: there is a loop with goes from N to 1, and a N mod
G operation, which makes sure only the right indices are selected. c is made the number
that divides N, so also the right divisors are selected. But then there is no follow-up.

(b) b) This submission consisted of this function only.

20



2. Not working on all test cases. Example 17:

Figure 17: No array instantiating

The student forgot to zero his arrays. The arrays inputstring and workingstring are not
zero-instantiated, which for certain test-cases leads to the occurrence of random extra symbols
in his output-string.

3. Hardcoding the rules.

Figure 18: Hard-coding

4. A solution to a different problem

Discussion

All the contestants seem to have understood the problem. Not everyone was able to devise a
working plan. This is the case for both the two incomplete examples (mistake 1) and the hardcoded
example (mistake 3). They could have asked for related problems, or ask: Could you solve a part of
the problem? For example, to build up a word from another word by putting the letters on even
positions first, and the letters on odd positions second. Solving a part of the problem could be

21



useful if some parts of the solution seem more accessible than others. The contestants could also
have drawn a figure, showing where the letters have to go, for example like in figure 19 with a word

Figure 19: Drawing a figure like this could give more insight in the question

of eight letters. The students then might see that they have to reverse this process from the bottom
to the top. Polyas step four, looking back, was neglected by submissions as mistake 2, which do not
work on all test cases.
This problem was made much better than the other type c question, waslijnen. It had an average
score of 9.4 against 5.4. We argue that this question was too easy. Firstly, because of the scores.
Secondly, because while Delercode is about translating a procedure into code, thus limiting the
students in their approach, waslijnen is an open problem, requiring a more creative approach. This
is confirmed by waslijnen having more different solutions.
Delercode was also made better than the two problems of type a. When we compare it to Verkiezing
(which had an average score of 0.64), the problems look like each other, because they both have
to do with coding a set of requirements. We find it remarkable that there were made so much
more mistakes in the test cases in Verkiezing. There was only one submission in Delercode that did
not work on all test cases, and that was because of uninitialized arrays. When a contestant has a
solution to one test case, it most likely works for all test cases. That was different in Verkiezing.
In all specifications (to declare a winner when one candidate has more than half of the votes, to
eliminate the last candidate with the least votes, to let the maximum number of candidates be 20
and participants 1000) there was at least made one mistake.

22



5 Conclusion and future prospects

In this paper, we have studied the work of George Polya about heuristics. In order to solve a
problem, Polya proposes to adhere to four steps: understanding the problem, devising a plan,
carrying out the plan and looking back. We put these four steps in a context closer to informatics.
Afterwards we observed four problems of the IOI, and looked for patterns in the submissions that
were commensurable with the four steps.
In the submissions of problems of type c, the advanced problems, it was observed that the
contestants did not encounter problems with understanding the problem. However, we did in
Het meest waardevolle object and Verkiezing, both problems that were meant to be introductory
exercises. Mostly because the contestants made small mistakes, such as having more output than
what is specified. It is interesting that people seem to make more little mistakes when making
easier questions. This could be investigated further.
Devising a plan appeared to be the most difficult in the type c problem Waslijnen, as expected.
The solutions were more varied and there were more incomplete solutions compared to questions of
type a.
In all problems there were contestants that did not look back, as multiple submissions failed to give
good results on all the test cases. Further investigation is necessary to see if better results would be
obtained, if contestants are explicitly warned to check the border cases.
Waslijnen, a problem of type c, did not have a high score because the problem was in essence
unsolvable. However, we think that the problem was also valuable, as the solvers came up with
diverse and creative answers.
We conclude that the problem-solving method of Polya proved to be a model that was well able to
cover up the strategies and mistakes we observed. In the future, analyses as conducted in this paper
could be carried out on a larger scale. Submissions in other programming languages of the same
problems that we have observed could be explored as well. Subsequently it would be interesting to
analyze other problems. Furthermore, there could be more comparisons between questions of type
a and type c, to be able to predict whether a question is difficult or not.

References

[AK96] VH Allan and MV Kolesar. Teaching computer science: A problem solving approach
that works. 1996.

[Ale] Alexa.com. Stackoverflow.com. https://www.alexa.com/siteinfo/stackoverflow.

com. Accessed: 2019-06-27.

[DKM98] FadiP Deek, Howard Kimmel, and James A McHugh. Pedagogical changes in the delivery
of the first-course in computer science: Problem solving, then programming. Journal of
Engineering Education, 87(3):313–320, 1998.

[Fil07] Carlo Filippi. On the bin packing problem with a fixed number of object weights.
European Journal of Operational Research, 181(1):117–126, 2007.

[FSM10] Nickolas Falkner, Raja Sooriamurthi, and Zbigniew Michalewicz. Puzzle-based learning
for engineering and computer science. Computer, (4):20–28, 2010.

23

https://www.alexa.com/siteinfo/stackoverflow.com
https://www.alexa.com/siteinfo/stackoverflow.com


[IOI] IOI Informatics. Syllabus. https://ioinformatics.org/files/regulations18.pdf.
Accessed: 2019-06-28.

[Kap17] Abraham Kaplan. The conduct of inquiry: Methodology for behavioural science. Routledge,
2017.

[KK82] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In 23rd Annual Symposium on Foundations of Computer Science
(sfcs 1982), pages 312–320, Nov 1982.

[LD85] Marcia C Linn and John Dalbey. Cognitive consequences of programming instruction:
Instruction, access, and ability. Educational Psychologist, 20(4):191–206, 1985.

[New83] Allen Newell. The heuristic of george polya and its relation to artificial intelligence.
Methods of heuristics, pages 195–243, 1983.

[PK17] Sarantos Psycharis and Maria Kallia. The effects of computer programming on high
school students reasoning skills and mathematical self-efficacy and problem solving.
Instructional Science, 45(5):583–602, 2017.

[Vic] Bret Victor. Inventing on principle. https://www.youtube.com/watch?v=8QiPFmIMxFc.
Accessed: 2019-06-25.

[wis] Wiskunde Olympiade. https://www.wiskundeolympiade.nl/. Accessed: 2019-06-28.

A EER diagram Olympiad Database

24

https://ioinformatics.org/files/regulations18.pdf
https://www.youtube.com/watch?v=8QiPFmIMxFc
https://www.wiskundeolympiade.nl/ 




B SQL queries

-- number of submissions per problem.

select prc_con_id, prb_id, prb_description, count(sub_id) as number_of_instances from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

group by prb_description;

-- all submissions per problem (interessant, 123[waslijnen], 22[meest waardevolle object], 122[verkiezing], 172[delercode])

select sub_ctt_id, sub_prc_id, prb_id, prb_description, res_tst_id, convert(sub_blob using utf8), sub_filename, res_data_out, max(sub_score)

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

inner join tblresult on sub_id=res_sub_id

where prb_id=122 group by sub_ctt_id order by sub_ctt_id ;

--Some problems do not have test data, like this one, "Meer".

--(It appears that this is the case for all b-problems)

select prc_short, res_tst_id, convert(sub_blob using utf8), sub_filename from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

inner join tblresult on sub_id=res_sub_id

inner join tblsubproblem on spr_prb_id=prb_id

-- inner join tbltestdata on tst_spr_id=spr_id

where prb_id=253 order by sub_ctt_id desc limit 10;

-- All submissions per problem and test data

select sub_ctt_id, prb_id, prb_description, prc_short, spr_id, convert(sub_blob using utf8), sub_filename, tst_data_in, res_data_out, sub_data_out, tst_data_out, sub_score, res_score, spr_maxscore, prb_maxscore

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

inner join tblresult on sub_id=res_sub_id

inner join tblsubproblem on spr_prb_id=prb_id

inner join tbltestdata on tst_spr_id=spr_id

where prb_id=122 order by sub_ctt_id, tst_spr_id;

-- Best made problems based on sub_problems

select prb_id, prc_short, count(sub_id) as number_of_subs, prb_description, max(res_score) as max_res_score, avg(sub_score) as avg_subscore, max(sub_score) as maxi, avg(sub_score)/ max(sub_score) as avgmax_relation from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

26



inner join tblproblem on prc_prb_id=prb_id

inner join tblresult on sub_id=res_sub_id

where sub_blob is not null and prc_short != "D" group by prb_description order by avgmax_relation desc;

-- Best scores per contestant for a specific problem

-- (to be filled in at ’prb-id’)

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8) as wo, sub_filename, max(sub_score) as maxi

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

where prb_id = 172 and sub_filename not like ’%.exe’ group by sub_ctt_id, prb_id order by sub_ctt_id;

-- 20 best submissions

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, convert(sub_blob using binary), sub_filename, sub_score

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

where prb_id in ( select * from (

select prb_id from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

where sub_blob is not null and prc_short != "D" group by prb_description order by avg(sub_score)/ max(sub_score) desc limit 20) temp );

-- 20 best subs, their descriptions and short names (like A2, C1)

select distinct prb_description, prc_short

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

where prb_id in ( select * from (

select prb_id from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

where sub_blob is not null and prc_short != "D" group by prb_description order by avg(sub_score)/ max(sub_score) desc limit 50) temp );

-- 20 best subs, sub_id’s

select sub_id

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

27



where prb_id in ( select * from (

select prb_id from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

where sub_blob is not null and prc_short != "D" group by prb_description order by avg(sub_score)/ max(sub_score) desc limit 20) temp );

-- 30 worst subs

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8), sub_filename, max(sub_score)

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

where prb_id in ( select * from (

select prb_id from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

where sub_blob is not null and prc_short != "D" group by prb_description order by avg(sub_score)/ max(sub_score) asc limit 30) temp )

and sub_filename not like ’%.exe’ and sub_filename not like ’%.pdb’ and sub_filename not like ’%.docx’

and sub_filename not like ’%.jar’ and sub_filename not like ’%.8xp’ and sub_filename not like ’program’

group by sub_ctt_id, prb_id;

-- New score average

select avg(woeloe) from

(select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, wo, sub_filename, avg(maxi)/max(maxi) as woeloe

from (

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8) as wo, sub_filename, max(sub_score) as maxi

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

group by sub_ctt_id, prb_id) as blub

group by prb_id) as blubi ;

-- Mean 2019 A questions

select avg(woeloe) from

(select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, wo, sub_filename, avg(maxi)/max(maxi) as woeloe

from (

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8) as wo, sub_filename, max(sub_score) as maxi

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

inner join tblcontest on prc_con_id=con_id

28



where prc_short like "A%"

and con_id between 51 and 54

group by sub_ctt_id, prb_id) as blub

group by prb_id) as blubi ;

-- Mean 2018 A questions

select avg(woeloe) from

(select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, wo, sub_filename, avg(maxi)/max(maxi) as woeloe

from (

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8) as wo, sub_filename, max(sub_score) as maxi

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

inner join tblcontest on prc_con_id=con_id

where prc_short like "A%"

and con_id between 46 and 50

group by sub_ctt_id, prb_id) as blub

group by prb_id) as blubi ;

-- mean 2017 A questions

select avg(woeloe) from

(select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, wo, sub_filename, avg(maxi)/max(maxi) as woeloe

from (

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8) as wo, sub_filename, max(sub_score) as maxi

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

inner join tblcontest on prc_con_id=con_id

where prc_short like "A%"

and con_id between 38 and 41

group by sub_ctt_id, prb_id) as blub

group by prb_id) as blubi ;

-- mean 2016 A questions

select avg(woeloe) from

(select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, wo, sub_filename, avg(maxi)/max(maxi) as woeloe

from (

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8) as wo, sub_filename, max(sub_score) as maxi

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

inner join tblcontest on prc_con_id=con_id

where prc_short like "A%"

and con_id between 32 and 37

29



group by sub_ctt_id, prb_id) as blub

group by prb_id) as blubi ;

-- mean 2015 A questions

select avg(woeloe) from

(select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, wo, sub_filename, avg(maxi)/max(maxi) as woeloe

from (

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8) as wo, sub_filename, max(sub_score) as maxi

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

inner join tblcontest on prc_con_id=con_id

where prc_short like "A%"

and con_id between 28 and 31

group by sub_ctt_id, prb_id) as blub

group by prb_id) as blubi ;

-- Average scores submissions, the best submission per contestant

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, wo, sub_filename, avg(maxi)/max(maxi)

from (

select sub_id, sub_ctt_id, sub_prc_id, prb_id, prb_description, prc_short, convert(sub_blob using utf8) as wo, sub_filename, max(sub_score) as maxi

from tblsubmission

inner join tblproblemcontest on sub_prc_id=prc_id

inner join tblproblem on prc_prb_id=prb_id

group by sub_ctt_id, prb_id) as blub

group by prb_id;

30


	Introduction
	About the Olympiad
	Overview

	About Polya
	Summary of `How to Solve It'
	Understanding the problem
	Devising a plan
	Carrying out the plan
	Examining the plan

	`How to Solve It'  translated to Olympiad problems
	Understanding the problem
	Devising a plan
	Carrying out the plan
	Examining the plan

	Intermezzo: Problem presentation in the Olympiad
	Related Work
	Conclusions concerning Polya

	Implementation
	Analyzing the questions
	Short remarks
	'Meest waardevolle object'
	'Verkiezing'
	'Waslijnen'
	'Delercode'

	Conclusion and future prospects
	References
	EER diagram Olympiad Database
	SQL queries

