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Abstract

Organizational computer networks are at risk of being compromised by mak-
ing connections to malicious domains, which can lead to sensitive information
being stolen by cyber criminals. It can therefore be helpful to have an esti-
mation of the risk level of domains, expressed as a risk score, before connec-
tions are made. To this end, we explore network science methods to construct
domain-domain networks from passive DNS data. We propose three score
computation algorithms that can calculate risk scores for domains. Two of our
proposed algorithms (LISC and NORMLISC) are capable of modelling com-
plex interactions between nodes in the network. However, these algorithms
have the unwelcome properties that lower risk scores can be computed for a
node than for its neighbours which have higher scores in the initial state (i.e.,
‘swapping’) and that the position of the node in the network is not taken into
account for score computation. In contrast, our third algorithm (MAXDIF)
has fewer free parameters, takes the position of nodes in the network into ac-
count and does not suffer from ‘swapping’, but gives no freedom in modelling
complex interactions between nodes. All in all, computing risk scores is now
possible using our proposed algorithms.
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throughout the project as well. Alex was a very great weekly supervisor in
all dimensions. Not only did Alex provide guidance, he was also an amaz-
ingly pragmatic listener who managed to take everyone’s interests at heart and
succeeded in finding a good consensus between everybody’s expectations re-
garding this project. Besides this, Alex also made sure that I got a proper in-
troduction to TNO and helped me with any other practicalities. Harm was also
involved weekly since the beginning of my project, providing me with much
needed cyber security insights and facilitating access to the TNOmalware data
so that I could use it for my research. Harm even took the time to revise parts
of my thesis regarding cyber security and DNS despite being on leave. Daniël
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1
Introduction

O
rganizations such as financial institutions, insurance companies
and governments guard sensitive information in the interest of their
stakeholders. Computers within IT networks of such organizations
make connections to domains outside of their network, of which

some are potentially malicious in the sense that they host malware or any
other type of damaging content. An example of how infection can happen
is by domain hijacking, which entails an unauthorized takeover of a domain
name, which can then lead to impersonation and phishing practices [1]. If this
type of damaging content infects one or more computers in the organizational
network, we speak of a compromised system. Having compromised systems
may lead to serious consequences such as significant financial damage [2] or
theft of private data [3]. The stolen data can be used for malicious ends and
cause unwelcome impact on the organization and its stakeholders.

In malicious domain detection, the main challenge is to identify domains that
host malicious content, given a data set of domain data. Often, this is at-
tempted through analyzing Domain Name System (DNS) data [4]. This is
usually conducted by labeling domains as malicious or benign and designing
a system that aims to correctly predict maliciousness of unlabeled domains.
Various methods, ranging from machine learning to expert knowledge-based
methods, have been applied to compute domain labels or scores.

The approach in this thesis is similar to what is usual in malicious domain
detection, however the focus here lies on computing ‘risk scores’ of domains,
given dynamically evolving networks constructed from DNS data, where each
domain is assigned an initial score. A risk score provides an indication of the
perceived risk level of making connections to an external domain. The idea
here is that ‘topologically close’ domains (i.e., domains that are relatively close
to each other) within such networks are likely to exhibit similar behaviour. As
such, they are deemed similarly risky to visit, e.g., due to hacked web servers
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with more domains hosted on one device. Should a domain be close to one or
more risky domains in the network, then it is more likely that the domain in
question is suspicious given its ties to the other suspected nodes. Ties between
domains evolve constantly, which in turn impacts the risk scores. An example
of a change is that a previously non-existent relationship between two domains
is suddenly relevant. This means that these domains should now be linked to
each other in the constructed network and that their risk scores influence each
other. Such changes can suddenly make a domain safe or dangerous to make
a connection to. As such, the risk scores of these domains have to be updated
in real time, which is a dynamic process. The focus therefore does not lie on
computing initial scores, but instead on the computation of risk scores given
initially computed risk scores using defined ties.

The approach to compute risk scores will be taken from a network science per-
spective. Network science is an interdisciplinary scientific field that is mainly
concerned with extracting knowledge from networks. Examples of such net-
works are found in society (e.g., social networks), nature (e.g., cellular net-
works) and communication systems (e.g., telecommunication networks) [5].
These networks can be created by first modelling all actors as nodes and draw-
ing links between actors if relevant interaction (e.g., two people are friends
with each other on a social network or two computers are sending messages
to each other) is occurring. For computing risk scores, it may be fruitful to
explore similar network science models such as opinion formation models, the
PageRank algorithm and ‘Guilt by association’ models. These models namely
all have the property that they compute new scores for entities by taking rele-
vant ties between them into account.

This research project aims to work toward an approach that can take (enriched)
DNS data and risk scores from external sources as input in order to build a
‘domain-domain network’ (where nodes are domains and links denote a type
of relationship between the domains), which can subsequently be used to com-
pute and update risk scores for domains with the help of network science al-
gorithms. Computation should be possible on a global and a local scale. This
means that it should be possible to compute all scores at once, but also on a
local scale for one domain and its neighbours in the event of a newly detected
threat from external sources. Since the World Wide Web is estimated to scale
to over a billion domains, the approach also needs to be scalable in terms of
time and space complexity [6]. The main research question in this thesis there-
fore is:

How can network sciencemethods be used to efficiently compute risk scores
of domains in dynamically evolving domain-domain networks?

This thesis is structured as follows. Chapter 2 introduces the required prelimi-
nary knowledge. Chapter 3 presents an overview of published work regarding
malicious domain detection and network score computation models that are
related to the work presented in this thesis. Chapter 4 describes the data that
is used to answer the research question. Chapter 5 presents the approach taken
and delves into the full construction of the network that will be used for the
experiments, along with the motivation behind choices that are made during
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its construction. Furthermore, the requirements for the risk computation algo-
rithm, as well as the designed algorithms themselves, are presented. Chapter 6
presents the experimental setup that will be followed to answer the research
question, the experimental results and lastly a discussion of these results. The
thesis concludes with Chapter 7, which provides the conclusions drawn from
the research, research limitations and future work.
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2
Preliminaries

T
this chapter introduces preliminary concepts from both network sci-
ence (Section 2.1) and the Domain Name System (Section 2.2). These
preliminaries present the required knowledge to understand the con-
tents of this thesis.

2.1 Network science

A network consisting of nodes and links can be formally defined asG = (V ,E),
where V denotes the set of nodes and E denotes the set of links. The total
number of nodes |V | and links |E| in the network will be represented as n and
m, respectively. A network can be directed or undirected, referring to whether
or not the links have a defined direction. The degree of a node v (notation:
deg(v)) denotes the number of neighbour nodes for a node v ∈ V . The indegree
and outdegree of a node v denote the number of incoming and outgoing links
for v respectively. The neighbourhood N (v) denotes the set of neighbours of
v. A path is a sequence of links between two nodes, whereby the length of
the path is the number of links in this sequence. The distance d(v,w) denotes
the shortest path length between node pairs v,w ∈ V . The average distance d̄
between all node pairs v,w ∈ V can be calculated as follows:

d̄ =
1

n(n− 1)

∑

v,w∈V

d(v,w) (2.1)

The distance distribution for G denotes the total number of nodes that all
nodes in V can reach at distance 1,2,3, ..,max(d(v,w)). The average distance
for G denotes the number of nodes a node in V can reach on average at each
distance. See Figure 2.1 for an example of an undirected network and the use
of the formal notation given above.
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Figure 2.1: An example of an undirected network G = (V ,E) with the fol-
lowing properties: V = {A,B,C,D,E,F}, E = {(A,C), (B,D), (C,D), (D,E), (E,F)},
n = |V | = 6, m = |E| = 5, deg(D) = 3, d(A,F) = 4, d̄(G) = 2.2.

In this thesis two types of networks are used, namely one-mode networks and
two-mode networks. Two-mode networks are also known as bipartite networks.
This means that the network consists of two different sets of nodes where the
links exist only between nodes from two different sets, but not between nodes
from the same set. In contrast, one-mode networks, such as the one in Fig-
ure 2.1, only consist of one type of nodes. The notation by Latapy et. al [7]
will be adopted for these two-mode networks. A two-mode network can be
formalized as G = (⊤,⊥,E), where ⊤ is the ‘top’ set of nodes, ⊥ is the ‘bottom’
set of nodes and E ⊆ ⊤×⊥ is the set of links in the network. See Figure 2.2 for
an example.

1

2

3

4

5

6

7

8

9

10

⊤ ⊥

Figure 2.2: An example of an undirected two-mode network G = (⊤,⊥,E), with
the properties: n = 10, m = 8, deg(1) = 2, d(1,5) = 4, ⊤ = {1,2,3,4,5},
⊥ = {6,7,8,9,10}, E = {(1,6), (1,7), (2,7), (2,9), (3,8), (3,10), (4,10), (5,9)}.

Latapy et al. also define projection methods, with which two-mode networks
can be projected to one-mode networks. A ⊤-projection keeps all nodes in ⊤
and places links between nodes if they are linked to the same node in ⊥ in the
two-mode network. For the ⊥-projection, the rules are analogously applied.
In this thesis, we assume that these projected networks are unweighted. Un-
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weighted networks carry no additional information as weights on the links. An
example of a weighted network could be a road map network, that shows the
distance between destinations on the links.

In this thesis, certain network science algorithms will be used as inspiration
for the models that will be proposed later. Some of these algorithms, such as
PageRank, compute scores iteratively and can be run using Markov chains [8].
It is helpful to know what Markov chains are in order to understand how these
algorithms and the proposed models work. Markov chains require a vector

~Pt of size n, where the elements ~Pt
1 ,

~Pt
2 ,..,

~Pt
n are the scores, representing the

likelihood of the element being in a certain state, for nodes 1,2, ..,n at iteration
t. The other requirement is an n × n transition matrix T , where Tv,w, with
v = 1,2, ..,n and w = 1,2, ..,n, is the ‘influence’ which node v exercises on w.
Scores can then be updated iteration-wise using Formula 2.2. This formula is
an example of a solution method called the power method.

~Pt = ~P(t−1)T (2.2)

2.2 Domain Name System

The Domain Name System (DNS) is a system which enables users to surf the
Internet by resolving domain names (e.g., www.google.com) to the correct IP ad-
dresses (e.g., 172.217.19.206). The DNS is structured in hierarchical levels. At
the top, there is the root level (operated by root name servers), which DNS uses
to direct requests to the right top-level-domain (TLD) server. TLDs are the first
distinguishable level of domain names which occur at the end of the domain
name (e.g., .com, .edu and .org). The next levels after the TLD are, in order,
the second level domain (SLD), which is a subdomain of TLD, and other lower
level domains that act as subdomains to the domain that precedes them [9].
See Figure 2.3 for an illustration of the domain name hierarchy.

Figure 2.3: An overview of the leveled DNS hierarchy. Illustration from [10].

IP addresses refer to the specific network addresses of the hosts that store the
domains. Once the DNS has found the correct IP address for the queried do-
main, the IP address is sent to the user whose machine can subsequently use
it to make a connection to the right server. IP addresses exist in two protocols,
namely IPv4 (32-bit long address) and IPv6 (128-bit long address).
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Requests to a DNS server are sent as a query (e.g., a domain name) and re-
sponses are given by DNS as an answer (e.g., an IP address). There are different
kinds of DNS resource records (whichmap IP addresses to domains or domains
to domains) [11], of which four are relevant :

1. A-requests: The DNS is queried for a domain and returns one or multiple
IPv4 address.

2. AAAA-requests: The DNS is queried for a domain and returns one or mul-
tiple IPv6 address.

3. PTR-requests: The DNS is queried for an IP-address and returns a domain
name.

4. CNAME-requests: The DNS is queried for a domain name with an alias and
returns a canonical name.

These four types of resource records are relevant in Chapters 4 and 5, because
they will play a role in defining the actors (i.e., the domains) and the relation-
ships (i.e., the links) for the network that will be constructed from the DNS
data.
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3
Related work

F
or score computation we apply knowledge and methods from mali-
cious domain detection and network science. For malicious domain
detection, many different kinds of approaches are used. In a survey
on malicious domain detection, Zhauniarovich et al. categorize these

steps asDNS data collection, data enrichment, feature extraction, algorithm design
and validation of results [4]. The aim is to roughly follow this framework in
order to approach the research question formulated in Chapter 1. For the al-
gorithm design step, network science algorithms are evaluated based on their
properties to determine the requirements to successfully calculate and update
scores within a network. This chapter will first introduce the step-by-step
malicious domain detection framework as defined in [4], as well as relevant
publications within this field in Section 3.1. Next, Section 3.2 will provide an
overview of relevant network science methods. Lastly, the main contributions
that extend the related state-of-the-art publications are discussed in Section 3.3

3.1 Malicious domain detection

When malicious domain detection models are built, usually DNS data sets are
used, which can be collected passively or actively. Passive DNS data records are
collected by simply listening to DNS requests and storing a summary, e.g., as
used by Choi et al. [12]. Active DNS data consists of actively querying domain
names at servers and recording the records [13].

The data can then be enriched with different data sources to detect malicious
domains, such as the geo-location [14], the ASN [15], registration records [16],
resource records [17] and other types of network activity data [18].

Once the required data has been collected, Zhauniarovich et al. note that many
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different types of features can be extracted [4]. These features can be:

1. Internal: features directly taken fromDNS data, such as average TTL [19].

2. Contextual: features computed from DNS data and other data sources,
such as the number of ASNs (Autonomous System Number) in the net-
work [20].

3. DNS data set dependent: features that are highly dependent on the chosen
data set, such as the IP addresses which are linked to a domain [21].
These change over time and depend on the time period in which the data
are collected.

4. DNS data set independent: features that do not depend on the information
collected in the DNS data set, such as the 2 or 3-gram distribution within
a domain name [22].

5. Mono domain: features calculated for every single domain independently,
such as all countries in which a specific domain is hosted [15].

6. Multi domain: features determined for a set of domains rather than for
all of them separately, such as the number of shared ASNs [23].

Zhauniarovich et al. distinguish two methods to use these features for mali-
cious domain detection, namely knowledge based methods and machine learning
based methods [4]. Knowledge based methods are mostly derived by build-
ing systems or frameworks that look for certain patterns in the data. These
patterns are based on observations made by individuals who possess domain
knowledge. An example would be the work of Sato et al., where they count
the co-occurrences of malicious and other domains in simultaneous queries
based on the idea that a lot of malicious domains are queried together [24].
Machine learning based approaches, in turn, can be divided into supervised
learning, unsupervised learning and semi-supervised learning. Supervised ap-
proaches require completely labeled training and testing data. This can be
done with the help of blacklisted and whitelisted domains in order to train
the machine learning model on the data set. For instance, Fukuda et al. make
use of Classification and Regression Trees, Random Forests and Support Vector
Machines in their approach [25]. With semi-supervised learning approaches,
both known and unknown domains are used in the method. This can for in-
stance be done using a graph-based approach, where unknown domains can be
identified based on propagation [26] or clustering techniques [27]. In unsuper-
vised learning approaches, the goal is to build a set of features and relation-
ships between domains in order to separate benign domains from malicious
domains without requiring any labeled data. Usually clustering approaches
are taken [28]. In hybrid approaches such as Notos [22], a blend of different
techniques and algorithms is used to detect malicious domains.

Validation is usually done using a ground truth, i.e., malicious and benign do-
mains are determined using black and whitelists, respectively. Blacklists are
lists that provide an overview of domains that are known to be malicious.
Whitelists provide an overview of trusted domains. This allows one to label the
domains accordingly and validate the results using metrics such as True/False
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Positive Rates (e.g., as done in Haddadi et al. [29]) and True/False Negative
Rates (e.g., in Chiba et al. [20]). Furthermore, other metrics such as Precision
(e.g., proposed in Lee et al. [30]), Classification Accuracy (e.g., as seen in Hsu
et al. [31]), F1-score (e.g., in Fukuda et al. [25]) and Area Under Curve (e.g., in
Manadhata et al. [32]) can also be used to determine performance.

3.2 Network science methods

There are multiple ways to achieve computation of domain scores in many
different settings. Here we discuss algorithms performing tasks similar to our
task. Namely, we will discuss four related techniques derived from opinion for-
mation (as explained in Subsection 3.2.1), link analysis (see Subsection 3.2.2)
and Guilt by Association modelling (in Subsection 3.2.3). These techniques
contain the main ingredients required for the design of the models for our task.
Additionally, the first two models make use of Markov chains, as explained in
Section 2.1.

3.2.1 Opinion formation models

Opinion formation is a widely researched area, starting with a leading theory
by Katz and Lazarsfeld, who show that individuals’ opinions are formed by
peer influence from opinion leaders (i.e., individuals who are influential), and
not just by the media [33]. This stimulated research for models that show how
opinions form and converge within influence networks. Leskovec et al. discuss
two kinds of ‘diffusion models’ that attempt to model individuals’ product
purchases based on the behaviour of their peers, namely threshold models and
cascade models [34]. Threshold models are run on weighted networks where an
individual will adopt an idea (e.g., the idea to buy a product) if the weighted
average of all direct neighbours with this idea exceeds a predefined threshold.
Cascade models are also run on weighted networks, but are probabilistic in
nature where an individual will adopt an idea with a probability, dependent
on whether a neighbour also adopts the idea.

Another form of opinion formation in networks are models that attempt to
model consensus, i.e., if members of a network end up agreeing with each other.
DeGroot introduced a model [35], where each individual v has an initial opin-
ion Fv about an idea, where 0 ≤ Fv ≤ 1. These opinions are stored in a vector
~F, such that ~F = (F1,F2, ..,Fn). There also exists a n × n transition matrix P
with elements Pvw denoting individual v’s influence on node w’s opinion in the
network, with 0 ≤ Pvw ≤ 1. The opinion vector is updated iteratively using a
Markov chain (see Formula 3.1):

~F(t) = ~F(t−1)P (3.1)

Here t denotes the time step for which ~F is calculated. This model has been
studied extensively. For instance, Golub et al. [36] show that convergence in
this model only happens when the most influential individual becomes less
influential as the total number of individuals k increases in the network. In
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another related work, Heidergott et al. argue that communications between
individuals occur randomly and not constantly with all peers [37]. This means
that opinions for each individual need to be updated stochastically by taking
random draws from the set of peers instead of updating for all peers in each
iteration. They also show that large societies do not converge when everybody
has equal influence on each other.

3.2.2 The PageRank algorithm

The PageRank algorithm [38] belongs to the class of link analysis algorithms,
which are mostly used for information retrieval purposes, such as the ranking
of documents by relevance. Link analysis refers to the study of relationships
between entities, such as documents or web pages, that refer to each other [39].
This ranking is achieved by linking documents in a network and calculating
the ‘authority’ or ‘presence’ for each document in the network [40].

PageRank is a method to compute scores iteratively while taking the node’s im-
portance in the network into account. PageRank works based on the principle
of a random surfer surfing the web, starting at a document. This surfer then
chooses an outgoing link to another document with a given probability and
keeps visiting documents iteratively. To prevent the surfer from being trapped
at a document without outgoing links, the surfer can ‘teleport’ to a random
document in the network with probability 1 if he is trapped, and with proba-
bility δ if otherwise. Visiting outgoing links hence occur with probability 1−δ.
After many iterations, the ‘importance’ or ‘PageRank’ is reflected by how often
the surfer has visited each node in the network. With the PageRank algorithm,
being linked to more important nodes is beneficial for the individual’s PageR-
ank score, since more important nodes give the neighbours a higher probabil-
ity of being visited by the random surfer. PageRank can be calculated using a

Markov chain and starts out with a vector ~Xt of size n documents, where values
~Xt
1,

~Xt
2,..,

~Xt
n correspond to the respective PageRank value for each node v ∈ V .

These values can be initially set to a value between 0 and 1, e.g., 1
n , which is

initialized equally for every node. ~Xt is iteratively multiplied with an n × n
transition matrix P, which contains the probabilities Pvw, with v = 1,2, ..,n and
w = 1,2, ..,n at which the surfer chooses to visit node w from node v. Often, the
PageRank algorithm is implemented with a parameter ǫ, which acts as a stop-
ping condition and indicates the threshold for the total amount of change in
values between iterations. Once this threshold is no longer met, the algorithm
terminates and returns the PageRank for each node in the network. All in all,
this iteration process boils down to Formula 3.2 for a certain P:

~Xt = ~X(t−1)P (3.2)

Here, P is built by determining all possible hyperlinks h1,h2, ..,hh ∈ H that a
surfer can click from a given web page v. Then, the probability of visiting a
random web page in N (v) from v is (1 − δ) · 1

|H | + δ · 1n and the probability of

visiting any web page through teleportation is δ · 1n . The vector X(t−1) is then
iteratively multiplied with P until the total change in values is below ǫ.
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3.2.3 Guilt by association modelling

In biological research, ideas about the unknown functions of a protein are of-
ten derived from connected proteins for which the functions are known [41].
Thismethod is called Guilt by association (GBA). This can be donewith protein-
protein interaction (PPI) networks, where the set of nodes consists of proteins
and the links exist between proteins that interact with each other.

Qian et al. take such a GBA approach in a PPI network [42]. The PPI network
G = (V ,E,w), where w denotes the weights of an edge e ∈ E which reflect the
strength of association between the proteins. They also define two functions
Y : V → R≥0 and F : V → R≥0, which are functions of prior and posterior ev-
idence respectively. Y (v) assigns a higher score to a node v if it is believed
beforehand that the protein is linked to a disease and a lower score if it is not.
F(v) calculates the posterior score for each node after an iteration in which
information from neighbours is propagated to neighbour nodes. N (v) is de-
fined as the set of direct neighbours and α ∈ (0,1) is a parameter that reflects
the importance of the information absorbed from the set of neighbours N (v).
Lastly, if the edge weights are defined as w′v,u = wv,u /

√

deg(v)× deg(u), then the
posterior scores can be calculated using Formula 3.3:

F(v) = α[
∑

u∈N (v)

F(u)w′v,u] + (1−α)Y (v) (3.3)

3.3 Main contributions

Wediscussed several graph-based approaches, such as clustering of traffic data [27]
and belief propagation techniques that are probability-based [26]. In contrast,
we bring knowledge from malicious domain detection and network science
together by first exploring methods to link domains to each other through es-
tablished relationships using passive DNS data. After the resulting domain-
domain network is constructed, we provide the domains with initial risk scores
and design algorithmswhich are inspired by certain elements of the algorithms
discussed in this section to efficiently compute their risk scores. After experi-
mentation, an analysis of the benefits and drawbacks of each proposed model
is given, followed by a discussion on the feasibility of each model in differ-
ent use cases. As far as we know, such an approach has never been taken to
determine the risk level of domains.
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4
Data description

T
he data that will be used in this work comprises two data sets, namely
a passive DNS data set supplied by Mnemonic [43] (discussed in Sec-
tion 4.1) and a malicious data set supplied by TNO (see Section 4.2),
which is a list of domain names that were malicious at a point in

time, as derived from public blacklists. Lastly, Section 4.3 is devoted to the
data quality of these data sets.

4.1 Passive DNS data set

The passive DNS data set contains 84,599,816 records, with data accumulated
from 2012-05-20 until 2018-01-05. Each row is a unique combination of query,
RR Type and answer. A sample overview of the records can be found in Ta-
ble 4.1. Notable columns are:

(i) Query: the requested domain.

(ii) Answer: One or more answers in the form of an IP address, domain name
or text depending on the RR Type.

(iii) RR Type: the type of record. A- and AAAA-records are made from a domain
to an IP address. PTR-records are connections made in reverse, i.e., from
an IP address to a domain. Lastly, CNAME-records are connection made
directly between two domains (see Section 2.2).

(iv) Answered: the number of times a specific DNS request has been answered.

(v) First seen: the time stamp at which the relation was first seen.

(vi) Last seen: the time stamp at which the relation was last seen.
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ID Query RR type Class Answer TTL Answered First seen Last seen

1292
3169

just-sh4ring.
blogspot.com.br

CNAME IN
blogspot.l.
googleuser
content.com

600 2
2017-12-25
15:32:14

2017-12-25
15:32:14

1292
3239

www.
googleseo.eu

A IN
188.114.
252.52

7200 1
2017-12-29
14:26:54

2017-12-29
14:26:54

Table 4.1: A sample overview of the passive DNS data supplied by Mnemonic.

4.2 Malicious data set

The malicious data set contains 19,035,818 records with data accumulated
from 2016-11-17 until 2018-10-16. The data is collected from dozens of black-
list sources. The entries in this data set are from domains that also exist in the
same time frame as in the Mnemonic data set. A sample overview of the data
can be found in Table 4.2. Notable columns are:

(i) Domain: the domain that is flagged as malicious (e.g., as malware). It is
not recommended to visit these domains!

(ii) Source: the source blacklist from where the data is retrieved.

(iii) Reason: the reason why the domain was detected as malicious. There are
different kinds of reasons, namely:

• DGA (Domain Generation Algorithm): DGA domains are domains
that are created in large numbers and can act as communication
points that send and receive updates for malicious ends, such as
creating botnets or more DGA domains.

• CNC (Command and Control): CNC domains can actively send com-
mands to compromised systems, for instance to steal information.

• Malware: Malware is hosted on the domain, which can be used to
compromise as many systems as possible. Once compromised, the
malware can cause damage, for instance by stealing information.

• Phishing: Phishing domains prompt the visitor to enter sensitive pri-
vate information in an attempt to steal it.

• Fraud: Fraud domains are domains that pretend to be legitimate,
which can in turn be abused to perform phishing attempts.

• Spam: Spam domains are domains that send many unsolicited mes-
sages to internet users, often in a phishing attempt.

• Spyware: Spyware domains attempt to spread spyware, which is
software that monitors system activity, which is subsequently re-
ported to the creators of the spyware.

• Mining: Mining domains can install software on systems, which
prompts the systems to start unauthorizedmining of cryptocurrency.

(iv) First seen: the time stamp at which the domain was first seen on a public
blacklist.

(v) Last seen: the time stamp at which the domain was last seen on a public
blacklist.
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ID Domain Source Reason First seen Last seen

1297527
amazon.co.uk.
security-check.ga

http://mirror1.
malwaredomains.com
/files/domains.txt

malware
2016-11-17
16:48:24

2018-10-16
06:26:06

1297528
autosegurancabrasil
.com

http://mirror1.
malwaredomains.com/
files/domains.txt

malware
2016-11-17
16:48:24

2018-10-16
06:26:06

Table 4.2: A sample overview of the malicious data supplied by TNO.

4.3 Data quality

Arguably, the most important aspects of data quality are correctness and com-
pleteness. Correctness refers to the degree to which the provided data entries
contain correct information and completeness refers to the degree to which the
data is complete. More incorrect data entries translate to poorer data correct-
ness. Similarly, the more incomplete data entries there are, (e.g., data entries
contain fields that are specified as null) the poorer the data completeness.

Considering the size of the data, a practical solution to assess correctness is by
taking samples andmanually checking whether the samples align with general
expectations. For instance, among the most answered DNS requests in the pas-
sive DNS data set are the domains api.facebook.com, star.c10r.facebook.com,
googleapis.com, google.com and apple.com. It is fair to say that this is in line
with general expectations. While this test is restricted, it provides a certain
element of trust in the validity of a part of the data. For now, we assume that
the rest of the data is also correct.

In order to assess data completeness, columns in the data set can be queried
for their distinct values and counts. If these counts sum up to the total number
of entries in the data, then it can be said that the data for that specific column
is complete. Here, this is done for the RR Type column in the passive DNS
data set and for the Reason column in the malicious data set. Their respective
distributions can be found in Figures 4.1 and 4.2. For both columns, the sum
of the counts of all unique values is equal to the number of data entries in
the entire data set, which indicates completeness for these respective columns.
However, it should be noted that this data set may not be complete, due to
some malicious domains not being detected and blacklisted.

Figure 4.1: The distribution of the
unique values for the ‘RR Type’
column in the passive DNS data set.

Figure 4.2: The distribution of the
unique values for the ‘Reason’
column in the malicious data set.
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5
Approach

T
he outline of the approach is first given in Section 5.1. Section 5.2
will explain how the domain-domain network is constructed and
which research design choices were made for it. Section 5.3 delves
into the different algorithms that are designed for risk score compu-

tation, given domain expert requirements and general model requirements, as
well as a theoretical time and space complexity analysis of the proposed algo-
rithms.

5.1 Outline of the approach

In summary, the approach follows the next steps:

1. Data collection (Sections 4.1, 4.2)

2. Preprocessing and feature extraction (Section 5.2.2)

3. Construction two-mode network (Section 5.2.3)

4. Projection and construction one-mode network (Section 5.2.4)

5. Scoring the domains (Section 5.2.5)

6. Requirements engineering (Section 5.3.1)

7. Design risk computation algorithms (Sections 5.3.2, 5.3.3, 5.3.4)

In Step 1, passive DNS data andmalicious data are collected since they provide
the necessary data to answer the research question. In the second step, rela-
tionship features are defined from the data, with which a two-mode network
is constructed in Step 3. Step 4 discusses how this two-mode network is pro-
jected to a one-mode network (or a ‘domain-domain network’). Additionally,
the domains in the network are assigned initial scores based on a defined set

16



of rules in the fifth step. Furthermore, requirements for the risk computation
algorithms are determined in Step 6. These algorithms are finally proposed in
Step 7. A full overview of the network construction process (Steps 1 through
5) can be seen in Figure 5.1.

Figure 5.1: The entire construction process of the final network.

5.2 Network construction

This section concerns itself with the construction of the two-mode and one-
mode network, as well as a motivation for the implementation choices that
were made during network construction.

5.2.1 Overview network construction

Before we undergo the construction process, a few implementation choices are
made that solve certain issues related to the network construction. These is-

17



sues and solutions are explained in this section.

First, domains are only temporarily flagged asmalware, for instance by a recov-
ered hostile takeover (domain hijacking) which prompted a domain to spread
malware. This means that domains that are malicious today can be safe tomor-
row. The passive DNS data set spans from 2012 until 2018, which is a time
period in which the risk scores of domains may have fluctuated too heavily.
It is therefore fruitful to work with a smaller snapshot of the time period in
order to get a more stable picture of domains and their risk scores. If domains
are malicious only once in a time period, then we can accurately estimate their
initial risk score in order to compute their perceived risk score. We choose to
take a month of data for the network construction, because we determine that
one month is a feasible time frame in which a node’s risk score is stable enough
and contains enough data to build a network with, without nodes being flagged
malicious multiple times.

The second issue is that a projection from a two-mode to a one-mode network
may lead to an exploding number of links in the projection. This is because, in
a two-mode network, all nodes that share the same connection with a node in
the other set are connected to each other in the projected one-mode network.
We choose to solve this by setting an upper limit for the node degree of nodes
that can be projected to one-mode in order to keep the network size manage-
able with respect to the number of links. To do so, we also choose to apply
preprocessing steps to the two-mode network in order to filter nodes out with
a large degree (e.g., large public IPs) as much as possible.

The third issue is that there are no domains for which it can be said with 100%
certainty that they are safe. Therefore, we create such a whitelist by taking the
top k most frequently requested and answered domains that are not flagged as
malware in the passive DNS data set. We check this list (we choose k = 1000)
manually in order to see whether these k domains are indeed commonly re-
quested and deemed safe in the public eye, such as google.com. All dubious
domains are to be removed from the whitelist. With dubious, we mean all
domains that we are not familiar with that seem as if they should not be re-
quested frequently. Here, k depends on the risk that one is willing to take to
introduce false positives to the data set. The larger the value of k, the larger the
probability that this occurs. The malicious nodes are only temporarily flagged
as malware within the specified time frame. The risk score depends on when
the domain was last flagged as malware. If the domain in question is not again
flagged as malware in the following days, then the risk score should lower as a
function of the time passed.

5.2.2 Preprocessing steps for the passive DNS data set

We choose to take the most recent month in the data sets as our time frame,
i.e., all A, AAAA, PTR and CNAME records that occur between December
5th, 2017 and January 5th, 2018 as our snapshot to work with. Records that
contain public IP addresses with a large number of hosted domains are fil-
tered from the network. To reduce the scale of the network, some private
IP networks which host a high number of domains are also filtered from the
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data. In this construction, the following (public) IP ranges (using CIDR no-
tation [44]) are filtered: ‘127.0.0.0/8’, ‘224.0.0.0/8 0’-to-239.0.0.0/8 (Class D),
‘192.168.0.0/16’,‘10.0.0.0/8’, ‘172.16.0.0/12’ and ‘0.0.0.0/8’. Another prepro-
cessing choice that is made is to aggregate all (sub)domains to second-level
domain (SLD) and top level domain (TLD) nodes. For example, if there is a
record that contains the domain liacs.leidenuniv.nl, it will be aggregated to
leidenuniv.nl. There are exceptions, (e.g., domains ending with .co.uk) which
are aggregated to the general country code TLD/SLD format (e.g., bbc.co.uk).
This choice is made in order to keep the network relatively small and to pre-
vent an exploding number of links when the network is later projected to a
one-mode network. The benefit of this choice is a smaller computation time,
but the drawback is that the risk spread in the network is then also limited
to TLD/SLD, which means that the risk of individual subdomains cannot be
assessed. From this point onward, when domains are mentioned they will be
in this SLD/TLD format. This is the part of the domain name that can be reg-
istered by a private person or consumer.

5.2.3 Constructing the two-mode network

After taking all the necessary preprocessing steps, a two-mode (or ‘domain-
IP’ network [45]) can be constructed from the remaining data by linking all
domains and IPs together. An overview of the number of nodes and links of
this network can be found in Table 5.1. Without filtering the IP ranges from the
data and aggregating the domains, the domain-IP network would have counted
more nodes and links. While this does not lead to a very significant reduction
in size of the two-mode network, it does result into a significantly smaller pro-
jected network.

Nodes Links
Domain-IP network (without preprocessing)

13,988,326 14,362,751
Domain-domain network (without preprocessing)
9,609,112 17,158,221,218+

Domain-IP network (with preprocessing)
9,936,525 13,693,977
Domain-domain network (with preprocessing)
7,140,913 746,713,939

Table 5.1: The number of nodes and links for the domain-IP and domain-
domain networks.

5.2.4 Constructing the one-mode network

The next step is to create a one-mode network (or domain-domain network)
from the domain-IP network using projection. A simple example of projection
on a network is given in Figure 5.2.
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Figure 5.2: An example of a projection from two-mode to one-mode. On the
left, we see our two-mode network with ⊤ = {a,b,g, r} and ⊥ = {1,2,3}. Here
we define our projection rule to only draw a link between two elements in ⊤
when they share a connection with an element in ⊥. The resulting projected
one-mode network can be found on the right.

A link between two domain names can be drawn if and only if indirect (e.g.,
by shared IPs) and direct (i.e., by CNAME) connections between these domains
exist. We define the domain-domain network as the network with all domains
as nodes and a link between two domains if the connection between them is de-
termined sufficiently strong. With sufficiently strong, we mean that we have to
determine a rule that says when it is appropriate to place a link between two
domains in the projection. Despite the filtering of IP addresses with a large
degree, there are still domains and IPs with high degrees, which results into
a network consisting of over 109 links. This demonstrates that such domain-
domain networks can quickly become unmanageable for score computation.

Ideally, our algorithms are capable of computing a risk score for all domains
in the network. Therefore, we try a projection method heuristic to preserve as
much information as possible while keeping the number of links manageable
in the projection. This heuristic starts off by setting cut-off points and project-
ing nodes and links only when certain conditions are met. The conditions can
be set as follows. First, only take nodes with < u links into consideration for
projection. Then, project a link between two domains:

1. if domain x is linked to at least β number of IPs, of which α are shared
with domain y

2. if domain x is linked to < β links, but x is sharing s% of its neighbour
links with y

After experimentation (see Section 6.1.1 for more information), our projection
rule is to set u = 3000, α = 1, β = 1 and s = 100% due to the limits of the
scope of this research. A cut-off point of 3000 keeps the number of links be-
low a billion in the domain-domain network. This size is in agreement with
the expectations of cyber security experts for the scale of real-world domain-
domain networks made from organizational DNS traffic data. All nodes with a
degree below 3000 are projected fully to the domain-domain network. All IPs
with a degree at or above 3000 are not projected, but added to the network in
‘two-mode’ as domain/IP pairs, i.e., just like how they exist in the domain-IP
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network. These IPs are kept in the network and treated as if they are domains.
The justification is that it may be useful to include IPs with a high degree, be-
cause some IPs may be hosting a high portion of malicious domains, which
should automatically make other hosted domains with a lower risk score more
suspicious of being malicious. This means that these IPs are also assigned ini-
tial scores which will be updated according to the scores of their neighbours
and also that no post-processing will be required.

These IP address nodes will be given scores for computation andwill be treated
just like a ‘regular’ domain. The final step in the creation of the domain-
domain network is the addition of CNAME records as links between nodes.
The number of nodes and links of the domain-domain networks projected from
both domain-IP networks are presented in Table 5.1. With the preprocessed
domain-IP network, it results into a manageable network counting roughly
746.7 million links. However, without the explained preprocessing steps, the
projected network is too large to compute. In an attempt to construct this
network, the disk space occupation neared 2TB and the projected network
counted 17,158,221,218 links before the attempt was broken off.

5.2.5 Scoring the domains in the network

The final step in the construction of the network is the assignment of risk
scores to the domains. Whitelisted domains are in this case chosen by first
filtering the Passive DNS data set on the chosen time frame (i.e., December
5th to January 5th), RR type (A/AAAA/PTR/CNAME) and the right IP ranges.
Then we take the top k (we choose 1000). A frequency distribution for the
‘Count’ column is presented in Figure 5.3.

Figure 5.3: The frequency distribution for the ‘Count’ in the passive DNS data
set. The red line shows the cut-off point if k = 1000.

It can be seen in Figure 5.3 that the frequency distribution follows a power
law and that its ‘tail’ contains all the records with the highest count. We find
that taking a top k of 1000 extracts a sizeable number of records from the tail,

21



namely all records with a count of at least 6,916,433. We also find that this
cut-off point is right at the point before the distribution becomes denser and
starts including significantly more records. It should be noted that the value
of k depends on the risk that one is willing to take to introduce false positives
into the data, accompanied with the trade-off that is made when manually
checking each domain to see if they are truly safe domains that are commonly
visited publicly. After this process is completed, each node is assigned a score
of 0 (safe) for the domain-domain network.

The malicious nodes are taken from the malicious data set by first filtering the
records on the chosen time frame. Next, all malware domains that also occur in
the domain-domain network (3,819 in total) are added to the blacklist. Since
a domain’s risk score can vary a lot over a larger time window, it is chosen to
score newly detected malware with a 1 (unsafe). A decay parameter is added
to the score over time, starting from the day it is not seen as malware anymore
(i.e., the ‘last seen’ entry in the record). In the view of cyber security experts, a
node is not deemed as unsafe but ‘neutral’ after 7 days of its last appearance on
public blacklists. This is a rough estimation which needs to be researched in
practice, but is a sufficient starting point for this work. Therefore, it is chosen
to set the decay parameter to − 1

14 t, with t being the number of days between
the domain’s last seen time stamp in the malicious data set and ‘now’ (also
a time stamp), i.e., ‘last seen’ - ‘now’. The score will keep decreasing by 1

14
until 7 days have passed, after which the domain’s score is 0.5 (neutral). For
this snapshot of the data set, it is chosen to set ‘now’ to December 15th. More
formally, we abbreviate ‘first seen’ and ‘last seen’ to FS and LS respectively.
The absolute difference in days between FS, LS and now can then be calculated
in order to decide the scores of malware nodes:

Score =















max(0.5, |LS −FS |
|now−FS | · (1−

|now−LS |
14 )) if LS < now

1 if (FS < now ∧ LS > now) ∨ FS = now ∨ LS = now

A sketch of the equation above is drawn in Figure 5.4, which provides a rough
overview of how the risk scores are determined.

Figure 5.4: A sketch of the function shown in Equation 5.2.5 that shows how
risk scores are determined. Given that FS and LS are fixed, ‘now’ can be placed
alongside the horizontal axis in order to obtain the right risk score.

All other domains that are not white- or blacklisted are neutral, which means
that nothing can be inferred about the initial risk of the domain. These other
domains are therefore given a risk score of 0.5. This concludes the final step of
the network construction.
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5.3 Algorithm design

In this section, the algorithm requirements are presented in Subsection 5.3.1.
Next we propose three different algorithms, LISC, NORMLISC and MAXDIF,
in Subsections 5.3.2, 5.3.3 and 5.3.4, respectively. In each of these subsections,
first the algorithms are introduced along with the underlying concepts that
these algorithms work on. After this introduction, an explanation is given of
the computation steps of each algorithm, followed by the algorithm in pseu-
docode. Next, an iteration of each algorithm is worked out on an example net-
work in order to show how each algorithm works. This will all be discussed in
the static case, i.e., the case where all nodes in the network are updated at once.
Section 5.3.5 then presents how these algorithms will work in the dynamic case,
i.e., how we think each algorithm would run in real-time by applying local up-
dates next to global updates shown in pseudocode. Additionally, a local update
step example is applied to the same network. Finally, Section 5.3.6 discusses
the theoretical time and space complexity of each algorithm in the worst-case.

5.3.1 Algorithm requirements

The requirements can be split up into two categories, namely domain expert
requirements and model requirements. Domain expert requirements are formu-
lated by experts and reflect characteristics that the algorithm ideally possesses.
Model requirements, on the other hand, state the required behavioural char-
acteristics of the algorithm with respect to convergence. An overview of these
requirements is provided below.

The domain (D) expert requirements:

1. Static risk requirement: Domains with a high risk score need to remain
high.

2. Influence requirement: Nodes with a more certain score (i.e., scores
closer to 0 and 1) are more influential than nodes with a more neutral
score during computation.

3. Susceptibility requirement: Nodes with a more uncertain score (i.e.,
scores closer to 0.5) are more susceptible to change towards the score
of its neighbours.

4. Guilt by association (GBA) requirement: Computation must be seen
as a predominantly local problem: score computation is between neigh-
bours. A node’s risk should not affect nodes more than three steps away,
dampening the risk influence with every step further.

5. Risk spreading requirement: Risk needs to spread from high-risk nodes
to lower-risk nodes. After the algorithm is finished, ‘risky’ neighbour-
hoods/communities need to be distinguishable in the network.

6. Update requirement: In the event of a newly detected threat, it needs
to be possible to update the score of a single node and its neighbours
quickly.
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The model (M) requirements:

1. Convergence requirement: The algorithm needs to converge within a
few iterations to a state where risky neighbourhoods can ideally be dis-
tinguished from the rest in the network.

2. No swapping requirement: The algorithm should not compute a lower
score for a node than for its neighbours which have higher scores in the
initial state.

3. Limited parameter requirement: There should be a balance in the trade-
off between the number of free parameters and guarantees about the
model performance in different settings or networks.

4. Degree requirement: A node’s position in the networkmatters and should
be included in the computation. If a node has a high risk score, then au-
tomatically all the nodes that it can reach are also risky. Central nodes
are therefore more impactful in the network.

5. Scalability requirement: The algorithm needs to be linearly scalable in
terms of practical time and space complexity. It is acceptable if the the-
oretical worst-case time and space complexity are more complex than
linear.

5.3.2 Local Influence and Susceptibility Computation

In this section we propose LISC, the Local Influence and Susceptibility Com-
putation algorithm. This algorithm is inspired on DeGroot’s model of reaching
consensus (see Subection 3.2.1), which also makes use of a vector and a transi-
tion matrix. Normally, the transition matrix contains the level of influence that
each node has on its neighbours. However, we extend this model by including
a level of susceptibility for each node towards other nodes. The model aims to
make the differences in risk score between neighbours smaller using influence
and susceptibility.

Introduction LISC and example iteration

First we define special influence and susceptibility functions f (s(v)) and g(s(v)).
These functions can be defined freely and take as input the risk score of a node
and return the respective influence and susceptibility values for that node’s
risk score. While many variations of f (s(v)) and g(s(v)) are possible, we limit
ourselves to linear functions of which the exact parameters are determined by
experts such that they are in line with the stated requirements. These choices
are therefore motivated by practical considerations of domain experts (see Sec-
tion 6.3). For now, we assume that these functions return a constant ‘1’, no
matter the input.

Iteratively, scores can be updated by taking a domain’s own score s(v)t at time
step t, and the scores of its neighbours s(w)t , forw ∈N (v). For LISC, the general
update rule for a node v is formalized in Formula 5.1.
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s(v)t+1 = s(v)t + g(s(v)t) ·

∑

w∈N (v)
f (s(w)t) · (s(w)t − s(v)t)

|N (v)|
(5.1)

Here, s(v)t+1, i.e., the score for v in the next time step (or iteration) is calculated
by adding the average of the score differences between v and w to s(v)t . This
score difference is weighted by the individual influence of each neighbour w
on v and is multiplied by v’s susceptibility to adapt to its neighbours.

One iteration of LISC consists of applying Equation 5.1 for each domain in the

network. In the overall model, the score vector ~Pt of size n consists of the scores
of all domains at time step t. The n×n transition matrix T t , with the elements
Tvw, for v,w = 1,2, ..,n consists of f (s(v)t) and g(s(w)t) for all v,w ∈ V at time
step t. Another requirement is an n × n incidence matrix Irc, with element
Prc = 1 if there exists a link between v and w, and Prc = 0 if otherwise. The

algorithm runs by not only updating ~Pt per iteration, but also ~T t , since a node’s
influence and susceptibility changes every time its score changes if f (s(v)t) and

g(s(v)t) return variable outputs. Let ~e ~|P | be a vector of ones of size |~P | = n. An

overview of the complete algorithm can be found in Algorithm 1. For efficiency
purposes, it is encouraged to implement the algorithm using sparse matrices.

Algorithm 1 LISC

Input: Score vector ~Pt , Incidence matrix I , iterations i, step size α
Output: Score vector ~Pt+1

1: procedure LISC
2: for t← 0 to i do
3: T t+1← F(~Pt)⊗G(~Pt) ◦ I

4: Dt+1← ~Pt ⊖ ~Pt

5: ~Pt+1← ~Pt +α(T t+1 ◦Dt+1)⊤ ·~e
|~P | ⊘ (I ·~e|~P |)

6: return ~Pt+1

In Algorithm 1, T t is computed by applying f (s(v)) and g(s(v)) to all elements

of ~P. Let F(~V ) and G(~V ) be the respective functions that can calculate the in-
fluence and susceptibility values for all elements of a vector. Then we take
the outer product (⊗) between these vectors in order to compute all pairwise
influence and susceptibility scores which will be spread in the network. A
Hadamard product operation (◦) with I is then applied to the resulting matrix
in order to keep all influence and susceptibility scores between the node pairs
which are linked to each other. Then we calculate all pairwise score differences

by taking the outer subtraction (⊖) of ~Pt with itself, stored as matrix Dt . The
final step is then to take the Hadamard product between T t and Dt , taking the
transpose and multiplying the result by ~e

|~P |. This results into a vector which

contains all weighted score differences for all v ∈ V . Adding a portion of this
vector (represented as the step size α), divided row wise (⊘) by the total num-

ber of neighbours for every node (I ·~e
|~P |), to

~Pt results into a complete update

of all nodes in ~Pt+1.
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An example of an iteration of Algorithm 1 can be found below. In this exam-
ple, we choose Formulas 6.1 and 6.2 for f (s(v)) and g(s(v)) respectively. See
Figure 5.5 for an example of a network. Numbers are rounded to three deci-
mals.

Figure 5.5: An example of a scored network of size n = 3.
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T t+1 is then calculated as F(P(t))⊗G(P(t)) ◦ I :
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The next step is to calculate Dt+1 = ~P(t) ⊖ ~P(t):
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The final step is the update ~Pt+1← ~Pt +α(T t+1 ◦Dt+1)⊤ ·~e
|~P | ⊘ (I ·~e|~P |) :
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Thus nodes A, B and C are updated with the new scores according to the node
score update rule specified in Formula 5.1.
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5.3.3 Normalized Local Influence and Susceptibility Compu-
tation

The following algorithm we propose is Normalized Local Influence and Sus-
ceptibility Computation, or NORMLISC. The general concept behind NORM-
LISC is the same as with LISC, but the risk scores are updated by fixing the
degree to which a score adapts to the scores of its neighbours.

Introduction NORMLISC and example iteration

This algorithm is similar to LISC, as it computes risk scores using influence,
susceptibility and a step size α. However, the degree to which a node adapts
to itself (α) and to the scores of neighbours (1 − α) is normalized to sum to
1. This way, the score of a node can be calculated by taking the weighted
average between its own score and those of its neighbours. This eliminates
the requirement of a matrix Dt that keeps track of the risk score differences
between all neighbours. If f (s(v)t) and g(s(v)t) return constant values, then
the transition matrix does not have to be recomputed which allows the model
to be expressed as a Markov chain. Pseudocode for NORMLISC is shown in
Algorithm 2.

Algorithm 2 NORMLISC

Input: Score vector ~P, Incidence matrix I , iterations i, step size α
Output: Score vector ~Pt

1: procedure NORMLISC
2: for t← 0 to i do
3: T t+1← F(~Pt)⊗G(~Pt) ◦ I

4: T t+1(~Pt+1)← T t⊤ +α · eye(|~P |)

5: T t+1(~Pt+1)′← T t+1(~Pt+1)⊘ ((T t+1(~Pt+1) ·~e
|~P |)⊗~e|~P |)

6: ~Pt+1← T t+1(~Pt+1)′ · ~Pt

7: return ~Pt+1

Here T t+1 is calculated exactly like in LISC, to which an identity matrix (or

‘eye’) of size |~P | is added, multiplied with α (line 4). Here, we choose the same

F(~V ) and G(~V ) as for LISC. The rows of this matrix T t+1(~Pt+1) are then nor-
malized to sum up to 1 by dividing it row-wise by the sums of its rows (line 5).

Lastly, the score vector ~P is updated by multiplying it iteratively with the com-

puted matrix T t+1(~Pt+1)′ . Here, α is not chosen as the step size, but rather as
a parameter that indicates how ‘strongly’ each node should converge towards
its neighbours. If α is set to a low value (e.g., 0.1), then each node will mostly
take on the values of its neighbours, and if a high value is chosen (e.g., α = 5),
then the node scores will converge very slowly. An example iteration of Al-
gorithm 2 can be found on the next page. See Figure 5.6 for an example of a
network. Numbers are rounded to three decimals.
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Figure 5.6: An example of a scored network of size n = 3.

In order to run the algorithm, first ~P(t), I and ~e
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are initialized as:
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T t+1 is then calculated as F(P(t))⊗G(P(t)) ◦ I :

T t+1 =
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The next step is to then add the ‘eye’ multiplied with α = 0.1 (T t+1(~Pt+1) =

T t⊤ +α · eye(|~P |)):
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Next, the rows of T (t+1)(~Pt+1) are normalized to sum up to 1 (T t+1(~Pt+1)′ =

T t+1(~Pt+1)⊘ ((T t+1(~Pt+1) ·~e
|~P |)⊗~e|~P |)):
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T (t+1)(~Pt+1)′ =
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Lastly, the update step happens (~Pt+1 = T t+1(~Pt+1)′ · ~Pt):
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Thus nodes A, B and C are updated with the new scores according to the node
score update rule specified in Formula 5.1.

5.3.4 Maxima-based Diffusion

The third algorithm that we propose is Maxima-based Diffusion, or MAXDIF.

Introduction MAXDIF and example update

MAXDIF relies on the PageRank algorithm for convergence. The first differ-
ence with the previous algorithms is that it takes a directed network as input.
All links between nodes are drawn from the node with the higher score (source)
to the node with the lower score (target). If two adjacent nodes have the same
score, then the link is bidirectional. The incidence matrix I ′ can be drawn with
a helper function DRAW INCIDENCE(~P,I ), which requires as input the ~P and
the undirected incidence matrix I . Furthermore, MAXDIF does not use influ-
ence and susceptibility functions and has fewer free parameters. A pseudocode
representation of MAXDIF is presented in Algorithm 3.
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Algorithm 3 Draw Incidence Matrix I

Input: Score vector ~P, Incidence matrix I
Output: Incidence matrix I ′

1: procedure DRAW INCIDENCE

2: I ′← ~P ⊖ ~P
3: for i, j in I ′ do
4: if I ′[i, j] ≥ 0 then
5: I ′[i, j] = 1
6: else
7: I ′[i, j] = 0

8: I ′← I ′ ◦ I
9: return I ′

The idea behindMAXDIF is that it spreads the risk from nodes with higher risk
scores to their neighbours with lower risk scores via outgoing links. All score
differences are computed between each of such node pairs, whereby each node
with outgoing links ‘transfers’ a percentage of the node pair score difference
to its neighbours. These percentages are based on the PageRanks of all of the
node’s outgoing neighbours, normalized to 1. Nodes with multiple incoming
links take the average value of all incoming transferred scores. This ensures
that the computation is not only based on score differences between nodes, but
also that nodes with a higher PageRank score in the network (i.e., nodes with
a higher indegree, or nodes that are surrounded by more nodes with a higher
PageRank) are given a higher priority to converge upwards. Another reason
for using PageRank is that it ensures that nodes with a lower indegree, but
central position in the network (i.e., it has incoming links from one or a few
nodes with a high PageRank), are also given priority to converge upwards, as
opposed to less central nodes in the network. This idea works like a ‘diffusion
model’ of sorts, where risk is spread outwards and risky ‘neighbourhoods’ or
‘communities’ can be distinguished from the rest of the network after a few
iterations. The pseudocode for MAXDIF can be found in Algorithm 4.

Algorithm 4MAXDIF

Input: Score vector ~P, Incidence matrix I , iterations i, delta δ, epsilon ǫ
Output: Score vector ~Pt+1

1: procedure MAXDIF
2: for t← 0 to i do
3: I ′t ← draw incidence(~Pt , I )

4: ~Rt ← PageRank(I ′t ,δ,ǫ)

5: PRt ← (~Rt ⊗ ~e
|~Pt |

)⊤ ◦ I ′t

6: Dt ← ~Pt ⊖ ~Pt ◦ I ′t

7: ~T t ← (PRt ⊘ ((PRt ·~e
|~Pt |

)⊗~e
|~Pt |

) ◦Dt)⊤ ·~e
|~Pt |

8: ~Pt+1← ~Pt + ~T t

9: return ~Pt+1

MAXDIF starts off by building the directed incidence matrix I ′ (line 3), which
is fed to the PageRank algorithm with a user-defined value for the parameters
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δ and ǫ. This returns PageRank vector ~R, which contains the PageRank for
all nodes in the network (line 4). Matrix PR contains the PageRank values of
all neighbours that the nodes have a directed link to (line 5) and matrix D
contains all the score differences between these pairs of nodes (line 6). After
normalizing the PageRank values to sum up to 1, the Hadamard product is
taken between PR and D, after which all row sums are taken of this matrix’s
transpose (line 7). These sums are then added to the score vector to conclude
the first iteration of the algorithm (line 8). An example iteration of Algorithm 4
can be found below. See Figure 5.7 for an example of a network.

Figure 5.7: An example of a scored network of size n = 3.

In order to run the algorithm, first ~Pt , I and ~en are initialized as:
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The first step of the iteration is to build the directed incidence matrix I ′ (see
Algorithm 3):

I ′ = ~Pt ⊖ ~Pt =
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Next, apply DRAW INCIDENCE(~P,I ) (change all fields in I ′ < 0 to 0 and all
fields ≥ 0 to 1):
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The final step in DRAW INCIDENCE(~P,I ) is I ′ = I ′ ◦ I :
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Now that I ′ has been built it is time to feed I ′ to the PageRank algorithm (for
δ = 0.85, ǫ = 0.0001) which returns the values:
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Now, the PageRank values for all neighbours that each node is pointing to need

to be stored (PR = (~R⊗~e
|~P |)
⊤ ◦ I ′):
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Additionally, the differences for each directly linked node pair needs to be

calculated (D = ~Pt ⊖ ~Pt ◦ I ′):
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The final steps are normalizing the sum of the ‘outgoing’ PageRank values for
each node to 1, multiplying these values row-wise by the difference between
each node pair, summing all incoming computation values for each node, with

which ~Pt will be added:

~T t = (PRt ⊘ ((PRt ·~e
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Thus nodes A, B and C are updated with the new scores:

~Pt+1 = ~Pt + ~T t =
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5.3.5 Dynamic LISC, NORMLISC and MAXDIF

This section explains how the proposed algorithms can be used in the dynamic
case. These implementations enable the algorithms to conform to requirement
D6. In the dynamic case, the algorithms run iteratively until new informa-
tion (e.g., a new threat appearance on a public blacklist) becomes available, in
which case the risk scores have to be updated locally, i.e., the score of a node is
updated along with those of its neighbours. This dynamic implementation for
LISC, NORMLISC and MAXDIF can be found in the following subsections.

Dynamic LISC

Should the update happen during an iteration of the computation algorithm,
the algorithm should break off after the current iteration, return the last fully

computed ~Pt , apply the update step, and continue running the next iteration

with the updated ~Pt . This can be done by checking a boolean newthreat if
newly detected threats are available from external sources. If this is true, then
the required information (i.e., which node n has to be updated with which
score s) is requested using the function REQUEST(NODE, SCORE). This ex-
ternal information should be updated continuously. Should there be a newly
detected threat, then the local update UPDATE.LISC is run. Should this not be
the case, then LISC should run for another iteration. A full implementation of
LISC with the update step can be found in Algorithm 5.

Algorithm 5 LISC.DYNAMIC

Input: Score vector ~Pt , Incidence matrix I , iterations i, step size α, bool
newthreat

Output: Score vector ~P

1: procedure LISC.DYNAMIC
2: for t← 0 to i do
3: if newthreat=False then
4: ~Pt ←LISC(~Pt , I , 1, α)
5: else
6: n,s← REQUEST(NODE, SCORE)

7: ~Pt ←UPDATE.LISC(~Pt , I , n, s)
8: t← t − 1
9: return ~Pt

It is chosen to design local update methods that update the nodes in a similar
fashion as the original algorithm, i.e., in this case by updating a node’s score
using predefined influence and susceptibility functions (again, we choose For-
mulas 6.1 and 6.2 for f (s(v)t) and g(s(v)t)). It is desirable to not only update

the score for that single node in ~Pt , but also the scores of its neighbours and
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the transition matrix T t for all affected nodes (recomputed in line 3 of Algo-

rithm 1). The required steps to fully update ~Pt are shown in Algorithm 6.

Algorithm 6 Update step LISC

Input: Score vector ~P, Incidence matrix I , node n, score(n) s
Output: ~P

1: procedure UPDATE.LISC ⊲ Update ~P

2: ~Pn← s
3: T ′← f (s) · In,c
4: T ′′← g(s) · I⊤r,n
5: D′← (s ·~e

|~P | −
~P⊤) ◦ Is,c

6: D′′← (~P⊤ − s ·~e
|~P |
) ◦ I⊤r,s

7: B′← T ′ ◦D′

8: B′′← T ′′ ◦D′′

9: C ′← Is,c ◦F(~P)

10: C ′′← I⊤r,s ◦G(~P)

11: ~P← ~P +B′ ◦C ′′ +B′′ ◦C ′

12: return ~P

An example update of LISC (Algorithm 6) can be found in Appendix A.

Dynamic NORMLISC

The dynamic implementation for NORMLISC follows the same logic as with
LISC. New information is first checked using the boolean newthreat, with ex-
ternal information requested by the function REQUEST(NODE,SCORE). The
full dynamic implementation ofNORMLISC, including the update step can be
found in Algorithm 7.

Algorithm 7 NORMLISC.DYNAMIC

Input: Score vector ~P, Incidence matrix I , iterations i, step size α, bool
newthreat

Output: Score vector ~P

1: procedure NORMLISC.DYNAMIC
2: for t← 0 to i do
3: if newthreat=False then
4: ~Pt ←NORMLISC(~P,I ,1,α)
5: else
6: n,s← REQUEST(NODE, SCORE)

7: ~Pt ←UPDATE.NORMLISC(~P,I ,n, s)
8: t← t − 1
9: return ~Pt

The update method for NORMLISC is also of the same character as LISC.
That is, it updates single nodes based using influence, susceptibility (again,
we choose Formulas 6.1 and 6.2 for f (s(v)) and g(s(v))) and α. Here, an update
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also happens after breaking off after the current iteration of NORMLISC, re-

turning the last fully computed ~Pt , applying the update step and continuing

running the next iteration with the updated ~Pt . The update method is shown
in Algorithm 8.

Algorithm 8 Update step NORMLISC

Input: Score vector ~P, Incidence matrix I ,node n, score(n) s, alpha α
Output: Score vector ~P

1: procedure UPDATE.NORMLISC ⊲ Update ~P

2: ~Pn = s
3: T ← f (s) ·G(~P)
4: T ′← T ◦ In,c
5: T ′n← α
6: T ′′← T ′ ⊘ ((T ′⊤ ·~e

|~P |)⊗~e|~P |)
⊤

7: T ′′n ← 0

8: ~P← ~P ◦ (~e
|~P | −T

′′) + s ·T ′′

9: return ~P

An example update ofNORMLISC (Algorithm 8) can be found in Appendix B.

Dynamic MAXDIF

The dynamic implementation of MAXDIF, including an update step can be
found in Algorithm 9. This method is identical to the methods for LISC and
NORMLISC (see Algorithms 5 and 9, respectively).

Algorithm 9MAXDIF.DYNAMIC

Input: Score vector ~P, Incidence matrix I , iterations i, delta δ, epsilon ǫ,
bool newthreat

Output: Score vector ~P

1: procedure MAXDIF.DYNAMIC
2: for t← 0 to i do
3: if newthreat=False then
4: ~Pt ←MAXDIF(~P,I ,1,δ,ǫ)
5: else
6: n,s← REQUEST(NODE, SCORE)

7: ~Pt ←UPDATE.MAXDIF(~P,I , s)
8: t← t − 1
9: return ~Pt

The update method for MAXDIF cannot be completely of the same character
as MAXDIF due to the incorporation of the PageRank algorithm in it, which
makes a quick update infeasible. To remedy this, a node’s risk is not spread
outwards based on the PageRank of its neighbours, but rather evenly among
the risky node’s neighbours, i.e., there is no more priority given to nodes with
a more central position in the network. For example, if a node n is updated
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and has to spread its risk to 3 neighbours a,b,c, then each of the neighbours
receives the score difference between itself and n multiplied with 1

outdegree(a) .

Additionally, a modified version of DRAW INCIDENCE(~P,I ) for the update
method is given in Algorithm 10.

Algorithm 10 Draw Incidence Update

Input: Incidence matrix I
Output: Incidence matrix I ′

1: procedure DRAW INCIDENCE UPDATE
2: Initialize Matrix I’
3: for i, j in I do
4: if I [i, j] ≥ 0 then
5: I ′[i, j] = 1
6: else
7: I ′[i, j] = 0

8: return I ′

See Algorithm 11 for the specific MAXDIF update method.

Algorithm 11 Update step MAXDIF

Input: Score vector ~P, Incidence matrix I , node n, score(n) s ⊲ Update ~P

Output: ~P

1: procedure UPDATE.MAXDIF

2: ~Pn = s
3: I ′← s − ~P
4: I ′′←DRAW INCIDENCE UPDATE(I ′) ◦ Ic,n
5: I ′′′← I ′′ ⊘ ((I ′′⊤ ·~e

|~P |)⊗~e|~P |)
⊤

6: ~P← ~P + I ′ ◦ I ′′′

7: return ~P

An example update of MAXDIF (Algorithm 11) can be found in Appendix C.

5.3.6 Time and space complexity

The theoretical time and space complexities for one iteration of LISC, NORM-
LISC, MAXDIF will be determined in the worst case. This means that the
algorithms are run on a complete network, i.e., a network counting n nodes

and
n(n−1)

2 links. Implementation then requires full matrices (which are of size
n × n), as opposed to sparse. Additionally, an iteration of MAXDIF relies on i
iterations of PageRank in terms of time complexity, which runs in O(n2) time
per iteration, since it performs a vector-matrix multiplication. An overview of
the theoretical time and space requirements for each algorithm can be found
in Tables 5.2, 5.3 and 5.4.
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LISC Space Time
~P O(n)
I O(n2)
~e
|~P | O(n)

T t+1← F(~Pt)⊗G(~Pt) ◦ I O(n2) O(n2)

Dt+1← ~Pt ⊖ ~Pt O(n2) O(n2)
~Pt+1← ~Pt +α(T t+1 ◦Dt+1)⊤ ·~e

|~P | ⊘ (I ·~e|~P |) O(n2) O(n2)

Order O(n2) O(n2)

Table 5.2: Theoretical time and space complexity analysis of LISC.

NORMLISC Space Time
~P O(n)
I O(n2)
~eP O(n)

eye(|~P |) O(n2)

T t+1← F(~Pt)⊗G(~Pt) ◦ I O(n2) O(n2)

T t+1(~Pt+1)← T t⊤ +α · eye(|~P |) O(n2) O(n2)

T t+1(~Pt+1)′← T t+1(~Pt+1)⊘ ((T t+1(~Pt+1) ·~e
|~P |)⊗~e|~P |) O(n2) O(n2)

~Pt+1← T t+1(~Pt+1)′ · ~Pt O(n2) O(n2)

Order O(n2) O(n2)

Table 5.3: Theoretical time and space complexity analysis of NORMLISC.

MAXDIF Space Time
~P O(n)
I O(n2)
~eP O(n)

I ′t ← draw incidence(~Pt) O(n2) O(n2)
~Rt ← PageRank(I ′t ,δ,ǫ) O(n2) O(n2)

PRt ← (~Rt ⊗ ~e
|~Pt |

)⊤ ◦ I ′t O(n2) O(n2)

Dt ← ~Pt ⊖ ~Pt ◦ I ′t O(n2) O(n2)
~T t ← (PRt ⊘ ((PRt ·~e

|~Pt |
)⊗~e

|~Pt |
) ◦Dt)⊤ ·~e

|~Pt |
O(n2) O(n2)

Order O(n2) O(n2)

Table 5.4: Theoretical time and space complexity analysis of MAXDIF.

Realistically, domain networks constructed from DNS data are sparse (and not
complete) by nature and can hence be run using a sparse matrix implementa-
tion of the algorithms. Nonexistent links are then excluded from the compu-
tations. In that case, the algorithms will run as a function of the number of
node pairs (direct neighbours) in the network, i.e., the algorithms will have a
theoretical time and space complexity in the order of O(m) instead of O(n2).
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6
Experiments and results

T
his chapter will discuss the experiments and results. Section 6.1 ex-
plains the experimental setup required to answer the research ques-
tion. Section 6.2 will discuss the results of the experiments regard-
ing the network properties of the domain-IP and domain-domain

networks constructed in Chapter 5. Section 6.3 shows the results of the ex-
periments regarding the proposed algorithms. This chapter concludes with a
discussion of the results in Section 6.4.

6.1 Experimental setup

This section is divided into two subsections, namely the experimental setup
regarding network properties (as discussed in Subsection 6.1.1) and the exper-
imental setup regarding the algorithm experiments (in Subsection 6.1.2).

6.1.1 Network properties

For the network properties, both the constructed domain-IP and domain-domain
network (with preprocessing) will be analyzed. An overview of the number of
nodes and links can be found in Table 6.1. In this section, we distinguish two
different classes of experiments, namely projection method experiments and net-
work structure experiments. These experiments show what needs to be taken
into account for proper domain-domain network construction.

Projection method experiments

The following set of experiments concerns itself with the effectiveness of pro-
jection methods to obtain a domain-domain network. We experiment with
several values for α, β, s and u (see Section 5.2.4) in order to see which of
these parameters are effective in creating a network of manageable size, while
retaining enough information.
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Domain-IP network (with preprocessing)
9,936,525 nodes 13,693,977 links
Domain-domain network (with preprocessing)
7,140,913 nodes 746,713,939 links

Test network X
7,140,913 nodes 186,678,440 links

Test network Y
7,140,913 nodes 373,356,880 links

Small test network
10 nodes 9 links

Medium test network
30 nodes 35 links

Table 6.1: The number of nodes and links for the all networks used in the
experiments.

Network structure experiments

We create several distributions of the constructed domain-IP and domain-
domain network. First, we create a subdomain distribution in order to see how
much of the network size (in terms of nodes) is compressed in the preprocess-
ing step. Second, for the domain-IP networks, the degree distributions for all
domains and IPs are plotted, followed by the degree distributions for all mali-
cious domains and IPs. The third experiment is to plot the degree distribution
of the domain-domain network in order to find out if the chosen projection
method has any significant impact on the structure of the network. The final
experiment regarding the network properties is to plot the average distance
distribution for a random sample of domains, as well as the average distance
distribution for all malicious nodes in the domain-domain network.

6.1.2 Algorithm experiments

In this section, we distinguish three different classes of experiments, namely
algorithm complexity experiments, algorithm convergence experiments and algo-
rithm ranking experiments. Due to the limits of the scope of this research, we
limit ourselves to experiments with respect to the static case.

Algorithm complexity experiments

An important practical aspect of the designed algorithms is that they should
terminate in feasible time using finite resources.

The theoretical time and space complexity (see Section 5.3.6) will be compared
to the practical run time and space utilization of the algorithms by running
them on the domain-domain network. Additionally, the algorithms are run on
two test networks X and Y . These networks are constructed by taking the same
number of nodes as the domain-domain network and placing links at random
between them. Y has double the number of links as X, so that it can be de-
termined in which order the time and space requirements for the algorithms
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grow. The number of nodes and links for X and Y can be found in Table 6.1.

The algorithms are implemented in Python 3, using NumPy and SciPy sparse
matrices for the matrix and vector calculations. The algorithms are run on
a single thread of an Intel XEON E5-2630v3 CPU (2.4 GHz) with access to
1.5TB of RAM.

Algorithm convergence experiments

Different parameter settings for the algorithms LISC,NORMLISC andMAXDIF
will be run on a small and medium test network in order to find to which de-
gree the algorithms conform to the requirements. The number of nodes and
links for these networks can be found in Table 6.1. These experiments may
lead to an overall picture that shows how these algorithms perform in compar-
ison to each other with respect to convergence.

Algorithm ranking experiments

The algorithms are run for one iteration on the medium test network and
placed in descending order by risk score, in order to find out if the algorithms
‘rank’ the nodes differently. If this is true, then it can be confirmed that algo-
rithm choice has an impact on the final result and that additional experiments
may be required in the future to find out which algorithm ranks the nodes
‘best’.

6.2 Results—Network properties

This section concerns itself with the results of the experiments designed in
Section 6.1.1.

Projection method experiments

For the projection methods, the small experiment with different values for
α,β, s,u and the resulting size, in terms of the number of links, of the domain-
domain network is summarized in Table 6.2.

Table 6.2 shows that taking different values for u has the largest impact on
network size. However, it is not ideal to filter domains that are potentially risky
from the network as it may result in an incomplete picture of the network.
It can happen that a malicious domain is filtered from the final network by
setting values greater than 1 for α or β, which in turn causes loss of relevant
information in the projection. Therefore, as discussed in Section 5.2.4, α, β
and s are set to 1 and u to 3000 to keep the number of links in the projection
below 1 billion.

Network structure

During preprocessing, the subdomains are aggregated to domains, i.e., the step
before the domain-IP network is constructed. The distribution for the number
of aggregated domains can be found in Figure 6.1.
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α β s u |E|
12 25 50% 1k ∼29.3M
12 25 100% 1k ∼46.6M
12 25 100% 5k ∼107.4M
12 25 100% 10k ∼436.4M
10 20 50% 1k ∼29.5M
10 20 100% 1k ∼45.6M
10 20 100% 5k ∼107.9M
10 20 100% 10k ∼436.9M
8 15 50% 1k ∼30.7M
8 15 100% 1k ∼47.2M
8 15 100% 5k ∼109.7M
8 15 100% 10k ∼438.7M
1 1 100% 3k ∼746.7M

Table 6.2: Projecting the domain-IP network to a domain-domain network.

Figure 6.1: The number of subdomains in the network that is aggregated to
domains. The leftmost bar indicates the number of domains not aggregated.

In Figure 6.1 we can see how much information is filtered from the network.
There exists a downwards trend between the number of subdomains and their
occurrence in the data. For instance, there are more than a million domains
with one subdomain present in the data, but there are less than 10 domains
with a thousand subdomains.

Next, the degree distributions for both domains and IPs can be found in Fig-
ures 6.2 and 6.3, respectively. These figures show that the largest part of the
network consists of domains and IPs which have a degree below 1000. The
‘tail’ of the degree distribution contain nodes that have a higher degree and
tend to be problematic during projections due to a rapidly increasing number
of generated links between nodes. The domain and IP address degree distri-
butions for all malware domains that occur within the same time period (i.e.,
between December 5th and January 5th) can be found in Figures 6.4 and 6.5 re-
spectively. These figures show that the malware domains follow a similar but
not identical degree distribution when compared to the full network.
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Figure 6.2: The degree distribution
for all domains in the
domain-IP network.

Figure 6.3: The degree distribution
for all IP address nodes in the
domain-IP network.

Figure 6.4: The degree distribution
for all malware domains in the
domain-IP network.

Figure 6.5: The degree distribution
for all IP address nodes to which all
malware domains are connected in the
domain-IP network.

The degree distribution for the domain-domain network is presented in Fig-
ure 6.6. The chosen projection method may distort the power law that can be
distinguished in Figures 6.2-6.5. However, this is an expected outcome since
IPs with a degree of over 3000 in the domain-IP network are not projected, but
placed ‘as is’ in the domain-domain network. This introduces domains in the
domain-domain network that are not directly connected to other domains in
the network, but via intermittent IPs. These IPs have a high degree (> 3000)
but a low frequency. The domains that are not fully projected into the domain-
domain network either have one neighbour (the IP in question) or are already
projected to one-mode via another IP with a lower degree (< 3000). However,
these domains could have had a higher degree in the one-mode projection had
the projection rule not been in place. This suggests that many of the nodes in
the degree distribution with a ‘true’ degree of over 3000 now exist with a lower
degree in higher numbers, potentially explaining the ‘kink’ that can be seen at
the 103 frequency and degree mark in the distribution.
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Figure 6.6: The degree distribution of the domain-domain network.

An overview of the average distance distribution for 1000 random nodes and
all malicious nodes within the network can be found in Figure 6.7. The simi-
larity of the distributions may indicate that the malware domains are ‘hiding
in plain sight’, meaning that they can occur anywhere in the network. How-
ever, it can also be seen that the malicious distance distribution does not line
up exactly with the randomly chosen distance distribution, suggesting that it
is not ruled out that some global network effects could be in play. For instance,
if malicious domains had existed in large clusters, then their average distance
and degree distributions would deviate visibly from the distributions of a set
of random nodes in the network. In this hypothetical situation, it could mean
that it may for instance be possible to improve score computation by using
clustering techniques or community detection algorithms, instead of follow-
ing a purely local approach. This indicates that, based on these findings, one
could justify that risk score computation in DNS networks be seen as a pre-
dominantly local problem. However, it should be noted that the distribution
plots do not serve as hard evidence that score computation is a fully local prob-
lem. Note that the error bars in Figure 6.7 are wide due to some parts of the
network not being accessible, i.e., the network is disconnected. When nodes
are unreachable, the graph-tool implementation returns an average distance
of 0.

Figure 6.7: An overview of the average distance distribution for the chosen do-
mains and all malicious domains. The error bars show the standard deviation
for the randomly sampled domains.
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6.3 Results—Algorithm experiments

This section concerns itself with the results of the experiments designed in Sec-
tion 6.1.2.

An overview of the run time and memory occupation of all three algorithms
over 10 iterations on the domain-domain network can be found in Figure 6.8.

Figure 6.8: Run time and memory occupation of all three algorithms over 10
iterations on the domain-domain network.

Figure 6.8 shows that there is a distinguishable difference in terms of run
time. LISC is the most expensive algorithm, NORMLISC is the least expen-
sive algorithm and MAXDIF lies in the middle. It can be seen that the run
times follow a linear progression in the first few iterations, after which the run
times increase faster. It may be possible that this is due to the node scores
having longer floating point numbers after a few iterations, which requires
longer processing times in terms of arithmetic. For example, for a CPU it can
be a lot easier to compute 101 × 101 than 00111110011100101010000111 ×
00111111001010001001101101. A quick experiment verifies this hypothesis.
In this experiment, two 10000×10000 matrices are filled randomly and multi-
plied with each other. This is repeated 10 times in the case where bothmatrices
are randomly filled with ‘float16’ numbers between 0 and 1, and also 10 times
in the case where both matrices are randomly filled with numbers between 0
and 1 with only 1 decimal. The first case has ‘longer’ numbers and it takes,
on average, approximately 1.16 seconds longer to perform a matrix multipli-
cation.

Figure 6.8 also shows that LISC and MAXDIF keep the space occupation sta-
ble throughout the iterations and remain at the same memory cost level (ap-
proximately 16.87 GB for both algorithms). However NORMLISC has vary-
ing space costs (between 16.865 and 17 GB) throughout the iterations, making
NORMLISC ∼ 0.77% more expensive than LISC and MAXDIF in this setting.
It remains an open question as to why the memory consumption varies for
NORMLISC. It could depend on the difference in implementation. However,
such differences are very small.

In order to test if the time and space complexity indeed grows linearly with
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the number of links in the case of sparse matrices, the algorithms are run on
networks X and Y , with X having half the number of links compared to Y . The
time and memory consumption of all three algorithms over 10 iterations on X
and Y can be found in Figures 6.9 and 6.10 respectively.

Figure 6.9: Run time of all three algorithms over 10 iterations. Left: X, right:
Y .

Figure 6.10: Space occupation of all three algorithms over 10 iterations. Left:
X, right: Y .

Figure 6.9 shows that the run time per algorithm indeed appears to grow ap-
proximately linearly with the number of links in the network. It takes ap-
proximately 4 hours for each algorithm to finish running on Y , compared to
approximately 2 hours for X. Figure 6.10 shows that the memory occupation
also grows approximately linearly with the number of links in the network.
For Y , the memory costs are almost double for each algorithm compared to X.
In conclusion, it can be reasonably asserted that the practical time and space
complexity for each algorithm is O(m).

Algorithm convergence experiments

The algorithms will be tested on two undirected test networks, namely the
small and medium network (see Table 6.1). We choose smaller networks be-
cause we can plot the begin and end states in order to manually determine the
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behaviour of the algorithms with respect to convergence. Doing this for large
networks (e.g., 1000 nodes) is not trivial. These test networks are shown in
Figure 6.11.

Figure 6.11: The test networks. Small (left) and medium (right).

For each of the experiments introduced in this section, the absolute sum of
node score change is plotted per iteration in order to gain insight into the rate
of convergence for all algorithms in different settings. Also each network state
is plotted after [1, 2, 3, 4, 5, 10, 50, 100, 1000, 10000] iterations for LISC
and NORMLISC in order to infer statements about the algorithms’ behaviour
regarding convergence. Network states for MAXDIF are plotted after 1,2,3
and 4 iterations. The experiments will be run on the small and medium test
networks. A summary of all these experiments is provided in Table 6.3, after
which an explanation for each of these experiments is given.

Algorithm F and G Dampening
rate

Weighted
mean

Iterations

LISC

F and G active
F active, G constant
F constant, G active
F and G constant

None No 10000

LISC F and G active
1
t ,

1
1.05t ,

1
2t

1
t2
, 1
t5
, 1
t10

No 10000

LISC F and G active None Yes 10000

NORMLISC

F and G active
F active, G constant
F constant, G active
F and G constant

None No 10000

NORMLISC F and G active
1.05t , 2t , t2

t5, t10
No 10000

NORMLISC F and G active None Yes 10000

MAXDIF Not applicable 1
t2
, 1
2t

No 4

Table 6.3: All experiments on the test networks with respect to convergence.
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Since LISC and NORMLISC rely on the influence and susceptibility functions
f and g , it may prove helpful to not only perform these experiments in the
scenario where both functions are ‘constant’ (i.e., they return ‘1’ as explained in
Subsection 5.3.2), but also in the cases where they are ‘active’. We will perform
experiments where one or both functions are constant or active. This may
provide additional insight into how f and g act with respect to convergence.

A graphic representation of the chosen active functions can be found in Fig-
ures 6.12 and 6.13.

Figure 6.12: The influence
function f (s(v)).

Figure 6.13: The susceptibility
function g(s(v)).

The influence function is modelled to assign no influence to nodes with a risk
score below or at 0.5 and full influence to nodes with a risk score of 1. Fur-
thermore, g(s(v)) is modelled to assign full susceptibility to neutral nodes,
‘moderate’ susceptibility to safe nodes and little to no susceptibility to high
risk nodes. The exact formulation of these functions, which correspond to the
functions given in Figures 6.12 and 6.13, are given in Formulas 6.1 and 6.2
respectively. With these formulations, we meet requirements D1, D2 and D3
(see Section 5.3.1).

f (s(v)) =















0 if 0 ≤ s(v) ≤ 0.5

2 · s(v)− 1 if 0.5 < s(v) ≤ 1
(6.1)

g(s(v)) =















(4/3) · s(v) + (1/3) if 0 ≤ s(v) ≤ 0.5

−2 · s(v) + 2 if 0.5 < s(v) ≤ 1
(6.2)

Ideally, the algorithm converges to a state where risky communities of nodes
can be distinguished from the rest of the network instead of a global value.
To remedy this, the convergence can be slowed down by adding a ‘dampening
rate’ as a function of each iteration t in the algorithm. For LISC, this dampen-
ing rate is then multiplied with the amount of change that will be added to the

score vector ~P for that specific iteration (multiplied with α in Algorithm 1).
For instance, if a dampening rate of 1

t is chosen for LISC, then for each it-

eration t = 1,2,3, .., y, the ‘change’ vector is multiplied with 1, 12 ,
1
3 , ..,

1
y . For

NORMLISC, this dampening rate needs to increase with every iteration since
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this algorithm works on the basis that convergence slows down if a node it-
self gets a higher weight. For NORMLISC, dampening rates are subsequently
multiplied with α (see Algorithm 2). The choice for these dampening rates are
arbitrary and serve to demonstrate their effectiveness in curbing the conver-
gence for each algorithms.

The next possibly informative experiment for LISC and NORMLISC is to take

a weighted mean between the old score vector ~Pt−1 and the new score vector
~Pt . For each iteration, LISC and NORMLISC will take a weighted mean of
~P = 0.15 · ~Pt−1+0.85 · ~Pt to see if the algorithm eventually converges to a steady
state. This is inspired by the use of a dampening rate in the PageRank algo-
rithm, for which the same rule is applied.

For the experiments involving MAXDIF, four iterations will be run each time,
along with dampening rates since this algorithm also has the property of con-
verging to a global score value for all nodes in the network. Another remark
is that it can happen that a node with a low risk score (e.g., 0.2) is linked to a
node with an even lower score (e.g., 0.1). In this specific case, MAXDIF must
be run for at least 2 iterations. See Figure 6.14 for an example.

Figure 6.14: Left: initial state of the network. Right: the state of the network
after 1 iteration (rate=1).

In Figure 6.14, the node with the lower score is linked to other nodes with very
high scores, which causes the node with the lower score to converge upwards to
a higher value in the first iteration, but leaving the other node (with a score of
0.2) completely unaffected due to the algorithm only computing node scores
over directed links. This issue may be resolved by running the algorithm at
least one more time and redirecting the links in the process. It may be possible
that this type of problem will persist after two iterations. However, the most
immediate cases such as the one depicted in Figure 6.14 are then already ad-
dressed. Additionally, with the introduction of a high dampening rate, nodes
that are further removed would be affected minimally. In this scenario, the
problem would persist even after many iterations of the algorithm.

Finally, the average network score of the algorithms will be plotted per itera-
tion for the small and medium test network in order to gain more insight into
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their convergence. This way, it can be verified if the node scores truly converge
or diverge.

An overview of all algorithm experiments with respect to varying parameters
on the small and medium network can be found in Table 6.4. The experiments
range from varying with the dampening rates and using a weighted mean to
setting f and g to return constant values in order to see the effects on network
convergence.

Algorithm Parameter values Appendix
LISC Varying with functions F and G D
LISC Varying with the dampening rate E
LISC Using a weighted mean F
NORMLISC Varying with functions F and G G
NORMLISC Varying with the dampening rate H
NORMLISC Using a weighted mean I
MAXDIF Varying with the dampening rate J

Table 6.4: An overview of the parameter experiments for the designed algo-
rithms, and in which Appendix to find the respective results.

For LISC (Appendix D-F), it can be seen that letting influence and susceptibil-
ity functions f and g return constant values (1 in these experiments) will lead
to a violation of requirement M1. In the ‘active case’, i.e., when the dampening
rate is 1 and f and g are not set to return constant values, it can be seen that
LISC needs between 1 and 100 iterations to roughly converge to the same value
for all nodes in the network. Ideally, the scores converge locally to the scores
of the neighbours in as few iterations as possible. Varying with the dampen-
ing rate, given that they are a function of the number of iterations t, leads to
quicker convergence of the scores due to the rate of change becoming smaller
per iteration. The smaller the dampening rate, the fewer iterations are needed
to update the scores locally. For instance, a dampening rate of 1

t10
still shows

a concentration of risky nodes after 10000 iterations. Using a weighted mean

(~P = 0.15 · ~Pt−1 + 0.85 · ~Pt) per iteration roughly leads to a marginally quicker
rate of convergence as in the standard case. It should be noted that LISC vi-
olates requirement M2, because risky nodes end up having a lower risk score
than its neighbours after a few iterations.

For NORMLISC, (Appendix G-I). A difference with LISC is that varying with
f and g still leads to conformance to requirement M1, even if both functions
are constant. This is due to NORMLISC iteratively normalizing the transition
matrix T to sum to 1 per row. Computing normalized weighted averages of
risk scores between neighbours ensures that the scores do not diverge. With-
out the normalization step, nodes will ‘over- or underparticipate’, leading to
every node trying to exercise more or less influence than their fair share in the
network. Varying with the dampening rate has the same effect as with LISC.
In this case, the larger the dampening rate, the fewer iterations are needed
to converge the network scores. For instance, a dampening rate of t10 still
shows a concentration of risky nodes after 10000 iterations, as is the case with
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LISC. Using a weighted mean also leads to a marginally quicker convergence
for NORMLISC. It should be noted that this algorithm also violates require-
ment M2.

For MAXDIF (Appendix J), only a few iterations are required due to most of
the convergence being determined by the incorporation of the PageRank algo-
rithm, thereby conforming to requirement M1. Adding a dampening rate also
speeds up the convergence, leading to a few iterations (< 10) being required to
compute risk scores. Additionally,MAXDIF also conforms to requirement M2.

Next, the average score is plotted over 10000 iterations for the small (Fig-
ure 6.15) and medium (Figure 6.16) test networks per algorithm.

Figure 6.15: Left: mean global score of the small test network. Left: LISC.
Middle: NORMLISC. Right: MAXDIF.

Figure 6.16: Left: mean global score of the medium network. Left: LISC. Mid-
dle: NORMLISC. Right: MAXDIF.

Figures 6.15 and 6.16 show that LISC and NORMLISC converge to an average
global value that always lies somewhere between the minimum and maximum
value of all initial scores in the network. This is due to the definition of f and g
in Formulas 6.1 and 6.2, which are formulated in such a way that a node’s risk
score can lower in a next iteration. SinceMAXDIF does not have this property,
this means that lower scores can only increase. After a sufficient number of
iterations, the entire network converges to the maximum initial score in the
network. It can also be seen that the convergence to a global average happens
after a low (i.e., > 101 and < 102) number of iterations for all algorithms. This
indicates that each algorithm may only be run for a few (i.e., < 101) iterations
in order to get a risk score estimation.
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Algorithm ranking experiments

Here, the ranking outputs for each algorithm after 1 iteration on the medium
test network are shown in Table 6.5. Each node is given an index between 0 and
29. It can be seen that significant mutual overlap exist between the rankings.
For instance, the same 9 nodes occur in the top 10 rankings for all algorithms.
These happen to be the nodes that initially start with a high score and their
neighbours, which are assigned a higher score due to the GBA principle that
appears to stay intact for the algorithms. In general, we expect newly detected
threats to be assigned a slightly lower risk score than its risky neighbours, due
to the algorithms converging properties. This means that the top 10 rankings
stay relatively similar before and after a few iterations of any of the proposed
algorithms.

TOP LISC NORMLISC MAXDIF

1 6 (0.9 - 0.884) 6 (0.9 - 0.885) 6 (0.9 - 0.9)
2 9 (0.8 - 0.8) 9 (0.8 - 0.8) 5 (0.7 - 0.856)
3 12 (0.8 - 0.8) 12 (0.8 - 0.8) 3 (0.8 - 0.8)
4 3 (0.8 - 0.784) 26 (0.8 - 0.786) 9 (0.8 - 0.8)
5 26 (0.8 - 0.784) 3 (0.8 - 0.785) 12 (0.8 - 0.8)
6 5 (0.7 - 0.742) 5 (0.7 - 0.752) 23 (0.7 - 0.8)
7 23 (0.7 - 0.712) 23 (0.7 - 0.716) 26 (0.8 - 0.8)
8 10 (0.7 - 0.7) 10 (0.7 - 0.7) 4 (0.6 - 0.724)
9 4 (0.6 - 0.664) 4 (0.6 - 0.671) 10 (0.7 - 0.7)
10 2 (0.3 - 0.652) 8 (0.5 - 0.63) 8 (0.5 - 0.681)
11 22 (0.6 - 0.632) 22 (0.6 - 0.624) 13 (0.5 - 0.624)
12 8 (0.5 - 0.63) 18 (0.6 - 0.6) 22 (0.6 - 0.62)
13 18 (0.6 - 0.6) 7 (0.5 - 0.562) 18 (0.6 - 0.6)
14 13 (0.5 - 0.58) 13 (0.5 - 0.557) 25 (0.5 - 0.6)
15 7 (0.5 - 0.55) 2 (0.3 - 0.522) 7 (0.5 - 0.563)
16 25 (0.5 - 0.52) 25 (0.5 - 0.517) 11 (0.3 - 0.549)
17 11 (0.3 - 0.52) 17 (0.5 - 0.5) 0 (0.4 - 0.5)
18 17 (0.5 - 0.5) 11 (0.3 - 0.453) 16 (0.3 - 0.5)
19 0 (0.4 - 0.435) 0 (0.4 - 0.43) 17 (0.5 - 0.5)
20 1 (0.3 - 0.417) 1 (0.3 - 0.391) 2 (0.3 - 0.435)
21 19 (0.3 - 0.417) 19 (0.3 - 0.391) 1 (0.3 - 0.384)
22 24 (0.3 - 0.417) 24 (0.3 - 0.391) 28 (0.3 - 0.381)
23 28 (0.3 - 0.417) 28 (0.3 - 0.391) 14 (0.2 - 0.369)
24 20 (0.2 - 0.32) 16 (0.3 - 0.3) 19 (0.3 - 0.364)
25 16 (0.3 - 0.3) 20 (0.2 - 0.297) 24 (0.3 - 0.362)
26 15 (0.1 - 0.296) 15 (0.1 - 0.253) 29 (0.2 - 0.3)
27 14 (0.2 - 0.248) 14 (0.2 - 0.243) 20 (0.2 - 0.286)
28 27 (0.1 - 0.212) 29 (0.2 - 0.2) 21 (0.15 - 0.238)
29 29 (0.2 - 0.2) 27 (0.1 - 0.194) 15 (0.1 - 0.237)
30 21 (0.15 - 0.15) 21 (0.15 -0.15) 27 (0.1 - 0.166)

Table 6.5: The output rankings of each algorithm by index after 1 iteration on
the medium test network. The brackets present the initial score and the score
after 1 iteration.
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6.4 Discussion

In this section, the experiments and results will be discussed with respect to
the research question:

How can network sciencemethods be used to efficiently compute risk scores
of domains in dynamically evolving domain-domain networks?

In order to answer the research question, we first discuss our method to create
domain-domain networks, along with the benefits and drawbacks of such a
method. Next, we discuss the performance of the proposed algorithms based
on the performed experiments, the degree to which they conform to the stated
requirements and in which use case it is appropriate to use each algorithm.
We conclude the section with the limitations with respect to domain-domain
network creation and algorithm design.

Network creation

The DNS data set has undergone many preprocessing steps, from filtering IPs
and aggregating subdomains to applying projection methods to construct a
one-mode (domain-domain) network from DNS data. These steps are required
to obtain a workable network with respect to time and space requirements.
The network and the designed algorithms go hand in hand in this regard. The
‘denser’ the network (or, the more links in a network), the longer the algo-
rithms will take to complete an iteration due to the time and space complex-
ity of the algorithms. The drawback to the preprocessing approach is that
the network does not take in all the information that might be required for
optimal score computation. It could be possible that a subdomain (e.g., li-
acs.leidenuniv.nl) starts with a high risk score, but its ‘parent’ (leidenuniv.nl) is
initially recognized as a safe domain. The aggregation step could hence throw
away relevant information. One possible method to circumvent this is by the
design of an algorithm that is more scalable and can handle dense networks.
The problemwith this, however, is that Guilt by associationmodelling requires
a computation between a node’s score and the scores of its neighbours. The
denser a network, the more node pairs exist, leading to an exploding num-
ber of calculations. It may be fruitful to split a dense network into smaller
networks using a clustering algorithm before computing the scores on the sub-
graphs. This approach, however, introduces other assumptions and splitting
criteria which will lead to other kinds of generalizations on the data. Another
possible approach is to explore the feasibility of multithreaded CPU process-
ing and GPU processing implementations with respect to computational speed
up.

Algorithm performance, conformance to requirements and use cases

Aside from the preprocessing choices, the computation methods also have to
conform to certain domain expert and model requirements (see Section 5.3.1).
An overview of the conformance to the requirements for LISC, NORMLISC
and MAXDIF can be found in Table 6.6, after which a discussion on each re-
quirement is given. A ‘+’ indicates that the algorithm conforms to the require-
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ment and a‘-’ indicates the opposite. A ± indicates that the algorithm conforms
to the requirement under certain circumstances.

Requirement LISC NORMLISC MAXDIF

D1: Static risk requirement ± ± +
D2: Influence requirement + + -
D3: Susceptibility requirement + + -
D4: GBA requirement + + +
D5: Risk spreading requirement + + +
D6: Update requirement + + +
M1: Convergence requirement + + +
M2: No swapping requirement - - +
M3: Limited parameter requirement - - +
M4: Degree requirement - - +
M5: Scalability requirement + + +

Table 6.6: The degree to which each algorithm conforms to the requirements
as defined in Subsection 5.3.1.

D1: Adrawback of LISC andNORMLISC is that malicious nodes do not neces-
sarily retain their scores over several iterations, depending on the formulation
of influence and susceptibility functions f and g . MAXDIF, however, never
lowers a node score.

D2 and D3: The functions f and g provide a certain freedom in determin-
ing the behaviour of the model, which enables the end user to tune the model
to their desires. This is an advantage which LISC and NORMLISC have over
MAXDIF. However, no explicit guarantees can be made with respect to the
convergence of the model. Running the model on a different data set or with
a different use case will require expert insight and experimentation in order to
reformulate f and g .

D4: All three algorithms are designed to model score computation as a pre-
dominantly local problem, since computation is fully based on a node’s neigh-
bours.

D5: All models also spread risk from risky nodes to less risky neighbours.
This happens automatically forMAXDIF, but depends on the formulation of f
and g for LISC and NORMLISC.

D6: All three algorithms also have a way to update the single nodes quickly
(see Algorithms 6, 8 and 11).

M1: The results from the algorithm convergence experiments show that each
algorithm has converging properties. However, this requires running the al-
gorithm using a dampening factor and/or limiting the number of iterations.
This is due to their innate property that the network scores converge towards
each other. If the algorithms run indefinitely, then eventually all scores in the
network converge to the same value.
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M2: Another benefit of MAXDIF is the property that a node’s score is at most
raised with the absolute difference between itself and its neighbours, without
the neighbours’ score being able to decrease. This prevents the swapping be-
haviour that LISC and NORMLISC tend to show.

M3: The drawback of f and g is that they introduce more free parameters into
the model, which makes tuning the model difficult. Since MAXDIF does not
use these functions, it conforms more to the limited parameter requirement
than LISC and NORMLISC

M4: A benefit of MAXDIF is that it inherently looks at the PageRank of its
neighbours to assign more of its ‘share’ to nodes that have a more critical posi-
tion in the network, which is not a property that LISC andNORMLISC possess.

M5: In terms of complexity, all algorithms have a time and space complexity
in the order of O(m). This is not ideal if the desire is to run multiple iterations
over a network consisting of billions of links. However, given that networks
are sparse enough, the run time and space occupation are manageable since the
algorithms do not need to run for many iterations to update the neighbours.

Limitations

All in all, MAXDIF has fewer tunable parameters and spreads can spread risk
in a targeted way. The main drawback it has compared to LISC and NORM-
LISC is that it has less freedom in modelling interactions between high and
low scores due to the absence of influence and susceptibility functions, such
as low scores being able to ‘pull’ neighbour scores down. This freedom is im-
mediately the main advantage of LISC andNORMLISC overMAXDIF because
it enables the user to model complex interactions between nodes. The main
drawback for LISC and NORMLISC is that this freedom introduces free pa-
rameters that have to be optimized. The formulation and validation of f and
g can be very arbitrary, so guarantees cannot be made either about the con-
vergence. Another drawback that LISC and NORMLISC have is the swapping
phenomenon, which could be very undesirable in certain circumstances. An-
other trade-off that can be considered is whether or not normalization is re-
quired in the network to ensure an even impact for each node in the network.
NORMLISC andMAXDIF have built-in normalization, whereas LISC does not.

Finally, the conformance to the requirements was mostly tested using test net-
works instead of real-world networks. Requirements D1-D6 and M3-M4 are
about the designed properties of the algorithms (e.g., using influence and sus-
ceptibility or considering the position in the network). These properties hold
true in any case, therefore they may also hold true for real-world networks.
M1 and M2, however, are not evaluated using real-world networks. For M1,
it may be reasonably assumed that the converging properties hold true due to
the innate design of the algorithms to converge. For M2, it can be assumed
that swapping may occur in real-world networks because swapping depends
on the formulation on f and g . However, these assumptions about M1 and M2
holding true in a real-world scenario should be confirmed with experiments.
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7
Conclusion

I
n this work multiple algorithms, LISC, NORMLISC and MAXDIF, are
designed to compute risk scores for domains using a domain-domain
network constructed from passive DNS data. These risk scores reflect
the perceived risk of making connections to the domains and can be uti-

lized to preemptively block malicious domains from being accessed in order to
protect the IT network.

First, some preprocessing steps are applied before a domain-IP network is con-
structed by linking domains to IP addresses. Once the construction has hap-
pened, domains are projected to a domain-domain network if they share an
IP address. However, the projection from domain-IP to domain-domain intro-
duces an exploding number of links. To this end, heuristics such as filtering
nodes with a large degree and domain aggregation assist in the creation of a
network with a manageable number of links. Nodes with a degree < 3000 are
projected directly to the domain-domain network, and IP nodes with a de-
gree ≥ 3000 are placed ‘as is’ in the network along with their neighbours, in or-
der to limit the number of projected links. Finally domains which are directly
linked to each other via CNAME are also added to the one-mode projection.

Furthermore, risk scores of domains can be computed locally by using one of
the three designed algorithms. The three algorithms all have a time and space
complexity in the order of O(m). This means that the algorithms’ time and
space requirements scale linearly with the number of links in the network.
In practice, sparse networks finish in a feasible time. However, this becomes
increasingly harder when the network is denser. After experimentation, it is
determined that the use of a dampening rate and a limited number of itera-
tions has a higher likelihood of ensuring that the algorithms converge locally.
If more freedom in modelling complex interactions between nodes is desired,
either LISC or NORMLISC can be used, depending on whether or not normal-
ization is required. This approach has the drawback that swapping can occur.
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If the number of free parameters needs to stay limited and swapping is an un-
desired property, then MAXDIF can be used.

Furthermore, given a dampening rate of 1 and an unlimited amount of itera-
tions, LISC and NORMLISC converge to a global value between the minimum
andmaximum initial score in the network. The exact height of this global score
depends on the formulation of the influence and susceptibility functions f and
g . MAXDIF, however, converges to the maximum initial score in the network,
given the same conditions.

The main limitation of this work is that there is no ground truth to validate
the outcome of the algorithms. The discussed algorithms present a method to
estimate the risk to make connections to domains, but it cannot be said with
certainty which type of estimation is more applicable in a real-world scenario.

The next steps could be to design preprocessing and projection heuristics such
that more information is kept for the creation of the domain-domain network.
Additionally, more types of relationships may be introduced to the network
whereby some relationships are stronger than others. One way to deal with
this is by transforming the domain-domain network to a weighted network,
where each link has a weight denoting the ‘strength’ of the relationship. An-
other way to deal with this is by exploring multiplex networks, where only
links are placed between nodes when they are deemed strong enough, depend-
ing on a threshold defined by experts. In addition, distributions can be drawn
of score differences between node pairs throughout a number of iterations in
order to get a clearer picture of the convergence of each algorithm. Also, more
exploration could be done with respect to the properties of the domain-IP and
the domain-domain networks, e.g., their connectivity, the size of their giant
component and their sparseness. Furthermore, another goal is designing an
algorithm that can model complex interactions (e.g., through influence and
susceptibility functions) whilst also eliminating the swapping phenomenon.
In the current case, a trade-off needs to be made about what requirement is
more important. If eliminating swapping is more important, then it means
that MAXDIF has to be picked, but also that more complex relationships can-
not be modelled. Additionally, the experiments in this thesis were conducted
in the static case. The algorithms also need to be tested in the dynamic case on
real-world networks to see if they still conform to the listed requirements. An-
other step is to build a validation set refereed by cyber security experts. This
validation set should contain the scores for each node in the network for two
timestamps. This set can then be used to compare to the outcomes of the al-
gorithms in order to measure algorithm performance. A validation set would
also open up more ways to approach the problem of risk score computation,
such as a machine-learned ranking problem.
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A Update example LISC

An example update (see Algorithm 6) can be found below. See Figure 5.5 for
an example network. Numbers with long tails are rounded to three decimals.
See Figure 1 for an example of a network.

Figure 1: An example of a scored network of size n = 3. Node C’s risk score is
updated to ‘1’ (from 0.5) in line 2.
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B Update example NORMLISC

See Figure 2 for an example of a network.

Figure 2: An example of a scored network of size n = 3. Node C’s risk score is
updated to ‘1’ (from 0.5).
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T ′′ = T ′ ⊘ ((T ′⊤ ·~e
|~P |)⊗~e|~P |)
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C Update example MAXDIF

See Figure 3 for an example of a network.

Figure 3: An example of a scored network of size n = 3. Node C’s risk score is
updated to ‘1’ (from 0.5).
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D LISC: Varying with F and G

Figure 4: [F andG]: Left: convergence of medium network. Right: convergence
of large network

Figure 5: [F and G]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 6: [F and G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 7: [With F, without G]: Left: convergence of medium network. Right:
convergence of large network

Figure 8: [With F, without G]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 9: [With F, without G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 10: [Without F, with G]: Left: convergence of medium network. Right:
convergence of large network

Figure 11: [Without F, with G]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 12: [Without F, with G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 13: [Without F and G]: Left: convergence of medium network. Right:
convergence of large network

Figure 14: [Without F and G]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 15: [Without F and G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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E LISC: Varying with the rate

Figure 16: [Rate=1
t ]: Left: convergence of medium network. Right: conver-

gence of large network

Figure 17: [Rate=1
t ]: Convergence of the medium network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 18: [Rate=1
t ]: Convergence of the large network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 19: [Rate= 1
1.05t ]: Left: convergence of medium network. Right: conver-

gence of large network

Figure 20: [Rate= 1
1.05t ]: Convergence of the medium network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 21: [Rate= 1
1.05t ]: Convergence of the large network over

[1,2,3,4,5,10,50,100,1000,10000] iterations

78



Figure 22: [Rate= 1
2t
]: Left: convergence of medium network. Right: conver-

gence of large network

Figure 23: [Rate= 1
2t
]: Convergence of the medium network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 24: [Rate= 1
2t
]: Convergence of the large network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 25: [Rate= 1
t2
]: Left: convergence of medium network. Right: conver-

gence of large network

Figure 26: [Rate= 1
t2
]: Convergence of the medium network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 27: [Rate= 1
t2
]: Convergence of the large network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 28: [Rate= 1
t5
]: Left: convergence of medium network. Right: conver-

gence of large network

Figure 29: [Rate= 1
t5
]: Convergence of the medium network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 30: [Rate= 1
t5
]: Convergence of the large network over

[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 31: [Rate= 1
t10

]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 32: [Rate= 1
t10

]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 33: [Rate= 1
t10

]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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F LISC: Weighted mean, rate=1

Figure 34: [Rate=1]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 35: [Rate=1]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 36: [Rate=1]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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G NORMLISC: Varying with F and G

Figure 37: [F and G]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 38: [F and G]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations

89



Figure 39: [F and G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 40: [With F, without G]: Left: convergence of medium network. Right:
convergence of large network

Figure 41: [With F, without G]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 42: [With F, without G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 43: [Without F, with G]: Left: convergence of medium network. Right:
convergence of large network

Figure 44: [Without F, with G]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 45: [Without F, with G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 46: [Without F and G]: Left: convergence of medium network. Right:
convergence of large network

Figure 47: [Without F and G]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 48: [Without F and G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations

96



H NORMLISC: Varying with the rate

Figure 49: [Rate=1.05t]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 50: [Rate=1.05t]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 51: [Rate=1.05t]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 52: [Rate=2t]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 53: [Rate=2t]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 54: [Rate=2t]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 55: [Rate=t2]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 56: [Rate=t2]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 57: [Rate=t2]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 58: [Rate=t5]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 59: [Rate=t5]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 60: [Rate=t5]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 61: [Rate=t10]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 62: [Rate=t10]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 63: [Rate=t10]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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I NORMLISC: Weighted mean, rate=1

Figure 64: [Rate=1]: Left: convergence of medium network. Right: conver-
gence of large network

Figure 65: [Rate=1]: Convergence of the medium network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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Figure 66: [Rate=1]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations
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J MAXDIF: Varying with the rate

Figure 67: [Rate= 1
2t
]: Convergence of the medium network over [1,2,3,4] iter-

ations
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Figure 68: [Rate= 1
2t
]: Convergence of the large network over [1,2,3,4] iterations
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Figure 69: [Rate= 1
t2
]: Convergence of the medium network over [1,2,3,4] iter-

ations
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Figure 70: [Rate= 1
t2
]: Convergence of the large network over [1,2,3,4] iterations
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