A4:E-¥p Universiteit
ey Leiden

Master Computer Science

Risk score propagation algorithms for
domain-domain networks

Name: Prashand Ramesar
Student ID: 51439642
Date: 26/04/2019

Specialisation: Computer Science and
Advanced Data Analytics

1st supervisor: dr. Frank Takes

2nd supervisor: dr. Daniél Worm [TNO]
Other supervisor: ir. Alex Sangers ~ [TNO]
Other supervisor: ir. Harm Schotanus [TNO]

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Organizational computer networks are at risk of being compromised by mak-
ing connections to malicious domains, which can lead to sensitive information
being stolen by cyber criminals. It can therefore be helpful to have an esti-
mation of the risk level of domains, expressed as a risk score, before connec-
tions are made. To this end, we explore network science methods to construct
domain-domain networks from passive DNS data. We propose three score
computation algorithms that can calculate risk scores for domains. Two of our
proposed algorithms (LISC and NORMLISC) are capable of modelling com-
plex interactions between nodes in the network. However, these algorithms
have the unwelcome properties that lower risk scores can be computed for a
node than for its neighbours which have higher scores in the initial state (i.e.,
‘swapping’) and that the position of the node in the network is not taken into
account for score computation. In contrast, our third algorithm (MAXDIF)
has fewer free parameters, takes the position of nodes in the network into ac-
count and does not suffer from ‘swapping’, but gives no freedom in modelling
complex interactions between nodes. All in all, computing risk scores is now
possible using our proposed algorithms.

Acknowledgements

First and foremost I would like to thank Frank for giving me the green light to
start my graduation internship at TNO and being a very involved supervisor
throughout the entire project. Despite having a busy schedule, Frank made
sure to take the time to meet in person frequently, providing me with great
advice and feedback. When meeting in person was not possible, Frank was
always available via mail to help me out with any questions I had.

Of course, many thanks go out to Daniél, Alex and Harm for guiding me
throughout the project as well. Alex was a very great weekly supervisor in
all dimensions. Not only did Alex provide guidance, he was also an amaz-
ingly pragmatic listener who managed to take everyone’s interests at heart and
succeeded in finding a good consensus between everybody’s expectations re-
garding this project. Besides this, Alex also made sure that I got a proper in-
troduction to TNO and helped me with any other practicalities. Harm was also
involved weekly since the beginning of my project, providing me with much
needed cyber security insights and facilitating access to the TNO malware data
so that I could use it for my research. Harm even took the time to revise parts
of my thesis regarding cyber security and DNS despite being on leave. Daniél
has also been involved since the first stages of my project and promised to pick
up the roles as weekly TNO supervisor and as second reader for the last two
months of my project, which he did splendidly. I cannot be thankful enough
for all the time and energy that has been spent by everyone into ensuring a
successful completion of the project.

I would also like to express my gratitude to TNO department Cyber Security &
Robustness as a whole for making this very interesting project more fun. I can
honestly say that my time at TNO was very pleasant and that I enjoyed coming
to the office to work on the project. I have had very pleasant and insightful
chats with people from CSR, without whom my project would have certainly
been a little less fun.

Lastly, I would like to thank Mnemonic for providing me with a prepared pas-
sive DNS data set that I was allowed to use throughout my entire project.

Thank you all,
Prashand

ii

Contents

(I_Introduction 1
2 Preliminaries| 4
2.1 Networksciencel o Lo o 4
2.2 Domain Name System|. 6

3 Related workl 8
[3.1 Malicious domain detection] 8
3.2 Network science methods|. 10
3.2.1 Opinion formation models| 10

3.2.2 The PageRank algorithm| 11

3.2.3 Guilt by association modelling| 12

1 ibutionsl o oo oo 12

|4 Data description| 13
4.1 Passive DNSdatasetl 13
42 Maliciousdatasetl 14
4.3 Dataquality] 15

[Approach| 16
5.1 Outline of the approach|. 16
5.2 Network constructionl L. 17
[0.2.1 Overview network constructionf 17

5.2.2 Preprocessing steps for the passive DNS dataset| 18

5.2.3 Constructing the two-mode network| 19

5.2.4 Constructing the one-mode network| 19

5.2.5 Scoring the domains in the network|. 21

[5.3 Algorithmdesign| 23
5.3.1 Algorithm requirements| 23

5.3.2 Local Influence and Susceptibility Computation| 24

5.3.3 Normalized Local Influence and Susceptibility Compu- |

L tation|o o 27
[5.3.4 Maxima-based Diffusion| 29

5.3.5 Dynamic LISC, NORMLISC and MAXDIF 33

5.3.6 Time and space complexity] 36

|6 Experiments and results| 38
|6.1 Experimentalsetup|, 38
6.1.1 Network properties| 38

6.1.2 Algorithm experiments|. 39

|6.2 Results—Network properties|. 40

iii

6.3 Results—Algorithm experiments| 44
6.4 Discussion| Lo 52
[Z_Conclusionl 55
APDERdICES| . -« « o e 61
A Updateexample LISC|. 62
Update example NORMLISC|. 64

C Updateexample MAXDIF| 66
D LISC: VaryingwithFand G| 67
E LISC: Varying with therate[. 75
LISC: Weighted mean, rate=1| 87

G NORMLISC: VaryingwithFand G| 89
NORMLISC: Varying with therate| 97
NORMLISC: Weighted mean, rate=1| 107

J MAXDIF: Varying with therate] 109

iv

vi

Introduction

RGANIZATIONS such as financial institutions, insurance companies
and governments guard sensitive information in the interest of their
stakeholders. Computers within IT networks of such organizations
make connections to domains outside of their network, of which

some are potentially malicious in the sense that they host malware or any
other type of damaging content. An example of how infection can happen
is by domain hijacking, which entails an unauthorized takeover of a domain
name, which can then lead to impersonation and phishing practices [1I]. If this
type of damaging content infects one or more computers in the organizational
network, we speak of a compromised system. Having compromised systems
may lead to serious consequences such as significant financial damage [2]] or
theft of private data [3]. The stolen data can be used for malicious ends and
cause unwelcome impact on the organization and its stakeholders.

In malicious domain detection, the main challenge is to identify domains that
host malicious content, given a data set of domain data. Often, this is at-
tempted through analyzing Domain Name System (DNS) data [4]. This is
usually conducted by labeling domains as malicious or benign and designing
a system that aims to correctly predict maliciousness of unlabeled domains.
Various methods, ranging from machine learning to expert knowledge-based
methods, have been applied to compute domain labels or scores.

The approach in this thesis is similar to what is usual in malicious domain
detection, however the focus here lies on computing ‘risk scores’ of domains,
given dynamically evolving networks constructed from DNS data, where each
domain is assigned an initial score. A risk score provides an indication of the
perceived risk level of making connections to an external domain. The idea
here is that ‘topologically close’ domains (i.e., domains that are relatively close
to each other) within such networks are likely to exhibit similar behaviour. As
such, they are deemed similarly risky to visit, e.g., due to hacked web servers

with more domains hosted on one device. Should a domain be close to one or
more risky domains in the network, then it is more likely that the domain in
question is suspicious given its ties to the other suspected nodes. Ties between
domains evolve constantly, which in turn impacts the risk scores. An example
of a change is that a previously non-existent relationship between two domains
is suddenly relevant. This means that these domains should now be linked to
each other in the constructed network and that their risk scores influence each
other. Such changes can suddenly make a domain safe or dangerous to make
a connection to. As such, the risk scores of these domains have to be updated
in real time, which is a dynamic process. The focus therefore does not lie on
computing initial scores, but instead on the computation of risk scores given
initially computed risk scores using defined ties.

The approach to compute risk scores will be taken from a network science per-
spective. Network science is an interdisciplinary scientific field that is mainly
concerned with extracting knowledge from networks. Examples of such net-
works are found in society (e.g., social networks), nature (e.g., cellular net-
works) and communication systems (e.g., telecommunication networks) [5].
These networks can be created by first modelling all actors as nodes and draw-
ing links between actors if relevant interaction (e.g., two people are friends
with each other on a social network or two computers are sending messages
to each other) is occurring. For computing risk scores, it may be fruitful to
explore similar network science models such as opinion formation models, the
PageRank algorithm and ‘Guilt by association” models. These models namely
all have the property that they compute new scores for entities by taking rele-
vant ties between them into account.

This research project aims to work toward an approach that can take (enriched)
DNS data and risk scores from external sources as input in order to build a
‘domain-domain network’ (where nodes are domains and links denote a type
of relationship between the domains), which can subsequently be used to com-
pute and update risk scores for domains with the help of network science al-
gorithms. Computation should be possible on a global and a local scale. This
means that it should be possible to compute all scores at once, but also on a
local scale for one domain and its neighbours in the event of a newly detected
threat from external sources. Since the World Wide Web is estimated to scale
to over a billion domains, the approach also needs to be scalable in terms of
time and space complexity [6]. The main research question in this thesis there-
fore is:

How can network science methods be used to efficiently compute risk scores
of domains in dynamically evolving domain-domain networks?

This thesis is structured as follows. Chapter[2]introduces the required prelimi-
nary knowledge. Chapter [3|presents an overview of published work regarding
malicious domain detection and network score computation models that are
related to the work presented in this thesis. Chapter [4] describes the data that
is used to answer the research question. Chapter[5|presents the approach taken
and delves into the full construction of the network that will be used for the
experiments, along with the motivation behind choices that are made during

its construction. Furthermore, the requirements for the risk computation algo-
rithm, as well as the designed algorithms themselves, are presented. Chapter|]
presents the experimental setup that will be followed to answer the research
question, the experimental results and lastly a discussion of these results. The
thesis concludes with Chapter |7, which provides the conclusions drawn from
the research, research limitations and future work.

Preliminaries

THIS CHAPTER introduces preliminary concepts from both network sci-
ence (Section and the Domain Name System (Section . These
preliminaries present the required knowledge to understand the con-
tents of this thesis.

2.1 Network science

A network consisting of nodes and links can be formally defined as G = (V,E),
where V denotes the set of nodes and E denotes the set of links. The total
number of nodes |V| and links |E| in the network will be represented as n and
m, respectively. A network can be directed or undirected, referring to whether
or not the links have a defined direction. The degree of a node v (notation:
deg(v)) denotes the number of neighbour nodes for a node v € V. The indegree
and outdegree of a node v denote the number of incoming and outgoing links
for v respectively. The neighbourhood N(v) denotes the set of neighbours of
v. A path is a sequence of links between two nodes, whereby the length of
the path is the number of links in this sequence. The distance d(v, w) denotes
the shortest path length between node pairs v,w € V. The average distance d
between all node pairs v,w € V can be calculated as follows:

- 1
d= p— Z d(v,w) (2.1)

n(n-1
v,weV

The distance distribution for G denotes the total number of nodes that all
nodes in V can reach at distance 1,2,3,..,max(d(v,w)). The average distance
for G denotes the number of nodes a node in V can reach on average at each
distance. See Figure 2.1|for an example of an undirected network and the use
of the formal notation given above.

Figure 2.1: An example of an undirected network G = (V,E) with the fol-
lowing properties: V ={A,B,C,D,E,F}, E = {(A,C),(B,D),(C,D),(D,E),(E,F)},
n=|V|=6,m=|E|=5,deg(D)=3,d(AF)=4,4d(G)=2.2.

In this thesis two types of networks are used, namely one-mode networks and
two-mode networks. Two-mode networks are also known as bipartite networks.
This means that the network consists of two different sets of nodes where the
links exist only between nodes from two different sets, but not between nodes
from the same set. In contrast, one-mode networks, such as the one in Fig-
ure only consist of one type of nodes. The notation by Latapy et. al [7]
will be adopted for these two-mode networks. A two-mode network can be
formalized as G = (T, L, E), where T is the ‘top’ set of nodes, L is the ‘bottom’
set of nodes and E C T x L is the set of links in the network. See Figure [2.2]for
an example.

Figure 2.2: An example of an undirected two-mode network G = (T, L, E), with
the properties: n =10, m =8, deg(1)=2,d(1,5)=4,T={1,2,3,4,5},
1L =1{6,7,8,9,10}, E = {(1,6),(1,7),(2,7),(2,9),(3,8),(3,10),(4,10),(5,9)}.

Latapy et al. also define projection methods, with which two-mode networks
can be projected to one-mode networks. A T-projection keeps all nodes in T
and places links between nodes if they are linked to the same node in L in the
two-mode network. For the L-projection, the rules are analogously applied.
In this thesis, we assume that these projected networks are unweighted. Un-

weighted networks carry no additional information as weights on the links. An
example of a weighted network could be a road map network, that shows the
distance between destinations on the links.

In this thesis, certain network science algorithms will be used as inspiration
for the models that will be proposed later. Some of these algorithms, such as
PageRank, compute scores iteratively and can be run using Markov chains [8].
It is helpful to know what Markov chains are in order to understand how these
algorithms and the proposed models work. Markov chains require a vector

Pt of size n, where the elements ﬁf, 133,..,152 are the scores, representing the
likelihood of the element being in a certain state, for nodes 1, 2, .., n at iteration
t. The other requirement is an #n x n transition matrix T, where T, ,,, with
v=1,2,.,nand w = 1,2,..,n, is the ‘influence’ which node v exercises on w.
Scores can then be updated iteration-wise using Formula This formula is
an example of a solution method called the power method.

pt=pt-ur (2.2)

2.2 Domain Name System

The Domain Name System (DNS) is a system which enables users to surf the
Internet by resolving domain names (e.g., www.google.com) to the correct IP ad-
dresses (e.g., 172.217.19.206). The DNS is structured in hierarchical levels. At
the top, there is the root level (operated by root name servers), which DNS uses
to direct requests to the right top-level-domain (TLD) server. TLDs are the first
distinguishable level of domain names which occur at the end of the domain
name (e.g., .com, .edu and .org). The next levels after the TLD are, in order,
the second level domain (SLD), which is a subdomain of TLD, and other lower
level domains that act as subdomains to the domain that precedes them [9].
See Figure[2.3|for an illustration of the domain name hierarchy.

& n

e=—=—===
L.

edu com gov be us

TOP-LEVEL DOMAIN
NAMES (TLD)

.
SECOQEE%EE;%&L%?MMN | lemonde I [nwmes] |bmsse\i§ludies| |]
T
SUBDOMAIN NAMES E tp] [www!] [J

FQDN

Figure 2.3: An overview of the leveled DNS hierarchy. Illustration from [10].

IP addresses refer to the specific network addresses of the hosts that store the
domains. Once the DNS has found the correct IP address for the queried do-
main, the IP address is sent to the user whose machine can subsequently use
it to make a connection to the right server. IP addresses exist in two protocols,
namely IPv4 (32-bit long address) and IPv6 (128-bit long address).

Requests to a DNS server are sent as a query (e.g., a domain name) and re-
sponses are given by DNS as an answer (e.g., an IP address). There are different
kinds of DNS resource records (which map IP addresses to domains or domains
to domains) [11]], of which four are relevant :

1. A-requests: The DNS is queried for a domain and returns one or multiple
IPv4 address.

2. AAAA-requests: The DNS is queried for a domain and returns one or mul-
tiple IPv6 address.

3. PTR-requests: The DNS is queried for an IP-address and returns a domain
name.

4. CNAME-requests: The DNS is queried for a domain name with an alias and
returns a canonical name.

These four types of resource records are relevant in Chapters[4/and |5} because
they will play a role in defining the actors (i.e., the domains) and the relation-
ships (i.e., the links) for the network that will be constructed from the DNS
data.

Related work

OR score computation we apply knowledge and methods from mali-
cious domain detection and network science. For malicious domain
detection, many different kinds of approaches are used. In a survey
on malicious domain detection, Zhauniarovich et al. categorize these

steps as DNS data collection, data enrichment, feature extraction, algorithm design
and validation of results [4]. The aim is to roughly follow this framework in
order to approach the research question formulated in Chapter|l| For the al-
gorithm design step, network science algorithms are evaluated based on their
properties to determine the requirements to successfully calculate and update
scores within a network. This chapter will first introduce the step-by-step
malicious domain detection framework as defined in [4]], as well as relevant
publications within this field in Section Next, Section [3.2 will provide an
overview of relevant network science methods. Lastly, the main contributions
that extend the related state-of-the-art publications are discussed in Section|3.3|

3.1 Malicious domain detection

When malicious domain detection models are built, usually DNS data sets are
used, which can be collected passively or actively. Passive DNS data records are
collected by simply listening to DNS requests and storing a summary, e.g., as
used by Choi et al. [12]]. Active DNS data consists of actively querying domain
names at servers and recording the records [13]].

The data can then be enriched with different data sources to detect malicious
domains, such as the geo-location [14], the ASN [15]], registration records [L6]],

resource records [17] and other types of network activity data [18].

Once the required data has been collected, Zhauniarovich et al. note that many

different types of features can be extracted [4]. These features can be:

1. Internal: features directly taken from DNS data, such as average TTL [19].

2. Contextual: features computed from DNS data and other data sources,
such as the number of ASNs (Autonomous System Number) in the net-
work [20].

3. DNS data set dependent: features that are highly dependent on the chosen
data set, such as the IP addresses which are linked to a domain [21]].
These change over time and depend on the time period in which the data
are collected.

4. DNS data set independent: features that do not depend on the information
collected in the DNS data set, such as the 2 or 3-gram distribution within
a domain name [22].

5. Mono domain: features calculated for every single domain independently,
such as all countries in which a specific domain is hosted [L5].

6. Multi domain: features determined for a set of domains rather than for
all of them separately, such as the number of shared ASNs [23].

Zhauniarovich et al. distinguish two methods to use these features for mali-
cious domain detection, namely knowledge based methods and machine learning
based methods [4]]. Knowledge based methods are mostly derived by build-
ing systems or frameworks that look for certain patterns in the data. These
patterns are based on observations made by individuals who possess domain
knowledge. An example would be the work of Sato et al., where they count
the co-occurrences of malicious and other domains in simultaneous queries
based on the idea that a lot of malicious domains are queried together [24].
Machine learning based approaches, in turn, can be divided into supervised
learning, unsupervised learning and semi-supervised learning. Supervised ap-
proaches require completely labeled training and testing data. This can be
done with the help of blacklisted and whitelisted domains in order to train
the machine learning model on the data set. For instance, Fukuda et al. make
use of Classification and Regression Trees, Random Forests and Support Vector
Machines in their approach [25]. With semi-supervised learning approaches,
both known and unknown domains are used in the method. This can for in-
stance be done using a graph-based approach, where unknown domains can be
identified based on propagation [26]] or clustering techniques [27]. In unsuper-
vised learning approaches, the goal is to build a set of features and relation-
ships between domains in order to separate benign domains from malicious
domains without requiring any labeled data. Usually clustering approaches
are taken [28]]. In hybrid approaches such as Notos [22], a blend of different
techniques and algorithms is used to detect malicious domains.

Validation is usually done using a ground truth, i.e., malicious and benign do-
mains are determined using black and whitelists, respectively. Blacklists are
lists that provide an overview of domains that are known to be malicious.
Whitelists provide an overview of trusted domains. This allows one to label the
domains accordingly and validate the results using metrics such as True/False

Positive Rates (e.g., as done in Haddadi et al. [29]) and True/False Negative
Rates (e.g., in Chiba et al. [20]). Furthermore, other metrics such as Precision
(e.g., proposed in Lee et al. [[30]]), Classification Accuracy (e.g., as seen in Hsu
et al. [31])), F1-score (e.g., in Fukuda et al. [25]) and Area Under Curve (e.g., in
Manadhata et al. [32]]) can also be used to determine performance.

3.2 Network science methods

There are multiple ways to achieve computation of domain scores in many
different settings. Here we discuss algorithms performing tasks similar to our
task. Namely, we will discuss four related techniques derived from opinion for-
mation (as explained in Subsection [3.2.1), link analysis (see Subsection
and Guilt by Association modelling (in Subsection [3.2.3). These techniques
contain the main ingredients required for the design of the models for our task.
Additionally, the first two models make use of Markov chains, as explained in
Section

3.2.1 Opinion formation models

Opinion formation is a widely researched area, starting with a leading theory
by Katz and Lazarsfeld, who show that individuals’ opinions are formed by
peer influence from opinion leaders (i.e., individuals who are influential), and
not just by the media [33]]. This stimulated research for models that show how
opinions form and converge within influence networks. Leskovec et al. discuss
two kinds of ‘diffusion models’ that attempt to model individuals’ product
purchases based on the behaviour of their peers, namely threshold models and
cascade models [34]. Threshold models are run on weighted networks where an
individual will adopt an idea (e.g., the idea to buy a product) if the weighted
average of all direct neighbours with this idea exceeds a predefined threshold.
Cascade models are also run on weighted networks, but are probabilistic in
nature where an individual will adopt an idea with a probability, dependent
on whether a neighbour also adopts the idea.

Another form of opinion formation in networks are models that attempt to
model consensus, i.e., if members of a network end up agreeing with each other.
DeGroot introduced a model [35]], where each individual v has an initial opin-
ion F, about an idea, where 0 < F, < 1. These opinions are stored in a vector
F, such that F = (Fy,F,,..,F,). There also exists a n x n transition matrix P
with elements P,,, denoting individual v’s influence on node w’s opinion in the
network, with 0 < P,,, < 1. The opinion vector is updated iteratively using a
Markov chain (see Formula[3.1):

F® = Ft-p (3.1)

Here t denotes the time step for which F is calculated. This model has been
studied extensively. For instance, Golub et al. [36] show that convergence in
this model only happens when the most influential individual becomes less
influential as the total number of individuals k increases in the network. In

10

another related work, Heidergott et al. argue that communications between
individuals occur randomly and not constantly with all peers [37]. This means
that opinions for each individual need to be updated stochastically by taking
random draws from the set of peers instead of updating for all peers in each
iteration. They also show that large societies do not converge when everybody
has equal influence on each other.

3.2.2 The PageRank algorithm

The PageRank algorithm [38]] belongs to the class of link analysis algorithms,
which are mostly used for information retrieval purposes, such as the ranking
of documents by relevance. Link analysis refers to the study of relationships
between entities, such as documents or web pages, that refer to each other [39].
This ranking is achieved by linking documents in a network and calculating
the ‘authority’ or “presence’ for each document in the network [40].

PageRank is a method to compute scores iteratively while taking the node’s im-
portance in the network into account. PageRank works based on the principle
of a random surfer surfing the web, starting at a document. This surfer then
chooses an outgoing link to another document with a given probability and
keeps visiting documents iteratively. To prevent the surfer from being trapped
at a document without outgoing links, the surfer can ‘teleport’ to a random
document in the network with probability 1 if he is trapped, and with proba-
bility o if otherwise. Visiting outgoing links hence occur with probability 1 - 0.
After many iterations, the ‘importance’ or ‘PageRank’ is reflected by how often
the surfer has visited each node in the network. With the PageRank algorithm,
being linked to more important nodes is beneficial for the individual’s PageR-
ank score, since more important nodes give the neighbours a higher probabil-
ity of being visited by the random surfer. PageRank can be calculated using a
Markov chain and starts out with a vector X! of size n documents, where values
X{, X;,..,Xf1 correspond to the respective PageRank value for each node v € V.
These values can be initially set to a value between 0 and 1, e.g,, %, which is

initialized equally for every node. X! is iteratively multiplied with an n xn
transition matrix P, which contains the probabilities P,,,, with v =1,2,..,n and
w=1,2,..,n at which the surfer chooses to visit node w from node v. Often, the
PageRank algorithm is implemented with a parameter €, which acts as a stop-
ping condition and indicates the threshold for the total amount of change in
values between iterations. Once this threshold is no longer met, the algorithm
terminates and returns the PageRank for each node in the network. All in all,
this iteration process boils down to Formula[3.2]for a certain P:

Xt =XtVp (3.2)

Here, P is built by determining all possible hyperlinks hy, h,,..,h;, € H that a
surfer can click from a given web page v. Then, the probability of visiting a

random web page in N(v) from v is (1 —9)- ﬁ +0- % and the probability of

visiting any web page through teleportation is - 1. The vector X("1) is then
iteratively multiplied with P until the total change in values is below e.

11

3.2.3 Guilt by association modelling

In biological research, ideas about the unknown functions of a protein are of-
ten derived from connected proteins for which the functions are known [41]].
This method is called Guilt by association (GBA). This can be done with protein-
protein interaction (PPI) networks, where the set of nodes consists of proteins
and the links exist between proteins that interact with each other.

Qian et al. take such a GBA approach in a PPI network [42]. The PPI network
G = (V,E,w), where w denotes the weights of an edge e € E which reflect the
strength of association between the proteins. They also define two functions
Y:V = Rypand F: V — Ry, which are functions of prior and posterior ev-
idence respectively. Y(v) assigns a higher score to a node v if it is believed
beforehand that the protein is linked to a disease and a lower score if it is not.
F(v) calculates the posterior score for each node after an iteration in which
information from neighbours is propagated to neighbour nodes. N(v) is de-
fined as the set of direct neighbours and « € (0,1) is a parameter that reflects
the importance of the information absorbed from the set of neighbours N(v).

Lastly, if the edge weights are defined as w;, , = w, ,,/+/deg(v) x deg(u), then the
posterior scores can be calculated using Formula

Fo)=al) Fuw),]+(1-a)Y@) (3.3)

ueN(v)

3.3 Main contributions

We discussed several graph-based approaches, such as clustering of traffic data [27]]
and belief propagation techniques that are probability-based [26]]. In contrast,
we bring knowledge from malicious domain detection and network science
together by first exploring methods to link domains to each other through es-
tablished relationships using passive DNS data. After the resulting domain-
domain network is constructed, we provide the domains with initial risk scores
and design algorithms which are inspired by certain elements of the algorithms
discussed in this section to efficiently compute their risk scores. After experi-
mentation, an analysis of the benefits and drawbacks of each proposed model
is given, followed by a discussion on the feasibility of each model in differ-
ent use cases. As far as we know, such an approach has never been taken to
determine the risk level of domains.

12

Data description

HE DATA THAT WILL BE USED in this work comprises two data sets, namely
a passive DNS data set supplied by Mnemonic [43]] (discussed in Sec-
tion and a malicious data set supplied by TNO (see Section [4.2),
which is a list of domain names that were malicious at a point in
time, as derived from public blacklists. Lastly, Section is devoted to the
data quality of these data sets.

4.1 Passive DNS data set

The passive DNS data set contains 84,599,816 records, with data accumulated
from 2012-05-20 until 2018-01-05. Each row is a unique combination of query,
RR Type and answer. A sample overview of the records can be found in Ta-
ble[4.1l Notable columns are:

(i) Query: the requested domain.

(ii) Answer: One or more answers in the form of an IP address, domain name
or text depending on the RR Type.

(iii) RR Type: the type of record. A- and AAAA-records are made from a domain
to an IP address. PTR-records are connections made in reverse, i.e., from
an IP address to a domain. Lastly, CNAME-records are connection made
directly between two domains (see Section [2.2).

iv) Answered: the number of times a specific DNS request has been answered.
p q
(V) First seen: the time stamp at which the relation was first seen.

(vi) Last seen: the time stamp at which the relation was last seen.

13

ID | Query RR type | Class | Answer TTL | Answered | First seen | Last seen
. . blogspot.l.
1292 | just-sh4ring. 2017-12-25|2017-12-25
3169 | blogspot.com.br | CNVAME | IN' | googleuser 1600 |2 15:32:14 | 15:32:14
content.com
1292 | www. 188.114. 2017-12-29|2017-12-29
3239 | googleseo.eu A IN 252.52 72001 14:26:54 14:26:54

Table 4.1: A sample overview of the passive DNS data supplied by Mnemonic.

4.2 Malicious data set

The malicious data set contains 19,035,818 records with data accumulated
from 2016-11-17 until 2018-10-16. The data is collected from dozens of black-
list sources. The entries in this data set are from domains that also exist in the
same time frame as in the Mnemonic data set. A sample overview of the data
can be found in Table[£.2] Notable columns are:

(i) Domain: the domain that is flagged as malicious (e.g., as malware). It is
not recommended to visit these domains!

(ii) Source: the source blacklist from where the data is retrieved.

(iii) Reason: the reason why the domain was detected as malicious. There are
different kinds of reasons, namely:

DGA (Domain Generation Algorithm): DGA domains are domains
that are created in large numbers and can act as communication
points that send and receive updates for malicious ends, such as
creating botnets or more DGA domains.

CNC (Command and Control): CNC domains can actively send com-
mands to compromised systems, for instance to steal information.

Malware: Malware is hosted on the domain, which can be used to
compromise as many systems as possible. Once compromised, the
malware can cause damage, for instance by stealing information.

Phishing: Phishing domains prompt the visitor to enter sensitive pri-
vate information in an attempt to steal it.

Fraud: Fraud domains are domains that pretend to be legitimate,
which can in turn be abused to perform phishing attempts.

Spam: Spam domains are domains that send many unsolicited mes-
sages to internet users, often in a phishing attempt.

Spyware: Spyware domains attempt to spread spyware, which is
software that monitors system activity, which is subsequently re-
ported to the creators of the spyware.

Mining: Mining domains can install software on systems, which
prompts the systems to start unauthorized mining of cryptocurrency.

(iv) First seen: the time stamp at which the domain was first seen on a public
blacklist.

(v) Last seen: the time stamp at which the domain was last seen on a public
blacklist.

14

ID Domain Source Reason | First seen Last seen

amazon.co.uk. http://mirrorl. 2016-11-17 | 2018-10-16

1297527 . malwaredomains.com | malware

security-check.ga) . 16:48:24 06:26:06
/files/domains.txt

http://mirrorl.

malwaredomains.com/ | malware

files/domains.txt

2016-11-17 | 2018-10-16
16:48:24 06:26:06

autosegurancabrasil
.com

1297528

Table 4.2: A sample overview of the malicious data supplied by TNO.

4.3 Data quality

Arguably, the most important aspects of data quality are correctness and com-
pleteness. Correctness refers to the degree to which the provided data entries
contain correct information and completeness refers to the degree to which the
data is complete. More incorrect data entries translate to poorer data correct-
ness. Similarly, the more incomplete data entries there are, (e.g., data entries
contain fields that are specified as null) the poorer the data completeness.

Considering the size of the data, a practical solution to assess correctness is by
taking samples and manually checking whether the samples align with general
expectations. For instance, among the most answered DNS requests in the pas-
sive DNS data set are the domains api.facebook.com, star.c10r.facebook.com,
googleapis.com, google.com and apple.com. It is fair to say that this is in line
with general expectations. While this test is restricted, it provides a certain
element of trust in the validity of a part of the data. For now, we assume that
the rest of the data is also correct.

In order to assess data completeness, columns in the data set can be queried
for their distinct values and counts. If these counts sum up to the total number
of entries in the data, then it can be said that the data for that specific column
is complete. Here, this is done for the RR Type column in the passive DNS
data set and for the Reason column in the malicious data set. Their respective
distributions can be found in Figures and For both columns, the sum
of the counts of all unique values is equal to the number of data entries in
the entire data set, which indicates completeness for these respective columns.
However, it should be noted that this data set may not be complete, due to
some malicious domains not being detected and blacklisted.

Distribution of all distinct values in the column "RR type" Distribution of all distinct values in the column "reasons"
of the Passive DNS data set of the malware data set

Figure 4.1: The distribution of the Figure 4.2: The distribution of the
unique values for the ‘RR Type’ unique values for the ‘Reason’
column in the passive DNS data set. column in the malicious data set.

15

Approach

HE OUTLINE OF THE APPROACH is first given in Section Section
will explain how the domain-domain network is constructed and
which research design choices were made for it. Section delves
into the different algorithms that are designed for risk score compu-

tation, given domain expert requirements and general model requirements, as
well as a theoretical time and space complexity analysis of the proposed algo-
rithms.

5.1 Outline of the approach

In summary, the approach follows the next steps:

1. Data collection (Sections
2. Preprocessing and feature extraction (Section |5.2.2)

3. Construction two-mode network (Section |5.2.3))

4. Projection and construction one-mode network (Section [5.2.4)
5. Scoring the domains (Section[5.2.5)

6. Requirements engineering (Section|5.3.1))

7. Design risk computation algorithms (Sections[5.3.2} [5.3.3} [5.3.4)

In Step 1, passive DNS data and malicious data are collected since they provide
the necessary data to answer the research question. In the second step, rela-
tionship features are defined from the data, with which a two-mode network
is constructed in Step 3. Step 4 discusses how this two-mode network is pro-
jected to a one-mode network (or a ‘domain-domain network’). Additionally,
the domains in the network are assigned initial scores based on a defined set

16

of rules in the fifth step. Furthermore, requirements for the risk computation
algorithms are determined in Step 6. These algorithms are finally proposed in
Step 7. A full overview of the network construction process (Steps 1 through

5) can be seen in Figure

data zet

Step 4

Step 3
Passive I:> Two-mode I::> O:;;:r:}?ﬁe [B
i network without

Step 2 Step 4 scores Step 5
Preprocessing
Feature extraction Projection Add scores
Filter: T-projection: 2
-Time frame -all domains with AU SLoTes:
-DNS records degree == 3000 <
-IF adresses Add: bE_aEE:?'Tvar\l{z:Iig?;:i
-Duplicates -all domains with pEai
Aggregate: degree = 3000 dlg sLorad.ds o -\/-
-Subdomains and IP neighbors

:> Whitelist

Malware
data zet

Step 5
Get wh

Step 5
Add whitelist

One-mode
network

_Filter: Add scores: £\
-Time frame -Domains that are
-DMS records iteli a
whitelisted are
-IP adresses scored 0
-Duplicates

Sort by count:
-Take fop 1000

:> Blacklist

Step s
Get blackiist

Step s
Add blackiist

-Domains that overlap with the one-mode

Filter: Add scores:
-Time frame
-Domains that are
Take: blacklisted are scored

network edge list

between 0.5 and 1,
based on decay rules

Figure 5.1: The entire construction process of the final network.

5.2 Network construction

This section concerns itself with the construction of the two-mode and one-
mode network, as well as a motivation for the implementation choices that
were made during network construction.

5.2.1 Overview network construction

Before we undergo the construction process, a few implementation choices are
made that solve certain issues related to the network construction. These is-

17

sues and solutions are explained in this section.

First, domains are only temporarily flagged as malware, for instance by a recov-
ered hostile takeover (domain hijacking) which prompted a domain to spread
malware. This means that domains that are malicious today can be safe tomor-
row. The passive DNS data set spans from 2012 until 2018, which is a time
period in which the risk scores of domains may have fluctuated too heavily.
It is therefore fruitful to work with a smaller snapshot of the time period in
order to get a more stable picture of domains and their risk scores. If domains
are malicious only once in a time period, then we can accurately estimate their
initial risk score in order to compute their perceived risk score. We choose to
take a month of data for the network construction, because we determine that
one month is a feasible time frame in which a node’s risk score is stable enough
and contains enough data to build a network with, without nodes being flagged
malicious multiple times.

The second issue is that a projection from a two-mode to a one-mode network
may lead to an exploding number of links in the projection. This is because, in
a two-mode network, all nodes that share the same connection with a node in
the other set are connected to each other in the projected one-mode network.
We choose to solve this by setting an upper limit for the node degree of nodes
that can be projected to one-mode in order to keep the network size manage-
able with respect to the number of links. To do so, we also choose to apply
preprocessing steps to the two-mode network in order to filter nodes out with
a large degree (e.g., large public IPs) as much as possible.

The third issue is that there are no domains for which it can be said with 100%
certainty that they are safe. Therefore, we create such a whitelist by taking the
top k most frequently requested and answered domains that are not flagged as
malware in the passive DNS data set. We check this list (we choose k = 1000)
manually in order to see whether these k domains are indeed commonly re-
quested and deemed safe in the public eye, such as google.com. All dubious
domains are to be removed from the whitelist. With dubious, we mean all
domains that we are not familiar with that seem as if they should not be re-
quested frequently. Here, k depends on the risk that one is willing to take to
introduce false positives to the data set. The larger the value of k, the larger the
probability that this occurs. The malicious nodes are only temporarily flagged
as malware within the specified time frame. The risk score depends on when
the domain was last flagged as malware. If the domain in question is not again
flagged as malware in the following days, then the risk score should lower as a
function of the time passed.

5.2.2 Preprocessing steps for the passive DNS data set

We choose to take the most recent month in the data sets as our time frame,
i.e., all A, AAAA, PTR and CNAME records that occur between December
5t 2017 and January 5%, 2018 as our snapshot to work with. Records that
contain public IP addresses with a large number of hosted domains are fil-
tered from the network. To reduce the scale of the network, some private
IP networks which host a high number of domains are also filtered from the

18

data. In this construction, the following (public) IP ranges (using CIDR no-
tation [44]) are filtered: ‘127.0.0.0/8’, ‘224.0.0.0/8 0’-t0-239.0.0.0/8 (Class D),
‘192.168.0.0/16°,10.0.0.0/8’, “172.16.0.0/12” and ‘0.0.0.0/8’. Another prepro-
cessing choice that is made is to aggregate all (sub)domains to second-level
domain (SLD) and top level domain (TLD) nodes. For example, if there is a
record that contains the domain|liacs.leidenuniv.nl, it will be aggregated to
leidenuniv.nl. There are exceptions, (e.g., domains ending with .co.uk) which
are aggregated to the general country code TLD/SLD format (e.g., bbc.co.uk).
This choice is made in order to keep the network relatively small and to pre-
vent an exploding number of links when the network is later projected to a
one-mode network. The benefit of this choice is a smaller computation time,
but the drawback is that the risk spread in the network is then also limited
to TLD/SLD, which means that the risk of individual subdomains cannot be
assessed. From this point onward, when domains are mentioned they will be
in this SLD/TLD format. This is the part of the domain name that can be reg-
istered by a private person or consumer.

5.2.3 Constructing the two-mode network

After taking all the necessary preprocessing steps, a two-mode (or ‘domain-
IP’ network [45])) can be constructed from the remaining data by linking all
domains and IPs together. An overview of the number of nodes and links of
this network can be found in Table[5.1} Without filtering the IP ranges from the
data and aggregating the domains, the domain-IP network would have counted
more nodes and links. While this does not lead to a very significant reduction
in size of the two-mode network, it does result into a significantly smaller pro-
jected network.

Nodes | Links

Domain-IP network (without preprocessing)
13,988,326 | 14,362,751
Domain-domain network (without preprocessing)
9,609,112 | 17,158,221,218+

Domain-IP network (with preprocessing)

9,936,525 | 13,693,977

Domain-domain network (with preprocessing)
7,140,913 | 746,713,939

Table 5.1: The number of nodes and links for the domain-IP and domain-
domain networks.

5.2.4 Constructing the one-mode network
The next step is to create a one-mode network (or domain-domain network)

from the domain-IP network using projection. A simple example of projection
on a network is given in Figure[5.2]

19

liacs.leidenuniv.nl
leidenuniv.nl

o
©

o O O

o</ : — o‘o

A

Figure 5.2: An example of a projection from two-mode to one-mode. On the
left, we see our two-mode network with T ={a,b,g,r} and 1L = {1,2,3}. Here
we define our projection rule to only draw a link between two elements in T

when they share a connection with an element in 1. The resulting projected
one-mode network can be found on the right.

A link between two domain names can be drawn if and only if indirect (e.g.,
by shared IPs) and direct (i.e., by CNAME) connections between these domains
exist. We define the domain-domain network as the network with all domains
as nodes and a link between two domains if the connection between them is de-
termined sufficiently strong. With sufficiently strong, we mean that we have to
determine a rule that says when it is appropriate to place a link between two
domains in the projection. Despite the filtering of IP addresses with a large
degree, there are still domains and IPs with high degrees, which results into
a network consisting of over 10? links. This demonstrates that such domain-
domain networks can quickly become unmanageable for score computation.

Ideally, our algorithms are capable of computing a risk score for all domains
in the network. Therefore, we try a projection method heuristic to preserve as
much information as possible while keeping the number of links manageable
in the projection. This heuristic starts off by setting cut-off points and project-
ing nodes and links only when certain conditions are met. The conditions can
be set as follows. First, only take nodes with < u links into consideration for
projection. Then, project a link between two domains:

1. if domain x is linked to at least § number of IPs, of which a are shared
with domain y

2. if domain x is linked to < f8 links, but x is sharing s% of its neighbour
links with p

After experimentation (see Section[6.1.1|for more information), our projection
rule is to set u = 3000, @« =1, p = 1 and s = 100% due to the limits of the
scope of this research. A cut-off point of 3000 keeps the number of links be-
low a billion in the domain-domain network. This size is in agreement with
the expectations of cyber security experts for the scale of real-world domain-
domain networks made from organizational DNS traffic data. All nodes with a
degree below 3000 are projected fully to the domain-domain network. All IPs
with a degree at or above 3000 are not projected, but added to the network in
‘two-mode’ as domain/IP pairs, i.e., just like how they exist in the domain-IP

20

network. These IPs are kept in the network and treated as if they are domains.
The justification is that it may be useful to include IPs with a high degree, be-
cause some IPs may be hosting a high portion of malicious domains, which
should automatically make other hosted domains with a lower risk score more
suspicious of being malicious. This means that these IPs are also assigned ini-
tial scores which will be updated according to the scores of their neighbours
and also that no post-processing will be required.

These IP address nodes will be given scores for computation and will be treated
just like a ‘regular’ domain. The final step in the creation of the domain-
domain network is the addition of CNAME records as links between nodes.
The number of nodes and links of the domain-domain networks projected from
both domain-IP networks are presented in Table With the preprocessed
domain-IP network, it results into a manageable network counting roughly
746.7 million links. However, without the explained preprocessing steps, the
projected network is too large to compute. In an attempt to construct this
network, the disk space occupation neared 2TB and the projected network
counted 17,158,221,218 links before the attempt was broken off.

5.2.5 Scoring the domains in the network

The final step in the construction of the network is the assignment of risk
scores to the domains. Whitelisted domains are in this case chosen by first
filtering the Passive DNS data set on the chosen time frame (i.e., December
5% to January 5™), RR type (A/AAAA/PTR/CNAME) and the right IP ranges.
Then we take the top k (we choose 1000). A frequency distribution for the
‘Count’ column is presented in Figure[5.3]

Frequency distribution of the Count column in the Passive DNS data set

107 4

Fregquency

10! 107 10° 107 10°

Figure 5.3: The frequency distribution for the ‘Count’ in the passive DNS data
set. The red line shows the cut-off point if k = 1000.

It can be seen in Figure that the frequency distribution follows a power
law and that its ‘tail’ contains all the records with the highest count. We find
that taking a top k of 1000 extracts a sizeable number of records from the tail,

21

namely all records with a count of at least 6,916,433. We also find that this
cut-off point is right at the point before the distribution becomes denser and
starts including significantly more records. It should be noted that the value
of k depends on the risk that one is willing to take to introduce false positives
into the data, accompanied with the trade-off that is made when manually
checking each domain to see if they are truly safe domains that are commonly
visited publicly. After this process is completed, each node is assigned a score
of 0 (safe) for the domain-domain network.

The malicious nodes are taken from the malicious data set by first filtering the
records on the chosen time frame. Next, all malware domains that also occur in
the domain-domain network (3,819 in total) are added to the blacklist. Since
a domain’s risk score can vary a lot over a larger time window, it is chosen to
score newly detected malware with a 1 (unsafe). A decay parameter is added
to the score over time, starting from the day it is not seen as malware anymore
(i.e., the ‘last seen’ entry in the record). In the view of cyber security experts, a
node is not deemed as unsafe but ‘neutral’ after 7 days of its last appearance on
public blacklists. This is a rough estimation which needs to be researched in
practice, but is a sufficient starting point for this work. Therefore, it is chosen
to set the decay parameter to —ﬁt, with ¢ being the number of days between
the domain’s last seen time stamp in the malicious data set and ‘now’ (also
a time stamp), i.e., ‘last seen’ - ‘now’. The score will keep decreasing by ﬁ
until 7 days have passed, after which the domain’s score is 0.5 (neutral). For
this snapshot of the data set, it is chosen to set ‘now’ to December 15". More
formally, we abbreviate ‘first seen’ and ‘last seen’ to FS and LS respectively.
The absolute difference in days between FS, LS and now can then be calculated
in order to decide the scores of malware nodes:

ILS —FS| (1_ |[now — LS|))

Score = {maX(O'S’ [now—FS[14 if LS < now

if (FS <now A LS > now) V FS = now Vv LS = now

A sketch of the equation above is drawn in Figure which provides a rough
overview of how the risk scores are determined.

Score
1

0.5 Time
FS LS

Figure 5.4: A sketch of the function shown in Equation that shows how
risk scores are determined. Given that FS and LS are fixed, ‘now’ can be placed
alongside the horizontal axis in order to obtain the right risk score.

All other domains that are not white- or blacklisted are neutral, which means
that nothing can be inferred about the initial risk of the domain. These other
domains are therefore given a risk score of 0.5. This concludes the final step of
the network construction.

22

5.3 Algorithm design

In this section, the algorithm requirements are presented in Subsection
Next we propose three different algorithms, LISC, NORMLISC and MAXDIF,
in Subsections5.3.2}[5.3.3|and [5.3.4} respectively. In each of these subsections,
first the algorithms are introduced along with the underlying concepts that
these algorithms work on. After this introduction, an explanation is given of
the computation steps of each algorithm, followed by the algorithm in pseu-
docode. Next, an iteration of each algorithm is worked out on an example net-
work in order to show how each algorithm works. This will all be discussed in
the static case, i.e., the case where all nodes in the network are updated at once.
Section|[5.3.5|then presents how these algorithms will work in the dynamic case,
i.e., how we think each algorithm would run in real-time by applying local up-
dates next to global updates shown in pseudocode. Additionally, a local update
step example is applied to the same network. Finally, Section discusses
the theoretical time and space complexity of each algorithm in the worst-case.

5.3.1 Algorithm requirements

The requirements can be split up into two categories, namely domain expert
requirements and model requirements. Domain expert requirements are formu-
lated by experts and reflect characteristics that the algorithm ideally possesses.
Model requirements, on the other hand, state the required behavioural char-
acteristics of the algorithm with respect to convergence. An overview of these
requirements is provided below.

The domain (D) expert requirements:

1. Static risk requirement: Domains with a high risk score need to remain
high.

2. Influence requirement: Nodes with a more certain score (i.e., scores
closer to 0 and 1) are more influential than nodes with a more neutral
score during computation.

3. Susceptibility requirement: Nodes with a more uncertain score (i.e.,
scores closer to 0.5) are more susceptible to change towards the score
of its neighbours.

4. Guilt by association (GBA) requirement: Computation must be seen
as a predominantly local problem: score computation is between neigh-
bours. A node’s risk should not affect nodes more than three steps away,
dampening the risk influence with every step further.

5. Risk spreading requirement: Risk needs to spread from high-risk nodes
to lower-risk nodes. After the algorithm is finished, ‘risky’ neighbour-
hoods/communities need to be distinguishable in the network.

6. Update requirement: In the event of a newly detected threat, it needs
to be possible to update the score of a single node and its neighbours
quickly.

23

The model (M) requirements:

1. Convergence requirement: The algorithm needs to converge within a
few iterations to a state where risky neighbourhoods can ideally be dis-
tinguished from the rest in the network.

2. No swapping requirement: The algorithm should not compute a lower
score for a node than for its neighbours which have higher scores in the
initial state.

3. Limited parameter requirement: There should be a balance in the trade-
off between the number of free parameters and guarantees about the
model performance in different settings or networks.

4. Degree requirement: A node’s position in the network matters and should
be included in the computation. If a node has a high risk score, then au-
tomatically all the nodes that it can reach are also risky. Central nodes
are therefore more impactful in the network.

5. Scalability requirement: The algorithm needs to be linearly scalable in
terms of practical time and space complexity. It is acceptable if the the-
oretical worst-case time and space complexity are more complex than
linear.

5.3.2 Local Influence and Susceptibility Computation

In this section we propose LISC, the Local Influence and Susceptibility Com-
putation algorithm. This algorithm is inspired on DeGroot’s model of reaching
consensus (see Subection , which also makes use of a vector and a transi-
tion matrix. Normally, the transition matrix contains the level of influence that
each node has on its neighbours. However, we extend this model by including
a level of susceptibility for each node towards other nodes. The model aims to
make the differences in risk score between neighbours smaller using influence
and susceptibility.

Introduction LISC and example iteration

First we define special influence and susceptibility functions f(s(v)) and g(s(v)).
These functions can be defined freely and take as input the risk score of a node
and return the respective influence and susceptibility values for that node’s
risk score. While many variations of f(s(v)) and g(s(v)) are possible, we limit
ourselves to linear functions of which the exact parameters are determined by
experts such that they are in line with the stated requirements. These choices
are therefore motivated by practical considerations of domain experts (see Sec-
tion . For now, we assume that these functions return a constant ‘1’, no
matter the input.

Iteratively, scores can be updated by taking a domain’s own score s(v); at time

step t, and the scores of its neighbours s(w);, for w € N(v). For LISC, the general
update rule for a node v is formalized in Formula

24

L f(sw)e)- (s(w)e —s(v)y)

weN (v)

$(V)ie1 = 5(v); + g(s(v)y) - (5.1)

IN()I

Here, s(v);,1, i.e., the score for v in the next time step (or iteration) is calculated
by adding the average of the score differences between v and w to s(v);. This
score difference is weighted by the individual influence of each neighbour w
on v and is multiplied by v’s susceptibility to adapt to its neighbours.

One iteration of LISC consists of applying Equatlonﬂfor each domain in the
network. In the overall model, the score vector P! of size 1 consists of the scores
of all domains at time step t. The n x n transition matrix T’, with the elements
T,w, for v,w =1,2,..,n consists of f(s(v);) and g(s(w);) for all v,w € V at time
step . Another requirement is an # x n incidence matrix I,., with element
P,. = 1 if there exists a link between v and w, and P,. = 0 if otherwise. The
algorithm runs by not only updating P’ per iteration, but also T, since a node’s
influence and susceptibility changes every time its score changes if f(s(v);) and

¢(s(v);) return variable outputs. Let &3 be a vector of ones of size |ﬁ| =n. An

IP|
overview of the complete algorithm can be found in Algorithm|[T} For efficiency
purposes, it is encouraged to implement the algorithm using sparse matrices.

Algorithm 1 LISC

Input: Score vector ﬁt, Incidence matrix I, iterations i, step size «
Output: Score vector P!
1: procedure LISC
2 fort—0toi do
3: T”l(—F()®G(Ho
4 Dt+1 - Pt ept
5 pt+l <—13)t+a(Tt+1th+1)T~EI»|®(I~EIﬁ|)
6: return Pt*!

In Algorithm l 1] T* is computed by applying f(s(v)) and g(s(v)) to all elements
of . Let F(V) V)and G(V) V) be the respective functions that can calculate the in-
fluence and susceptibility values for all elements of a vector. Then we take
the outer product (®) between these vectors in order to compute all pairwise
influence and susceptibility scores which will be spread in the network. A
Hadamard product operation (o) with I is then applied to the resulting matrix
in order to keep all influence and susceptibility scores between the node pairs
which are linked to each other. Then we calculate all pairwise score differences
by taking the outer subtraction (&) of P with itself, stored as matrix D’. The
final step is then to take the Hadamard product between T' and D', taking the
transpose and multiplying the result by Eiﬁl. This results into a vector which
contains all weighted score differences for all v € V. Adding a portion of this
vector (represented as the step size), divided row wise (@) by the total num-
ber of neighbours for every node (I - eIPI) to P! results into a complete update

of all nodes in P!,

25

An example of an iteration of Algorithm [I|can be found below. In this exam-
ple, we choose Formulas [6.1] and [6.2] for f(s(v)) and g(s(v)) respectively. See
Figure for an example of a network. Numbers are rounded to three deci-
mals.

07

Figure 5.5: An example of a scored network of size n = 3.

In order to run the algorithm, first Pl) Tand & e, are initialized as:
0.7 01 O 1
P =10.8[,I=|1 0 L& = |1
01 0 1

Tt is then calculated as F(P"))® G(P")) o I

0.4] 106110 1 O 0.24 0.16 0410 1 O 0 0.16
T =10.6|®|0.4[0|1 0 1|=]|0.36 0.24 0.6fo|l 0 1[=|036 0 0.6
0 1110 1 0 0.6 0 o0 1 O 0 0
The next step is to calculate D'*! = P g P
0.7 0.7 0 -0.1 0.2

Dt =]0.8|e]0.8]=] 0.1 0 03
05| [0.5] |-0.2 -0.3 0

[0.7] 0 016 o] [0o =01 027 1 01 0
P+l —10.8(+1-]10.36 0 0.6]|o] 0.1 0 0.3] 1 @[1 0 1

0.5 0 0 0] [-02 -03 0 1 01 0

[0.7] [0 0.036 0] [1 1

=|o0.8{+1-]-0.016 0 ol-]1lof2

0.5 | 0 0.18 of [1] |1

[0.7] [0.036 1

=(0.8[+1-]-0.016|2]|2

0.5 | 0.18 1

[0.7] [0.036 0.736

=|0.8]+]-0.008[=10.792

0.5 0.18 0.680

Thus nodes A, B and C are updated with the new scores according to the node
score update rule specified in Formula[5.1]

26

5.3.3 Normalized Local Influence and Susceptibility Compu-
tation

The following algorithm we propose is Normalized Local Influence and Sus-
ceptibility Computation, or NORMLISC. The general concept behind NORM-
LISC is the same as with LISC, but the risk scores are updated by fixing the
degree to which a score adapts to the scores of its neighbours.

Introduction NORMLISC and example iteration

This algorithm is similar to LISC, as it computes risk scores using influence,
susceptibility and a step size a. However, the degree to which a node adapts
to itself (a) and to the scores of neighbours (1 — «) is normalized to sum to
1. This way, the score of a node can be calculated by taking the weighted
average between its own score and those of its neighbours. This eliminates
the requirement of a matrix D! that keeps track of the risk score differences
between all neighbours. If f(s(v);) and g(s(v);) return constant values, then
the transition matrix does not have to be recomputed which allows the model
to be expressed as a Markov chain. Pseudocode for NORMLISC is shown in
Algorithm 2]

Algorithm 2 NORMLISC

Input: Score vector ﬁ, Incidence matrix I, iterations i, step size «
Output: Score vector P!
procedure NORMLISC

1:
2 fort<—0toido

3: T*! « F(P')® G(Pt) ol
4

5

TH(P) — THT + - eye(|P)
T+l (ﬁt+1)/ Tt (13’t+1) ((Tt+1(ﬁt+l)-€5)® T»l)
o ﬁ’t+l « Tt (ﬁ“’l)' . ﬁt

.
7: return P'*!

Here T'*! is calculated exactly like in LISC, to which an identity matrix (or
‘eye’) of size |ﬁ| is added, multiplied with a (line 4). Here, we choose the same
F(V) and G(V) as for LISC. The rows of this matrix T'*1(P'*1) are then nor-
malized to sum up to 1 by dividing it row-wise by the sums of its rows (line 5).
Lastly, the score vector Pis updated by multiplying it iteratively with the com-
puted matrix Tt+1(ﬁt+1)’. Here, « is not chosen as the step size, but rather as
a parameter that indicates how ‘strongly’ each node should converge towards
its neighbours. If a is set to a low value (e.g., 0.1), then each node will mostly
take on the values of its neighbours, and if a high value is chosen (e.g., @ = 5),
then the node scores will converge very slowly. An example iteration of Al-
gorithm [2] can be found on the next page. See Figure for an example of a
network. Numbers are rounded to three decimals.

27

0.7

D28

Figure 5.6: An example of a scored network of size n = 3.

In order to run the algorithm, first PO I and e—I)PT”I are initialized as:

0.7 01 0 1

r=lo8l,1=|1 0 1|, - =1
|Pt=1)]

0.5 01 0 1

Tt is then calculated as F(P))® G(P!)o I

0.4 (0.6 10 1 O 0.24 0.16 040 1 O
T =10.6|®[0.4/0/1 0 1|=[0.36 024 0.6lo[1 0 1|=]036 0 0.6
0 1 0 1 0 0 0 010 1 0

The next step is to then add the ‘eye’ multiplied with @ = 0.1 (T**!(P**1) =
T'T +a-eye(|P))):

. [0 036 0 1 00
T P =[016 0 0|+0.1-[0 1 0
0.6 0] 0 0 1
0 036 0] [o1 0o o0
=016 0 0|+|0 01 0
| 0 06 0] |O 0 01
[0.1 036 0
=l016 01 0
| 0 06 0.1

Next, the rows of T(*+1)(P**1) are normalized to sum up to 1 (T (Pl =
Tt+1(13’t+1)® ((Tt+1(ﬁt+1) . éfﬁl) ®E|)13’|)):

28

. [0.1 036 0] 0.1 036 0]][1 1
THYP*Y =016 01 0 |@ { 0.16 0.1 0|1]@ 1
1 1

0 0.6 0.1 0 06 0.1
[0.1 036 0] 0.46] [1
={0.16 0.1 0 |@||0.26|®]1]
0 0.6 0.1 0.7 1

[0.1 036 0] [0.46 046 0.46
=[016 0.1 0 |®|0.26 0.26 0.26
0 0.6 01] |07 07 07

[0.217 0.783 0
=10.615 0.385 0
0 0.857 0.143

Lastly, the update step happens (P/+! = T*1(Bt+1y . pt):

. 0.217 0.783 0 0.7 0.778
Pl =10.615 0.385 0 [-10.8]=1]0.738
0 0.857 0.143] 0.5 0.757

Thus nodes A, B and C are updated with the new scores according to the node
score update rule specified in Formula[5.1}

5.3.4 Maxima-based Diffusion

The third algorithm that we propose is Maxima-based Diffusion, or MAXDIF.

Introduction MAXDIF and example update

MAXDIF relies on the PageRank algorithm for convergence. The first differ-
ence with the previous algorithms is that it takes a directed network as input.
All links between nodes are drawn from the node with the higher score (source)
to the node with the lower score (target). If two adjacent nodes have the same
score, then the link is bidirectional. The incidence matrix I’ can be drawn with
a helper function DRAW _INCIDENCE(P, I), which requires as input the Pand
the undirected incidence matrix I. Furthermore, MAXDIF does not use influ-
ence and susceptibility functions and has fewer free parameters. A pseudocode
representation of MAXDIF is presented in Algorithm

29

Algorithm 3 Draw Incidence Matrix I

Input: Score vector ﬁ, Incidence matrix [
Output: Incidence matrix I’

1: procedure DRAW _INCIDENCE
2 I'—PoP

3 fori,jin I’ do

4 if I'[i,j] > 0 then

5: I’[i,j] =1

6 else

7 I'li,j]1=0

8 I'I'ol

9 return [’

The idea behind MAXDIF is that it spreads the risk from nodes with higher risk
scores to their neighbours with lower risk scores via outgoing links. All score
differences are computed between each of such node pairs, whereby each node
with outgoing links ‘transfers’ a percentage of the node pair score difference
to its neighbours. These percentages are based on the PageRanks of all of the
node’s outgoing neighbours, normalized to 1. Nodes with multiple incoming
links take the average value of all incoming transferred scores. This ensures
that the computation is not only based on score differences between nodes, but
also that nodes with a higher PageRank score in the network (i.e., nodes with
a higher indegree, or nodes that are surrounded by more nodes with a higher
PageRank) are given a higher priority to converge upwards. Another reason
for using PageRank is that it ensures that nodes with a lower indegree, but
central position in the network (i.e., it has incoming links from one or a few
nodes with a high PageRank), are also given priority to converge upwards, as
opposed to less central nodes in the network. This idea works like a ‘diffusion
model’ of sorts, where risk is spread outwards and risky ‘neighbourhoods’ or
‘communities’ can be distinguished from the rest of the network after a few
iterations. The pseudocode for MAXDIF can be found in Algorithm

Algorithm 4 MAXDIF

Input: Score vector ﬁ, Incidence matrix I, iterations i, delta o, epsilon €
Output: Score vector D*!

1: procedure MAXDIF

2 fort — 0toido N

3 I’ « draw_incidence(P’,I)

4 R! PageRank(I",,¢)

5 PR' — (R'® &) T oI"

D! — PtoPtol”

6:

7 T! — (PRUQ((PR' &) @) 0 D) -Gl
. Pl Pt 4+ T

9: return P'*!

MAXDIF starts off by building the directed incidence matrix I’ (line 3), which
is fed to the PageRank algorithm with a user-defined value for the parameters

30

0 and e. This returns PageRank vector R, which contains the PageRank for
all nodes in the network (line 4). Matrix PR contains the PageRank values of
all neighbours that the nodes have a directed link to (line 5) and matrix D
contains all the score differences between these pairs of nodes (line 6). After
normalizing the PageRank values to sum up to 1, the Hadamard product is
taken between PR and D, after which all row sums are taken of this matrix’s
transpose (line 7). These sums are then added to the score vector to conclude
the first iteration of the algorithm (line 8). An example iteration of Algorithm[4]
can be found below. See Figure[5.7|for an example of a network.

07

0.8

Figure 5.7: An example of a scored network of size n = 3.

In order to run the algorithm, first ﬁt, I and ¢, are initialized as:

0.7 01 0 1
Pt =l0.8(,I=[1 0 1 g =1
0.5 01 0 1

The first step of the iteration is to build the directed incidence matrix I’ (see
Algorithm [3):

I U4 I 0 -01 02
I'=P'eP'=(0.8|0]0.8/=] 0.1 0 03
0.5 lo5] |-0.2 -03 0

Next, apply DRAW _INCIDENCE(P,I) (change all fields in I’ < 0 to 0 and all
fields > 0 to 1):

The final step in DRAW_INCIDENCE(P,I)is I’ = I’ o I:

1 0 1 [0 1 O 0 0 O
I'=|1 1 1joj1 0 1|{=|1 0 1
0 0 1 0 1 0 0 0 O
Now that I” has been built it is time to feed I’ to the PageRank algorithm (for

0=0.85, € =0.0001) which returns the values:

. 0.213
R=10.574
0.213

31

Now, the PageRank values for all neighbours that each node is pointing to need

to be stored (PR = (R® EIﬁl)T ol):

PR=(R® &) ol

0.213 1T |10 0 O
=1]0.575|®|1 ofl 0 1
0.213 1 0 0 O

0.213 0.575 0.213f |0 0 O
0.213 0.575 0.213[o|1 0 1}|=]0.213 0 0.213
0.213 0.575 0.213(|0 0 O

Additionally, the differences for each directly linked node pair needs to be
calculated (D = P'e P! o I'):

0.7 0.7 [0 0 O 0 -01 02 (0 0 O 0o 0 O
D =(0.8|8]0.8[of1 0 1|{={0.1 0 0.3[o|1 0 1]=]0.1 0 0.3
0.5 0.5 |0 0 O -0.2 -03 O 0 0 O 0o 0 O

The final steps are normalizing the sum of the ‘outgoing’ PageRank values for
each node to 1, multiplying these values row-wise by the difference between
each node pair, summing all incoming computation values for each node, with

which P* will be added:

T'= (PRt®((PRt 'Eiﬁt|)®é|)_’r|)ODt)T : —|)13’t|

0 0 0 0 0 0 1 1
={ 0.213 0 0.213|®|]]0.213 0 0.213]-|1]@ 1
0 0 0 0 0 0 1 1
0 0 0T 1
o|0.1 0 0.3] -1
0 0 0 1
[0 0 0 0 1 0 0 0T [1
:[0.213 0 0.213 @[0.426|®|1 Jo 0.1 0 0.3] 1
| 0 0 0 0 1 0 0 0 1
[0 0 0 0
:[0.213 0 0.213|@|0.426 0.426 0.426
| 0 0 0 | 0 0 0
0 0 0

o
()
o

al

o oo

—_ =
Il

o

o o

Gl

—
e
—
»1

32

Thus nodes A, B and C are updated with the new scores:

. . [o7] [0.05] [0.75
P+l =ptyTt=(08|+| 0 |=|0.8
0.5 0.15] |0.65

5.3.5 Dynamic LISC, NORMLISC and MAXDIF

This section explains how the proposed algorithms can be used in the dynamic
case. These implementations enable the algorithms to conform to requirement
D6. In the dynamic case, the algorithms run iteratively until new informa-
tion (e.g., a new threat appearance on a public blacklist) becomes available, in
which case the risk scores have to be updated locally, i.e., the score of a node is
updated along with those of its neighbours. This dynamic implementation for
LISC, NORMLISC and MAXDIF can be found in the following subsections.

Dynamic LISC

Should the update happen during an iteration of the computation algorithm,
the algorithm should break off after the current iteration, return the last fully
computed P, apply the update step, and continue running the next iteration
with the updated P'. This can be done by checking a boolean NEWTHREAT if
newly detected threats are available from external sources. If this is true, then
the required information (i.e., which node n has to be updated with which
score s) is requested using the function REQUEST(NODE, SCORE). This ex-
ternal information should be updated continuously. Should there be a newly
detected threat, then the local update UPDATE.LISC is run. Should this not be
the case, then LISC should run for another iteration. A full implementation of
LISC with the update step can be found in Algorithm 5]

Algorithm 5 LISC.DYNAMIC

Input: Score vector ﬁt, Incidence matrix I, iterations i, step size «, bool
newthreat
Output: Score vector P
1: procedure LISC.DYNAMIC
2 fort—0toido
3 if NewTHREAT=False then
4 P! «LISC(P', I, 1, a)
5: else
6: n,s <« REQUEST(NODE, SCORE)
7 P! « UPDATE.LISC(P", I, n, s)
8 te—t-1
9 return P!

It is chosen to design local update methods that update the nodes in a similar
fashion as the original algorithm, i.e., in this case by updating a node’s score
using predefined influence and susceptibility functions (again, we choose For-
mulas and for f(s(v);) and g(s(v);)). It is desirable to not only update

the score for that single node in P?, but also the scores of its neighbours and

33

the transition matrix T’ for all affected nodes (recomputed in line 3 of Algo-
rithm . The required steps to fully update P* are shown in Algorithm @

Algorithm 6 Update step LISC

Input: Score vector ﬁ, Incidence matrix I, node 1, score(n) s

Output: P

1: procedure UPDATE.LISC > Update P

2 Does

3: T« f(S) : In,c

4 T” —g(s)- 1],

5. D' (s-gp—PT)oly
D"« (PT —s-&z)o L,

B '« T’ oD’

B” < T"oD"

C’ I, o F(P)

10 C” eI 0G(P)

11: 13<—13)+HB’0C”+B”0C’

12: return P

v ®» N

An example update of LISC (Algorithm [6) can be found in Appendix [A]

Dynamic NORMLISC

The dynamic implementation for NORMLISC follows the same logic as with
LISC. New information is first checked using the boolean NEWTHREAT, with ex-
ternal information requested by the function REQUEST(NODE,SCORE). The
full dynamic implementation of NORMLISC, including the update step can be
found in Algorithm

Algorithm 7 NORMLISC.DYNAMIC

Input: Score vector ﬁ, Incidence matrix I, iterations i, step size a, bool
newthreat

Output: Score vector P
1: procedure NORMLISC.DYNAMIC
2 fort—0toido
3 if NewrHREAT=False then
4 P! «NORMLISC(P, 1,1, a)
5: else
6
7
8
9

n,s < REQUEST(NODE, SCORE)

P! « UPDATE.NORMLISC(P, I, 1,5)
t—t-1
return P!

The update method for NORMLISC is also of the same character as LISC.
That is, it updates single nodes based using influence, susceptibility (again,
we choose Formulas[6.1]and [6.2]for f(s(v)) and g(s(v))) and a. Here, an update

34

also happens after breaking off after the current iteration of NORMLISC, re-
turning the last fully computed P, applying the update step and continuing

running the next iteration with the updated P'. The update method is shown
in Algorithm

Algorithm 8 Update step NORMLISC

Input: Score vector ﬁ, Incidence matrix I ,node n, score(n) s, alpha «
Output: Score vector P

1. procedure UPDATE.NORMLISC > Update P
2 DB=s

3 Te f(s)-G(P)

4: T'"—Tol,,

5: Tr: —

6 T”eT’@((T’T~‘?|ﬁ|)®?|*|)T
7 T,) <0

8 ﬁ(—ﬁo(é{»l—T”)+S-T"

-

9: return P

An example update of NORMLISC (Algorithm 8) can be found in Appendix[B]

Dynamic MAXDIF

The dynamic implementation of MAXDIF, including an update step can be
found in Algorithm [9] This method is identical to the methods for LISC and
NORMLISC (see Algorithms[5|and [9} respectively).

Algorithm 9 MAXDIEDYNAMIC

Input: Score vector ﬁ, Incidence matrix I, iterations i, delta o, epsilon ¢,
bool newthreat
Output: Score vector P
1: procedure MAXDIEDYNAMIC
2 fort<— 0toido
3 if NewrHREAT=False then
4 P! «MAXDIF(P,1,1,6,¢)
5: else
6
7
8
9

n,s < REQUEST(NODE, SCORE)

P! « UPDATE.MAXDIF(P, I, s)
t_<)— t—1
return P!

The update method for MAXDIF cannot be completely of the same character
as MAXDIF due to the incorporation of the PageRank algorithm in it, which
makes a quick update infeasible. To remedy this, a node’s risk is not spread
outwards based on the PageRank of its neighbours, but rather evenly among
the risky node’s neighbours, i.e., there is no more priority given to nodes with
a more central position in the network. For example, if a node # is updated

35

and has to spread its risk to 3 neighbours 4,b,c, then each of the neighbours

receives the score difference between itself and n multiplied with —— .
outdegree(a)

Additionally, a modified version of DRAWJNCIDENCE(ﬁ,I) for the update
method is given in Algorithm

Algorithm 10 Draw Incidence Update

Input: Incidence matrix I
Output: Incidence matrix I’
1: procedure DRAW _INCIDENCE_UPDATE
2 Initialize Matrix I’

3 fori,jinI do

4 if I[i,j] > 0 then

5: I’[i,j] =1

6 else

7 I'li,j]=0

8 return I’

See Algorithm [11|for the specific MAXDIF update method.

Algorithm 11 Update step MAXDIF

Input: Score vector ﬁ, Incidence matrix I, node 7, score(n) s > Update P
Output: P

1: procedure UPDATE.MAXDIF

2: 13,)1 =S

3: I’«—s-P

4 I” «— DRAW _INCIDENCE_UPDATE(I') o I,
5 I—:// (_—)I// %) ((I//T . e|ﬁ|) ® elﬁI)T

6: P<—P+_)I’oI”’

7: return P

An example update of MAXDIF (Algorithm [1)) can be found in Appendix|[C}

5.3.6 Time and space complexity

The theoretical time and space complexities for one iteration of LISC, NORM-
LISC, MAXDIF will be determined in the worst case. This means that the
algorithms are run on a complete network, i.e., a network counting n nodes

and @ links. Implementation then requires full matrices (which are of size
nx n), as opposed to sparse. Additionally, an iteration of MAXDIF relies on i
iterations of PageRank in terms of time complexity, which runs in O(n?) time
per iteration, since it performs a vector-matrix multiplication. An overview of
the theoretical time and space requirements for each algorithm can be found

in Tables and

36

LISC Space | Time
D O(n)
Ji O(le)
I ot
T« F(P)®G(P") ol O(n?) | O(n?)
DIl Pto Pt O(n?) | O(n?)
P — P4 a(T oD -gh0(I-85) | O(?) | O(n?)
[Order | O(n?) | O(n?) |

Table 5.2: Theoretical time and space complexity analysis of LISC.

NORMLISC Space | Time
P O(n)

I O(n?)

ep O(n)

eye(lﬁl) _ _ O(n?)

T «— F(P")® G(P') oI On?) | O(n?)
THL(PHL) — T'T + o - epe(|P)) on?) | on?)
Tt+1(15)t+1)/<_ Tt+1(ﬁt+1)®((Tt+l(ﬁt+l)'e—l)*l)®él)15’|) 0(1’12) O(HZ)
ﬁt+1 «— Tt+1(ﬁt+1)'-ﬁt O(le) O(le)

’ Order \ O(n?) \ O(n?) ‘

Table 5.3: Theoretical time and space complexity analysis of NORMLISC.

MAXDIF Space | Time
P O(n)

I O(n?)

ep O(n)

It — draw,incidence(ﬁt) On?) | O(n?)
R' — PageRank(I",,¢) on?) | om?)
PR (ﬁt ® Eiﬁtl)T ol” On?) | O(n?)
D'« DPleDPlol" on?) | om?)
T! — (PR' @ ((PR'- &p) @) 0 D) &g | On?) | O(n?)

| Order | O(n?) [O(n?) |

Table 5.4: Theoretical time and space complexity analysis of MAXDIF.

Realistically, domain networks constructed from DNS data are sparse (and not
complete) by nature and can hence be run using a sparse matrix implementa-
tion of the algorithms. Nonexistent links are then excluded from the compu-

tations. In that case, the algorithms will run as a function of the number of

node pairs (direct neighbours) in the network, i.e., the algorithms will have a

theoretical time and space complexity in the order of O(m) instead of O(n?).

37

Experiments and results

HIS CHAPTER WILL DIscUss the experiments and results. Section [6.1|ex-
plains the experimental setup required to answer the research ques-
tion. Section [6.2] will discuss the results of the experiments regard-
ing the network properties of the domain-IP and domain-domain

networks constructed in Chapter [5| Section shows the results of the ex-
periments regarding the proposed algorithms. This chapter concludes with a
discussion of the results in Section

6.1 Experimental setup

This section is divided into two subsections, namely the experimental setup
regarding network properties (as discussed in Subsection|6.1.1)) and the exper-
imental setup regarding the algorithm experiments (in Subsection [6.1.2).

6.1.1 Network properties

For the network properties, both the constructed domain-IP and domain-domain
network (with preprocessing) will be analyzed. An overview of the number of
nodes and links can be found in Table In this section, we distinguish two
different classes of experiments, namely projection method experiments and net-
work structure experiments. These experiments show what needs to be taken
into account for proper domain-domain network construction.

Projection method experiments

The following set of experiments concerns itself with the effectiveness of pro-
jection methods to obtain a domain-domain network. We experiment with
several values for a, 8, s and u (see Section in order to see which of
these parameters are effective in creating a network of manageable size, while
retaining enough information.

38

Domain-IP network (with preprocessing)
9,936,525 nodes | 13,693,977 links
Domain-domain network (with preprocessing)
7,140,913 nodes | 746,713,939 links

Test network X
7,140,913 nodes | 186,678,440 links
Test network Y
7,140,913 nodes | 373,356,880 links
Small test network
10 nodes \ 9 links
Medium test network
30 nodes \ 35 links

Table 6.1: The number of nodes and links for the all networks used in the
experiments.

Network structure experiments

We create several distributions of the constructed domain-IP and domain-
domain network. First, we create a subdomain distribution in order to see how
much of the network size (in terms of nodes) is compressed in the preprocess-
ing step. Second, for the domain-IP networks, the degree distributions for all
domains and IPs are plotted, followed by the degree distributions for all mali-
cious domains and IPs. The third experiment is to plot the degree distribution
of the domain-domain network in order to find out if the chosen projection
method has any significant impact on the structure of the network. The final
experiment regarding the network properties is to plot the average distance
distribution for a random sample of domains, as well as the average distance
distribution for all malicious nodes in the domain-domain network.

6.1.2 Algorithm experiments

In this section, we distinguish three different classes of experiments, namely
algorithm complexity experiments, algorithm convergence experiments and algo-
rithm ranking experiments. Due to the limits of the scope of this research, we
limit ourselves to experiments with respect to the static case.

Algorithm complexity experiments

An important practical aspect of the designed algorithms is that they should
terminate in feasible time using finite resources.

The theoretical time and space complexity (see Section[5.3.6) will be compared
to the practical run time and space utilization of the algorithms by running
them on the domain-domain network. Additionally, the algorithms are run on
two test networks X and Y. These networks are constructed by taking the same
number of nodes as the domain-domain network and placing links at random
between them. Y has double the number of links as X, so that it can be de-
termined in which order the time and space requirements for the algorithms

39

grow. The number of nodes and links for X and Y can be found in Table[6.1]

The algorithms are implemented in Python 3, using NumPy and SciPy sparse
matrices for the matrix and vector calculations. The algorithms are run on
a single thread of an Intel XEON E5-2630v3 CPU (2.4 GHz) with access to
1.5TB of RAM.

Algorithm convergence experiments

Different parameter settings for the algorithms LISC, NORMLISC and MAXDIF
will be run on a small and medium test network in order to find to which de-
gree the algorithms conform to the requirements. The number of nodes and
links for these networks can be found in Table These experiments may
lead to an overall picture that shows how these algorithms perform in compar-
ison to each other with respect to convergence.

Algorithm ranking experiments

The algorithms are run for one iteration on the medium test network and
placed in descending order by risk score, in order to find out if the algorithms
‘rank’ the nodes differently. If this is true, then it can be confirmed that algo-
rithm choice has an impact on the final result and that additional experiments
may be required in the future to find out which algorithm ranks the nodes
‘best’.

6.2 Results—Network properties

This section concerns itself with the results of the experiments designed in

Section

Projection method experiments

For the projection methods, the small experiment with different values for
a, B, s, u and the resulting size, in terms of the number of links, of the domain-
domain network is summarized in Table

Table shows that taking different values for u has the largest impact on
network size. However, it is not ideal to filter domains that are potentially risky
from the network as it may result in an incomplete picture of the network.
It can happen that a malicious domain is filtered from the final network by
setting values greater than 1 for a or §, which in turn causes loss of relevant
information in the projection. Therefore, as discussed in Section a, B
and s are set to 1 and u to 3000 to keep the number of links in the projection
below 1 billion.

Network structure

During preprocessing, the subdomains are aggregated to domains, i.e., the step
before the domain-IP network is constructed. The distribution for the number
of aggregated domains can be found in Figure[6.1]

40

a | B |s u |E]|

12 | 25 | 50% 1k ~29.3M
12 | 25 | 100% | 1k ~46.6M
12 | 25 | 100% | 5k ~107.4M
12 | 25 | 100% | 10k | ~436.4M
10 | 20 | 50% | 1k | ~29.5M
10 | 20 | 100% | 1k ~45.6M
10 | 20 | 100% | 5k | ~107.9M
10 | 20 | 100% | 10k | ~436.9M
8 15 | 50% 1k ~30.7M
15 | 100% | 1k ~47.2M
15 | 100% | 5k ~109.7M
15 | 100% | 10k | ~438.7M
1 100% | 3k | ~746.7M

—| 0o o o

Table 6.2: Projecting the domain-IP network to a domain-domain network.

Subdomain distribution

Frequency

10° 10! 102 10° 104 10°
Number of subdomains

Figure 6.1: The number of subdomains in the network that is aggregated to
domains. The leftmost bar indicates the number of domains not aggregated.

In Figure [6.1] we can see how much information is filtered from the network.
There exists a downwards trend between the number of subdomains and their
occurrence in the data. For instance, there are more than a million domains
with one subdomain present in the data, but there are less than 10 domains
with a thousand subdomains.

Next, the degree distributions for both domains and IPs can be found in Fig-
ures and respectively. These figures show that the largest part of the
network consists of domains and IPs which have a degree below 1000. The
‘tail” of the degree distribution contain nodes that have a higher degree and
tend to be problematic during projections due to a rapidly increasing number
of generated links between nodes. The domain and IP address degree distri-
butions for all malware domains that occur within the same time period (i.e.,
between December 5™ and January 5%) can be found in Figures andre-
spectively. These figures show that the malware domains follow a similar but
not identical degree distribution when compared to the full network.

41

DNS bipartite degree distribution for domains DNS bipartite degree distribution for ips

Count
Count

10° 107 102 10° 104 100 107 102 103 10¢ 10°
Degree Degree

Figure 6.2: The degree distribution = Figure 6.3: The degree distribution

for all domains in the for all IP address nodes in the
domain-IP network. domain-IP network.
DNS bipartite degree distribution for malware domains DNS bipartite degree distribution for ips hosting malware

Count
Count
=
k3

o o Degree o o o o]Sezgree w o
Figure 6.4: The degree distribution = Figure 6.5: The degree distribution
for all malware domains in the for all IP address nodes to which all
domain-IP network. malware domains are connected in the

domain-IP network.

The degree distribution for the domain-domain network is presented in Fig-
ure The chosen projection method may distort the power law that can be
distinguished in Figures However, this is an expected outcome since
IPs with a degree of over 3000 in the domain-IP network are not projected, but
placed ‘as is” in the domain-domain network. This introduces domains in the
domain-domain network that are not directly connected to other domains in
the network, but via intermittent IPs. These IPs have a high degree (> 3000)
but a low frequency. The domains that are not fully projected into the domain-
domain network either have one neighbour (the IP in question) or are already
projected to one-mode via another IP with a lower degree (< 3000). However,
these domains could have had a higher degree in the one-mode projection had
the projection rule not been in place. This suggests that many of the nodes in
the degree distribution with a ‘true’ degree of over 3000 now exist with a lower
degree in higher numbers, potentially explaining the ‘kink’ that can be seen at
the 103 frequency and degree mark in the distribution.

42

Degree distribution final one-mode network

107 4

=
2

Frequency

107 4

10° 10! 10? 103 10% 10°
Degree

Figure 6.6: The degree distribution of the domain-domain network.

An overview of the average distance distribution for 1000 random nodes and
all malicious nodes within the network can be found in Figure The simi-
larity of the distributions may indicate that the malware domains are ‘hiding
in plain sight’, meaning that they can occur anywhere in the network. How-
ever, it can also be seen that the malicious distance distribution does not line
up exactly with the randomly chosen distance distribution, suggesting that it
is not ruled out that some global network effects could be in play. For instance,
if malicious domains had existed in large clusters, then their average distance
and degree distributions would deviate visibly from the distributions of a set
of random nodes in the network. In this hypothetical situation, it could mean
that it may for instance be possible to improve score computation by using
clustering techniques or community detection algorithms, instead of follow-
ing a purely local approach. This indicates that, based on these findings, one
could justify that risk score computation in DNS networks be seen as a pre-
dominantly local problem. However, it should be noted that the distribution
plots do not serve as hard evidence that score computation is a fully local prob-
lem. Note that the error bars in Figure are wide due to some parts of the
network not being accessible, i.e., the network is disconnected. When nodes
are unreachable, the graph-tool implementation returns an average distance
of 0.

Average distance distribution

— Malicious nodes
;k\ —}— Random nodes

Average count

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Distance

Figure 6.7: An overview of the average distance distribution for the chosen do-
mains and all malicious domains. The error bars show the standard deviation
for the randomly sampled domains.

43

6.3 Results—Algorithm experiments

This section concerns itself with the results of the experiments designed in Sec-
tion[6.1.2]

An overview of the run time and memory occupation of all three algorithms
over 10 iterations on the domain-domain network can be found in Figure

Run time per algorithm over 10 iterations Space occupation per algorithm over 10 iterations

— Uusc 17.00 { — usc
NORMLISC NORMLISC
500 — MAXDIF — MAXDIF

Run time in minutes
8
8

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of iterations Number of iterations

Figure 6.8: Run time and memory occupation of all three algorithms over 10
iterations on the domain-domain network.

Figure shows that there is a distinguishable difference in terms of run
time. LISC is the most expensive algorithm, NORMLISC is the least expen-
sive algorithm and MAXDIF lies in the middle. It can be seen that the run
times follow a linear progression in the first few iterations, after which the run
times increase faster. It may be possible that this is due to the node scores
having longer floating point numbers after a few iterations, which requires
longer processing times in terms of arithmetic. For example, for a CPU it can
be a lot easier to compute 101 x 101 than 00111110011100101010000111 x
00111111001010001001101101. A quick experiment verifies this hypothesis.
In this experiment, two 10000 x 10000 matrices are filled randomly and multi-
plied with each other. This is repeated 10 times in the case where both matrices
are randomly filled with ‘float16’ numbers between 0 and 1, and also 10 times
in the case where both matrices are randomly filled with numbers between 0
and 1 with only 1 decimal. The first case has ‘longer’ numbers and it takes,
on average, approximately 1.16 seconds longer to perform a matrix multipli-
cation.

Figure [6.8]also shows that LISC and MAXDIF keep the space occupation sta-
ble throughout the iterations and remain at the same memory cost level (ap-
proximately 16.87 GB for both algorithms). However NORMLISC has vary-
ing space costs (between 16.865 and 17 GB) throughout the iterations, making
NORMLISC ~ 0.77% more expensive than LISC and MAXDIF in this setting.
It remains an open question as to why the memory consumption varies for
NORMLISC. It could depend on the difference in implementation. However,
such differences are very small.

In order to test if the time and space complexity indeed grows linearly with

44

the number of links in the case of sparse matrices, the algorithms are run on
networks X and Y, with X having half the number of links compared to Y. The
time and memory consumption of all three algorithms over 10 iterations on X
and Y can be found in Figures[6.9]and [6.10|respectively.

Run time per algorithm over 10 iterations Run time per algorithm over 10 iterations
— LS — UsC
NORMLISC 2504 NORMLISC
—— MAXDIF — MAXDIF

1204

100 4 -

80
150 4
60

Run time in minutes.
Run time in minutes.

100 4
404

204

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of iterations Number of iterations

Figure 6.9: Run time of all three algorithms over 10 iterations. Left: X, right:
Y.

Space occupation per algorithm over 10 iterations Space occupation per algorithm over 10 iterations
— usc 5900 { — USC
3084 NORMLISC NORMLISC
—— MAXDIF —— MAXDIF
5.875 1 &
3.06
8 & s.850
< 3,04 £
3 B
a a 58251
g 302 s
g g
g 8
9 © 5.800
& 3.00 B
2 2
& &
5.775 4
2.98 4
26, 5.750 4
1 2 3 4 5 6 7 8 9 10 1 2 3 a4 5 6 7 8 5 10

Number of iterations Number of iterations

Figure 6.10: Space occupation of all three algorithms over 10 iterations. Left:
X, right: Y.

Figure shows that the run time per algorithm indeed appears to grow ap-
proximately linearly with the number of links in the network. It takes ap-
proximately 4 hours for each algorithm to finish running on Y, compared to
approximately 2 hours for X. Figure shows that the memory occupation
also grows approximately linearly with the number of links in the network.
For Y, the memory costs are almost double for each algorithm compared to X.
In conclusion, it can be reasonably asserted that the practical time and space
complexity for each algorithm is O(m).

Algorithm convergence experiments

The algorithms will be tested on two undirected test networks, namely the
small and medium network (see Table [6.1). We choose smaller networks be-
cause we can plot the begin and end states in order to manually determine the

45

behaviour of the algorithms with respect to convergence. Doing this for large
networks (e.g., 1000 nodes) is not trivial. These test networks are shown in

Figure

0.2 0.6 4

0.2
0.2 / 0.4 + \0-3\70_1
06 @ {/.O.ﬁ\
ool 03 021 \0,7\0.5/. /M‘o.a 05
02 / N\, |

0.5 i 0.04

-0.2 / @ ¢ 50_3 p g.Z—‘O-ls
0.4—% g
01 =02 \' \0.1//
0.4 \
\ —0.4 4 0.5 /‘0.2
0.3
“08 \ S \
03 0.6 O—6 0.6

-100 075 -0.50 -025 0.00 0.25 0.50 -1.00 -0.75 -050 -025 0.00 025 050 075 100

Figure 6.11: The test networks. Small (left) and medium (right).

For each of the experiments introduced in this section, the absolute sum of
node score change is plotted per iteration in order to gain insight into the rate
of convergence for all algorithms in different settings. Also each network state
is plotted after [1, 2, 3, 4, 5, 10, 50, 100, 1000, 10000] iterations for LISC
and NORMLISC in order to infer statements about the algorithms’ behaviour
regarding convergence. Network states for MAXDIF are plotted after 1,2,3
and 4 iterations. The experiments will be run on the small and medium test
networks. A summary of all these experiments is provided in Table after
which an explanation for each of these experiments is given.

Dampening

Weighted

Algorithm Fand G Iterations
rate mean
F and G active
LISC Factive, G constant | o No 10000
F constant, G active
F and G constant
I —
LISC F and G active £ 105772 | No 10000
12’ 152410
LISC F and G active None Yes 10000
F and G active
NORMLISC | [active, G constant | No 10000
F constant, G active
F and G constant
. 1.05%, 2%, 2
NORMLISC | F and G active 45 410 No 10000
NORMLISC | F and G active None Yes 10000
MAXDIE Not applicable . No 4

Table 6.3: All experiments on the test networks with respect to convergence.

46

Since LISC and NORMLISC rely on the influence and susceptibility functions
f and g, it may prove helpful to not only perform these experiments in the
scenario where both functions are ‘constant’ (i.e., they return ‘1’ as explained in
Subsection[5.3.2), but also in the cases where they are ‘active’. We will perform
experiments where one or both functions are constant or active. This may
provide additional insight into how f and g act with respect to convergence.

A graphic representation of the chosen active functions can be found in Fig-

ures|6.12land [6.13]

0 02 04 0l 08 1

0 02 04 06 08 1

Influence function f(s(v)) Susceptibility function g(s(v))

Figure 6.12: The influence Figure 6.13: The susceptibility
function f(s(v)). function g(s(v)).

The influence function is modelled to assign no influence to nodes with a risk
score below or at 0.5 and full influence to nodes with a risk score of 1. Fur-
thermore, g(s(v)) is modelled to assign full susceptibility to neutral nodes,
‘moderate’ susceptibility to safe nodes and little to no susceptibility to high
risk nodes. The exact formulation of these functions, which correspond to the

functions given in Figures and are given in Formulas [6.1] and

respectively. With these formulations, we meet requirements D1, D2 and D3

(see Section [5.3.1).

o if 0 <s(v) <0.5
f(s(v))_{2~s(v)—l if0.5<s(v)<1 (6.1)
| (4/3)-s(v)+(1/3) if0<s(v)<0.5
g(s(v)) = {—2 s(v)+2 if 0.5<s(v)<1 (6-2)

Ideally, the algorithm converges to a state where risky communities of nodes
can be distinguished from the rest of the network instead of a global value.
To remedy this, the convergence can be slowed down by adding a ‘dampening
rate’ as a function of each iteration t in the algorithm. For LISC, this dampen-
ing rate is then multiplied with the amount of change that will be added to the
score vector P for that specific iteration (multiplied with a in Algorithm .
For instance, if a dampening rate of % is chosen for LISC, then for each it-
eration t = 1,2,3,..,v, the ‘change’ vector is multiplied with 1,%,%,..,31—). For

NORMLISC, this dampening rate needs to increase with every iteration since

47

this algorithm works on the basis that convergence slows down if a node it-
self gets a higher weight. For NORMLISC, dampening rates are subsequently
multiplied with a (see Algorithm[2). The choice for these dampening rates are
arbitrary and serve to demonstrate their effectiveness in curbing the conver-
gence for each algorithms.

The next possibly informative experiment for LISC and NORMLISC is to take
a weighted mean between the old score vector P! and the new score vector
P'. For each iteration, LISC and NORMLISC will take a weighted mean of
P=0.15-P""1+0.85.-P" to see if the algorithm eventually converges to a steady
state. This is inspired by the use of a dampening rate in the PageRank algo-
rithm, for which the same rule is applied.

For the experiments involving MAXDIF, four iterations will be run each time,
along with dampening rates since this algorithm also has the property of con-
verging to a global score value for all nodes in the network. Another remark
is that it can happen that a node with a low risk score (e.g., 0.2) is linked to a
node with an even lower score (e.g., 0.1). In this specific case, MAXDIF must
be run for at least 2 iterations. See Figure[6.14|for an example.

0.6 4 0.6 4

0.4 0.4
0.2 .\ 024 .\
oo

0.2

-0.29 —0.29 i
d o.1/ | o.us/

0.7 0.7

-100 -075 -050 -025 0.00 0.25 0.50 0.75 -100 -075 -0.50 -025 0.00 0.25 0.50 0.75

Figure 6.14: Left: initial state of the network. Right: the state of the network
after 1 iteration (rate=1).

In Figure the node with the lower score is linked to other nodes with very
high scores, which causes the node with the lower score to converge upwards to
a higher value in the first iteration, but leaving the other node (with a score of
0.2) completely unaffected due to the algorithm only computing node scores
over directed links. This issue may be resolved by running the algorithm at
least one more time and redirecting the links in the process. It may be possible
that this type of problem will persist after two iterations. However, the most
immediate cases such as the one depicted in Figure are then already ad-
dressed. Additionally, with the introduction of a high dampening rate, nodes
that are further removed would be affected minimally. In this scenario, the
problem would persist even after many iterations of the algorithm.

Finally, the average network score of the algorithms will be plotted per itera-
tion for the small and medium test network in order to gain more insight into

48

their convergence. This way, it can be verified if the node scores truly converge
or diverge.

An overview of all algorithm experiments with respect to varying parameters
on the small and medium network can be found in Table The experiments
range from varying with the dampening rates and using a weighted mean to
setting f and g to return constant values in order to see the effects on network
convergence.

Algorithm Parameter values Appendix
LISC Varying with functions F and G | |D

LISC Varying with the dampening rate | [E

LISC Using a weighted mean F
NORMLISC | Varying with functions Fand G | [G
NORMLISC | Varying with the dampening rate | [H
NORMLISC | Using a weighted mean Il
MAXDIF Varying with the dampening rate | |J

Table 6.4: An overview of the parameter experiments for the designed algo-
rithms, and in which Appendix to find the respective results.

For LISC (Appendix[D}fF), it can be seen that letting influence and susceptibil-
ity functions f and g return constant values (1 in these experiments) will lead
to a violation of requirement M1. In the ‘active case’, i.e., when the dampening
rate is 1 and f and g are not set to return constant values, it can be seen that
LISC needs between 1 and 100 iterations to roughly converge to the same value
for all nodes in the network. Ideally, the scores converge locally to the scores
of the neighbours in as few iterations as possible. Varying with the dampen-
ing rate, given that they are a function of the number of iterations t, leads to
quicker convergence of the scores due to the rate of change becoming smaller
per iteration. The smaller the dampening rate, the fewer iterations are needed
to update the scores locally. For instance, a dampening rate of tlio still shows
a concentration of risky nodes after 10000 iterations. Using a weighted mean
(P=0.15-P"' +0.85.P) per iteration roughly leads to a marginally quicker
rate of convergence as in the standard case. It should be noted that LISC vi-
olates requirement M2, because risky nodes end up having a lower risk score
than its neighbours after a few iterations.

For NORMLISC, (Appendix [GHI). A difference with LISC is that varying with
f and g still leads to conformance to requirement M1, even if both functions
are constant. This is due to NORMLISC iteratively normalizing the transition
matrix T to sum to 1 per row. Computing normalized weighted averages of
risk scores between neighbours ensures that the scores do not diverge. With-
out the normalization step, nodes will ‘over- or underparticipate’, leading to
every node trying to exercise more or less influence than their fair share in the
network. Varying with the dampening rate has the same effect as with LISC.
In this case, the larger the dampening rate, the fewer iterations are needed
to converge the network scores. For instance, a dampening rate of ¢!° still
shows a concentration of risky nodes after 10000 iterations, as is the case with

49

LISC. Using a weighted mean also leads to a marginally quicker convergence
for NORMLISC. It should be noted that this algorithm also violates require-
ment M2.

For MAXDIF (Appendix [J), only a few iterations are required due to most of
the convergence being determined by the incorporation of the PageRank algo-
rithm, thereby conforming to requirement M1. Adding a dampening rate also
speeds up the convergence, leading to a few iterations (< 10) being required to
compute risk scores. Additionally, MAXDIF also conforms to requirement M2.

Next, the average score is plotted over 10000 iterations for the small (Fig-
ure(6.15) and medium (Figure[6.16) test networks per algorithm.

s
Number of erations Number of ierations Number of iterations

Figure 6.15: Left: mean global score of the small test network. Left: LISC.
Middle: NORMLISC. Right: MAXDIF.

10 10° 10 10
Number of erations Number of ierations Number of iterations

Figure 6.16: Left: mean global score of the medium network. Left: LISC. Mid-
dle: NORMLISC. Right: MAXDIF.

Figures and show that LISC and NORMLISC converge to an average
global value that always lies somewhere between the minimum and maximum
value of all initial scores in the network. This is due to the definition of f and g
in Formulas[6.1]and which are formulated in such a way that a node’s risk
score can lower in a next iteration. Since MAXDIF does not have this property,
this means that lower scores can only increase. After a sufficient number of
iterations, the entire network converges to the maximum initial score in the
network. It can also be seen that the convergence to a global average happens
after a low (i.e., > 10! and < 10?) number of iterations for all algorithms. This
indicates that each algorithm may only be run for a few (i.e., < 10!) iterations
in order to get a risk score estimation.

50

Algorithm ranking experiments

Here, the ranking outputs for each algorithm after 1 iteration on the medium
test network are shown in Table[6.5] Each node is given an index between 0 and
29. It can be seen that significant mutual overlap exist between the rankings.
For instance, the same 9 nodes occur in the top 10 rankings for all algorithms.
These happen to be the nodes that initially start with a high score and their
neighbours, which are assigned a higher score due to the GBA principle that
appears to stay intact for the algorithms. In general, we expect newly detected
threats to be assigned a slightly lower risk score than its risky neighbours, due
to the algorithms converging properties. This means that the top 10 rankings
stay relatively similar before and after a few iterations of any of the proposed

algorithms.

TOP || LISC NORMLISC MAXDIF

1 6(0.9-0.884) || 6(0.9-0.885) | 6(0.9-0.9)

2 9(0.8-0.8) 9(0.8-0.8) 5 (0.7 - 0.856)
3 12 (0.8-0.8) 12 (0.8-0.8) 3(0.8-0.8)

4 3(0.8-0.784) || 26 (0.8-0.786) || 9(0.8-0.8)

5 26 (0.8-0.784) || 3(0.8-0.785) | 12(0.8-0.8)

6 5(0.7-0.742) || 5(0.7-0.752) | 23 (0.7 - 0.8)

7 23(0.7-0.712) || 23 (0.7 - 0.716) || 26 (0.8 - 0.8)

8 10 (0.7 - 0.7) 10 (0.7 - 0.7) 4(0.6-0.724)
9 4(0.6-0.664) | 4(0.6-0.671) | 10(0.7-0.7)
10 | 2(0.3-0.652) | 8(0.5-0.63) 8(0.5- 0.681)
11 22 (0.6 - 0.632) || 22 (0.6 - 0.624) || 13 (0.5 - 0.624)
12 |[8(0.5-0.63) 18 (0.6 - 0.6) 22 (0.6 - 0.62)
13 || 18(0.6-0.6) 7(0.5-0.562) || 18 (0.6- 0.6)
14 |[13(0.5-0.58) || 13 (0.5-0.557) || 25 (0.5 - 0.6)
15 || 7(0.5-0.55) 2(0.3-0.522) || 7 (0.5-0.563)
16 || 25(0.5-0.52) || 25(0.5-0.517) || 11 (0.3 - 0.549)
17 || 11(0.3-0.52) || 17 (0.5-0.5) 0(0.4-0.5)

18 || 17(0.5-0.5) 11 (0.3-0.453) || 16 (0.3 - 0.5)
19 |[0(0.4-0.435) | 0(0.4-0.43) 17 (0.5 - 0.5)
20 | 1(0.3-0.417) || 1(0.3-0.391) | 2(0.3 - 0.435)
21 19 (0.3-0.417) || 19 (0.3-0.391) || 1 (0.3 - 0.384)
22 | 24(0.3-0.417) || 24 (0.3 - 0.391) | 28 (0.3 - 0.381)
23 | 28(0.3-0.417) || 28 (0.3-0.391) || 14 (0.2 - 0.369)
24 | 20(0.2-0.32) || 16(0.3-0.3) 19 (0.3 - 0.364)
25 || 16 (0.3-0.3) 20 (0.2 - 0.297) || 24 (0.3 - 0.362)
26 || 15(0.1-0.296) || 15 (0.1 - 0.253) || 29 (0.2 - 0.3)
27 | 14(0.2-0.248) || 14 (0.2 - 0.243) || 20 (0.2 - 0.286)
28 | 27 (0.1-0.212) || 29(0.2-0.2) 21 (0.15 - 0.238)
29 | 29(0.2-0.2) 27 (0.1-0.194) || 15 (0.1 - 0.237)
30 || 21 (0.15-0.15) || 21 (0.15-0.15) || 27 (0.1 - 0.166)

Table 6.5: The output rankings of each algorithm by index after 1 iteration on
the medium test network. The brackets present the initial score and the score

after 1 iteration.

51

6.4 Discussion

In this section, the experiments and results will be discussed with respect to
the research question:

How can network science methods be used to efficiently compute risk scores
of domains in dynamically evolving domain-domain networks?

In order to answer the research question, we first discuss our method to create
domain-domain networks, along with the benefits and drawbacks of such a
method. Next, we discuss the performance of the proposed algorithms based
on the performed experiments, the degree to which they conform to the stated
requirements and in which use case it is appropriate to use each algorithm.
We conclude the section with the limitations with respect to domain-domain
network creation and algorithm design.

Network creation

The DNS data set has undergone many preprocessing steps, from filtering IPs
and aggregating subdomains to applying projection methods to construct a
one-mode (domain-domain) network from DNS data. These steps are required
to obtain a workable network with respect to time and space requirements.
The network and the designed algorithms go hand in hand in this regard. The
‘denser’ the network (or, the more links in a network), the longer the algo-
rithms will take to complete an iteration due to the time and space complex-
ity of the algorithms. The drawback to the preprocessing approach is that
the network does not take in all the information that might be required for
optimal score computation. It could be possible that a subdomain (e.g., li-
acs.leidenuniv.nl) starts with a high risk score, but its ‘parent’ (leidenuniv.nl) is
initially recognized as a safe domain. The aggregation step could hence throw
away relevant information. One possible method to circumvent this is by the
design of an algorithm that is more scalable and can handle dense networks.
The problem with this, however, is that Guilt by association modelling requires
a computation between a node’s score and the scores of its neighbours. The
denser a network, the more node pairs exist, leading to an exploding num-
ber of calculations. It may be fruitful to split a dense network into smaller
networks using a clustering algorithm before computing the scores on the sub-
graphs. This approach, however, introduces other assumptions and splitting
criteria which will lead to other kinds of generalizations on the data. Another
possible approach is to explore the feasibility of multithreaded CPU process-
ing and GPU processing implementations with respect to computational speed

up.

Algorithm performance, conformance to requirements and use cases

Aside from the preprocessing choices, the computation methods also have to
conform to certain domain expert and model requirements (see Section [5.3.1).
An overview of the conformance to the requirements for LISC, NORMLISC
and MAXDIF can be found in Table after which a discussion on each re-
quirement is given. A ‘+’ indicates that the algorithm conforms to the require-

52

ment and a‘’-’ indicates the opposite. A + indicates that the algorithm conforms
to the requirement under certain circumstances.

Requirement LISC | NORMLISC | MAXDIF
D1: Static risk requirement + + +
D2: Influence requirement + + -
D3: Susceptibility requirement + + -
D4: GBA requirement + + +
D5: Risk spreading requirement + + +
Dé6: Update requirement + + +
M1: Convergence requirement + + +
M2: No swapping requirement - - +
M3: Limited parameter requirement | - - +
M4: Degree requirement - - +
MS5: Scalability requirement + + +

Table 6.6: The degree to which each algorithm conforms to the requirements
as defined in Subsection 5.3.1}

D1: A drawback of LISC and NORMLISC is that malicious nodes do not neces-
sarily retain their scores over several iterations, depending on the formulation
of influence and susceptibility functions f and g. MAXDIF, however, never
lowers a node score.

D2 and D3: The functions f and g provide a certain freedom in determin-
ing the behaviour of the model, which enables the end user to tune the model
to their desires. This is an advantage which LISC and NORMLISC have over
MAXDIF. However, no explicit guarantees can be made with respect to the
convergence of the model. Running the model on a different data set or with
a different use case will require expert insight and experimentation in order to
reformulate f and g.

D4: All three algorithms are designed to model score computation as a pre-
dominantly local problem, since computation is fully based on a node’s neigh-
bours.

D5: All models also spread risk from risky nodes to less risky neighbours.
This happens automatically for MAXDIF, but depends on the formulation of f
and g for LISC and NORMLISC.

D6: All three algorithms also have a way to update the single nodes quickly

(see Algorithms|6} [8and [11).

M1: The results from the algorithm convergence experiments show that each
algorithm has converging properties. However, this requires running the al-
gorithm using a dampening factor and/or limiting the number of iterations.
This is due to their innate property that the network scores converge towards
each other. If the algorithms run indefinitely, then eventually all scores in the
network converge to the same value.

53

M2: Another benefit of MAXDIF is the property that a node’s score is at most
raised with the absolute difference between itself and its neighbours, without

the neighbours’ score being able to decrease. This prevents the swapping be-
haviour that LISC and NORMLISC tend to show.

M3: The drawback of f and g is that they introduce more free parameters into
the model, which makes tuning the model difficult. Since MAXDIF does not
use these functions, it conforms more to the limited parameter requirement
than LISC and NORMLISC

M4: A benefit of MAXDIF is that it inherently looks at the PageRank of its
neighbours to assign more of its ‘share’ to nodes that have a more critical posi-
tion in the network, which is not a property that LISC and NORMLISC possess.

MS5: In terms of complexity, all algorithms have a time and space complexity
in the order of O(m). This is not ideal if the desire is to run multiple iterations
over a network consisting of billions of links. However, given that networks
are sparse enough, the run time and space occupation are manageable since the
algorithms do not need to run for many iterations to update the neighbours.

Limitations

All in all, MAXDIF has fewer tunable parameters and spreads can spread risk
in a targeted way. The main drawback it has compared to LISC and NORM-
LISC is that it has less freedom in modelling interactions between high and
low scores due to the absence of influence and susceptibility functions, such
as low scores being able to ‘pull’ neighbour scores down. This freedom is im-
mediately the main advantage of LISC and NORMLISC over MAXDIF because
it enables the user to model complex interactions between nodes. The main
drawback for LISC and NORMLISC is that this freedom introduces free pa-
rameters that have to be optimized. The formulation and validation of f and
g can be very arbitrary, so guarantees cannot be made either about the con-
vergence. Another drawback that LISC and NORMLISC have is the swapping
phenomenon, which could be very undesirable in certain circumstances. An-
other trade-off that can be considered is whether or not normalization is re-
quired in the network to ensure an even impact for each node in the network.
NORMLISC and MAXDIF have built-in normalization, whereas LISC does not.

Finally, the conformance to the requirements was mostly tested using test net-
works instead of real-world networks. Requirements D1-D6 and M3-M4 are
about the designed properties of the algorithms (e.g., using influence and sus-
ceptibility or considering the position in the network). These properties hold
true in any case, therefore they may also hold true for real-world networks.
M1 and M2, however, are not evaluated using real-world networks. For M1,
it may be reasonably assumed that the converging properties hold true due to
the innate design of the algorithms to converge. For M2, it can be assumed
that swapping may occur in real-world networks because swapping depends
on the formulation on f and g. However, these assumptions about M1 and M2
holding true in a real-world scenario should be confirmed with experiments.

54

Conclusion

N THIS worK multiple algorithms, LISC, NORMLISC and MAXDIF, are
designed to compute risk scores for domains using a domain-domain
network constructed from passive DNS data. These risk scores reflect
the perceived risk of making connections to the domains and can be uti-

lized to preemptively block malicious domains from being accessed in order to
protect the IT network.

First, some preprocessing steps are applied before a domain-IP network is con-
structed by linking domains to IP addresses. Once the construction has hap-
pened, domains are projected to a domain-domain network if they share an
IP address. However, the projection from domain-IP to domain-domain intro-
duces an exploding number of links. To this end, heuristics such as filtering
nodes with a large degree and domain aggregation assist in the creation of a
network with a manageable number of links. Nodes with a degree < 3000 are
projected directly to the domain-domain network, and IP nodes with a de-
gree > 3000 are placed ‘as is’ in the network along with their neighbours, in or-
der to limit the number of projected links. Finally domains which are directly
linked to each other via CNAME are also added to the one-mode projection.

Furthermore, risk scores of domains can be computed locally by using one of
the three designed algorithms. The three algorithms all have a time and space
complexity in the order of O(m). This means that the algorithms’ time and
space requirements scale linearly with the number of links in the network.
In practice, sparse networks finish in a feasible time. However, this becomes
increasingly harder when the network is denser. After experimentation, it is
determined that the use of a dampening rate and a limited number of itera-
tions has a higher likelihood of ensuring that the algorithms converge locally.
If more freedom in modelling complex interactions between nodes is desired,
either LISC or NORMLISC can be used, depending on whether or not normal-
ization is required. This approach has the drawback that swapping can occur.

55

If the number of free parameters needs to stay limited and swapping is an un-
desired property, then MAXDIF can be used.

Furthermore, given a dampening rate of 1 and an unlimited amount of itera-
tions, LISC and NORMLISC converge to a global value between the minimum
and maximum initial score in the network. The exact height of this global score
depends on the formulation of the influence and susceptibility functions f and
g. MAXDIF, however, converges to the maximum initial score in the network,
given the same conditions.

The main limitation of this work is that there is no ground truth to validate
the outcome of the algorithms. The discussed algorithms present a method to
estimate the risk to make connections to domains, but it cannot be said with
certainty which type of estimation is more applicable in a real-world scenario.

The next steps could be to design preprocessing and projection heuristics such
that more information is kept for the creation of the domain-domain network.
Additionally, more types of relationships may be introduced to the network
whereby some relationships are stronger than others. One way to deal with
this is by transforming the domain-domain network to a weighted network,
where each link has a weight denoting the ‘strength’ of the relationship. An-
other way to deal with this is by exploring multiplex networks, where only
links are placed between nodes when they are deemed strong enough, depend-
ing on a threshold defined by experts. In addition, distributions can be drawn
of score differences between node pairs throughout a number of iterations in
order to get a clearer picture of the convergence of each algorithm. Also, more
exploration could be done with respect to the properties of the domain-IP and
the domain-domain networks, e.g., their connectivity, the size of their giant
component and their sparseness. Furthermore, another goal is designing an
algorithm that can model complex interactions (e.g., through influence and
susceptibility functions) whilst also eliminating the swapping phenomenon.
In the current case, a trade-off needs to be made about what requirement is
more important. If eliminating swapping is more important, then it means
that MAXDIF has to be picked, but also that more complex relationships can-
not be modelled. Additionally, the experiments in this thesis were conducted
in the static case. The algorithms also need to be tested in the dynamic case on
real-world networks to see if they still conform to the listed requirements. An-
other step is to build a validation set refereed by cyber security experts. This
validation set should contain the scores for each node in the network for two
timestamps. This set can then be used to compare to the outcomes of the al-
gorithms in order to measure algorithm performance. A validation set would
also open up more ways to approach the problem of risk score computation,
such as a machine-learned ranking problem.

56

1]

2]

[11]

Bibliography

Internet Corporation For Assigned Names and Numbers. Domain
name hijacking: Incidents, threats, risks, and remedial actions, 2005.
http://archive.icann.org/en/announcements/hijacking-report-
12jul05.pdf, Last accessed on 2019-02-28.

Brian Cashell, William D Jackson, Mark Jickling, and Baird Webel. The
economic impact of cyber-attacks. Congressional Research Service Docu-
ments, CRS RL32331 (Washington DC), 2004.

Lejun Fan, Yuanzhuo Wang, Xueqi Cheng, Jinming Li, and Shuyuan Jin.
Privacy theft malware multi-process collaboration analysis. Security and
Communication Networks, 8(1):51-67, 2015.

Yury Zhauniarovich, Issa Khalil, Ting Yu, and Marc Dacier. A survey on
malicious domains detection through dns data analysis. In Proceedings of
the 2018 ACM Conference on Computing Surveys (CSUR 2018), pages 67:1—
67:36. ACM, 2018.

Albert-Lasz16 Barabdsi et al. Network science. Cambridge university press,
2016.

Antal Van den Bosch, Toine Bogers, and Maurice De Kunder. Estimating
search engine index size variability: a 9-year longitudinal study. Sciento-
metrics, 107(2):839-856, 2016.

Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. Basic
notions for the analysis of large two-mode networks. Social networks,
30(1):31-48, 2008.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of
massive datasets. Cambridge university press, 2014.

Ron Aitchison. Pro DNS and BIND 10. Apress, August 2005.

Margot Waty, Seth van Hooland, Simon Hengchen, Mathias Coeckel-
bergs, and Max De Wilde. How hot is .brussels? Impact of the up-
take of the .brussels top-level domain name extension. arXiv preprint
arXiv:1606.04277, 2016.

Daniel Cheung. Common dns request types, 2018. https:

[[support.opendns.com/hc/en-us/articles/227986607-Common-
DNS-Request-Types, Last accessed on 2019-01-11.

57

http://archive.icann.org/en/announcements/hijacking-report-12jul05.pdf
http://archive.icann.org/en/announcements/hijacking-report-12jul05.pdf
https://support.opendns.com/hc/en-us/articles/227986607-Common-DNS-Request-Types
https://support.opendns.com/hc/en-us/articles/227986607-Common-DNS-Request-Types
https://support.opendns.com/hc/en-us/articles/227986607-Common-DNS-Request-Types

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Hyunsang Choi, Hanwoo Lee, Heejo Lee, and Hyogon Kim. Botnet de-
tection by monitoring group activities in dns traffic. In Proceedings of the
7th IEEE International Conference on Computer and Information Technology
(CIT 2007), pages 715-720. IEEE, 2007.

Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C Freiling.
Measuring and detecting fast-flux service networks. In Proceedings of
the 16th Annual Network & Distributed System Security Symposium (NDSS
2008). The Internet Society, 2008.

Christian Seifert, Ian Welch, Peter Komisarczuk, Chiraag Uday Aval,
and Barbara Endicott-Popovsky. Identification of malicious web pages
through analysis of underlying dns and web server relationships. In Pro-
ceedings of the 33rd IEEE Conference on Local Computer Networks (LCN
2008), pages 935-941. Citeseer, 2008.

Matija Stevanovic, Jens Myrup Pedersen, Alessandro D’Alconzo, Stefan
Ruehrup, and Andreas Berger. On the ground truth problem of malicious
dns traffic analysis. Computers & Security, 55:142-158, 2015.

Mark Felegyhazi, Christian Kreibich, and Vern Paxson. On the potential
of proactive domain blacklisting. In Proceedings of the 3rd USENIX confer-
ence on Large-scale exploits and emergent threats: botnets, spyware, worms,
and more (LEET’10). USENIX Association Berkeley, 2010.

Shuang Hao, Nick Feamster, and Ramakant Pandrangi. Monitoring the
initial dns behavior of malicious domains. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference (IMC 2011),
pages 269-278. ACM, 2011.

Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee. Con-
nected colors: Unveiling the structure of criminal networks. In Proceed-
ings of the 16th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2013), pages 390-410. Springer, 2013.

Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. Ex-
posure: Finding malicious domains using passive dns analysis. In Pro-
ceedings of the 18th Annual Network & Distributed System Security Sympo-
sium (NDSS 2011). The Internet Society, 2011.

Daiki Chiba, Takeshi Yagi, Mitsuaki Akiyama, Toshiki Shibahara, Takeshi
Yada, Tatsuya Mori, and Shigeki Goto. Domainprofiler: Discovering do-
main names abused in future. In Proceedings of the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2016),
pages 491-502. IEEE, 2016.

Xin Hu, Matthew Knysz, and Kang G Shin. Measurement and analysis
of global ip-usage patterns of fast-flux botnets. In Proceedings of the 30th
IEEE International Conference on Computer Communications (IEEE INFO-
COM 2011), pages 2633-2641. IEEE, 2011.

Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and
Nick Feamster. Building a dynamic reputation system for dns. In Pro-
ceedings of the 19th USENIX conference on Security (Security’10), pages
273-290, 2010.

58

[23] Issa Khalil, Ting Yu, and Bei Guan. Discovering malicious domains
through passive dns data graph analysis. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pages 663—
674. ACM, 2016.

[24] Kazumichi Sato, Keisuke Ishibashi, Tsuyoshi Toyono, Haruhisa
Hasegawa, and Hideaki Yoshino. Extending black domain name list by
using co-occurrence relation between dns queries. In Proceedings of the
3rd USENIX conference on Large-scale exploits and emergent threats: botnets,
spyware, worms, and more (LEET’10). USENIX Association Berkeley, 2010.

[25] Kensuke Fukuda and John Heidemann. Detecting malicious activity with
dns backscatter. In Proceedings of the 2015 Internet Measurement Confer-
ence (IMC 2015), pages 197-210. ACM, 2015.

[26] Yonghong Huang and Paula Greve. Large scale graph mining for web rep-
utation inference. In Proceedings of the IEEE 25th International Workshop
on Machine Learning for Signal Processing (MLSP 2015), pages 363-369.
IEEE, 2015.

[27] Zhiyun Qian, Zhuoqing Morley Mao, Yinglian Xie, and Fang Yu. On
network-level clusters for spam detection. In Proceedings of the 17th Net-
work & Distributed System Security Symposium (NDSS 2010). The Internet
Society, 2010.

[28] Matthew Thomas and Aziz Mohaisen. Kindred domains: detecting and
clustering botnet domains using dns traffic. In Proceedings of the 23rd
International Conference on World Wide Web (WWW 2014), pages 707-712.
ACM, 2014.

[29] Fariba Haddadi and A Nur Zincir-Heywood. Analyzing string format-
based classifiers for botnet detection: Gp and svm. In Proceedings of the
2013 IEEE Congress on Evolutionary Computation (CEC 2013), pages 2626—
2633. IEEE, 2013.

[30] Jehyun Lee and Heejo Lee. Gmad: Graph-based malware activity detec-
tion by dns traffic analysis. Computer Communications, 49:33-47, 2014.

[31] Ching-Hsiang Hsu, Chun-Ying Huang, and Kuan-Ta Chen. Fast-flux bot
detection in real time. In Proceedings of the 13th International Symposium
on Recent Advances in Intrusion Detection (RAID 2010), pages 464—483.
Springer, 2010.

[32] Pratyusa K Manadhata, Sandeep Yadav, Prasad Rao, and William Horne.
Detecting malicious domains via graph inference. In Proceedings of the
19th European Symposium on Research in Computer Security (ESORICS
2014), pages 1-18. Springer, 2014.

[33] Elihu Katz and Paul F Lazarsfeld. Personal influence. New York: Free
Press, 1955.

[34] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics
of viral marketing. ACM Transactions on the Web (TWEB), 1(1):5, 2007.

59

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Morris H DeGroot. Reaching a consensus. Journal of the American Statis-
tical Association, 69(345):118-121, 1974.

Benjamin Golub and Matthew O Jackson. Naive learning in social net-
works and the wisdom of crowds. American Economic Journal: Microeco-
nomics, 2(1):112-49, 2010.

Bernd Heidergott, Jia-Ping Huang, and Ines Lindner. Naive learning in
social networks with random communication. TI Discussion Paper Series,
2018(018/11), 2018.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

Monika Henzinger. Link analysis in web information retrieval. In Bulletin
of the Technical Committee on Data Engineering (TCDE 2000), volume 23,
pages 3-9. IEEE, 2000.

Allan Borodin, Gareth O Roberts, Jeffrey S Rosenthal, and Panayiotis
Tsaparas. Link analysis ranking: algorithms, theory, and experiments.
ACM Transactions on Internet Technology (TOIT), 5(1):231-297, 2005.

Stephen Oliver. Proteomics: guilt-by-association goes global. Nature,
403(6770):601, 2000.

Yu Qian, Seren Besenbacher, Thomas Mailund, and Mikkel Heide
Schierup. Identifying disease associated genes by network propagation.
In Proceedings of the 12th Asia Pacific Bioinformatics Conference on Systems
Biology (APBC 2014), volume 8, pages 305-311. BioMed Central, 2014.

Mnemonic. Defining cybersecurity, 2018. https://www.mnemonic.no/,
Last accessed on 2018-12-14.

Yakov Rekhter and Tony Li. An architecture for IP address allocation with
CIDR. Technical report, 1993.

Issa Khalil, Bei Guan, Mohamed Nabeel, and Ting Yu. Killing two birds
with one stone: Malicious domain detection with high accuracy and cov-
erage. arXiv preprint arXiv:1711.00300, 2017.

60

https://www.mnemonic.no/

Appendices

61

A Update example LISC

An example update (see Algorithm [6) can be found below. See Figure [5.5| for
an example network. Numbers with long tails are rounded to three decimals.

See Figure|[I]for an example of a network.

07

B

05 1

Figure 1: An example of a scored network of size n = 3. Node C’s risk score is

updated to ‘1’ (from 0.5) in line 2.

Before the update is performed, ﬁ(t_l),l, Eiﬁ“‘”l’ node n (n=2) and score(n) s

(s = 1) have to be initialized:

0.7 0 1 0] 1
pt-Y=fo8|,1=|1 0 1|, - =]|1
[Pe=D)|
0.5 0 1 0 1
Now the network scores are updated as follows:
[0.7
V-1 B =08
| 1
o] [o
T =f(s) I.=1-|1|=|1
ol |o
[0] o
T”=g(s)-1],=0-|1|=|0
0] [0
. (1] [0.7 0 0
D' = (s e?lﬁ(,_l)l—P“”)olsc_[l 1|-]0.8]o 1|=]0.2
1] [10]) |0 0
. 0.7 1 0 0
D" = (P —s &) ol =|[0.8]-1-|1]o 1|=]-0.2
0.7 1 0 0
ol [o 0
B =T oD’ =|1|0|0.2|=]0.2
of [o 0

P'=

[0.4]

. 0]0.6
1 1

0] [o.6]

. 1]-10.4
1 ol |o

PY 4B 0C”+B 0C’
[0.7] [0

0.8+02004+04
1

[0.7]
0.8+ 008 + 0
1

[0.7

0.88

| 1

63

it

0.6

0.4

B Update example NORMLISC

See Figure 2|for an example of a network.

0.7

D2

05 1
Figure 2: An example of a scored network of size n = 3. Node C’s risk score is

updated to ‘1’ (from 0.5).

Before the network scores are updated, pe-n 1, El)ﬁf,ll,node n (n=2), score(n) s
(s=1)and a (a = 0.2) need to be initialized:

Now the scores are updated as follows:

. 0.7
Y —s 5 PN = 0.8
1

0.7 0.6] [0.6
T:f(s)-G(ﬁ(t‘”):f(l)-G[0.8]:1- 0.4|=10.4
1 0 0

0

0.6 0
T'=Tol, =|04|o|1|=]04
0 0 0
0
T,=a:T' =04
0.2

64

0.667
0.333

0.6®|1

0.6

0.6

0.6

T/=0:T" =|0.667

Pt

P,

[0.7]
0.8]0

[0.7]
0.8]0

0.933

[0.7]

(—)_) _ T”)JFS . T//

1 0
1{-10.667||+1-
1 0
1 0
0.333(+]0.667
1 0

65

0
0.667
0

C Update example MAXDIF

See Figure 3|for an example of a network.

0.7

05 1

Figure 3: An example of a scored network of size n = 3. Node C’s risk score is
updated to ‘1’ (from 0.5).

Before the update is performed, pu-v 1, eIPf np node n (n=2) and score(n) s
(s = 1) have to be initialized:
01 0 1
pli-1) _ J=[1 0 1f,e "”I =1
010 1

Now the network scores are updated as follows:

0.7
Pl — g L P 0.8
1

0.7] [0.3

I'=s-P*Y=1-]0.8|=|0.2

1 0

1 0 0
I” = DRAW_INCIDENCE _UPDATE(I")o I, = [1|o|1| =1
1 0 0

0 1 0]\™ 1] [o
:1@(([010]-1@1]:1@1:1
0 1 0 1| |o
0.7] [o0.3] [o] [o.7
Pr=PtViror”=108|+]0.2|o|1]=] 1
1 0 1

66

D LISC: Varying with F and G

Convergence of the algorithm (with F and G,Alpha=1) over time

10-11

Absolute sum of change

10-13

10-15

102

Number of iterations

Convergence of the algorithm (with F and G,Alpha=1) over time
10t

Absolute sum of change

10!

10? 10%

Number of iterations

Figure 4: [F and G]: Left: convergence of medium network. Right: convergence
of large network

" 5 10 03 " 03
e / e _ / e
o1 01 =)
o o o
wl @ —1B @ o o0 Jo
02 7 ® 02 7 P o43— e
U729
of o6 ogbs
o5 s o
o 1Y oy
-L0 \02 -10 02 -10 014447
T o o 0w b o b am T wm om om o on e Y R T
" 03 10 odea 10 og03e
6@ / w2 e/
L v L v L v
o S o 050867 o —
059 Vi "5\" 53)7291 0651 J\\v @ 066: 7 5\ m)mz
7 o5 e
osife ogifs ossés
-05 \ 05 05
o oess2 d6%2
. Ve - Ot o ves1
1 o639 10 06637 10 o688
ode_ &/ s
/
6436 641 “os6se
o as os R
] og@ar——o8B 0l o 6654 IR —
\ 4 / 8 65— 5\‘\0 @ & B
06651 A 06653 @ 0.6658 @
d6s St 63
0] o6 a0 Ot an P
T e on o o ey T e Sn o om o o aw Tn ow e ok b b s b
- 08659 50 0869
a0 6659
6o 650
o \ o \
“ mm’?ﬁ\ 87 N usﬁk#}s&s\ o8
o o
ogehs ogsbe
as os
Osess Oess
1o Pt 10 g

Figure 5:
(1,2,3,4,5,10,50,100,1000,10000] iterations

[F and GJ:

7 as0 oz

000

7 s oz

67

%0

Convergence of the medium network

over

03 0852
06 06
02
04 04 Toag 12
03 04173 NS/
02 o2 02 07242832052
/ 04173
|
00 oﬁ/ 4 00 e 05, 032015
0 03 3470 04173
-02 @ \. // -02 4
04 ovs\ 2 04 08
w7 \
-6 W—os 06 06 @—a5 06
o0 075 050 075 0w 035 030 075 160 oo 075 050 025 000 035 030 075 1o0
o6 06
043%
04 04 673 0730875
07493 /
02 02 5 0689~ >96%8 6364
08673
|
00 0o 0606
07314 07056011
6417476 70987371 07169
02 ® - 0yif)
0.7006 o712 1{$\151
-oa % 04 :
Y 0 12’77\
06 0.6681-0,65; 06 08 O¥z0g0sT 06758
o0 075 050 075 0w 035 030 075 160 oo 075 050 025 000 035 030 075 1od

05 05
05542\D
04 04 67 %%%3s6
L s
02 02 o 92;#’-535 670
o - " o /
0.6963-6904
07307397 & 73R4 07285 47056
=02 (1433 =02 7417 ovify
S
s 07224 04 (5] !/i 7073
o 65\°9\
i 0.7114.6.70: 06 DT S
-T00 075 050 -025 000 075 030 075 100 -Too 075 050 025 000 025 030 075 100
0.7368
05 05
07357 071%\1
04 04 127 OTR3%5
07345 B
02 02 o3 o o 1@“”’7&1116
7361 07145
00 a0 ovzss 7
H 0.71687151
74387435 07288 o059 73487334 R
=02 7434 \ul] 3/ =0 7342 02t 1/
" o
04 07351 7097 04 0731 7194
g(w a o A’FM\
i 07269071 0.7086 -os OB oo
-To0 075 050 -025 000 075 030 075 100 -To0 075 050 025 000 025 030 075 100
07257 07242
o | o
07256 “-77% 07242 072‘%\7
04 1228 0792854 04 242 01342,
07255 N/ 07242 P
02 u\lzsa\v 0725 0.713/“7271?7227 02 nﬁu{v 07242 o2k2-21243:7242
/ na\é 723 724\? 67202
00 07243 00 o212
072387231 072497242
72587254 O o7z 12487282 LS ?{7242
2 1255 07257/ =0 71242 x: 2/
0725 /43336 07242 202
-0s 04 %
Nea N Neea P,
i 07242692 07235 -os 07242072 07242
-T00 075 050 -0z 000 075 030 075 100 -Too 075 050 025 000 025 030 075 100
07242
06
0.7242 0-7142}7
o1 7202 0T34,
0724<I v
07242
02 o2 o2 724
/ &wu\é 07242
i
00 o242
0724971282
72687242 022 ond
=02 olj2a2 0 zﬁ/
\
04 07242 /33>
0784242
06 07282072 07202
o0 075 050 025 080 035 050 o075 100

Figure 6:

[F and GJ:

Convergence of the large

[1,2,3,4,5,10,50,100,1000,10000] iterations

68

network over

Convergence of the algorithm (with F, without G,Alpha=1) over time Convergence of the algorithm (with F, without G,Alpha=1) over time

1015
101
1012
101
» o 101
2 100 2
5 5
b b
< 2 10°
5 10° 5
£ £
2 2 107
g 108 2
E] E]
3 3 105
2 g 10
2 10t 3
g e
102 10°
1
100 10
100 10! 102 10° 104 100 10t 10? 10° 10*
Number of iterations Number of iterations

Figure 7: [With F, without G]: Left: convergence of medium network. Right:
convergence of large network

o o o
02 0 0
a2l 01— - 01— - odgos—
CNy 02 s
wl 05 ol e Wl e
of o o
044 @ 06 04 L 4 06 0.4 ®° 06715
B T B T
o o o
ogit osi osis
o o o
ine | o oo
ol osor—" 0 osiz" o
o L.
. 1o » 20
Dpger—07224 06865~ o
o o2
P b .
-4 4 @ 06848 -0a @ 06943
sorsdunz 1sasesszieononie] Laaras1sosBaeoze]
o o N
s0168ls 1 abassusies Lsalasisoddiol
265t o somactfentiess " saseer i aTeetie
os1 s1s5e436 1261101
ool TR P e o prorSSOISRAOTe 102
> o200 IS Gosasers P, Goosarerios
. |
w2 sosTharre@parsserar asaspor2igussses 102
04 S gpass 04 '1599525%3"”5733837}]775‘911é}e+z7 o4 | HASOTO00IATGEIG), i @useses 102
g g v T g Y Y P T
o M
= n
/ ® / @
. & i &
- =
" / s
" @ N v
o—&_ a0
N : N
P i
s an s 0
B e T B T

Figure 8: [With F, without G]: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

69

Figure 9:

04
o5
03 01 g5
02 ~—ob \R ®
i
e \/
%>
02 &4
0793
04
Al\\.
06 g
06 b A
05 ®
08 .
Do 8 o6 a4 2 oo 02 o4 0o
o@:
04 07058 05046
M%‘}a&ﬂ Ore
02 073 pos 2 0vasiss s
i
7 At
. \/
R
02 %3508
on 06413
061697379
. 0686700513
s
08
Do s o6 04 2 oo o2 o4 06
- 243276
o 86 -332069 2
3302069 SRk 108
00
1492904
. 5055503
» p et
26,6599 889
- 31393571
o@s 5
08
o o8 o6 a4 2 oo o2 o4 06
8439533 $719.047
n A
02
00
02 Bl
04 4005
10493; 3@
. 12677 93>
1900170344581 s
08

04
e 60,7415
<
00
e
-0z aars
525
04 o
0,665¢-7015
. 06505, 57\59
08606 doo
08

553901954 @77126e+53
o4 091780 930737910796¢ +54
383038736e-+54
07 0 w3
56950091
00
-0z
04
06
08
o -6s s 04 -6z oo o2 04 as
dan
04 \
07 ama ah
1/
e
o \J
fan
02 n‘:‘n\nan
oa "
04 AN
san), 80
o6 ;a" nan
dan A
nan
08

[With F, without GI:
[1,2,3,4,5,10,50,100,1000,10000] iterations

Convergence

70

of the large network over

Convergence of the algorithm (without F, with G,Alpha=1) over time Convergence of the algorithm (without F, with G,Alpha=1) over time

105
101
108
1012
o 101 @
2 2
2 £ w0
g w 2
E E 10%
a 107 5
2 2
5 5 108
g 10° i
3 3
e e
10%
10°
102
10!
100 10! 102 10° 104 100 10t 10? 10° 10*
Number of iterations Number of iterations

Figure 10: [Without F, with G]: Left: convergence of medium network. Right:
convergence of large network

I a3 o500

ae] \ as \ o
I 02 Joi7s

o5 “\“ &
o
ao] 0 s N B
/ea /\)1533 /mtw.a
2 6f 0] o 02{ odifs

/ e / o

0z 014 02809

00 o5 om0 o ok o7 1w o5 025 ot o o0 o7 100 s oz o0 o ok o 1w

7 201pas 355624883109
04

NA"&H. 4 . .esga).7 “].]ALMN 55 1 84386%7_‘&

1 T E
. 208512 oo 9536 0866
~2{ 10goe 02| ani@ose
266705 1045718609
200512 636.0866 @ o455
F111485087858424.22 B65136078555064e +46 1697314428112333e 4111

563090265+ 1365 34304112 4.901467502847¢
2.403756: Tetds 219184821 Serlll
0933517 +46 00 0859309110107Te-+111
1671093034fa5002e-+ 46, 15237727 i0502e+11:
02 #157612777866559e +46 -02100171067764579e+111
17444207 4ps003e+45 159064587 3548e+111

04 o4
6532.65 s602e+46 7 @osozes 11
T am o o ok om 1w o wm aw om0 o 1 T W o ok ol o 1w
an fan
as \ o \
o2 02
an .
) n ——a an
i /"ﬂ”/m T~ O
o0 an o ~vair
fan fan
oal g \ o g
nan fan
~a 4
i an
s g ow o3 o or 1w S W ow om ow o 1w

Figure 11: [Without F, with G]: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

71

Figure 12:

os 05.
@ o1 03
os p \) ’/
/
04 2| 5
3 03
02 %
N 0
00 ’\ e,
. 302 5 2
05 /oy —"
04 05— \\o 04
06 01 6.
5
08
o0 075 -050 025 000 075 050 075 100

o0 075 050 025 000 035 030 035 100
o8 107
o5 039741

1078526798
04 {33435,
02

50.7201

00

T10 075 050 025 000 075 050 075 100

0s
5 —qas nn
028
Ll 05933
el B /'”‘
05953
a2
04462 04
2] o .5 R
03 / a
iy 0.25 ‘ 05733
08
08
08 T

00 075 050 025 000 075 050 075 100

00 075 050 025 000 075 050 075 100

39589514 5059>-
10333881

30737
“os T57
o8
S0 o7 om0 7 om0 ok ok 075 1%
o8 3820443097 e
o6 78340841 “55197“?
0s cRIL/SEHEIRI36 12
2.8191641704869117+57

00
224087
02
020
o4 10915976
06
08

D10 075 050 025 000 075 050 075 100

o0 075 050 025 000 075 050 075 100

BV

075 050 025 000 075 050 075 100

oo o7 os0 7 0w ok ok oFs 1w
ol @ s
\(’““
/| nan
04 e el nan v
A\ i
02 LN
n s\
Rain

\ PN
nan/‘; fan

fian

o0 075 0

[Without F, with GJ:

S0 -025 000 075 o050 075 100

Convergence of the large network over

[1,2,3,4,5,10,50,100,1000,10000] iterations

72

Convergence of the algorithm (without F and G,Alpha=1) over time

Convergence of the algorithm (without F and G,Alpha=1) over time
101%
101
1012
1022
o 101 @
2 2
2 £ w0
g w 2
£ E 108
2 107 3
2 2
5 5
g w0 g
3 3
e e
10%
10°
10%
10!
100 10! 102 10° 104 100 10t 10? 10° 10*

Number of iterations Number of iterations

Figure 13: [Without F and GJ: Left: convergence of medium network. Right:
convergence of large network

0 03 ®
0 o @
as0] P as0 \ @ . ®
S ae o
s sz -
s s / ot
02 o1 @
oas) - -
/'°3 a5
5 os
s | 2 os s | @—" \. . /./ \.
g 7 P e
@2 651

o751 430 o1s 30887 3 07 sr2@pos

050 030 aso .\ 11600995
154 25611
025 23 025 s 2 02 s

o001 o0 000
520 -30687.3 sr2@po.s
025 | 025 025
5 2695206027
001 030 050
58675 5]
-o0.73 {8383 cosigps.3

7o
o s o 39005

1.00132117721786e+112.

-1.0981290811031196¢ +4;

050
805550911725395. 8 2.4326120189; 221815993531
T 3903.8 s

msmlmma sasoscs1qQp7s6e 46

253936842043545048 +47 2.315504998361368e+112

050
714962
56901866 {P5678e+41 075 191379557e +11

s o5 os opo o035 ok oy 1bo

197002650 3607e+ 111/

840983243204608.0

~as0] 00
25961 %5725
075 46215511 484 188451 7p6866.94 075
ok ok o 1

o To a7 o0 o2 odo o3s odo ors 200 "o

2e+111
51885561 ip0Bse+111

oo 075 0% 025 b0

nan fan
ors nan ars fan
030 \ fiah 030 9
— g o
025 02
000 000

fan flan
“02s

P N TN

o075 | 075 | g

TIo 075 050 025 000 0 030 075 100 o a7 050 02 o0 o3 00 o7 100

Figure 14: [Without F and G]: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

73

Figure 15:

os
02 o
| e
0a ¥
07 07
@ L) \0.4\\1
02 . ok.;s 1855
},5// £
07
o 05. 05)3
o
02
01—
1| @i \(J
—os /\
0606
S0 075 050 025 00 035 o030 075 LoD

o0 075 050 -023 000 035

o0 075 050 -023 000 035

. 06
05
s’
04 6 U8
@ o
02 05 o1 550Tg3
5 RS
- B/ 01 03
[) 05
v/
-0z / @
7 /
04 .
0
06 \
0.4
o0 075 050 025 000 075 030 075 100
05
04
B/
02 . P 5
o5
e 2. 5
e 94
36
| @9 o
06
0404
o0 075 050 025 000 075 030 075 100
05
85
-3087365.25
. B O 15
7:
02 321410 4.7
173 245388135 45
e 119045 -205602.05 509
768.5
A E 35
4
0:
oo @GR, n@s
22304365
06
oo
o0 075 050 025 000 075 030 075 100
0s
04
02

2377001

1061660362403 e-+173.84 /16091326
62372588417

s 70625455573e+16
6
04 20689988e+16
62253.0
06
2275 BIRIAEHA3.0 51@“%“@&7&56
o0 075 050 025 000 075 030 075 100 o0 o075 050 025 000 035 050 075 100
0s 0s ®
nan
|
04 4 04 han
8150e- na \ g
a4 fan; i
vl e ; o2 e
110187948 3ra 580 ot \m//‘a ‘e
5. gy aan tan
©014.104212040R 8938 703979674055¢ +140.262977941265| o L nan
-2.6987258517964163 140)
R 679328111967e+139 e fian
983139 n
% e an—72
A o] g o
2.7732638635414746e+139 far
-06 -8 /\
42 k3838 naman
o0 075 050 025 000 075 030 075 100 o0 o7s 050 025 000 035 050 o075 100
06
04
02 fan

i Yan
i
/
dan
p—nan 7
041 @Ry \ s
aif
o6 7
Naman
G o3 om0 o7 10

“To0 075 -0s0 -0z

[Without F and GJ:

Convergence of the large

[1,2,3,4,5,10,50,100,1000,10000] iterations

74

network over

E LISC: Varying with the rate

2 2

i

Absolute sum of change

107%

Figure 16: [Rate=1]: Left: convergence of medium

Convergence of the algorithm (with F and G,Alpha=1) over time

Convergence of the algorithm (with F and G,Alpha=1) over time
100

10°

2

Absolute sum of change

1074

102
Number of iterations

10!

gence of large network

10°

102

Number of iterations

network. Right:

- - -
) o o
e LN i |
- oL - o1 wo| oo
o g W e | gy & 00| 00 o
s / sz / oas Ty
02 02 02855 \
e 0. 5\ 0% 68 e 07299
- s -
02 02 P
- - -
o oz e
ors| @ / s ms\/ o pase |
-l oghe a0 565 - s
s s \ =
ol gy o IRy e ome
s o s / s ses / el
04829 0,605 \ 06385 \
. 07268 % 0.704 e 056951
- e o
S P P
T e e T o O e i e T g
il 05218 06002 06202
07504688 / 075 p.5858 / 075 p61s7
T
050 644 0s0 6292 050 06332
oz \ s s
s mw,m\ﬂ s ot Ww/nw\ s o] Jﬁﬁ)\v A
seasi / dor s 7 g s s
ogshs oféh osdh
| 06914 o 016886 R 06851
| 06865 e 06883| 90 06873
= e S e e W O e o e W e e 5E W S W 5
- =
o oG
07506347 ” 075 0.6468
050 ot o0 a0
wl ﬁﬂ&/nsem\v - wl Em/mu\ .
s / i / @
06613 \D 06609
SR 68 R 06745
o 056828 Ea 0676

Figure

17:

[Rate:%]:

Convergence of the medium network
(1,2,3,4,5,10,50,100,1000,10000] iterations

75

conver-

over

052
075 06,

0632
o by

0s0 0s0 2
& S
02s 02 o5
021 -
PRl
000 1 ooy BT
025 0.7\ 05 025 0.7\
030 0. / ~050 06
7,
578 g 67 Ty =
0‘4/‘ 03 04347 04173
100 3 100 @ 652
G5 o4 2 o0 o2 o+ s o8 S5 o4 o2 oo o2 oi o5 o8
100 100
06112
e b 06695
0504 /

000 000
025 025 0.6765\
“0s0 “0s0 0.7065\7
-5 015 73!
015, @
100 -100 dl
Gs a4 =2 oo oz os os s
100 100
06353 o662
/ /.
075 053%6 o@he ors nssz}\u “559
0s0 030/
o ez
025 644 025 6782
Egﬁsssﬁzﬁnu dor— 916‘5990'55@705A 5%‘1101)
000 P50 oo PS63FE
025 06903 025 0.6988
075 015
“72{71;43
100 100 3
s o4 62 o0 o2 o4 ds o8 Gs a4 =2 do o2 os Os s
100 100
06534 06598
/ /,
075 o% o3 075 06713 oo
050 [030/ 8 /
o8 igé 166 uss
025 ¢ 697 025 7089
699955'0'551/%.5395 T Msfﬁﬂ/ﬁ:sm R%‘nas)
i vsln‘*\ i 53396
025 o 7051\ 0745156 025 0. nus o 7‘1—91473
050 0.72%7 050 o 7241\7
075 015
07365 /4 oo u13/7‘3157
100 X 100
s os o2 s as
100 100
06665 o
/
0751 06839 oo ors os%\u 05744
/
050 WA 030/
o8 808y 6755 uss 855 6511
025 7 7138 025 2 7% 7158
7&§61ﬁ7{&76758 3‘%715?/& 7%?7”9“77%5783 e
000 D.6526% 0.00 0.6651%
025 07142 07377411 025 07171 0732867352
e H/Imu o w/ﬂ-o%sm
0737, (P9 2 u13/,‘375
100 @ 100
s o4 62 oo o2 o4 o8 o8 Gs a4 -2 do oz os os s
100
0678
s
ors Ujgs%ﬁi o@hs
050 8/
070 6}#:“%:55
025 758! 7157
%smﬂ 56516837 sy
6757
000
025 a.7n< 0728567303
e 0,1255\ 1374
5% ga— T
{ 1 0.73987445
0735 7351
100 O7as2
s o4 62 oo oz o4 os s

Figure 18: [Rate:%]: Convergence of the large network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

76

Convergence of the algorithm (with F and G,Alpha=1) over time

Convergence of the algorithm (with F and G,Alpha=1) over time
10t

’
10 10-1
E
10 1073
& 105 &
5 0 g 10
S S
5 107 S q10-7
E E
e e
g 107 s 1070
E E
2 101 2 0m
o o
10713 10-13
1071 10-15
10° 10! 102 10° 10% 100 10t 10? 10° 10*
Number of iterations Number of iterations
Figure 19: [Rate=13s7]: Left: convergence of medium network. Right: conver-
gence of large network
o7 05, 05/ o 06714 057/ b 07294 o0
050 050 050 \07305/
0251 025 025 /
o0l — gy 001 0 — o w0l B — o,
o o8 e, M— g6 55 A s
o1 0.1 oz 01 = 02157
o151 g 2/ 05 ln/ 0151 o
~100 il -100 ® -1.00 o
1 07268 up: o 07159 oS = 07006 oS5
S o e
025 { 025 / 025 /
007 057 0007 o642 R
075 02/ \ 075 0323)3/ 075 n»5‘“/ AN
oy /6 5 oan /m ogts /om
097 062 / oo 0.661 291 06614 /
% 3\—95611\%637 s ‘\9'651\&551 . 5\9651&\“515
R 06225 '@ 06486 "8 06576
o 06639 s = 06631 o5
S e
0007 0662 0001 0,662+
g l\essu‘\esezz % 4\95511\19“1/‘
/
. . 1 . .
Figure 20: [Rate=iysz]: Convergence of the medium network over

[1,2,3,4,5,10,50,100,1000,10000] iterations

77

02

04

T100 075 050 —025 000 075 030 075 100

32
iy’
i,

sgmﬁa;:ﬁ*s‘:%j:j“

0. 6805

[

T1o0 075 050 —025 000 075 030 075 100

b,
00 560503
02
04
06
o0 075 050 025 000
06519
04 N
0.6665
02
o1l
o i
02
04
06
06743
04
osm

ssﬁaﬁ 357

0. 6975

225
07437
01g
E’bnﬁz
o

025 o000 o025 0% o075 100

0.6¢
, Fiia
o
i
0.6992
-
07009

02

04

70 JQ;H" 07203
70m 7
0688 /l 8: 1%201

07101

“o0 075 -0s0

Figure 21:

[Rate— o5t

025 o000 o025 0% o075 100

0519
O 06
0.6305

-0z
04
—os
Too 075 o0 025 00 055 o030 075 1o
06306
- osus
05657
o2 #3340 6368
wd i e
00 Hogsin EXTIENG
068
-0z
¥
04 Sa2,07004
—os
Tloo 075 o0 025 00 035 o030 075 1o
0.6632
- k: 06918
06712 |
L apsne I
S 7S %7211
00 700 0708
o
-0z
04
o5
Too 075 050 025 obo 035
0.6892
- R: 07052
05818
02 %ﬂééﬁygfm 7087 01217
ssftﬁ“g/, 243
- o0 07338
-0z 306
028 3%;7375
~ \
04 Saag 1376
07459
05 |
07491
S0 075 o0 025 00 055 o030 075 1od
0.7058
- 07131
07069

9145
02 %ﬂ 71 07195
70937 7 ,3%# oﬁ”

%194
07247
00 18
P 241
o
02
ome\-llgz‘”
o4 Vg 723
07297
o5 i
0.7307

00 075 050 -025 000 025 050 075 100

07101
X
07108

M 71&7109%#:35:%8 i

00

xla 0 7125

220
o 72®2Wz5

£715105251
07258

07265

oo 075 -0s0 -025

Convergence of the

000 025 050 075 100

(1,2,3,4,5,10,50,100, 1000 10000] iterations

78

large network over

Convergence of the algorithm (with F and G,Alpha=1) over time

Convergence of the algorithm (with F and G,Alpha=1) over time

100
10°
1072
1072
-
N 10 o IR
2 2
-6
R £ 106
5 5
E A0 £ 107
a a
£ 10710 £ 1010
3 3
& 1072 2 1012
10714 10714
10716 10716
100 10! 102 10° 104 100 10t

Figure 22: [Rate:%]: Left: convergence

Number of iterations

gence of large network

Figure 23:

10?
Number of iterations

[Rate:%]:

* o » ” @
P W@ | o] 02
\D) \n] \D a0s
\\ 02 \\ P o8
e . vl N osage
o 5/ o.s/ 059
P
- o o
o 5 5
\D.Z o6 L 9\\7 2 05 a%‘2398
a5 aso ogls3
— ‘ el R) . S—
® - » - o3
la | “lo | i
e Tva vstes
o o
ogiss og206 o3
o o
owags " o¥sth " o¥sh
o0 o107 e
0 02
o¥3: 0 aw\v o 973\D
" o
| e [e [e
" s s e
0.6862 9 0696 4 0698 L
075 -050 -025 000 025 050 075 100 Ry 075 -050 -025 000 025 050 075 100 oy 075 -050 025 000 025 050 075 100
) . @ " o301
| o2 \ o | o ’”‘Kﬁl
505 sz 205
as us
oss o257 ogese
< @ 0 e
o¥6ss D o¥ses
A o o e
o3rf \ 06386 06445 \
a2 o2
L o e L o
-0 o
/ L / LN / D
568 0.6 02 0.6 224
ogsrs oads1 o2
o8
o ww wn o ob o o i B T PR Y T e wm ok ob oh o
" oams ")
The] o]
368 783
o8ss o6
Dt g
a0 %
0.6465 og# \
Do e
\MEK‘N / ssKN
e o
06917 B 0.6889 B
e "

Convergence of the medium network
(1,2,3,4,5,10,50,100,1000,10000] iterations

79

of medium network. Right: conver-

over

100 05 100 051
\ \
075 06 o7 016
03 03587,
030 0\ / ‘0-75 a 050 0156 \ a*o.:s
02—03 7 . 2o oy
02 03 02 P e o025 | “0@16 @ oz
000 \.\ P N { -
o V) 74
025 0_3/ e 02 0357/
050 ; 050
@ o @206 i
075 o \os 05 075 @ \5 _oge
g 55—y
100 100
100 o7 0% 025 obo o3 ok o7 100 075 0% o2 o o3 %0 o
100 05289 100 05535
\
o7s 06371 o7 06546
0.44 053
050 0@\ Vi 050 o@s) P 1s10
0.2——6:44¢ ZKT(ot ® zmg—a.ssgs#nikvl oL ®
025{ 06691 O NSB e ozs{ 07403 o@T .45;4 5
5 3 /
000 % oo .
025 P2ee—d6 025 Vo —os
056 0.6
050 —0s0
0 @507 ¥4 @295 o
075 e 05791 05 @ 06057
X 08098 o OBAO8_ ¢ o™
100 100
100 o7 0% 025 ob0 o3 ok o7 100 075 0% o2 o o3 %0 o
100 05786 100 05995
\
o7s 0.6641 o7
059
ogiu\ s
22 5975&04 | oggpr 05019
02s{ 0. o@o \57 @ 025
A /
000 o, oo
025 A TR e
067
050 -050
".3;7155
075 06291 075
06052 06ass
o 1%60(o0b828_
100 100
100 o7 0% 025 obo o3 ok o7 100 075 050 o2 o o3 %0 o
100 100 0624
\
075 o7
030 050
02s 025
000 o0
025 02
050 -050
078207191
075 075 06615
06861
Qe
100 100
100 o7 0% 025 obo o3 ok o7 100 075 %0 o2 o o3 % o
100 100 0635
\
075 o7 06517
0.6
ogsg \ 07
sxw—&ss}s—?s | ogass 09307
025 o0zs{ 0.3 o707 s e
000 a0 s
025 02 P, e 6257
06697
050 050
073227185
075 075 06651
0697
OB 667
100 100
100 o7 0% o5 obo o3 ok o7 100 075 0% o2 o o3 % on
100 06384
o7s 06511
o
oesrs\ SHsa00
an-&ss\»@s | ogaz 06439
o2s{ 0.@e5 \517 4
@ ? /
o0 675
3)
=0 07259 9.67630631
06688
050
07185
e 06703
07052
R
1001
100 o7 0% 025 om0 o3 0% o7
24: [Rate=»]: Convergence of the large network over

(1,2,3,4,5,10,50,100,1000,10000] iterations

80

Convergence of the algorithm (with F and G,Alpha=1) over time

Absolute sum of change

102 1
Number of iterations

Figure 25: [Rate:tiz]: Left:
gence of large network

Convergence of the algorithm (with F and G,Alpha=1) over time

Absolute sum of change

10?
Number of iterations

convergence of medium network. Right: conver-

ol 2) 2
03 | o | | 0s |
0501 \01 050 T 050 \03553
RN TN e L
5 st 2
o001 @ 000 M/u 000 Mm/‘L \
-2 os a2 S 25 Orrs o
o501 os0 o \
o dee olfs
o ors t o
. b2 - P - odass
2) oams
ors] ‘ ors f ors ?
[o o1 [
0501 TTosizl 050- i\V¢554 050 m\msms
oaz o599 osrs
0as] oas oz
o >m/ sn/ﬁ
™ °® \ - o \ o - \
<o Sr2s8— o730 4 722257309 i o274
o0 | \ a0 \ o
ol oda2s o oda0s i odes2
200 o1ss o odass a0 od8se
e R R e e
ors] oz - oseaz . ods
0.6 | | bstza____ |
050 Zs\v5]37 050- o638 050 06439
o osis oess
oas1 oz 0zs
o ;:hm/) ;ihm/)
@ \: . \5 . \E s
s 8 O\Hms v 9\Muﬁz P s\ n
. odgse o odes . odase
100 o819 100 odes1 100 odes:
B T T
- osss o5
56 | 59 |
050 ‘M\\Tﬁd!e 050 B\VGSSB
- \ n/osm . 06603
o o
000 0,66 \ b 06675
2 065 o70u5 oo LS
\
o o8t o ot
-0 o880 100 otenn

Figure 26:
(1,2,3,4,5,10,50,100,1000,10000] iterations

[Rate:tlz]:

81

over

Figure

27:

025

050

075

100

025

050

075

100

025

050

075

100

025

050

075

100

000

025

050

075

100

(1,2,3,4,5,10,50,100,1000,10000] iterations

82

0.
Lo 04173 4t ?4
- ® @ 32052
/ b
025 P nzf
Y4173
oo \02
_— 0.41 !243
10.65:
050 Wus—wzm
o5 nss\w
o6
-1.00 07
0 075 o oz ow 03 odo o35 1w oo 075 050 02 ow o 0% o7 1m0
0.204\ 0.2531
05596 L2 339
55 (505563 % {g 7103958
5 0lmtassests 030 05213 02
d /
6{ ;/45 025 DES-Q ;52
5595 /6431
000
5767 BJP}(BP
55 . 53
606963 030841073
x 4%5779 050 \u%o.wua
0 6 5
0.52% 842 -0.75 055@%04
06744 5 06715
0 075 om0 o2 ow 03 odo o35 1w oo 075 0% 02 ow o3 0% o7 1w
035K5 0.4579
537 L:E 611
55%7399 . \Qﬁ%?ﬁ7238 e
oo 0dg 759601657 050 ogEs 05868
/ @2
716{ 0.67: 025
6726
B4 000
s 079@“ . 074
0508.6991
).7367-0-6932 ~0.50
[2
0.55@?09 -0.75
0.682 T
0 075 om0 oz ow 035 odo o35 1w oo 075 0% 02 ow o 0% o7 1w
USH{B 0.5913
637 &5 564
\ng‘&“né - 65&5’97 069
0675 Sy 030 og8ss 0 AT
0
057 025
712
6832
-
5079@“5 025
08460693
1366-0-7196 ~0.50
\ 0746
0.69: 15 -0.75
06975 5
o0 075 o o2 ow 03 ok o35 1w oo 075 0% 07 ow o3 0% o5 1m0
0514\5 OGZKE
515 ﬁssls b 514 sgsssa
1230-6537 3726567
06985 06887 5086 030 u7ons o cgBrSe et
o.@ps /
Q una/z 0567 025 Q 07153 057%
ovarT N 96822 oyass 0)524
D4 000
2 2 068272 025 2 7 06! 15?37
086816906 087446907
[7304 ~0.50 \3 7333
07409 077399
0.69¢ .ézua -0.75 0.69; .§223
07055 5 0.7081
o0 075 om0 oz ow 03 odo o35 1w oo 075 0% 07 ow o3 0% o7 1w
D.GB{G
L2 06534,
Dvﬁﬁg'/salg 50,
s 07086 0.6698745-66H8"
025 *5 / 057,
o 07161 v
oyazs N\ 663
o000 U.ﬁgﬂ
025 3 os;f’“
087/46912
—0.50 El 1352
07394
-0.75 059€§23
100 07101
Too 075 0% 07 om0 o3 0% o5 1w
[Rate=:3]: Convergence of the large

network

over

Convergence of the algorithm (with F and G,Alpha=1) over time

Absolute sum of change

10-12
10-14

10-16

Figure 28: [Rate:tis]: Left: convergence

Convergence of the algorithm (with F and G,Alpha=1) over time

Absolute sum of change

10-12

10-15

10! 102
Number of iterations

gence of large network

068

0501

102 02 i
~e__ |] T
\‘\D Iy 023 /o_s
{/ a0 b
——m 2
030
01 01
\ 05 /\
07 07
b3 oo b3
075\1‘53H o 075 m_ 07325
73 | e
| aso
1294 TRz
o283 0z 08503
o0 Lo os/
——0:350: /j\v.ase
0gds4 e 03708
075 /
0 o
b3 e b3
Tw o om0 o o om ok T o o o ow ob ok

10t 10?
Number of iterations

050 @
i
e 0.69/
k‘&2315
;
|
.
1.00 ®

075

100

04805

T
s
o
wd
) o]
=
02834 0.3741

o 075 s 025 ok oz 050

we | | o
7173 7109
-
gL 03009 oo 0B o3y -

Figure 29:

o7 s G
60

07001

g o o
. e

050 050 |

100 o 110, 04791

[Rate= tlS]

: Convergence of the medium network
(1,2,3,4,5,10,50,100,1000,10000] iterations

83

of medium network. Right: conver-

over

Figure

30:

025

050

075

100

025

050

075

100

050

100

04173 81
o075 065 e
030 6
|
025 05— 54 a/11.7
5t
\ e
ozqfﬂ‘
025 /;/
g 2 0; Q15— 03204175
03 7// 050 o 411574/‘/
2 %
0500 @y 075 Dsz}sszn.’zmmua
3 % <
02 100 02
55 o4 -6z oo oz o4 ob 56 64 6z do oz o4 os
100
06056 oggg 0.6988
o. 74 & e o
(1 D70 050
|
@—.gbs 0762 azs 05015 o ofe
\ n/oﬁ s{ - \ 06563
0.60.69: 0.6077:
S o
/{ -025 é/
0.15051“/‘5 B 017}6'9'5}5 o
050
0.5411‘/:%2“/ 052‘5%671{
g%asms [. 075 zﬁj”ﬂg Qs
< S
0.3005 100 03199
55 o4 -6z oo oz o4 ob 56 64 62 g0 oz o4 oe
100
07283
ol 075
030
05876, 1, azs
\ 2
60 zm/ﬁ o
IRl
/(-025
n.zwel“;a 66973
050
n.esus%ﬂn/
ﬁg‘amtﬁa "Q?ssgs 075
02839 100
55 04 -6z oo oz o4 ob 56 64 62 do oz o4 oe
100
07497 0, 53 07486,
o 7507102 o075 o] 73501178
ot o2 030 0, “ovas
| |
06612, o, s/m-,ga azs 06823 1, 06996
06965 07052
Y . e
o8 339 OT%3065252
4//3/ 025 9/{(
DﬂWA;o 67157 0_555?0/.:; 10,7068
050
0.666525\4 0.6 25456
06650639372} 075 0,66607658.72)
s 8% Y1 o @i ‘%735
0.44a5 100 05153
55 o4 -6z oo oz o4 ob 56 64 62 g0 oz o4 os
100
X 07459, 0744
o 73677253 073 7407274
o o oa0s
| |
06939, oo 07046 azs 07028 s, }7033
07055 07077
0\7 069715 . 0\7 0698g71ry
3/} 8085222 i > 400169
055581;39 L7076 a.sne-“?s 6,076
050
0.66¢ s & 0672 ﬁsy/
0668066387 075 0,66006652.70
s lﬂ’ﬂz gt 3%512
05691 -1 06013
55 o4 -6z oo oz o4 ob 56 64 62 g0 a2z o4 os

[Rate:t%]:

Convergence

(1,2,3,4,5,10,50,100,1000,10000] iterations

84

of the large

network over

Convergence of the algorithm (with F and G,Alpha=1) over time

Absolute sum of change

10-12
10-14

10-16

Figure 31: [Rate:t%o]: Left: convergence

102

Number of iterations

gence of large network

Absolute sum of change

Convergence of the algorithm (with F and G,Alpha=1) over time
10t

10?
Number of iterations

of medium network. Right: conver-

. /p s 02
b 05 o 068
0s as
" 02 o 02
a0 \ 5 o0 \ &
b o'
02 / 02 /
e— g e— @
0t o6 04 o6
ol of ool o
. o4 s 057
b 07336 oo 07327
0s / 0 /
N 03832 . 2% . 04565 072“\7
- \ 330 00 327
030 089
02—o.7357 02—o.35
o041 0628 -0 osts
ot of ool o
oo o7 9% s obo ok ok ofs 1w Too 075 a0 o om ok ok o e
. g6 o ogta
. 07071 oo 0.7014
. 05389 mm\v 0 o626 . “Km
o0 \ 21 w0 \ 265
08667 o087
0z 02
02——g.55: 0223 —.55¢
- 0ms -os 06757
. 03 e 03201
oo o7 0% -0z ok ok ok o% 1 oo 75 <o w5 ok b5 o o 1o

Figure 32:

o 0.3038

07261
02281

0,69

g \
/

05963

o3

. 055465

06967

@ —og
06625

L5

Too 075 050 02 000 0ds 050 075 100

e

04126

06855

06733

08
o5

04

- 06505

00

0663
-0z
35%4/ \
04 0719

0.4836

. 0.6985
06386 /
02 omss\v
" N v
w
PR
obs
i 0.3623
PP

[Rate:t}—o]:

[1,2,3,4,5,10,50,100,1000,10000] iterations

85

Convergence of the medium network

over

Figure

33:

10

10

0.
o

[

0852 0-4’1&4
72

173

/
06, 0../0. 00 06, 152 _0:
\/0;0.1 o5 B_u 29’/ 05
05— 0417
0.
DSASL e 031 052 0547 /4/0
01/),3»15 uzlj/“”@ls
o9
[10 of
o0 075 050 025 opo 035 030 075 oo 075 050 025 000 033 030 075
10
0s
Va
06183
e
06 00
as
053 /
577
.5484.65! 267 03 % sgon 730 345
0.3534 0539415 “9?30‘51%"56
15367
of 10 02162
o0 075 050 025 obo 035 030 075 o0 075 050 025 000 033 030 075
. T . 8 -l
3 a
7273 742
06741 os 06836
Va 4
06753 3 0.691
/
oG 0728L 0735 00 0.6619 07253 D2
8 0:5396 HE A
0693(o
017
soros78 ez 05 b 6260.6612 2}%9?
05858 05393629 o. 5155 0558851
06503 6586
02764 10 03554
o0 075 050 025 opo 035 030 075 o0 075 050 025 00 033 00 075
10 o
os 0.6992
VA
0.6992 07043
o 249 oty
067580 073(3 00 068 07247
%.7@5%137(] o 9gpss 06828
/ V3
527 00
7065 9
6366651 5 a& -05 D gasw.666828%0 é’&
ussﬁa 06694014 065%‘55965‘5
0.4351 10 05046
o0 075 050 025 obo 035 030 075 oo 075 050 025 00 033 030 075
%, 10 07265,
as6) V0 aas
355 391
7
07044 os 07082
Va VA
ovoea u.mss
068270 153 7 00 0.6977 07134 0124
l7 # o> eana (zg 17038
0.7 5/ 070
6964
ston B 057 03 b g sbB%pa 0
0.6638 05784666 0, ssn;x 06796753
06776
05622 10 05961
o0 075 050 025 opo 035 030 075 oo 075 050 025 00 033 00 075

[Rate:t%0

]:

o5

-10

o093 ggmm/n 1
Lnoeg’

esroei 0

0.6751 D}Mns

06665
06178

B

075 050 -025 000 025 030 075

Convergence of the

(1,2,3,4,5,10,50,100,1000,10000] iterations

86

large

network over

F LISC: Weighted mean, rate=1

Convergence of the algorithm (with F and G,Alpha=1) over time Convergence of the algorithm (with F and G,Alpha=1) over time
10t
1071
107t
-3
10 10-2
& 105 &
g 10 § 108
S S
w 1077 I
5 10 5 1077
£ £
2 199 @
g ¥ g 1077
3 3
2 101 2 0m
= =
10713 10-13
10-15 10-15
100 10! 102 10° 10% 100 10! 10? 10% 10%

Number of iterations Number of iterations

Figure 34: [Rate=1]: Left: convergence of medium network. Right: conver-
gence of large network

075 e /n3 075 L /u) 075 @ /03
ool ar - or - o
\
\ \ \
b | 06 bl 06 = \ 6135
03— osu< m<“
T~ 02 2898
7 05— - 0.653- " og209———013%
o301 / 030 o3
. ;s e 0)653 . 07209
o2 o2 o0 od7se
ET R B & o = B o % o TR 0 & e
a_ 03 o@e 03691 @ osks
e e i
\ \ \
& g0 862
n.ﬁa< a.55< o 56<
oo} oo 000
/ 5366 / 6318 / 6505
025 05 025
ofzs——o7144 n.uze—"/“ 087608845
| ofinz o I I
/ J
100 ogts 100 o626 I og8le
o] 06128 og172 s 08533 08535 - 08516 08576
asel o251 s o540 . 6516
\
L | 0659 Lo 6568 e 6576
n,s5< 0, esK‘n 0, ss7<'vEL
oso | aso o0
6574 Tugses 6576
oz -0z oz
0/680r————08741 066006398 051——08577
030 030 “os0
ans) of7e o oge1s . 08517
-1oo] og8ls 10 ogi2s s 08577
R) & P TR o o o Ry % A o
. . 08570 - B o570
- -y - pa——

0651 0851

TvesTe / 08576
- T ogsre——o8576

PP E—

-0 050
o 08576 o 06576
100 06576 10 08876

“os 2 %o w2 o Ey 2 W o o

Figure 35: [Rate=1]: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

87

Figure

36:

100 0.5992
100 y
0@.3097 ‘;;s_q?.
075 075 3 708
0585
050
. @71 o
02s \ /
- 0568
05—o03
000 000
666
o025 025
050 -0s0
05 05
100 100
G4 -6z oo oz o+ ds 54 6z oo oz a4 os
100 04
. 0.6897,
0.6038, 6
v; i
o7 .n\ru‘. 075 73\1/°.
a5 0.6829 56 4 01035
; o
9 3 06678 . 078
- 0.6342 0600307075 0678
05—os478 O, . g 5
000
@R o2 01250858
o025 ~ & .
a5 05 23801502, - ogss 0w TR 50 2 .
o0 ~ 89462012 - 3; 7%;:»6 65—6-360
21,084 os6ii2
075 0.4321 3 05 ol 5;
oo 03662 . 05248
G4 -6z oo oz o+ ds 54 6z oo oz a4 os
100 0.@52
. 07283
07172 .
0@y, 7484 07406
o7 5 .73\2’0' 073 73\35—0‘
a5 07112 56 o 01176
4826
o@psoTass 06948 o2s] € 07039
. o 06985-0.7101 06943
0673907065 O . %
000
oEE, T o
o025 X ~ F
70 671406404, -
oes3r” L 206578 4 @ 72
s ak%7 084305687 . W 0652406253
57,5 06674,
—ors 065570 %ar0 05 '“Q:
oo 08473 . 08574
G4 -6z oo oz o+ ds 54 6z oo oz a4 os
100 0.7288
. 07245
Y 0%213.7253 207245
Q.7475 07343 %
075 Ok.\ ”,a.neru’ 075 2‘,_,Mz\3r°'
%56, o 0.7228 56 W 038
0736307329 ofta . 0719767189 07154
- og0i1 07la—oyi1e 07104
071207132 O oo | 0T
000
1606772,
ogaer o0 Wrse .
0% 5 646-6-6563
46 TO771
075 067488304 05
100 o%671 100
G4 -6z oo oz o+ de 54 6z oo oz a4 os
100 0.7134 100 0.7101 oL
70 0710 7101 01
oVizy 7azs I s A
G o —otbr™
Y 07101
05 / ogez os o .
0712607116 o712 . 0.71020-; 07101
- 07103 0710367101 07101
0710467104 0 . %
000
o025 025 =
oross T OG0 or7 050 oior” o < 3
0% \og_aqon—e 07 7
5 Q7075
075 070750 5075 05 101
100 o707 100
G4 -6z oo oz o+ de 54 6z oo oz a4 os
1000.7101
101
0\71&’101 7°1/7 7101
o075 p—oA \mj‘
o5 / 07101
0710267101 o1
025
o07loi-67101 07101
000
025 “7&91]
e 0367101
ormor oV 01
o0 \1%_4.7101—6.-7101
4107101
015 071013757
oyioL
100
G4 0z oo oz o4 ds

[Rate=1]:

Convergence

[1,2,3,4,5,10,50,100,1000,10000] iterations

88

of

the

large

network over

G NORMLISC: Varying with F and G

Convergence of the algorithm (with F and G,Alpha=1) over time)Convergence of the algorithm (with F and G,Alpha=1) over time
10
1071
107t
1072
10-*
» »
& 10 &
g w0 2 s
S S
S o107 I
5 10 5 457
£ £
2 10 H
g Y g 107
3 3
5 ape 3
21071 2101
= =
10713 10-13
10-15 10-15
100 10! 102 10° 104 100 10t 10? 10° 10*

Number of iterations Number of iterations

Figure 37: [F and G]: Left: convergence of medium network. Right: conver-
gence of large network

100] 02 100 o.\s 100 o.xm\s
o7t \D‘S oz o125 o7) gg]\
osl2s E,A/Dm}
xE!

&
0 o 0z

0001 b3— 06 oo s 06 o e ———0:5987
ozs] o— . ®— \ ——— DZB)GK—’/M
e 0.1, s 01 e 01376

075 / T~ 05 v \“ 015 \

0. ® 02 J 07 ®
o0 100 10
S we e e E P S e e Era— e S s

100 Jo.6676

1 3 3 073 \nsv 8
07093 07036 06917
050 u/ 030 / as0
2 a7 &

0231 oas s
%01 —0627 oo —0-6523| i 54— —0-6522
. ogzze——OF o 0sg04—— 00 . 03— %4
oo} \ s oo \
o3 pe ok

5 / o7 / 075 / .

o: ® 02065 @ 03865 L&
ol i ! [) : awl) ;) .
Ny

m\ﬁ 200 (06545,
0751 06706 o075 \ossa s Deda1
0.6734 06517 E\ 648
0504 r'/ 030 / 050 \
R 65 64

000 000 000
¥ 0645 Py — Y TS —
0 05— ogire—
02 02 -0z
050 050 050
o EIK oL o xsm\54
e o s vew o "
Ta o2 @ [) T <2) [s Y R o [s

100 oene\! 100 WKE
a7 B m\\s ors 7
79/oana osi7s
64 479/

aas 0as
a0 oo
_ odize————06479| _ odize———06479
o o68r—— o or—
o 0.64; = 06479
o5 / o5 / \
0.6479 oo 0.6479 &
100 100
ET Y o 0 m EF I M =)

Figure 38: [F and G]: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

89

100 03 100 05218
0.37/./ " 039070,
073 o.& 60 073 42%7 °
. o \5 001 osihs s
\
025 ® \0_3/05 025 o 03,0.5
™ B \ a0 OB
~a 1\4
22— 0958
/ 3 X 5167
050 08 e 05 ﬂhﬂmgﬁ"&
o o g _
100 100
To7s 050 025 opo 035 0% o7 1o 075 050 025 oko o35 0% o7 100
100 07381 100
o@: 5
075954385 7 ors
2 2
030 0.64/26 0. 727\9 o3
025 ossey ms§‘5 05
000 Osn\ﬁ 000
o2 'Q‘g a5
030 el : -0s0
075 03
100 100
To7s 050 025 opo 035 0% o7 1o 075 050 025 odo o35 0% o7 1o0
. 07290, S 00 gy®
o7ass O 07203 >)
0756938y 150 07416 0750708 Y16507371
/ 07453 7 \ 07332
%01 0.6907 o 730\5 ©%01 ogor1 o. 71%
\
0251 o dmns g [E2S N . o
- s \ - s \
oas D66580655 . 2 ome 4
04
74642 6517
050 06159 “A?“E e -0s0 uazé 4)-5 -
059: 0.6427 261
075 0854200605 075 %Ms
05246 0%126
100 100
To7s 050 025 opo 035 0% o7 1o 075 050 025 obo o35 0% o7 100

025
050

075

025
050
075

100

Figure 39:

100 07159
07113071{
07098 e
075 0.7088yg55 071095 e
/
N 01 01037 07053
\
o087 os{ o 05930,5594
000 U.EQKE
’, i o msﬁa 9
09635 eeins 746565 0561203875, 709-6687
ogsfo 55%1 53 050 ogl: 57@3}57m5’f9
085 keanagy o5 0677699
06411 0%683
To7s 050 025 opo 035 0% o7 1o T e 9 o3 om0 ok o7 1w
06975 100 06911
ogps 0695 0897 @ g0
696339500961 075 D691 50406911
9 N\, 06945 y N 06911
0.6949 o 59\ o1 06911 o. 59]\1
\
06933 osat8™? b o. 591\1\ osorf™!
%815 \ 000 o) 9&5 \
R ss{zsgs 2 025 RO
0}t 8874 0)9
3 54685 ~ L}s 19691
0.6867 o Eé?:ga\ea@z‘ﬁs 90 o6ft oonpromdl
0.080% 805857 b 059460 911
0853
To7s o5 025 opo 035 0% o7 1o T s o2 ow o o 0% 1w
100 06011
@1 U.ﬁQ\llD.GQrfE
075 691 1 Nsgy 4 0.6911
] 06011
0307 ogo11 oL
\
03] dey 0\59%911
o0 R \
025 l?ﬁ&s
19691
050 06911 M;Bra i
o 05951905911
06811
100

075 -0s0 025 000 035 050 075 100

[F and G]: Convergence of the large network over

[1,2,3,4,5,10,50,100,1000,10000] iterations

90

Convergence of the algorithm (with F, without G,Alpha=1) over time Convergence of the algorithm (with F, without G,Alpha=1) over time
10t

1071
107t
1073
1072

& 105 &
2 107 € =
© § 107°
S S
S 107 <
5 10 5 45
£ £
2 100 a
5w s 1070
E] E]
5 ape 3
£ w1 3 1012
e e

10713 0-13

013 10-15

100 10! 102 10° 104 100 10t 10? 10° 10*
Number of iterations Number of iterations

Figure 40: [With F, without G]: Left: convergence of medium network. Right:
convergence of large network

i 10| G2 100 0364\
o e s B i osizs ars 72 ooz
o501 aso o5 \ﬁw/

00 B : a0 . o0 -
e— & — 1 e— % — 1 ogur—2H
-0z -0z \ oz \
0501 030 050
o1 /m /01929
o] 03/ \wz e 03 \n,z . 03 \0.2
B Y S %s 91 o @ % B R Y

mfeL o mfo
a7 a\ n/oﬁsee ars 6\ 06883 ors 627 /05727
0s01 " o e o Ry

0 o ozs
L ofee— o637 o 44— 06493] 2 ofdps— 06433
o a@— m\ um/w\ 0294288

ogis2 05889 ogas9
0751 / 075 / \ 075 /
100 oF 2 1o ot 2 . o828 Dz

100 nﬁs\ﬁ 100 asna\ﬁ 100 ossz\m
0731 y sm\m 0657 ors 4\ 0399 ors sis\m osa7s
oso) 529/ os 3/ . m/

001 06378 0:6397| oo 06372 —0-6371| e 0637806378
o02s] o.g385—— 0% ozs o630 i " o.gare—>%
30 os0
o6 og32 og3T7
0751 / 075 / o075 /
) Do Serr

- 06064 e 0635 - 06377 3

R e Ry S T

whre_ 10l EBKW
ors vare_ ogars 75 3

8 06378

7606378 rs—————06375|
ogzre——>% og3re—>0%
025 0
050 050
06378 06378
o o sm/ “See . 0 53{ e
Er— Sz o o2 os <& s 2 o o2 os

Figure 41: [With F, without G]: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

91

- 07—5 - 0.7—:5571
05 2 ossz/ daans 02
04 ? / \o —7 0s ,/ X X
2 6
e 53 ey Vet
oif 03624M
00 \ 05— _g¢” 0\7 00 05
02 ® / @ 02\ 02 027 3429
% A
oa] 03 05 | 0. e odif3 53/‘ 041335
06 ‘ 06 oo
i 03 . 05667
o 075 050 -0zs 0bo 033 o030 o7s o0 075 050 025 o000 0z 030 o075
. 0653666152 . 065456518
0.6575 0.2055 0579/ \5 03914
04 0735 (:) S%AOMD‘S 04 u1z os:az 165/759
s6as__| . 4 66 |
02 77226 &573075754 02 m]g 2&“ D.6459
062 085
00 \ 0.56 5 ;/ 00 062 7
02 E\‘T 7; 050705497 @ 02 ma 5;9 o 5‘77 i
7zea)A 0873 77_H’6 o6t
04 0615/ 01564 04 “695// ussza 0ddss
05 o@o 07A94 08 07392 0.7406
i 07231 i 07425
0 075 050 025 obo 033 o030 o7s oo 075 050 025 o000 0z 030 o075
- 0.6678—6.6592 o 0673566633
0.6876 055609 0,6855 06159
04 0.70a: %555044 2 191 0s 0597 %655%“”/}53
L N/ Logion 6968 ‘L o632
02 76985 \ 0z 984 \
0656805 0_6550,551}/
00 o6 < N\, g 00 o %o N\
5 S48 4 5
o o - it 761 . e 065 6473 658
0d15 u\onlT Iy ™ un(akwm)j 0.6429
04y O 05152 04 05404
0626 uGGnE
06 0729 0.7204 08 07211 0.7061
i 07355 i 07263
0 075 050 025 0bo 033 o030 o7s oo 075 050 025 o000 0z 030 o075
- 0.6781—¢.6684 o 0.6784—p.6744
usa/ 0,6373 06819 06603
04 0.697" %5554 5”/%552 0s usss/v %s:m " 678
02 ‘Eglmaéav /‘Dﬁ‘25 02 OB, gy \/v 06612
02 ol ; 065 65];7\06511 " ol 7?3 0,66 nsf,s 6624
s H 048 56 Mkvem)j nssz;
Loa]| o702 P o] 06856 2.
/ usua 06754
06 07098 06946 08 06868 0.6813
i 07132 i 06877
o 075 050 -0zs obo 033 o030 o7s oo 075 050 025 0@ 0z 030 o075
” 067846737 - 0673506735
06751 06712 06735 06735
04 0.6751 327723 5 72 0s 067 %67735 o 73
02 ‘575%:5'15 /‘05714 02 57351,6‘735 \ / Loghs
0.57395737
00 \ 067 00 067 v |
s ; 067 0572 71 o 0.67; sési“73
{ skmsm/u 0enz { waﬁ 08735
04y 0617 06718 ~0a{ 0815 05735
05733 / u5735
06 0676 0.6749 08 06735 0.6735
i 06761 i 06735
0 075 050 -0zs obo 033 o030 o7s oo 075 050 025 o0f0 02 030 o075
e 06735—6.6735
06755 06735
04 0673 %577335%“35/3,573
o @LLL \ /Lostes
é 735
07589 74
00 0.67 o |
067 5;55\\7«573
-0z ogms_ 94755
Loal 06755 | 055,355735
06735
0 06735 06735
08

06735

oo 075 -0s0 025 o000

Figure 42: [With F, without G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations

92

Convergence of the algorithm (without F, with G,Alpha=1) over time

Convergence of the algorithm (without F, with G,Alpha=1) over time

10t
100
107t
1072
1073
o 107 @
& &
2 2 s
’gj 1076 % 10
5 5 7
E 107 £ W0
a a
o @ 109
5 10710 2 10
2 2
3 2 1011
< 1012 g 1
10714 1g=2
1016 10712
100 10! 102 10° 104 100 10t

Number of iterations

10?

Number of iterations

Figure 43: [Without F, with G]: Left: convergence of medium network. Right:
convergence of large network

\, o
o / g
s
L 4 04678
S

o7 0s0 025 om0 035 0% 07 Lo

os ™ o o625
|
o] @ o6 ,m\j‘ o
0wl o 0s 972 0s
o2 o2 0z
. o5 w 065 B
b3 o e
- o | . 048 / T Sz
- 02 ° s 02375 \os -
o8 Sea o6 ey o6
5 s < ok b ok o 1k 7 k0 m o o ok on 1
os o2ése o 02883 o

|

-] "

otse ogtzt
" o e ° e N
;i
o estf w| o o6 B
oster i . osten s
. 0461 oo 0456/ .
b | 0.3523 o8 0.3752 -
|
| | p
wl v W wam 9
" " osms . . o35 N
- o aw/7 \n.ze/ . o 37:27 \vﬂ(.
ogr N oamss i
Ngs

03203

.y ogies
P

03684
w22

04357

003

s s o om0 ok ok o7 160

03756

|

03756
s/oavsﬂ\v /
LEL / 3756
03756 e

e

75 o0 o2 o0 o oo ois 160

03756

sm\w\
756

o756 . o756
o¥pse O B
] g " 037 3756
oatss . . oatss Sy
S . D
T m wm ow oB ok 0B T Tm wm e B o o w

Figure 44: [Without F, with G]: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

93

1.00 1.00 0.2375
[
075 073 003591
055—06__ O350
050 0s0 \msg
[oaras
025 025 0.32590275-02016
4 0,553
000 000 4222-0:28625784, @
0.5)
03746
025 025 pe 8 — o575 610804692
7
030 a -os0 o, 2
0.7- . 05909
075 —05 @ o 05 Ly umuszs
s o4 o2 o o2 o4 o o8 s o4 o2 oo oz o4 os o8
1.00 0.3242 1.00 0.3661
. [
- 03661 o 0.3843
0557&515\0 058 3955 osaseg7s\¢°44@ 4179
030 aso :9;
351 Pt
a5 g_mpzzsg—os 025 03"5)377-2—0359
g \ 0.6748) 0.6527|
000 D.3481-0.35; Sty . o 361H37 (,574 -
0.38(2
0.3925 03991 14:
023 0.38¢ 582—0.60256:5724 028 U_QRH‘A 33\95392—6—594-5957
om0 M&m\s 0.6229 61/ . 0ABeo 05611 O/A
0551 ¢ 07524
015 m/aujaz:. 761 o5 “‘ﬁm):;m 023
s o4 o2 o o2 o4 oo o s 84 2 oo oz o4 s o8
1.00 039 1.00 0. AWZZ
- 03973 - 0dds?
045884431 041494129 onzmu\ﬁﬂm a12
0s0 0s0
/‘ 3966 1 @
025 0.40{0.3988-0:3908 - 025 0414013804064 i
| \ g
3859-0:39("4 0.4075-0-41¢ v
0.00 1079 0.00 1237
Ois }GB 040141%4 gy ol
o " 5 = 16¢
0125, 045 91\6452.3—0»584}975906 023 046" “\eszgs—e,ssée 575
6 04628 o e - 04654 g s
051255 5 05046—_g
075 55‘3/0055955- 952 015 5“):5179 777
s o4 o2 oo o2 o4 o o s o4 o2 oo oz o4 s o8
1.00 0.4142 1.00 0.4539
3 [
- 04163 - 0.4548
0.4194.4197 041%%195 0.45304548 0‘*5%563
0s0 0s0
/ 4197 / 4568
025 043{0.426504213 025 0.46{70.4595-04576
YA 05638 e/ \/ 0.4924
000 '43}5—0435%«1&15 ofifs 000 v“%—ﬂ ‘LGAGS @2
04462 oy7e 04558 T3 4
-023 ’(‘3} kﬁm—esa@,sm 2 gu{g)w 19— 0486304894
0.4826
030 odmg / o030 /
049795 5 04789 45
075 7"/055499 483 075 H S“J:sagsasss
s o4 o2 o o2 s o o s o4 o2 oo oz o4 s o8
1.00 047 1.00 04711
3 4
075 a7 oz 04711
0470, akﬁ" 47%4701 [471&47 o 47’011:711
0s0 02; 0s0 n;a
Pk « L
025 0476470304702 025 0.47{047504711
7 04724 % 04711
000 D4706-0.4768.4767 e 000 PATI-04706. 471 s
°Fi%s / oFH,
o i 7] — 17
023 047 H‘/?J—O-M 722 023 047K1)‘A 711047164711
om0 an\ oans / . 0.4711\ oan1 /
04716 4 U7 4
075 “/?am 722 o7 71’1/?471@4711
s o4 o2 o o2 s o os s 84 2 oo oz o4 os o8
1.00 0.4711
|
o 04711
047184711 047’0‘4711
0s0
p \ 04711
11647
0.00 u471§71‘ 04711
04711 oy
025
0_479 u\&dgﬁu‘l
o3, oz 7/“\
041 g 4
075 7"‘));.::119.4711

Figure 45: [Without F, with G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations

94

Convergence of the algorithm (without F and G,Alpha=1) over time

Convergence of the algorithm (without F and G,Alpha=1) over time

100
10°
1072
1073
o 107% @
2 2
£ 10 H
5 w0 S 10
-5
e g
8 g 1077
5 1010 3
2 2
3 3
o 1p-12 < gp-12
1g-1%
10712
10718
100 10! 102 10° 104 100

Number of iterations

Figure 46: [Without F and G]: Left: convergence of medium network. Right:

convergence of large network

10?
Number of iterations

@ o6 o ass ostys 03975
04 / 04 04
02 03. 3 - 0.4. 02 - 0,37 02281
a \M/“ Q‘E\ / T o / “\ns/
52 \ = \
=43 02 i 15 =2 02156
-04 05 o 05 b 0.4674
of o3 air
o - o8
oo o o s am 0% ok o5 1w o o7 O30 o ok o o o 1% TTov o7 e 3w 0B ok o5 1w
o 0
o9 03756 ogees oz 03705 03705
021 0,37 02667 02 0% 0,304 0z 037 03335
WKM / 25 g ~oa nwx 34
o0 0
a3 \ 04205 \ 58
| 0.2652 ~ha 0.3047 o 03335
= 0.4585 . 0.4423 . 0422
bast b abs
s o3z ogtss 0375 o785 03786
oa] o \ / 04 \ /
b | 03749 0,360 oz 03785 0,378 - 03786 03786
g9y / \ms/ il /“\Vﬂn/’ Dm\j / \ﬁmn/i
00! a0 0
o \ 757 \ 3756 \
=aa 0.3606 -2 0.3784 ~aa 03786
4 0.3972 o4 0.3788 . 03786
os o6 o
4069 b 376
T w0 75 050 025 0w o35 o030 or5 160 -100 -075 -0.50 -025 000 025 050 075 100 T 00 s 050 025 od0 o025 os0 o075 Loo

Figure 47: [Without F and G]: Convergence of the medium network over

03786 03786

msf,\ / \sm/

03786 03786

o o3 o378
osus\/ G P
%0
03766 \
02 /

03786

03786 ogibs
05 06
3786 3786
0 075 030 025 od0 025 030 075 100 oo 075 030 25 od0 035 050 075 160

[1,2,3,4,5,10,50,100,1000,10000] iterations

95

07
o5 o5 o068 /05
04 - {n.s
02 02 @ 0.04'/3 Lo
3\
3
00 o [o314554
03
02 2] o nﬁu,zlsn
o4 oaf %m0
o) o o6 04”50-}\“
. ;9
o5 @ 02 05| © 025
To7s 0% 025 om0 o35 050 055 100 075 00 025 oo 035 0% o5 1m0
06625 05933
os 0542205815 /0575 os) 5583 _/0.5871
ooz, UG oo ok
04 o [- 045 |
0.3469 , 93813 s(umigﬁ 0361 , 93933 5(055
02 03601 s 02 03786 S
hsa@ L 21 LT 35, 05165 057 55087
00 [0F5%0asza 05781 00 | 038554351 05319
0366 03866
PR/ 74 -0z n_”&slszz
sy %5 oaf O¥an
oo 0slERMERR,, 08 0.{4 935
3 S
L pests o s [O? 0.3807
To7s 0% 025 om0 o35 0% o055 100 75 os0 025 oo 035 o0 075 1ed
ey O3 05543
os 0,489805; 5737 05 0491405229 _ 105543
. 04544 %75‘; - 04565 %‘"Ks
04087 i1
WG s o e el OO s sl
B A 3045 <
- 0405357856 05122 00 |0420%5 4545 05044
o.dofs 04156
w21 o 395gxalccna 02{ ozfAll7
04y %%tz 04y O9%uts
s OMHF \‘foss o6 ‘1/“9 059
o457 » 4363
03988 01407
08 08
To7s 00 075 om0 035 050 055 100 75 om0 —0z5 o0 035 o0 075 oo
505 "3 04761
L 0.4842-0:50: /05261 06 04675047 /0.4761
. 04618 %Tﬁs - 04676]%“‘755
0.4288 "-“é 94(052015? 04551 o 24377 “75-17?
02 0.4365 ~ 02 04568 S
a3, pe 0405 055530 04553, 6504655 0488 a7mg
00 ‘“{435% 636 04961 00 04553634~ 070
04275 04586
7S ﬂpﬁlm 02 u.asu‘}‘lm
sy ¥ 04y ¥Rz
08 u}f@ﬁ},_ st ox A 51
L. pas oo s} O 0473
To7s 00 025 om0 o35 0% o055 100 75 om0 025 oo 035 o0 075 LoD
e 2L 04612
os 0461604618 /0.4621 os 0461204612 _/0.4612
o s 8 iets
0s 43 [- 0.6
0.4608 48" #45 04612 ; §4612 046
02 o438 ‘155‘9 02 ka‘” 7 S
ouggal Looder ol ae22 WIS, e 0a8T 0188451
00 |0460% 4613~ o.d17 00 |036¥264617 04612
0.4667 odsf>
021 oged¥#000 021 ogeil?
04y O%505 04y o1
08 u}@dm’%_ oos 08 o(12
4663 4612
0603 0612
-0s 08
To7s 00 025 om0 o35 050 o055 100 75 os0 025 oo 035 o0 075 oo
o, 02
o8 0461204612 0.4612
S Hrasﬁ
0.46;
04 |
a1z, pel2 oas).éﬂ
02 061> S
ousla H'JMGH/MEP/ 01618461
o0 046X 4612 04612
0.461>
w21 o ur“z"m
04q 4451
—os{ o4 12
L

Z075 —0s0 025 000 075 030 075 100

Figure 48: [Without F and G]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations

96

H NORMLISC: Varying with the rate

Convergence of the algorithm (with F and G,Alpha=1) over time)Convergence of the algorithm (with F and G,Alpha=1) over time
10
1071
107t
1072
10-*
» »
& 10 &
g w0 2 10
S S
S o107 I
5 10 5 457
£ £
2 10 H
g Y g 107
3 3
5 ape 3
21071 2101
= =
10713 10-13
10-15 10-15
100 10! 102 10° 104 100 10t 10? 10° 10*
Number of iterations Number of iterations

Figure 49: [Rate=1.05']: Left: convergence of medium network. Right: conver-
gence of large network

73 73 oasd
- W o e ors P
.) oo - 069
@ 0 s
025 025 \ 0z B
a6 g 059
o0 — 5 oo ——ods 091 o0 e
0251 os o
ol o el ol _omhs
0z 0z [|
o7 o5 o |
03 P o
1o a0 e
T S dm o b ow o 1w o ww am oW b T on T T e dn o on o o T
o5 Yo oger]
ors] Vs o P ors P
ofofs ogass ogst
os01 aso os0
odore osm2 oa
P e g
- e e
0001 oo w75 a0 o 032 o0 ot 592
oz oz o
ol ol o o5 o ra
@ | & oslom |
03 0 o408
ol ® R ol 2 P N
o8) o
prd e e
050/ - o
i oetat ogs
ozs | \ st azs \ 0% 0z \ sag
0001 o 64!6\060711/ 676 000 9 6‘43\\)61133/ 581 000 b !“\vﬁaﬂ 511
P o e o 5 oesha
it | szzs/l ssf/‘
osens og2s oeiss
- 075 -050 -025 000 025 050 075 100 - 075 -050 -025 000 025 050 075 100 - -075 050 -025 000 025 050 075 100

0,650 0,647

ars s ors S
. ogas ogafs
ogss ofs
02s \/ﬁa 5 0zs \ /n 1
o6 o,
oo "—og et oo o 467

-0zs / o2
050 r/asm 050 m/aw
o | o \
o075 o075
o@1e 06436
TS < W om o ow on o T o o o o o o 1

Figure 50: [Rate=1.05']: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

97

06 06
04 0a
02 02
3
00 00
0516
oa Loa] O%238
167/
0.180%
04 oa{ o 4
03873
06 06 b2
100 075 050 025 060 035 050 o075 160 oo 075 050 025 b0 035 050 035 160
054 06452
06 06
771
357 [61 I
0/666>0387), 0.65486778 41 &)
04 04 A
0,602 06454
/ 05796 /
02 6 02 05987
106383 2 06833
& 5‘9 o754 312 - 0.57@‘7;77
5867 /03304 oaza7 o 6095 /0.6588—0.63 o
owses 9% 3 oees 0B)
o2 4751 @ =) 6219 ogrs
o3sRI2L 058085070,
el O af 0%
055423 06384
08 2 06 0298
100 075 050 025 060 035 050 o075 160 o0 075 00 025 b0 035 050 035 160
06883, 01957
06 05
7304 214
o.se#“‘%ﬂf s n.s779'59%‘r,1’a B
04 S 04 "4
0.6623 0.6665 \
0725 / 07342
02 0'5%857539 0747 0z o3/ }73
2 [0
a6 O/Gléﬁaee 073(3 3 075{6.67 07243
.6387) 0649 6 Y
o 6406781 o473 e s O 659},5543—@55\ 0355
-0z 550 0.6008 w2y OB fesst 06532
0634}6669’/5 0.652958L:¢
od 659 a| g
04 06574 o4 06439
08 04908 06 05889
100 075 050 025 060 035 050 o075 160 oo 075 00 025 odo 035 0% o075 160
07145, o7is3
06 06
74 Tisa
oger gl ogash0sy L
04 A 04 A
0.6754 \ 06858 \
/ 0734 / 07227
02 0. 65p35566 0731 02 0. 6%9;3771 }71{’
@2 0 07291
00 0/55§§562 m/u,n 6 1 5 0.6763754 07056 07337
.6543 6 X' 6593 7 Y
A uﬁﬁ}se‘u—e«ss\ 0229 B e 670}5753—46\ oy
-0z {566 06818 -0z O 6676 06935
065#6589;/:3 06683581,
R Y Y
aact oisse
08 %338 06 06545
100 075 050 025 060 035 050 o075 160 oo 075 00 025 b0 035 0% 075 160
07108 0.705;
06 05
7108 oe2
0g97P 70 .750 6 0)5959'701%:7(43 1
- 06861 \ - 0.691.
/ 07133 / o707
02 os;)uéul }71 4 02 u.ssgssaa 070
0765, | 0 07088
@ o. 67€§?a]7 07061 0719 " 068355 ofdba 0:710:
6658 [08e16—0.6957 0053 6722 49»6545—469/ 0012
N 08777 0 35 0,68 \§
-2 O8O o 06838 -2y O8R4 { 06831
743 X 6751 2
066@67 " og7RIEE/
od 715 wa| CTERel
4 067 °4 06736
08 0648 06 0672
100 075 050 025 060 035 050 o075 160 oo 075 00 025 b0 035 0% o075 160
0.7023
o6
023
o8y [
0.6958-6988 (-
04 7
o.68f6
07026
0z 06852
06876 7038
o.sag’_%asg 06977 0704
: S
.577% o 63{},&355—&59\ 06983
-02{ © 7}(3 607{5525 06925
0670 dd1
04 56
0.59@0573\5
08 o%774
oo 075 050 025 oB0 035 0% o075 160

Figure 51: [Rate=

1.05']:

[1,2,3,4,5,10,50,100,1000,10000] iterations

98

Convergence of the large network over

Convergence of the algorithm (with F and G,Alpha=1) over time

Absolute sum of change

10! 102 10°
Number of iterations

Convergence of the algorithm (with F and G,Alpha=1) over time

10°

5

bt

107%

Absolute sum of change
5
IS

10? 10° 10*
Number of iterations

Figure 52: [Rate=2']: Left: convergence of medium network. Right: conver-

gence of larg

02
5
02]
¢ ®
0]
o5 \ 02

e network

e
e

05662

®
o2r——08
-

02 / 02
01 o1
04 04
o8] 05
03 03
oo 075 0 025 o o3 030 o 075 <m0 <02 a0z 00
035; siay
041 02216 o4 \E 02748
06703 06861
02 0z
- Mo 05— 0997 - 53556017
06763 02 06861 02
02 / -02 /
01216 o755
o4 04
5] 03

2287
o4 02
6336

- o ——esa——08
oee 02
o2)i
o
o
o \
%

o 75 otz o oz 050

0.3407

45\6

os

' 9”\
OJ003— 6 653406098

06984 02

b2 e 0%
e 04077 e 0.4671 b 0.5161
' m\s ° ““\u ﬂ ’“\s Y
Wl R S . Ogses oL oas N S a2
ot 0 I o osats /o-z
y odhis o o352 odte
. o os
% b ¥
T o T e e A B T n ow Wm o os o
ies o
o 05514 o 0815
ey 7 e
o2 \ o
- OBT95—— g 36506383 - OBT57—— 6 gig3——0-6414
ogh 002 & 020
2
03073 o3kss
o >
s ”
o301 o3oes
e e R

Figure 53:

[Rate=2!]:

Convergence of the medium network
(1,2,3,4,5,10,50,100,1000,10000] iterations

99

over

02
050
075
100 03
oo o7 s oz o0 0% 050 o7
o7
030
025
000
02
050
075
100
oo o7 s oz om0 0% 0% o7
075
05703
050
08601
045125 57
000 {// 2
57
05758 *1 816
02
o050 { L 0616
075 L
100 o711

o0 075 050 -02s 000 o025 050 075

06546

075
06069 37452/0675{‘ oNza

0,643

08616
07438 07151 06738

025
o4 57“—&7?&5 ?_ﬁum 597
000 »ﬁF«s
0gag6 2Bl

-G) offr
-050 {38 0.68% \m E}szz
o s

100 o@e

o0 075 -0s0 025 000 025 050 075

06614
06261
06784342°, o5 abss2

0FI21 o eeh3

4 ﬁﬁs'smeosz
4 5
e 07357 \065
-o50 4832 0.0 \ %577

7\
o7 07467
100 o@2

000

10 075 00 -025 000 025 050 075

05091

06138,

3512 5

lml%??ssx(

oBasT

6
“5“‘”“? Tl &

05333

3902
06

025 o .
050 %2 0351, \ns%/7 s
o s
100 04361
o 075 050 075 ok o3 ok o7
075
0s0
025
000
025
050
o7
100
o 075 050 025 ow ok ok o7
o7
05908
0s0
05537
025
0529_95
000
ot 1&12
025
ia
050
o7
100
o 075 o0 075 ok o3 ok o7
i 6576
06183 N\
056?739”“0/ 08507
0s0
08577 /
025 07325 D 3 ogess
059’_&6? 0465981
000
o] 063 842
ot a -
050 3692 0695 \,302 Toss
d
100 o@s
o 075 050 075 ow ok ok o7
075 6#665
06315
o EBH e 0 u 8583
0s0
08522
- 07 07115 5 “43

21
N\ 1
o sszL?MA M_&az&soss
000 4
443.56;

-o2s 07341 P
—os0 21 0714 o4, 0993
X
o 07426
100 2
75 ok ok ok o7

“o0 075 050

06354

0851
- waz\e

0,6682

glﬁl 0. EBB’K
NIV

oyaf1 o

0.68! o¥60s

063 5 mffaém}sul
000 / 6

64
ogsgs 859

0515
o

o 7324 \0\57 H‘

o6 ot 16

o@s
0.7389

oo 075 0s0

Z025 000 025 os0 075

Figure 54: [Rate=2"]: Convergence of
[1,2,3,4,5,10,50,100,1000,10000] iterations

100

the large

network over

g:onvergence of the algorithm (with F and G,Alpha=1) over time
10

Convergence of the algorithm (with F and G,Alpha=1) over time

10°
1071
1071
1072
g s
I 2 103
B :
2 2 10
g w0 2
5 5
3 F w0
g g
1078
1077
1077
10-¢
1078
100 10! 102 10° 104 100 10t

Number of iterations

Figure 55: [Rate=t?]: Left: convergence of medium network. Right

gence of large network

10?

Number of iterations

conver-

Ly 06 L 06 L 0.5996
- 02 / - 02 / - 02101
% = o ol = e o i
ol / g . / o6t . s
-01{ — gy 01 92—gy 011 92—qaf
® ol ot
o4 @ waf 03 o] @
L 0.6045 o 0.6189 L 06325
= 0.2834 / o 0.3822 - 04736
\/ \
s ol N o ol . as ollhe |
\H/uma/‘“ m)mn’” 070053
@ X g ., @ s
- \ S N— \ N
4
o - ol olys
oa| @ 0] B | B
L 0.6434 L 065 L 0.6514
N oo " g N o
02 02 \ 02
oglee = i ol = . ojlhe M
T 06785 27/43j7:%‘“

= e L 889 L)°68:
-01{ 9—ozgs o1 P 5 0 P2BLg 5o \
ol ' ofps
T é 2 age 1 g

oa 06503 e 0843

" o N oy

g
s ollks s st oy =
P 7S/Q§7Zf)j @ \63/5-571/%
g 2

o 0B ol 01 P3P0 gi6s

v ol N ol

1 g NS

Figure 56: [Rate=t?]:
[1,2,3,4,5,10,50,100,1000,10000] iterations

101

Convergence of the medium network over

100 100 02
075 075
00 0s0
025 025
000 000
025 025
050 050
075 015
06 06

100 100

T1o0 075 050 —025 000 025 050 075 100 100 075 -050 -025 000 025 050 075 100

06 06
100 100
Do 075 050 025 00 035 050 075 100 oo 75 050 025 000 075 050 075 100
100 02757 00 03615
075 074 o5 073
33 o

000 000

\“5“3} \05553 O ks, 089
0| o 0| P, . \

g.{'m\ﬁ 5l! 0512 3.5) %‘E 01—0-660 0,6539
oso 03073 u55 8 d — 05425 0,61 4/
o1 —ors g
ussss 05964
100 100
Do 075 0%0 025 00 035 050 075 100 o0 075 050 025 080 o025 050 075 100

100 o.as 00 05221
075 0733 075 0.2

07191 '/ 07057

050 071(\ 6245 030 4 \ o

o] om 6"“5_‘51)633 025 0,00 6% —0-6554.0.640
k‘," 05259 375 51073 5 05939 7

o | \osma . | st | \umuz

o 4

6499
o o , . 9 \ —_
gugg/J \57“—_“5% 066
os0 05843 0839865 «<B50:
073 05
06038 06149
100 100
0 075 050 025 000 025 030 075 100 o0 075 050 025 080 o025 050 075 100
oG 0.5683 xon 05938
075 072 075 072
3
- 0.6946 . PO gas,
ond \ 6452 o7t \ 6497
o] oz B2 — 06502 64 0] o 0,68 555—0-6532 0,647
92 aes” 06280 932 B i ok 3
000 000
| o2 e 0815| “hrs
Y 657 6585
o e 9 \ —_ n}n \
o Bw% o ‘e = 95% ol
050 06376 0.851 /55{ <050 05521 0.854 i
6733 6691
05 05
06249 06331
100 100
o0 075 050 025 000 025 030 075 100 o0 075 050 025 080 o0zs 050 075 100
00 0.6084
075 u.n%
9
s '0 B0 o 6786
u11§ \ o
ozl ogs: 0.6469-0.585—0-6538 ¢ 60
X 3\0_7 q 0'5“{5 1697
000
| ossh \usam
6591
025 072 by \
g.n(J\jau-us% 0.6701
050 0621 0.65¢ ,64(
68
015
06394
100

00 075 050 025 000 025 o0s0 075 100

Figure 57: [Rate=t?]: Convergence of the large network over
[1,2,3,4,5,10,50,100,1000,10000] iterations

102

Convergence of the algorithm (with F and G,Alpha=1) over time Convergence of the algorithm (with F and G,Alpha=1) over time

100
10°
1072
-3
107% 10
» »
2 2
-6
f;: 10 ‘;: fie
5 5
g 10 £
H 5,
a 2 1o
8 1010 o
5 10 3
2 2
3 om2 3
E < 10-12
10-1¢
10-15
10716
100 10! 102 10° 104 100 10t 10? 10° 10*

Number of iterations Number of iterations

Figure 58: [Rate=t>]: Left: convergence of medium network. Right: conver-
gence of large network

000] g 000{ ga—" 000
o] oas o
o 15 731

s 05 . osizs . 08731
o0 02 100 o2 100 03521
54 @3 w2 w1 w0 w1 oz 95 o D¢ 93 w2 <1 do a1 oz o3 oa Se w3 %2 W1 do w1 oz o5 o
03 03 03
o7s \) a7 \w/uz o1s &
ol oso 021 0s0 g

a2 L
o ———6:6988
030 as0 aso
- 06985 - odo72 . 07091
-0 03352 100 odzs1 100 03029
[} 03 0
ors ors o
— 2’/“ m/ﬂz
| 0364 56 043: 50 0.493
025 0.62 / 025 | 0,633 025 | 0.6481__ /
657 766 S?)mm 7
00010,4 00005006 000 {0,52; \
O703——— 57087 OT003— 47076 089R— 57061

050 030 50
. o074 o 06879 . og8se
o0 03685 00 oboss 100 08277

i @3 B2 b1 oo @1 i a5 ok To 93 a B1 b o or @ o Ti s 4 81 do o1 o o5 o

03005 03143
845 1 O 828 e
033 0s0 036

5 —7s
000 10,57 \ 0001 097 \

025 02
O —— o014 o ”“\ —0

e 06836 . s

100 06417 100 06507

Figure 59: [Rate=t’]: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

103

025

050

075

100

050

075

100

050
075

100

025
050
075

100

025
050
075

100

Figure 60:

[Rate=t]

075 0s0 025 000 025

Convergence of the
[1,2,3,4,5,10,50,100,1000,10000] iterations

104

100
o7
030
025
000
025 66015
03807
050 o
s 01044 @#28 515
03 03907
02 100 02
To7s o0 075 000 o3 0% o7 1o 075 050 025 oo o35 0% 075 100
100
o7
030
025
000
025
050
o5
100
To7s o0 025 o000 o035 0% o7 1o 75 050 025 o0 b5 00 o35 100
100
o
60 o7
030 @
u."@%sl
w23 o%a11
2 LS 0509 Vw355
6 06558
6761772 023 054 11025
< 06062 05980 DOSEN 06328
s . S umes
05043 @978 553 s 0.566% 1496% 66
0,60 06328
02256 100 02732
To7s o0 025 000 o35 0% o7 1o 75 050 025 o0 obs 00 o35 100
¥ o73ps
o7s PTG y1ed 7Y
07472
5 06845
62
s 0%566
0,66
oo 05551 070504
. 6 634413
05971% X 06527
050 N7
. 06171108 637,
06527
0332 100 0.3926
To7s o0 025 000 o35 0% o7 1o 75 050 025 o0 obs o0 o35 100
100
07302 5
075 8998y
56 0,685
0567912
074
s 05624
0,67 0,67
0575 36706934 L 06055 S%ee85
oS 025 S
6 5265183 . 6 5709
u.scnq’\“ N . osos;“% .
6 “ 6
06268729950 635 ors 06377 11958 630,
06565 06589
o.44s8 100 04976
To7s o0 025 o000 o3 0% o7 1o 75 —0s0 025 o0 obs 00 o35 100
100
o7s
030
025
0,68
o000 06158 Veer796
5483865206011
06156 ORI\ 06514
050 €1
70065
s ot 1Y 8643
100 05377

large network over

Convergence of the algorithm (with F and G,Alpha=1) over time Convergence of the algorithm (with F and G,Alpha=1) over time

100
10°
1072
-3
o 10
& &
£ 10 o
g 10° £
H 5,
a 2 1o
£ 100 £
3 3
3 3
< 10712 < 10-12
1014
10-15
10-16
100 10! 102 10° 104 100 10t 10? 10° 10*

Number of iterations Number of iterations

Figure 61: [Rate=t'0]: Left: convergence of medium network. Right: conver-
gence of large network

os o8
0 0 03
o /nz o \\ /u; 0 \ /o.z
04 ox 04 or 04 o
=S odsba___ e ostea
S0 PR, \ O PR e oo\
02 02 02
. 05 e 06izs . o872
oo o w9 ok o ok T < s <3 o oB ok T 7 <m am ok ok ok
0s o8 o
03 03 03
os |\ e o6 \ 02 o 02
0 s o ol 0s ot
a0 a0 o
/M\mm !/ﬂﬁssx\m.,m ,A/D%Q\Nm
2 425106951073 \ 2} ates—o-107——07184 \ 2 4934—0:7094——070 \
0287 03003 03680
-os 08 ot
06881 07071 o703
il 03 03 03
0e1 \ 52 o \ 02 o \ 02
oe] odt” o ol 0t v
00 a0 o0
m/"“"\e.ezv 75— 6355 /Gn\vmzs
7, 55560708307 021, sog3 0700687017 02|, 6931069106 \
od3zs odge3 0832
s o4 o4
07093 07083 0707
o5 06 o5
Tw o ok o om o ok Too s s o o ok ok Too o7 9% o ok o ok
o8 o
03 03082

0,709

. AP - AV

- \ R

 6385—0.8856——0.69:

08677 / 05806
07054 07036
-6 00
Tw o ow s o om0k T on om0 om0

Figure 62: [Rate=t']: Convergence of the medium network over
(1,2,3,4,5,10,50,100,1000,10000] iterations

105

100
o7

030

02s

000

025 .u.\s\o s

050 01— 17—03

075 06 o3

100 o8 o2
lo s 96 64 <2 oo oz o4 o5

\

1@&

o B P s
D_gmwm
075 o “{A }4755
-100 oss @
o -6s -6 04 -6z oo 0z 04 as

[EAY S o
073 5
| P
05 05625 \
000 o557 o.4 5@2531
24
6,
025 03901129
GLms
050 o8 15{&3907
015 06242 03807
7
100 05167 2
-lo s 56 64 2 o0 oz o4 oo
100
075 a’z
0s0 05
\0.43 7
025
000 77
33y 6
025 05570488
o@s\ / 15
050 @ /25{&5525
015 06584 03525
7
100 05601 2
-lo 68 56 64 2 oo oz o4 oo

000
025
030
N - /
L 0.6674 0. 02\2 495 067 08302
7 /
100 05815 B 100 0.6004 D
o -6s -6 04 -6z G0 0z 04 as 1o 08 -0s -64 -6z oo oz a4 oo
100 100 7 7
075 075 R
5
5 of@s
0.73; 7316
os0 0350 771 \s 05444
] 06646
025 025 0.6841 \
000 000 08580 seey B_E%%%su
085051
025 025 ooibn ey
07326\ / U186
050 050 0.61420873+-0:6521
o =03 06643 }6511
/
-100 100 0.6261 O
o -6s s 04 -6z G0 0z 04 as 1o 08 <06 -64 -6z oo o0z a4 oo
100 7 100
ony 01253
073 "/7
030 Qgrnx/ \a 05722 030 53,’;5:71 7324 O
0674
025 osss\ss \ 025 ctssﬂ6 \
— o¥626_ ’ 70.5956 - — 3 65 088,
001 063
025 0.649D. GSLLD_‘ 025 [sszu 555.%_5
07233 951 07148 574
050 0.62 99‘06552 030 @ 587
0% 06612 08562 =05 0659 0.6587
A ’
100 06336 Rz 100 06389 &
o -6s s 04 -6z G0 0z 04 as 1o 08 <06 -64 -6z oo oz a4 oo
100 B
o2
073 o 7453
0.72:
030 ;uu—a/ \8}5143
05803
025 0gb7 \
— 0B696 o X
025 0655065
07073\, / Qaﬁsaa
050 0.6410R673-0-654
015 06578 08605
by S
100 0.6427 0525
-10 -08 -06 -04 -02 00 02 04 05

Figure 63:

[Rate=

tlo]:

Convergence

of the large network over

(1,2,3,4,5,10,50,100,1000,10000] iterations

106

I NORMLISC: Weighted mean, rate=1

Convergence of the algorithm (with F and G,Alpha=0.15) over time

Convergence of the algorithm (with F and G,Alpha=0.15) over time

10*
1071
107t
103
1072
» »
2 10 2
£ 2 108
5 1077 5
1077
H H
- f— a
g 10 8 -
3 5 1
3 3
8 1011 2
2 <2 101
13
10 -
15
10 1055
100 10! 102 10° 104 100

Number of iterations

10?
Number of iterations

Figure 64: [Rate=1]: Left: convergence of medium network. Right: conver-

gence of large network

07013

02

00 0z 030 o 1m0

07081

864

0964

RN

o7m og

as \5 ® o \74 @ o
02 Py /" 02 03B 02
P S P
.] < . o |
g 06 P o 06 2 0.6
uf& “f .
06 07378 o2 06 0.y812 o@s 06 07238 L 4
0¥325 o239 oviss
v g ‘u\ess/
041 0.7036 i 070" %
08 07056 0g48 -6 odonL %839 o
o6 0¥is8 o2 06 o711 L 2 06 o071 o
/ B / I ——amr
al 0.7098 s 0711 ‘ o4 o1’
=¥ 07098 @ 05 o7n oYios o
o8 o @ o8 Sy b
o " /
-~ 0711 ~05 0,71 /
/ B / o
0 071’ o 011

o 075 0s0 25 00 o035 030 o7 1oo

Figure 65:

[Rate=1]:

oo 075 om0

025 0w oz 030 o7 100

ko o35 ok o5 1m0

Convergence of the medium network
(1,2,3,4,5,10,50,100,1000,10000] iterations

107

over

1 @
Q 05
04 i
05
03— 003, 06
. / 78
00 05 -
"‘4‘/0’6\0.570.7/ 0L
05647
02
07361
Oasa
= Juﬁ““
05647 0%57
- 7
02
oo 075 050 025 om0 o3 0% o7 w0

3

%0 -075 —050 025 000 075

o0 075 050 025 080 055 050 075 160 oo 075 -0%0 025 odo 035 030 o075 180
a5, 06
0749 07198 07385 7201
04 \ | 04
T425_¢ 2504 06854 0.6923
02 894/ 02 6969 /
52 1
u/na &
00 07009 00
139 B pspanrs” ﬁéme;z
o] 07397 .
o4 04
06 / 06 b
0677 06819
o0 075 050 025 080 055 050 075 160 oo 075 -0%0 025 od0 035 050 o075 180
6707433 °¢10.7192
oel ol1s 073\02 g@° os] ol180 071\55 g
72 | 71 |
u735§,33‘3} 207176 @ "7"‘“ 071%}1131} 7141]”°/7uz
o o 02
s s
00 7348 071 0o 71 07
139778 13507208 o 78 70 755
oz 01857 o, 07184
—0s 04 19.7086
709
0083
06 06 7
07083
Too 075 050 025 080 055 050 075 160 oo 075 -0s0 025 odo 035 050 o075 180
6107135 ¢ 107133
oe] odiss “71\“ 07133 oa]| 07133 OB o
71 | 71 |
oy M B0ty 07152 omay Bty 07153
o 732/ 02 i %3
/ et o
00 071 0o 1
155 s 7157 oGzl
oa] 07135 \07131 .
07151 ¥
131 133
04 dushTasL 04 PARve
o731 ovisy 07133 ovisy
o6 / -0 /
07131 07133
oo 075 050 025 080 055 050 075 160 oo 075 -0%0 025 odo 035 050 o075 180
°¢10.7833
s 0733
0] 07133 \ 07‘133
N o7l 0.7133
0Tipysr S a1z .
oriaddis
071
Yt S 0BiRRTI
o] 07133 \\07133
07153
7133
04 s
07133 ovis:
06
o733
T o7 050 025 000 055 050 075 160

Figure 66:

[Rate=1]:

Convergence of the large network over

[1,2,3,4,5,10,50,100,1000,10000] iterations

108

J] MAXDIF: Varying with the rate

075 02 075 02
02 0225
050 / 050 /
0.1 0.6 16 0.6
0251 03 Pl 0254 03 421
0.00 0.00
-025 ~0.25
-0.50 ~0.50
03 5 05301 OB 7
-0.75 \ -0.75
-1.00 0.2 -1.00 0.35
-100 -0.75 -050 -025 000 025 050 075 -100 -0.75 —050 -025 000 025 050 075
075 02 075

0.2
0.2504
050 \ 050 \ /
o 06 0w 056
0254 03 L\VAG 0251 03 u\mwzm/

-

0.00 0.00
—0.25 -0.25
~0.50 -0.50
0.5436 0%784 0.5501 05886
—0.75 -0.75
-1.00 0.4014 -1.00 0.4235
-1.00 -0.75 -0.50 -0.25 000 025 050 075 -1.00 -0.75 -0.50 -0.25 000 025 050 075
0751 0.2001
0.269
050 /
__om 06
0251 0.3 .495/
0.00
-0.25
-0.50
0.5529 0%831
-0.75
-1.00 0.4339

-1.00 -0.75 -0.50 -0.25 000 025 050 075

Figure 67: [Rate:%]: Convergence of the medium network over [1,2,3,4] iter-
ations

109

-0.4

-0.6

Figure 68: [Rate:%]: Convergence of the large network over [1,2,3,4] iterations

03 e 0.3674
0.6
7/0.3 - , 0,342
0. - ols
05~ AN 0.59
0.5 05 / - 02 055 0.5 / o 6632145
\ i A\ %
o % 0. / ® - 01328 6161 0. /
\o 7/ / 0.5 : N/ 0.5316
03—/ . 3 = %
02 03 ?-33.3)1 o 021 o34 3311 6%%%1534 pe
01 o 2b.a—o 5 2430.5619
| T
06 06
—0.6
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.3974 a8 04115
0.6
3649 .3763
, o3 04 , o8
0.62 0.63
0,565 05 0P 02 05715 05 o.gadfPs
| : |
0.4363 / 015¢0-6208 0452 ﬁz.
0.0 .
05477 o 5557
/
278 208 07 02 55877 35550 3572032 o
’ Psmsssf PECHE Dsmswf
" b
06 06
—0.6
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
a8 0.4184
0.6
0,382
0.4 , oK1
0.64
02 05746 05 Pl
; .
0.1620-6227 0.4594
0.0 =
05596
o 2285 3
021 887 R | 0.7
he® bgmw(
—0.4
|
0.6
—0.6
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

110

-0.25

~0.50

-0.75

-0.25

~0.50

-0.75

Figure 69: [Rate:tlz]: Convergence of the medium network over [1,2,3,4] iter-

ations

02 100 05
05 975 06114
05 050 5602
0.25
0.00
/7-3\0 " / K——®
\ —025 \
B 0@ 0.6 oso] 02— 023 0.6
03 -075 03
—-0.6 —-0.4 -0.2 0.0 0.2 0.4 —0.6 -0.4 0.2 0.0 0.2 0.4
0.5278 100 05389
06273 875 06337
5711 050 5758
0.25
0.00
7‘3/957?'\&2769 /Bstgﬁ
\ —025 \
0.0083— 026 0.6 050 | 0815028 0.6
03 -0.75 03
—-0.6 —-0.4 -0.2 0.0 0.2 0.4 —0.6 -0.4 0.2 0.0 0.2 0.4
100 05448
93 0.6372
0.50 5783
0.25
0.00
/ 89
—0.25 \
0.0 J0.219——0-28 @
~0.75 03
—0.6 —-0.4 -0.2 0.0 0.2 0.4

111

1.00 1.00
05 06
075 O,G 075) 62,02
050 0.6 /0.15\0.‘3 0.50 0.6 0‘/23 73622
: 2 . : 0.28!
\0270‘3 — & @ Xﬁ,}?ﬁ 1655
025 01 i‘ 025 023
000 ’ @ - 5486
207 05 0.3 \o . /. P 1 05 05 \052 5 /.-33%35
5 (! e * <
028 \o >)"0?7)0.5 02 024 o\s 783%6-5631 0.3
-0.50 ‘/ 07 -050 ‘/ﬁ
\
~075 /./ 03 075 0384
-1.00 03 “100 0.4349
-0.8 -0.6 —-0.4 -0.2 0.0 0.2 0.4 0.6 -0.8 —0.6 —-0.4 -0.2 0.0 0.2 0.4 0.6
100 100
0.6051 0607
o7 . 62,25 o 0. 62,34
0.25610- 0.26320-
s 06 7 153665 i 06 b 25 3683
) N 029 1698 ’ ~ 029 1717
041 36¢ 042 6!
0.25 0, 0.25 0 27
0.00 0.00 B
001 05— 55453 e /.-335},’28 901 502565637 i /.-3%54398
" N\ " N\
025 \ 76‘94‘;9&3202 025 \ Bﬁﬁzﬁn.aus
0.70! . 071 .
—0.50 —0.50
075 0.4051 075 04136
-1.00 0.4591 -1.00 0.469
-0.8 -0.6 —-0.4 -0.2 0.0 0.2 0.4 0.6 -0.8 —0.6 —-0.4 -0.2 0.0 0.2 0.4 0.6
1.00
0608
o 0. slz4
026204
s 0.6 3694
) N 0.29.
043 6 &
0.25 0,
" D.5044—o.5775 \064 5 /.'S%BGAGZ
=025 \ 76‘?40.\3313
071 L
—0.50
-0.75 0.4183
-1.00 04744
—-0.8 —0.6 —-0.4 -0.2 0.0 0.2 0.4 0.6

Figure 70: [Rate:tl2]: Convergence of the large network over [1,2,3,4] iterations

112

	Introduction
	Preliminaries
	Network science
	Domain Name System

	Related work
	Malicious domain detection
	Network science methods
	Opinion formation models
	The PageRank algorithm
	Guilt by association modelling

	Main contributions

	Data description
	Passive DNS data set
	Malicious data set
	Data quality

	Approach
	Outline of the approach
	Network construction
	Overview network construction
	Preprocessing steps for the passive DNS data set
	Constructing the two-mode network
	Constructing the one-mode network
	Scoring the domains in the network

	Algorithm design
	Algorithm requirements
	Local Influence and Susceptibility Computation
	Normalized Local Influence and Susceptibility Computation
	Maxima-based Diffusion
	Dynamic LISC, NORMLISC and MAXDIF
	Time and space complexity

	Experiments and results
	Experimental setup
	Network properties
	Algorithm experiments

	Results—Network properties
	Results—Algorithm experiments
	Discussion

	Conclusion
	Appendices
	Update example LISC
	Update example NORMLISC
	Update example MAXDIF
	LISC: Varying with F and G
	LISC: Varying with the rate
	LISC: Weighted mean, rate=1
	NORMLISC: Varying with F and G
	NORMLISC: Varying with the rate
	NORMLISC: Weighted mean, rate=1
	MAXDIF: Varying with the rate

