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Human Activity Recognition (HAR) and Energy expenditure (EE) are active
field of research in machine learning. Due to the recent advancement in tech-
nology, more accelerometer sensor devices are used to collect information
that can be used to train models for HAR and prediction of EE. Training
models for HAR and EE is a very challenging task because multiple activities
are being performed by different people at a different pace and in different
environments. In this research, we studied a novel approach used in build-
ing robust and highly accurate deep neural network models for HAR and
prediction of EE. We used Long Short Term Memory (LSTM) and Gated Re-
current Unit (GRU) approaches for building these models. The datasets used
to train these models were provided by the Leiden University Medical Cen-
ter (LUMC). This study involved 35 participants performing 16 sedentary,
ambulatory and lifestyle activities in a semi-structured environment. The re-
sults obtained from the models built are competitive with the state of the art
approaches.
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Chapter 1

Introduction

Human Activity Recognition (HAR) is an active field of research in machine
learning. HAR can be defined as “the ability to interpret the human body ges-
ture or motion through sensors and determine the activity” [6]. The recogni-
tion of such activities can be used to solve a lot of problems in various fields
of organizations such as banks, airports, hospitals etc. [21, 84]. In banks or
airports, real time motion systems [10] are used to capture the movements
or motion of people. These movements are analyzed all the time in order to
help prevent crimes and dangerous activities from happening.

Also, HAR is used extensively in the health sector for treatment and pre-
vention of several diseases [101]. It has been used in monitoring and treat-
ment of chronic diseases in elderly people [20, 9]. It has also been used to
encourage physical exercises in rehabilitation centers for children with mo-
tor disabilities [42]. In other areas of health, HAR has been used in estimation
of energy expenditure to help in the treatment and prevention of obesity [85].

Human body gesture or motion can be predicted using HAR models with
sensor data. Sensors such as gyroscope, accelerometer, LIDAR etc. can detect
and respond to inputs from the physical environment [18]. These inputs can
be like temperature, light, heat and motion. With the advancement in tech-
nology, more and more sensors are embedded in devices for collecting data
from human activities [97, 61]. This information recorded by sensors, can be
used for predicting the kind of activity which was being performed. Figure
1.1 below shows a general process of HAR. These devices can be placed on
multiple body locations, such as the wrist, ankle, chest, or thigh for capturing
information of body gesture or motion of a person.

Accelerometer data can also be used in the estimation of energy expended
from motion of the body, Energy Expenditure (EE) [9, 42, 76]. EE is also used
for treatment and prevention of diseases in the health sector [85, 7, 59, 38].

There are some challenges which arise when analyzing sensor informa-
tion. For example, multiple activities being performed by different people at
different pace and in different environments. One way of tackling such an
issue is by using machine learning.

Machine learning can be defined as “a set of methods that can automati-
cally detect patterns in data, and then use the uncovered patterns to predict
future data” [80]. Machine learning methods such as Hidden Markov [26],
Random Forest [14], Linear Regression [66], Deep Neural Networks [53] etc
have been used to build models for HAR [46, 25, 47, 16] and prediction of EE
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FIGURE 1.1: General process of HAR.

[23, 65, 64]. Mostly because they are able to extract meaningful features and
also learn complex relations in large datasets.

Using accelerometer sensor data provided by the Leiden University Med-
ical Center (LUMC), our goal is to develop robust and highly accurate deep
neural network models for HAR and prediction of EE. We used Gated Re-
current Units (GRU) and Long Short Term Memory (LSTM) approaches in
building these models.

Sometimes there are situations where one or more sensor information is
missing [71]. Due to this, our HAR models should be robust and accurate to
be able to predict the activity being performed even in the case where some
sensor measurements are missing. For that, we use a data augmentation tech-
nique based on [86].

We compared our HAR models with previous work using the same datasets.
In [71], a feature engineering technique, Accordion [15], was used for con-
structing features. Besides, in [71] several models were built specifically
to detect human activities for one particular sensor or combination of sen-
sor measurements. In our case, we trained a single model for all the cases
and without feature construction. Empirical results showed that our method
was competitive in detecting the human activities against the several models
trained specially for each or combination of sensor measurements.

The rest of the thesis is structured as follows: in Chapter 2, we discuss
the related work; in Chapter 3, we discuss the materials and methods used
to carry out the research; Chapter 4 we discuss about the experimental setup
and results. Finally, in Chapter 5 we present the discussion and conclusion
of both HAR and EE research.



Chapter 2

Related Work

2.1 Human Activity Recognition (HAR)

There has been much research in the field of HAR [60, 47, 79, 11, 16]. Due to
the recent advancement in sensing technologies, RGB camera-based [100, 93,
83, 68, 81], depth sensor-based [69, 17, 52] and wearable-based sensors [103,
9, 4] are used for collecting sensor information used to train models for HAR.

Several machine learning approaches have been used in HAR [16, 5, 60,
47,11]. Mannini et al. [60] used Hidden Markov Models (HMMs) classifiers
to predict human activities from time series accelerometer sensor data. In
[47], they compared Hidden Markov Model (HMM) to Conditional Random
Field (CRF), Skip Chain Conditional Random Field (SCCRF), and Emerging
Patterns for activity recognition from wearable sensors. Also, activity recog-
nition models were develop using Random Forest Classifier from accelerom-
eter sensor data in [16].

In other areas of HAR, Support Vector Machine model was developed for
predicting multiclass activity recognition from smart phones [5]. In [11], they
used a Kernel Discriminant Analysis for predicting human activity recog-
nition from accelerometer measurements recorded by smart phones. Also,
Bayat et al. studied the human activity recognition on smart phones using
a digital low-pass filter used to isolate the component of gravity accelera-
tion from body acceleration in raw data and evaluated the performance on
Support Vector Machines (SVM), Random Forest Classifiers, Multilayer Per-
ceptron, Simple logistic and Logit boost.

2.2 Energy Expenditure (EE)

There has been much research in the field of EE [23, 102, 38, 7, 65, 64]. Sensor
information collected from wearable sensor devices are used in various fields
such rehabilitation centers, hospitals and residential environments [47, 5, 16,
85].

In rehabilitation centers and residential environments, sensor information
collected from wearable devices are used for HAR [9, 42].

In the in hospitals, sensor information collected are used for building ma-

chine learning models used for estimation of EE. Several machine learning
models have been built for estimation of EE [23, 102, 38, 7, 65, 64].
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Dong et al. [23] used linear regression and Artificial Neural Networks
(ANN) models to compare metabolic energy expenditure estimation from
multi-sensor network and single accelerometer.

In [65], they developed an ANN to predict expenditure from wrist sen-
sors, using data collected from 40 adults who performed 14 sedentary, am-
bulatory, exercise and lifestyle activities.

Also, in [91] they used ANN models to estimate physical activity energy
expenditure and identify physical activity type from an accelerometer in.

Rothney et. al [82] also used artificial neural network model to estimate
the energy expenditure using nonintegrated acceleration signals.

In other areas of EE, Regression models were used in for estimating con-
tinuous energy expenditure [99]. Also, Random Forest Classifier was devel-
oped in [27] to predict the energy expenditure and type of physical activity
from wrist and hip accelerometers.



Chapter 3

Materials and Methods

3.1 Basic concepts of Machine Learning

Machine learning is “a set of methods that can automatically detect patterns in
data, and then use the uncovered patterns to predict future data” [80]. A machine
learning model “is a model trained to detect patterns in data, and used to make
predictions or decisions without being explicitly programmed to perform the task”
[50]. There are 3 types of ML:

* Supervised learning — this is the type of machine learning where we
provide the machine learning model with both features and labels to
train with; then we use this model to make predictions on unseen data
[49]. Example Linear Regression models etc

¢ Unsupervised learning — this is the 2nd type of machine learning where
we provide the machine learning model with only features and the
model try to find patterns within such dataset by forming clusters [39].
Example is the KNearest Neigbors (KNN) etc.

* Reinforcement learning — is the 3rd type of machine learning where an
object or machine learning model examines its field of environment and
gathers information which maximizes the reward or minimizes risk
[45].

3.1.1 Regularization

Regularizers are used to prevent overfitting of data during inducting learn-
ing phase. Overfitting occurs when a machine learning model learns too
much detail in the training data, leading to poor generalization of the model
[8, 1]. There are several methods used in preventing overfitting. In neural
networks, dropout [89] (See Section 3.8) and early stopping can be used to
regularize the models. Early stopping is to stop training the model before
the validation loss starts to increase (or the accuracy starts to drop) as shown
in Figure 3.1. Also, L2 and L1 [67] are used to prevent overfitting in most
machine learning models.
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FIGURE 3.1: Example of overfitting during training of machine
learning models: (source:(http://fouryears.eu).

3.1.2 Evaluation

In order to evaluate machine learning models, the datasets are typically split
into 3 parts, namely, training, testing and validation sets. The training set is
used for training the machine learning model. The validation is used to mon-
itor the performance of the machine learning model during training. This is
to check if the machine learning model is able to generalize well from the
patterns in the training set [88]. Finally, the test set is used to test the per-
formance of the machine learning model when the whole training process is
completed.

Other approaches to assess the performance of the models are cross-validation
[74], leave-one-out [28] or LOSO is the process where we drop one subject
during inductive phase. Then when training is completed, that particular
subject is used to test the performance of the model. This process is then
repeated again for all the different patients.

Learning curves

Learning curves are used to evaluate the performance of models [94]. In
Figure 3.2 we can see an example of learning curves used to evaluate the
performance of a model. Learning curves are obtained by computing the
error for both training and validation data. There were 2 phenomena, which
can be observed with learning curves, that we should try to avoid.

i High Bias — this occurs when both training and validation errors con-
verge at a high point; which results in the model not being able to learn
any new information or generalize well on the validation data.

ii High Variance — this occurs when there is a large gap between the train-
ing and validation errors. This is due to the model overfitting on the
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FIGURE 3.2: Learning curves used to evaluate the performance
of a model.

training data. One way of rectifying this problem is by training with
more data or simplifying the model with less complex features.

Confusion matrix

Confusion matrices are used to illustrate the accuracy of classification mod-
els [73]. They are typically made up of 2 dimensions consisting of the Actual
and Predicted classes. The Actual classes are usually described in the column
headers while the Predicted classes are described in the row headers. Example
of a confusion matrix is shown in Table 3.1. The following terms are associ-
ated with confusion matrices.

1. True positives (TP) — denotes the number of classes which are true and
the model classifies as true.

2. True negatives (TN) — represents the number of classes which are false
and the model classifies as false.

3. False positives (FT) — denotes the number of classes are false but the
model classifies as being true.
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4. False negatives (FN) — denotes the number of classes which are true but
the model classifies as being false.

Actual value

p n total
/| True False P
T o P | Positive Negative
< g
S g
&8
./ | False True N
Positive || Negative
total P N

TABLE 3.1: Example of a confusion matrix.

Evaluation Metrics

Root Mean Squared Error (RMSE) measures the difference between values
predicted by a model and values observed [43]. It describes how the model
disagrees with the actual data. Lower RSME values show better measure of
the model when used in estimating the actual values [43].

R-squared R? is the percentage of variation explained by the relationship
between independent variables used in prediction of the dependent variable
[32].

Accuracy is the total number of correct predictions divided by the total
number of predictions:

TP+ TN
TP+TN+FP+FN

Accuracy =

3.1.3 Gradient descent

Gradient descent is an iterative optimization algorithm used in machine learn-
ing to find the best local or global minimum of a function [33]. The global

minimum is the steepest point of a slope [104]. This is the closest the gradi-

ent descent can get in minimizing the cost function [104]. While searching

for this global minimum, the algorithm can fall into valleys called local min-

imum as shown in Figure 3.3. Therefore, to avoid this we train our machine

learning models with mini-batch sizes. This computes the gradient on each

batch which helps the model to escape such local minimum [33]. Training

with mini-batch sizes helps in early convergence of the model [70].
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FIGURE 3.3: Diagram showing the global and local minimum
of a curve: (source:https://en.wikipedia.org).

3.1.4 Data processing
Resampling

One of the main problems encountered when training a machine learning
model for classification is training with an imbalanced number of classes [29,
55]. Imbalance of classes occurs when we have an unequal class distribution,
that is, at least one or more of the classes constituting to a small minority. This
can lead to the situation where the machine learning models become biased
towards the normal classes (majority) when making predictions on unseen
data [19].

There has been much literature describing ways to tackle the problem
of class imbalance in machine learning [58, 72]. The two commonly used
techniques are oversampling and undersampling.

Undersampling is the process of downsizing the majority class, or classes,
to the same number of instances of the minority class [3]. Therefore, using
this technique can result in less training data for the model.

Oversampling is the process increasing the number of instances of the
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minority classes, so they can have more or even the same number of in-
stances as the majority class [44]. One problem associated with this process
is that, it might cause the machine learning model to overfit on the training
data [44]. One popular oversampling technique, Synthetic Minority Over-
sampling Technique (SMOTE), was proposed by, Sdez et al. [92]. SMOTE
uses an iterative ensemble-based noise filter called Iterative-Partitioning Fil-
ter (IPF), for oversampling the minority classes to the same size of the major-
ity class.

Feature extraction

Feature extraction is the process of creating new features from initial features.
[35]. Some of the reasons why feature extraction is performed is to extract
meaningful information from initial features which helps in both the learn-
ing and generalization steps of a machine learning model, and sometimes
can also be interpreted by humans. Another scenario where feature extrac-
tion is performed is the case where the input features to a machine learn-
ing model is too large and redundant, hence, smaller subsets of the initial
features are constructed and a group of these subsets is selected by feature
selection technique. Abdi et al. [2] invented a feature extraction algorithm
called the Principal Component Analysis (PCA) which is used to generate
important features from initial ones by determining the variance and covari-
ance within such features and ranking based on how well they predict on the
target variable.

Signal Vector Magnitude (SVM) is a feature extraction technique used for
HAR [13]. In order not to confuse it with Support Vector Machines (SVM), we
will change the abbreviation to (SMV). SMV “indicates the degree of movement
intensity and is an essential metric in fall detection” [13]. It is calculated using

the equation:
sMy = B VT

n

Feature selection

Feature selection is the method of selecting relevant subset of features that
help to improve the generalization of a machine learning model during in-
ductive learning phase (training of machine learning model) after feature ex-
traction [36]. Selecting which features to use in the inductive learning in or-
der to improve the machine learning model is very challenging, especially in
the case of time series sensor data. Even though performing feature extrac-
tion helps to create an important subset of features to be used as input data to
the machine learning model, it does not help in selecting which features are
responsible for better generalization or classification of the machine learning
model. Many feature selection techniques have been implemented in this
field to help solve such problems. Minola et al. [62] used a scoring mecha-
nism to rank algorithm on sample data on the target and the features which
are useful for predicting accurately on the target are chosen. Another fea-
ture selection algorithm was proposed in [15], named Accordion, that helps
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to select important features for both classification and regression problems
by selecting aggregate features iteratively, in a memory-conscious fashion.
Even though these techniques help to select relevant features for inductive
learning, they are all based on heuristics.

Downsampling

Downsampling is the method of reducing the sampling rate by an integer
factor [78]. Sampling rate is the average number of samples obtained per
second. One of the advantages of performing downsampling is to reduce the
size of data. Downsampling is used in signal processing [78] etc.

Standardization

Standardization is the process of rescaling the input features to have zero
mean and standard deviation of 1 [30]. Standardization can help to speed
up the learning process and convergence of the models [30]. Target variables
were transformed with one hot encoding which converts nominal variables to
numerical values.

3.2 Artificial Neural Networks

An Artificial Neural Networks (ANN) [57] are non-linear processing net-
works that are capable of learning complex relationships within data effi-
ciently. They contain non-linear hidden layers which are assigned weights
and biases which learns complex relationships from its inputs and produce
an output when an activation function is applied to it.

ANN have been used to solve wide variety of tasks, including human
activity recognition [6], speech recognition [77], energy expenditure predic-
tion [7] and image classification [51]. One of the two most commonly type of
ANN are Feedforward Neural Networks (FNN) (multilayer perceptron [31, 48])
and Recurrent Neural Networks (RNN) (Long short-term memory (LSTM)[40],
Gated recurrent units (GRU) [22]). FNN [63] are directed graphs with no
teedback loop within their hidden layers. The process information straight-
forward from their input layers to the output layers. RNN [22] contain feed-
back loops within their hidden layers whose activation at each time depends
on that of the previous layer. Figure 3.4 shows an example of a feedfoward
neural network.

ANN are trained by iteratively providing the network in batches of data
during a certain number of epochs. An epoch is one forward and backward
pass of the entire training data through the machine learning model [70]. Af-
ter every batch, the network computes the generalization error of the model,
then adjust its weights to reduce the errors through backpropagation [37].
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(source:(https:/ /cs.standford.edu).

3.2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) [22] contain feedback loops within their
hidden layers whose activation at each time depends on that of the previous
layer. Because of this, they are good architectures to use when dealing with
sequential data. RNN have been used to solve a variety of problems, such
as language modeling [56], speech recognition [54] etc. Figure 3.5 shows an
example of an recurrent neural network.

Even though RNN are able to keep information from sequences, they are
not able to do this efficiently when the gap between such sequences becomes
too big (due to the vanishing gradient problem [41]). To avoid that, Long
short-term memory (LSTMs) and Gated recurrent units (GRUs) neural net-
works can be used.

Long short-term memory (LSTM)

Long short-term memory (LSTM), is a type RNN that contain memory cells
[40, 24]. This allows them to store long range contextual information from
sequences [24]. Gates control which information goes through the LSTM
model. For that, they use a sigmoid neural network layer and a pointwise
multiplication operation. The sigmoid function can transform any values
into the interval 0 to 1. When 0, the model forgets the information, when it is
1 it keeps it; they contain three gates, namely, forget, input and output [40].
The forget gate controls which information from the memory cell needs
to be forgotten. It contains sigmoid function which activates to either 0 or 1.
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When 0, the model forgets the information, on the other hand, when it is 1
it keeps. The input gate controls which information needs to be updated.
Finally, the output gate is used to produce the final outcome. LSTM take into
account the information from the previous hidden layer in order to predict
the current output. Figure 3.6 shows an example of LSTM network.
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FIGURE 3.6: Long Short Term Memory:
(source:http:/ /towardsdatascience.com).

Gated recurrent units (GRUs)

Another type of RNN used for remembering long sequences of information
without the vanishing gradient [41, 34] problem are the Gated Recurrent
Units (GRU) [22]. Both GRU and LSTM contain memory cells that are used
to store information. Unlike LSTMs, GRU have only 2 gates, the reset gate
and the update gate. The reset gates controls which of memory cell informa-
tion that needs to be forgotten. The update gates controls which amount of
information needs to be updated [22, 12]. Figure 3.7 shows an example of
GRU network.
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3.2.2 Dropout

Dropout is a regularization technique used to prevent overfitting by ran-
domly dropping out neurons (both hidden and visible) in a network dur-
ing training [89]. The neurons are dropped with a user-defined probability.
Training the network with dropout is equivalent as training with different
network architectures through extensive weight sharing which are approxi-
mately combined together during testing. Networks trained with dropout,
helps reduce the generalization error of the networks when used in classifi-
cation and regression problems [89]. In [89], the authors suggest that 20 and
50 percent of dropouts are often found to be optimal. Figure 3.8 depicts an
example of a fully connected network and another network where some of
the neurons were dropped.

3.3 Data Augmentation

Data augmentation refers to “methods for constructing iterative optimization or
sampling algorithms via the introduction of unobserved data or latent variables”
[95]. Data augmentation has been used in image classification [51], docu-
ment analysis [87] etc. It enhances the overall performance of a machine
learning model by preventing the model from learning irrelevant patterns
during inductive learning phase [95].

The two commonly used data augmentation are, offline data and online
data (or on-the-fly) [75]. Offline data augmentation is the process where the
data transformations are done before training model. Online data augmen-
tation is when the transformation of data is performed while the model is
being trained.
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FIGURE 3.8: Dropout technique:
(source:https:/ /medium.com).

3.4 Data

The dataset used for this experiment was provided by the Leiden University
Medical Center (LUMC) and is referred as GOTOv (Growing Old Together)
[71]. The study involved 35 patients (14 females and 21 males) with an av-
erage age of 65. Table 3.2 shows the demographic information for all the
patients. Each patient performed 16 everyday activities while wearing 6 sen-
sor devices on 6 different body locations. The devices, which are illustrated
in Figure 3.9, were:

* GeneActiv: placed on the wrist, chest and ankle. Each GeneActiv sen-
sor records triaxial acceleration (+/- 8g) with a high sampling rate of
83Hz.

e COSMED K642: attached to the face through a facial mask and a sensor
unit which was used to record the energy expenditure.

¢ Equivital: was attached to the chest (with a belt) and was used to mea-
sure heart rate and heart rate variability, respiration parameters (vivo
measurments) and acceleration (tri-axial).

e Polar Electro: It was attached to the chest with a belt which was used
to measure heart rate information.

¢ Philips DirectLife activity monitor: It was placed on the hip and chest
with a belt and provided triaxial measurements with a sampling rate of
20Hz.

* Activ8: activity monitor measured acceleration (triaxial), with built-in
activity classification. Was placed on the upper leg with a surgical tape.

Figure 3.10 shows the sensor devices used in the GOTOv experiment.
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TABLE 3.2: Demographic information for all patients.

Age | Gender | Weight (kg) | Height (cm)
62 female | 83 83
66 male 74 177
62 female | 75 163
61 female | 75 163
59 male 84 177
68 male 91 180
65 male 95 172
64 male 80 172
66 male 84 180
65 male 96 187
60 male 99 190
64 female | 66 161
63 male 117 182
69 male 82 182
72 female | 74 168
62 female | 64 163
59 male 77 180
68 female | 70 172
62 male 93 178
62 male 90 182
60 male 83 184
66 female | 78 170
70 female | 69 160
69 male 85 168
70 female | 81 161
64 male 98 179
61 female | 82 178
74 male 93 178
67 male 88 174
60 female | 70 170
68 female | 74 175
68 male 76 175
62 male 77 176
60 male 81 178
81 female | 72 167

Because of privacy reasons, we do not present
the personal codes of the patients.
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FIGURE 3.9: Accelerometry sensors placed on a patient.

Every patient involved in the study had to follow a specific protocol (Ta-
ble 3.3) for the activities performed. Before starting the activities, the COSMED
K4b2 sensor was calibrated, which took approximately between 10-15 min-
utes. The activities were divided into 2 parts, indoor and outdoor. The in-
door activities consisted of lying down, sitting, standing and several household
chores, such as dishwashing, stakingShelves and vacuumCleaning. The outdoor
activities included the different types of walking walkingSlow, walkingNormal,
walkingFast and cycling. All patient were allowed a resting period, maximum
of 1 minute between the different activities performed, by standing.

Even though each patients was supposed to complete a total of 16 activ-
ities, this was not always possible. This was because 7 of the patients could
not continue the experiment after completing a certain number of activities.

Also, due to weather conditions, most of the outdoor activities were can-
celled.
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TABLE 3.3: Protocol of the order in which activities are to be

performed.
Activity Duration Notes
Participant will lightly jump up
Sensor .
L 3 minutes | and down for 20 seconds to
synchronization . .
synchronize sensor signals
Standing 20 seconds
Participant will step up and down a
Step test 3 minutes | step 20 times at a pace selected by the
participant.
Lying 3 minutes Participant is to turn 90 degrees to
down - left the left and remain motionless.
Lying . Participant is to turn 180 degrees to
. 3 minutes . . .
down - right the right and remain motionless.
Sittin Participant is to be seated and
sofa & 3 minutes | watch TV, browsing channels
occasionally.
Sitting 3 minutes Participant is to get seated
couch and read a newspaper.
- Participant is to get seated
Sitting . . . .
desk 3 minutes | in the office chair and perform
some word processing/browsing.
Ascending . Participant is to ascend
. 1 minute . . .
stairs a single flight of stairs.
Housework . Participant is to wash
. 3 minutes .
dishes dishes.
Housework 3 minutes Participant is to stack
stacking shelves shelves with books.
Housework . Participant is to perform some
. 3 minutes . :
vacuum cleaning cleaning with a vacuum cleaner.
Walking . Participant is to walk at
5 minutes
slow pace a slow pace.
Walking . Participant is to walk at
. 5 minutes .
medium pace a medium pace.
Walking . Participant is to walk at
5 minutes
fast a fast pace.
Cycling 15 minutes Participant is to cycle at
a normal pace
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FIGURE 3.10: The devices used in GOTOv study. Active8 and
Equivital (left), Philips DirectLife and GENEActive (middle),
COSMED K4b2 (right).
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Chapter 4

Experimental Setup and Results

In this chapter, we provide information about the experimental procedures
we used in conducting our research and is divided in two parts. We discuss
about the measures we considered to train models for HAR (Section 4.1) and
the prediction of EE (Section 4.2).

4.1 Human Activity Recognition

Six different sensor devices were used in the GOTOv (Growing Old Together)
study 3.4. However, for the HAR we only use the sensor measurements
recorded by the GeneActiv sensors placed on the wrist, ankle and chest. As
mentioned in Section 3.4, each of these sensors records triaxial measurements
perpendicularly in the X, y and z axes. Therefore, a total of 9 measurements
(or features) are collected per activity (target). In other words, the goal is to
predict the correct activity (or target) from the 9 accelerometer sensor mea-
surements.

Not all sensor measurements from the 35 patients was used for training
and testing of the models. This was because 7 of the patients could not con-
tinue the experiment after completing a certain number of activities (Section
3.4). For this reason, only the data from the remaining 28 patients is used in
this study.

To predict human activities from GeneActiv accelerometer data, we use
two RNN approaches and a data augmentation technique based on Shekar et
al. [86].

4.1.1 Data pre-processing

In order to predict the human activities from the original data, several trans-
formations had to be made in the data. We started by standardizing the mea-
surements to zero mean and a standard deviation of 1. Then, due to the
choice of the methods, RNN, we had to build sequences of consecutive mea-
surements associated with each activity and each patient. A sequence “is a
finite/infinite list of terms arranged in a definite order, that is, there is a rule by which
each term after the first may be found” [98].

Every sequence is associated with a specific activity and a specific patient.
Because activities were performed sequentially, there were chances of having
measurements from two different activities in the same sequence. Therefore
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if a sequence had only part of the sensor measurements of a certain activity,
the whole sequence was dropped. In Algorithm 1, we detail the procedure
that was used for transforming data into sequences.

We used a time window of 2.5 seconds based on previous experiments
[71]. This resulted in sequences of size 200, because of the frequency at which
the sensor measurements were sampled (83Hz).

Besides the previously mentioned transformations, we decided to train
our models without performing any feature extraction or feature selection
technique. The reason for this was because, one of the advantages of using
deep neural networks, as mentioned in Section 3.2.1 is their ability to extract
relevant knowledge without feature extraction.

Algorithm 1 Transforming data into sequences.

1: D = Original dataset
2: s = Sequence size
3: P = Patients
4: Q = array of sequences
5. procedure MAKESEQUENCES(D, s)
6: for each patient p in P do
7: A < Select all activities of patient p in D
8: for each activity jin A do
9: Select all sensor measurements from D for patient p and activ-
ity j
10: Create sequences of length s and assign the sequences to Q
11: end for
12: end for
13: return Q > return sequences for all patients

14: end procedure

Also, as seen in Figure 4.1, the classes are highly imbalanced. Where cy-
cling is the most represented class with 66858 instances and walkingStairsUp
the minority class with 1286 instances. For this reason, we under-sample the
data so that the models are trained with an equal number of instances per
class.

4.1.2 Proposed approaches

We designed one RNN architecture to tackle the problem of HAR. This ar-
chitecture was implemented with two variants, one using LSTM layers and
other one with GRU layers. As for selecting the number of hidden layers
and neurons, since there is no rule of thumb to decide that [90], several other
architectures were also previously tested. This final setting was obtained af-
ter a careful testing period of 2 weeks of experimental work. The structure
presented in Figure 4.2 refers to the one which obtained the most satisfactory
results. It consists of an input layer with 9 neurons, 3 hidden layers with 512
neurons and an output layer. The output layer contains 16 neurons, which
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FIGURE 4.1: Distribution of the number of instances per class.

corresponds to the number of targets (Section 3.4). We defined a dropout
ratio of 50% between all the layers of the network to prevent overfitting.

input_1: InputLayer input_2: InputlLayer
gru_1: GRU Istm_1: LSTM
gru_2: GRU Istm_2: LSTM
gru_3: GRU Istm_3: LSTM
dense__1: Dense dense_2: Dense

FIGURE 4.2: GRU and LSTM architectures.
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Data Generator

The goal of the research was to build one robust and highly accurate model
capable of predicting human activities even if some sensor measurements
are missing. To achieve that, we used a data Generator which included a
data augmentation technique [86] to simulate the case where sensor mea-
surements could be missing.

To simulate the case of missing sensor measurements, for every batch, the
measurements of a randomly selected sensor, or sensors, had their original
values replaced with zeros (Algorithm 2). Once these values are set to zeros,
the model is forced to train with the other input features. This helps the
model to be more robust to the cases where any sensor is missing.

Algorithm 2 Learning HAR from Missing Data.

1: g = sequence
2: K = {awc,aw,ac,wc,a,w,c}
3: procedure IMPUTESEQUENCES(g, K)

4: k = Randomly select one element from K
5: if k == awc then
6: T + q
7: else if k == aw then
8: T <« set chest values to zeros
9: else if k == ac then
10: T < set wrist values to zeros
11: else if k == wc then
12: T < set ankle values to zeros
13: else if k == a then
14: T < set chest & wrist values to zeros
15: else if k == w then
16: T <+ set chest & ankle values to zeros
17: else if k == c then
18: T <+ set ankle & wrist values to zeros
19: end if
20: return T

21: end procedure

Besides the data augmentation, the generator was also used to solve the
problem of class imbalance that was present in our training data (See Fig-
ure 4.1). For that, on every batch, the number of classes was automatically
balanced (Algorithm 3). Moreover, different combinations of sequences were
randomly selected at each batch. Thus, making it difficult for the model to
memorize the training data.

4.1.3 Evaluation

We tested the performance of the different models using Leave One Subject
Out (LOSO) cross-validation as described in Section 3.1.2. All models were
trained for 200 epochs with a mini-batch size of 512.
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Algorithm 3 Generator

1: Q = List of sequences
2: s = batch size
3: procedure TRANSFORMSEQUENCES(Q, s)
4: T < empty list
Undersample training sequences Q to minimum class size
Create batches of s sequences
for each sequence b in batch do
T < IMPUTESEQUENCES()
end for
10: return T
11: end procedure

To get the overall performance of the proposed approaches, we trained 28
different models using LOSO and then averaged the accuracies for the differ-
ent models. We trained the models with 25 patients and validate the model
on 2 patients. The patients used for the validation were chosen randomly.
The data of the remaining patient, left out, was then used to test the model
after training was completed.

For training and testing each of the 28 different models we divided our
dataset into 3 parts, namely, train, validation and test (as discussed in Section
3.1.2). The training set was used for training the model. The validation set,
which included two randomly picked patients, was used to monitor the accu-
racy and save the best model during training. Finally, the the test set, which
included data from only one patient, was used for testing the performance of
the model.

We tested how the 28 different models performed on 7 different cases (or
scenarios). They were:

awc sensor measurements from all the 3 sensors (ankle, wrist, chest).
aw sensor measurements from the ankle and wrist.
ac sensor measurements from the ankle and chest.
wc sensor measurements from the wrist and chest.
a sensor measurements from the ankle.
w sensor measurements from the wrist.

¢ sensor measurements from the chest.

Also, we computed the t-test score for the 7 different cases. T-test score
computes the average between two means and check for significant differ-
ences (or importance) between them [96]. We used a package in python
called ttest_ind to compute such scores.

Finally, we compare the performance of our approaches with previous
work Random Forest (RF) where one model was trained for each of the sce-
narios described above. In other words, the RF models were trained and
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tested specially for each different combination of sensors: awc, aw, ac, wc, a,
w, C.

4.14 GRU approach

The box and whisker plot in Figure 4.3 gives an overview of the accuracies
obtained from the 28 the models trained with the GRU approach in all the 7
different scenarios. In the case of having measurements from all the 3 sen-
sors, awc, the models were able to recognize the activities with a minimum
and maximum accuracy of 72% and 97% respectively. These results are quite
impressive, considering that building models for HAR is a very challenging
task, especially in the case where the number of activities are high.

Spread of accuracies for GRU models

N e A I R

0.61 — -1

0.5 I

0.4

0.31 8

awc aw ac wc a w Cc

Sensor measurements for different scenarios

FIGURE 4.3: Spread of accuracies for different scenarios where
a sensor could be missing for the GRU models.

In the scenarios where these models only had sensor measurements from
two sensors, aw, ac and wc, as expected, the accuracy was affected. In partic-
ular for the scenarios ac and wc, the range of accuracy was 58% — 92% and
57% — 96% respectively. The exception, is the case where the model had no
measurements from the chest sensor, aw, in which case the accuracy was al-
most not affected (69% — 98%). The latter can be explained by the fact that
the studied activities, have less variation in the chest, and more in the legs
and arms.

Finally, when using sensor measurements from only one sensor, w, a and
¢, the models performed even worst in recognizing the activities. In particu-
lar when using only the chest sensor measurements as compared to the case
of wrist and ankle the difference was more striking. This can due to little
changes in the measurements recorded by the chest sensor as already men-
tioned above. Therefore, resulting in the models predicting the activities with
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accuracies of 52% — 76%, as compared to the 46% — 86% and 49% — 80% for
the wrist and ankle measurements respectively. Moreover, we would like to
highlight that some of these models predicted the activities with very low
accuracy (see Figure 4.3) represented by the outliers.

The results presented in Figure 4.4 show that our method is competi-
tive in detecting the activities against the several models of Random Forest
(RF) trained specially for each or combination of sensor measurements. The
barplot in Figure 4.4 shows the average accuracy of both RF and GRU mod-
els obtained in the different scenarios. The overall average accuracy for both
GRU and RF models were 74.6% and 74.5% respectively.

100

mm Generalized_GRU
m Accordion_RF

B5.0% B85.0%

Accuracy

I

awc

Sensor measurements for different scenarios

FIGURE 4.4: An average accuracy of the GRU and RF models

for the different scenarios. The x-axis represents the different

scenarios (awc, ac, aw, wc, a, ¢, w) and the y-axis the average
accuracy.

With all measurements from 3 sensors present, awc, both GRU and RF
models were able to predict the activities with an average accuracies of 85%
and 78% respectively. A t-test showed that the GRU models are statistically
significant better for the recognition of activities in the scenario where all the
sensor measurement are provided.
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Having sensor measurements from only two sensors, aw, wc and ac, GRU
models were able to predict the activities with average accuracies of 85%,
79% and 73% respectively. On the other hand, models trained with RF ap-
proach were able to predict the activities with average accuracies of 83%, 81%
and 78% respectively. However, this time there was no significant differences
between the GRU and RF models.

From Figure 4.4 in can be observed that both GRU and RF models pre-
dicted the activities with similar accuracy for the scenario where we had sen-
sor measurements from only one sensor. The average accuracies were (71%,
69%, 68%) and (71%, 70%, 63%) for the GRU and RF methods respectively.
Also, the t-test score for the different scenarios, showed no significance be-
tween the two models when used for HAR.

Ankle, wrist and chest confusion matrix

Figure 4.5 shows the confusion matrix of the predictions of GRU models, in
the senario of having measurements from all the 3 sensors, awc. We could ob-
serve that the models were able to detect the various household (dishwashing,
stakingShelves, vacuumCleaning), sitting (sittingChair, sittingCouch, sittingSofa),
lying down (lyingDownLeft, lyingDownRight) and walking (walkingSlow, walk-
ingFast, walkingNormal) activities.

In terms of missclassifcation, it seems to be higher between dishwash-
ing and stakingShelves; vacuumCleaning and standing; and the different walk-
ing (walkingSlow, walkingFast, walkingNormal) activities. In the case of the
activities vacuumCleaning and standing, since the patients while vacuuming
might take breaks (by standing for a minute or more). This can explain the
high number of vacuumCleaning classified as standing (Figure 4.5). Therefore,
resulting in both activities having similar sensor measurements recordings
which leads to the confusion. In terms of dishwashing and stakingShelves ac-
tivities, the confusion could result from the pace at which each patient per-
formed the activity.

Also, the misclassification between the different types of walking (walk-
ingSlow, walkingFast, walkingNormal) might result of the different walking
pace for each individual. A person moving at a fast pace might be a slow
pace for another person. This resulted in different variations in the sensor
measurements recorded by different patients for the same activities.

Ankle and wrist confusion matrix

In the case of having measurements from the sensors in the ankle and wrist,
aw, the models were able to predict the activities with similar results as of
the case of having measurements from all the 3 sensors, awc. As in the case
of awc, the models were also capable of distinguishing between the various
household, walking, lying down and sitting activities as seen Figure 4.6.
However, without the chest sensor measurements, the number of mis-
classified examples between the different types of walking activities almost
doubled if compared to the scenario of having all the sensor measurements
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FIGURE 4.5: Confusion matrix of the predictions from all mod-
els having ankle, wrist and chest sensor measurements.

from the 3 sensors. Furthermore, there was an increase in misclassification
between the different types of lying down activities as shown in Figure 4.6.

In addition, in the other two cases, where sensor measurements from the
ankle and chest ac or wrist and chest, wc, were used, the models were better
in recognizing the different household activities in the latter (see Figure A.1
and Figure A.2) for confusion matrices).

Finally, having only the ankle and chest measurements, ac, the models
performed bad in detecting the various household activities when compared
to the aw and wc cases. In contrast, they were better at recognizing the differ-
ent classes of sitting and walking activities. This can be explained by more
variation in measurements recorded by the ankle and chest sensors when a
patient was performing such activities.

Ankle confusion matrix

Finally, we analyse the predictions of the GRU models obtained from sen-
sor measurements of the ankle only, i.e. scenario 4. In Figure 4.7 represents
the confusion matrix for all 28 patients. It can be observed that, the models
were as good as detecting the difference between the lying down and sitting
activities.

Even though with measurements from only the sensor on the ankle, the
models were still able to distinguish many activities, such as cycling and ly-
ingDown. The models had a high number of misclassified instances between
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FIGURE 4.6: Confusion matrix of the predictions from all mod-
els having ankle and wrist sensor measurements.

the different household activities. For example, in the case of dishwashing
and Standing activities; the Standing activity involves similar use of the legs
as compared to diswashing, which on the other hand, makes more use of the
hands.

In the other two cases, w or ¢, the models were able to distinguish a bit
better for the various household activities (see Figure A.4 for confusion ma-
trices). The misclassification was still quite high for the different sitting and
walking activities when compared to the ankle sensor.

Lastly, using the models to predict the human activities in the scenario
where we had chest measurements only, ¢, the results were worst when com-
pared to the case of having measurements from the wrist or ankle. However,
the chest sensor was better in recognizing the different lying down activities.
This might be due to more movement of the chest when performing such ac-
tivities. In conclusion, the wrist and ankle sensors were better than the chest
sensor when used for HAR in this study.

4.1.5 LSTM approach

The barplot in Figure 4.4 represents the average accuracy of both LSTM and
GRU models obtained in the different scenarios. As mentioned before, both
networks were trained with the same settings. Besides the better accuracy,
during training, we observed that the models trained with GRU layers were
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FIGURE 4.7: Confusion matrix of the predictions from all mod-
els having ankle sensor measurements.

faster when compared with models with LSTM layers. It took 22 seconds
to complete an epoch using GRU models, while it took 222 seconds in the
case of LSTM models. The overall average accuracy for both GRU and LSTM
models were 74.6% and 64.9% respectively.

For both models, there can be seen a decline in the accuracy (see Figure
4.4) when sensor measurements are removed. However, the relative decrease
in percentage between the LSTM models and the GRU models for the differ-
ent scenarios (awc, aw, ac, wc, a, w, ¢) was 6%, 7%, 10%, 7%, 11%, 12% and 15%
respectively. This seems to indicate that GRU layers deal better with miss-
ing data as compared with LSTM layers. A t-test score showed that there
was a significant difference between both models (LSTM and GRU) for all
the different scenarios. Furthermore, observing the box and whiskeys plot
in Figure 4.9, the worst and best performance of the GRU models in HAR
outperformed that of the LSTM models.

4.2 Energy Expenditure

In this experimental part we use sensor measurements recorded by the Cosmed
K4b2 and GeneActiv sensors placed on the wrist and ankle. Besides that we
also used demographic information for training models to predict the energy
expenditure (EE). As mentioned in Section 3.4, the Cosmed K4b2 sensor device
is used to record the EE. Therefore, our goal is to predict the Cosmed K4b2 EE
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FIGURE 4.8: Barplot showing the average accuracy of the LSTM

and GRU models for the different scenarios. The x-axis repre-

sents the different scenarios (awc, ac, aw, wc, a, ¢, w) and the
y-axis the average accuracy.

from sensor measurements collected from the GeneActiv together with demo-
graphics information.

4.2.1 Proposed approach

The architecture of the neural network used to predict the EE was made up
of one recurent GRU and one feedforward networks, combined into one final
feedforward network (Figure 4.10). This was because, the datasets used for
training the models consisted of both time series (sensor measurements) and
static (demographics) data. Therefore, we built sequences for the sensor mea-
surements and used them to train the recurrent network with GRU layers.
At the same time, we feed the static data to the feedforward network.

Since there is no rule of thumb when it comes to selecting the number
of hidden layers and neurons, several other settings were also previously
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FIGURE 4.9: Box plot showing the overall performance of the
GRU and LSTM models.

tested. The presented structure in Figure 4.10 refers to the one which pro-
vided the most satisfactory results. The RNN architecture consisted of an
input layer, 3 hidden layers and an output layer. The input layer had 9 neu-
rons, while the neurons in the hidden layers were 32, 256, 32, 32 respectively.
The feedfoward network had an input layer with 4 neurons and a hidden
layer with 32 neurons. The output layers of both networks were concate-
nated and connected to 2 more hidden layers and an output layer consisting
of 32, 16 and 1 neurons respectively. The output layer is made up of only 1
neuron which is used to estimate the EE.

We applied a dropout ratio of 50% to all the layers of the recurrent net-
work and 20% to final hidden layers of the network structure. Figure 4.10
shows the described network structure.
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FIGURE 4.10: Neural network architecture for the prediction of
Energy Expenditure.
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4.2.2 Data pre-processing
Window Size

In order to predict the EE, we had to transform parts of the data into se-
quences. In this work, a sequence is defined as a 2 dimensional matrix ({¢, f }),
where t is the time steps and f is the number of features. At each time step,
there are f sensor measurements and each represents one feature.

Uniform sampling rates One problem we encountered when building se-
quences was in defining a reasonable time window. We experimented with
different time windows of 1, 2, 4, 6, 7 and 10 minutes which originated se-
quences with 4980, 9960, 19920, 34860, 39840 and 49800 time steps respec-
tively. However, when training our models with these sequences, we en-
countered an insufficient memory problem. This was because, we could not
fit all the sequences into memory for training. Therefore, we tested different
sequences with time steps from 200-500. Moreover, we downsampled the
original data (at 16Hz) to lower sampling rates of 1, 2, 4, 6 and 8 Hz. Fi-
nally, we observed that a sequence with 460 time steps (representing a time
window of 4 minutes) with a sampling rate of 2 Hz was the most reasonable
choice. We transform our data into sequences of dimension (¢, f), downsam-
pled to a sampling rate r.

Algorithm 4 Transforming data into sequences.

1: X = GeneActiv measurements

2: E = energy expenditure values

3: t = number of time steps

4: v = sampling rate

5: procedure SEQUENCESGENERATOR(X, 7, t, E)

6: w <— empty list

7: for each e in E do

8: Create sequence with ¢ time steps from X with sampling rate r
where the last value in the sequence represents has the same timestamp
ase

9: end for

10: return w

11: end procedure

Non-uniform sampling rates Using the time window of 4 minutes, we per-
formed another experiment where we built sequences using non-uniform
sampling rates. We compared whether having more recent data in a se-
quence, helped improved the estimation of the EE. We built sequences for
training such models as follows:

i Take a sequence of 4 minutes of data.

ii Split the sequence into 4 equal segments.



Chapter 4. Experimental Setup and Results 35

iii Downsample the sensor measurements in each segment using sam-
pling rates 1, 2, 4, and 8.

Algorithm 5 Transforming data into sequences.

: X = GeneActiv measurements
E = energy expenditure values
t = number of time steps
r = sampling rate
procedure SEQUENCESGENERATOR(X, 7, t, E)
w < empty list
for each ein E do
Create sequence with t time steps from X
Split measurements in sequence into 4 equal segments
Downsample the measurements in each segment using sampling
rates in r
11: end for
12: return w
13: end procedure

—_

—_
@

We used sampling rates of 1, 2, 4 and 8 Hz to downsample the measure-
ments in each sequence. We built two different sequences to test our hypoth-
esis. The first sequence w;, had more recent sensor measurements, while the
second sequence wj, had less recent sensor measurements as shown in Fig-
ure 4.11 below. The empirical results showed that having more recent sensor
measurements in a sequence helped improved the model in estimation of EE.

We also created features for training our models. We used the SMV equa-
tion (see Section 3.1.4), to combine the acceleration measurements recorded
in 3 triaxial perpendicular axes (x,y,z) into one value.

Hence, we trained 4 different models and compared them. Two of the
models were trained with raw sensor measurements while the other two
were trained with SMV. We named the 4 different models as follows to enable
us easily discuss the results of the models.

1. flat - this model was trained with sequences transformed using algo-
rithm 4 above.

2. SMV_flat - this model was trained with SMV sensor measurements trans-
formed into sequences using algorithm 4 above.

3. equalSegments - this model is trained with sequences transformed using
algorithm 5 above.

4. SMV_equalSegments - this model is trained with SMV sensor measure-
ments transformed into sequences using algorithm 5 above.
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Window of size 4minutes, divided into 4 equal
segments and downsampled at different sampling
rates

Sequences with more recent information

»EEm values
1Hz | 2 Hz ‘ 4 Hz ‘
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FIGURE 4.11: Equal segment of data measurements downsam-
pled with different sampling rates.

4.2.3 Evaluation

We trained and tested the performance of the models in the 4 different ap-
proaches using Leave One Subject Out (LOSO) cross-validation. All models
were trained for 200 epochs with a mini-batch size of 1024.

Also, there were cases where there was no Cosmed EE measurements
recorded for the activity which was being performed. Therefore we did not
include the sensor information from such patients when training our models.

We trained the models with 23 patients, validated the performance of the
models during training on 1 patient, and tested the performance of the final
model after training on the last patient which was left out. Hence, to get
the overall performance of one model, we trained 25 different models us-
ing LOSO mentioned in Section 3.1.2. The validation dataset was randomly
chosen for all the LOSO models. We tested the performance of the machine
learning models by measuring both the Root Mean Squared Error (RMSE)
and R-squared (R?) values for all the models when training was completed.

4.2.4 EE Models

We tested the performance of the different models used in estimating the
EE by recording the average RMSE and R? values for all the LOSO trained
models.

Table 4.1 shows the average LOSO R? and RMSE values for all the differ-
ent machine learning models used in estimation of EE on the test datasets.
From the table, it can be seen that all the models had similar performance
when used in estimating the EE. The R? values in Table 4.1 explains the
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RMSE | R-squared
flat 1.576 0.382
SMV_flat 1.487 0.474
equalSegment 1.518 0.430
SMV _equalSegment | 1.464 0.467

TABLE 4.1: RMSE and R-square prediction values for the dif-
ferent EE models.
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Predicted_EE
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FIGURE 4.12: Energy expenditure graph of the flat model.

percentage of variation of the input sensor measurements used in estimat-
ing the EE. The higher R? value, the better the model when used in esti-
mation of EE [43]. Comparing the R? values, the different models can be
arranged in increasing order of predictability, namely, flat, equalSegments,
SMV_equalSegments and SMV_flat. The SMV_equalSegments and SMV_flat
models estimated the EE with similar and higher R? values when compared
to the equalSegments and flat models. This makes them better models when
used in estimating the EE. To find a more robust model among the 2 (SMV _equalSegments
and SMV_flat), we computed the RMSE for all the models. From table 4.1, it
can be seen that the SMV_flat has lower generalization error when compared
to the SMV_equalSegments model. Therefore, making it a more robust model
when used in estimation of EE.

Figures 4.12, 4.13, 4.14 and 4.15 show the graphs of EE estimated by the
different machine learning models on the same test patient. The blue bar
represents the actual EE values and the yellow bar represents the estimated
EE values by the machine learning model.

As it can be seen from the graphs, the EE estimated for the different in-
tensity of activities where similar for all the different models. The models
performed worst when used in estimating the EE for low intensity activi-
ties such as the different types sitting (sittingChair, sittingSofa, sittingCouch),
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FIGURE 4.13: Energy expenditure graph of the SMV_flat model.
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FIGURE 4.14: Energy expenditure graph of the equalSegment
model.
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FIGURE 4.15: Energy expenditure graph of the
SMV_equalSegment model.

lying down (lyingDownLeft, lyingDownRight) and household activities (dish-
washing, stakingShelves, vacuumCleaning). However, the models performed
better when used in estimating the EE for high intensity activities such as
the different types of walking (walkingSlow, walkingNormal, walkingFast) and
cycling activities.
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Chapter 5

Conclusion

Using sensor and demographic data provided by the Leiden University Med-
ical Center (LUMC), we developed robust and highly accurate deep neural
network models for Human Activity Recognition (HAR) and Energy Expen-
diture (EE). For that, we trained neural network models with Gated Recur-
rent Units (GRU) and Long Short Term Memory (LSTM) layers. The goal,
was to test these models in scenarios where a measurements from one or
more sensors could be missing. Therefore, the HAR models had to be robust
to missing information and predict the human activities in such situations.

We proposed and tested two neural network approaches for HAR, one us-
ing LSTM layers and the other with GRU layers and compared them. The em-
pirical results showed that models with GRU layers performed better when
used in HAR. We also compared our GRU models with previous work where
Random Forest (RF) models trained specially for each combination of sensor
measurements. Also in this case, the empirical results showed that our GRU
model was competitive in detecting the human activities against the several
specific models of RF.

Based on these experiments, we also concluded that some sensors were
more relevant for the detection of the activities studied here. In the case of
having two sensors only, the ankle and wrist; or wrist and chest sensors were
good at recognizing the activities. This is because most of the activities in-
volved the use of the upper part (arms) or lower part of the body (legs).
Therefore, leading to more variation in measurements recorded by these sen-
sors. Also, the wrist or chest sensor is ideal to use for HAR, in the scenario
of having one sensor only. However, the chest sensor is better to use, when
there is less involvement of the hands or legs in the activities performed.

In terms of EE, we used 4 different neural network models for estimat-
ing the EE based on different sources of data. Namely, flat, equalSegments,
SVM_equalSegments and SVM_flat. The empirical results showed that all the
models estimated the EE with similar performance. These models did not
perform so well when estimating the EE for low intensity activities such as
the different types sitting (sittingChair, sittingSofa, sittingCouch), lying down
(lyingDownlLeft, lyingDownRight) and household activities (dishwashing, stak-
ingShelves, vacuumCleaning). However, they performed better when estimat-
ing the EE for high intensity activities such as the different types of walking
(walkingSlow, walkingNormal, walkingFast) and cycling activities.
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As future work we could investigate the selection of optimal time win-
dow that are used for building the sequences for training the machine learn-
ing models. Also, further investigation can be done in the tuning of hyper-
parameters of the models to improve their performance.
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A.1 Confusion matrices

Wrist and chest confusion matrix
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FIGURE A.1: Confusion matrix of the predictions from all mod-
els having wrist and chest sensor measurements.
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Ankle and chest confusion matrix
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Chest confusion matrix
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FIGURE A.3: Confusion matrix of the predictions from all mod-
els having chest sensor measurements only.
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