
Quantum-enhanced Supervised Learning with

Variational Quantum Circuits

Sevak Mardirosian

Leiden University & IBM Netherlands

Leiden Institute of Advanced Computer Science

First Supervisor: Vedran Dunjko
Second Supervisor: Alfons Laarman

Company Supervisors: Cor van der Struijf, Zoltán Szlávik & Benjamin
Timmermans

Master’s Thesis in Computer Science

July 20, 2019

IBM Nederland B.V. authorizes that this thesis will be made available for inspection

by placement in libraries. For publication, for the whole or / and part of this thesis,

prior approval needs to be granted by IBM Nederland B.V. which may be only withheld

within 90 days and if confidential information is published. During this period the thesis

may only be issued to an employee of the institution on which the author of this thesis is

currently following a course.

2

Abstract

Quantum machine learning (QML), the intersection of quantum computation

and classical machine learning, has become a matter of interest over the past

few years. Quantum computers, which exploit the laws of quantum theory

and utilize properties such as superpositions and entanglement, promise to

provide more efficient ways to solve complex computational problems and to

analyze big data. In this thesis, we study hybrid classical-quantum algorithms,

specifically using so-called variational quantum circuits for a supervised learn-

ing binary classification task. The purpose here is to show how near-term

quantum devices open up a new avenue to combine quantum computing with

classical machine learning methods, to achieve new quantum-enhanced classi-

fiers.

We study the approach of [1] where the input vector is encoded by a quantum

feature map, where the data is provided in the conventional way i.e, classically.

Afterwards a short-depth quantum circuit is applied to the feature state for

training and classification on practical datasets. In the original work, the

authors have studied the performance of such a quantum classifier system using

devices with 2 work qubits. In this work, we investigate the performance of

the system as more qubits are utilized. Using variational quantum circuit, our

model was able to classify MNIST dataset up to 90% in accuracy on testing

set using 3 qubit systems, which is better than for the case of 2 qubits. While

this is a promising result, our study also highlights a number of issues that

will have to be dealt with (e.g. training becomes very demanding), before

real-world quantum advantages can be exploited.

In memory of

Werner Koster

Contents

1 Introduction 1

1.1 Background & Motivation . 3

1.2 Research Question . 5

1.3 Overview . 6

2 Quantum Computing 7

2.1 Qubits . 7

2.2 Gates . 8

2.3 Circuits . 9

2.4 IBM Q Experience . 11

3 Classical Machine Learning 13

3.1 Supervised Learning . 13

3.2 Overfitting and underfitting . 14

3.3 Cross-Validation . 15

3.4 Support Vector Machine . 16

3.4.1 Kernel-based SVM . 18

3.5 Cost Function in Learning . 19

3.6 Dimensionality Reduction . 19

3.7 Optimization . 21

4 Learning with Quantum Circuits 22

4.1 Quantum Feature Mapping . 23

iii

CONTENTS

4.2 Variational Circuit . 25

4.2.1 Training . 26

4.2.2 Classification & Labeling . 27

4.3 Artificial Data . 30

5 Experiments & Results 31

5.1 Experimental Design . 31

5.1.1 Choice of Parameters . 32

5.2 Circuits Implemented . 32

5.2.1 Quantum Feature Mapping . 32

5.2.2 Variational Circuit . 34

5.2.3 Circuits Generalization . 35

5.3 Results - Artificial Data . 35

5.3.0.1 Number of qubits = 2, Depth = 4 35

5.3.0.2 Number of qubits = 3, Depth = 4 37

5.3.0.3 Preliminary Discussion - Artificial Data 39

5.4 Results - Practical Data . 39

5.4.1 Wine dataset . 41

5.4.1.1 2-qubits results . 41

5.4.1.2 3-qubits results . 41

5.4.2 Breast cancer dataset . 43

5.4.2.1 2-qubits results . 43

5.4.2.2 3-qubits results . 43

5.4.3 Digits dataset . 44

5.4.3.1 2-qubits results . 44

5.4.3.2 3-qubits results . 45

5.5 Discussion . 46

6 Conclusions 51

iv

Chapter 1

Introduction

Machine Learning (ML), a sub-discipline of artificial intelligence, has been an increas-

ingly important domain of computer science research for more than two decades. The

idea behind machine learning is to allow computers to learn from data and therefore help

us solve various problems without being explicitly programmed. Machine learning appli-

cation examples are such as stock market prediction [2; 3], weather forecasting [4] and

many others [5; 6].

From 2010 onwards, companies started deploying ML applications at a much higher rate

than in previous years. One of the well-known ML applications is Google’s Translate

engine, which was initially based on statistical machine translation methods. In 2016

Google re-wrote the engine to neural machine translation techniques that uses large arti-

ficial neural networks (ANN) to predict the likelihood of a sequence of words and sentences

[7] making it much easier for the engine to learn how to translate and to progress. However,

with the onset of big high-dimensional datasets [8], we have started encountering compu-

tational bottlenecks; modern datasets are becoming too large and too complex to handle

with conventional computers1 and methods. A boost in computing power may come from

new machines based on laws of quantum theory, which have been in development by sci-

entists over the last few decades. These machines are called quantum computers. Due to

their potential, quantum computing has been gaining traction not just in terms of being a

1In this thesis we will refer to machine learning algorithms which run on classical computers (laptop
desktop or mobile), as classical machine learning.

1

research topic, but also private and public funding sources [9], aiming to further develop

these computers. We will explore quantum computing in the subsequent chapters. One

main idea behind quantum computing is the promise of a significant increase in compu-

tational speed1 compared to classical computers. Quantum computers utilize properties

of quantum mechanics such as superposition and entanglement, which, intuitively, allows

quantum particles to perform a multitude of calculations at the same time. Note, this

image provides intuition, however, the real source of quantum computing power is more

complicated and not fully understood. This allows us to say that, for a given machine

learning task, quantum computers may offer ways to outperform classical computers. On

the other hand, machine learning methods have also become a go-to solution for hard

computational problems. It is therefore expected that both worlds, classical machine

learning and quantum computers will play a significant role in modern computing. The

intersection between classical machine learning and quantum information world is called

quantum machine learning2 [10]. In this thesis we investigate the potential of quantum

classifiers for binary classification in supervised learning. Our quantum classifier, adopted

from [1], performs in a similar vein as the Support Vector Machine, in that it finds an

(approximation of the) optimal cutting hyperplane. The new quantum classifiers intro-

duce new, previously unexplored parameters, such as the qubit number of the quantum

system. We will also utilize approaches such as Principle Component Analysis (PCA) to

reduce number of dimensions a datasets has and Cross-Validation techniques for a better

model(s) performance estimate. The main research question of this thesis is: how do

the new types of model parameters, such as the qubit number, influence the classifica-

tion performance. Understanding this will be an important step of identifying the best

applications of these novel quantum technologies.

1More on this in the subsequent chapter.
2In short, quantum machine learning summarises approaches in which both, the quantum information

world and the classical machine learning world are combined and used to solve a problem or explore a
new paradigm.

2

1.1 Background & Motivation

1.1 Background & Motivation

One general goal behind machine learning techniques is the idea of generalization, that is

the ability of a model to properly adapt, or be effective, to new previously unseen data,

stemming from the same distribution as the one used to train the model [11]. Machine

learning algorithms have been successful and effective across many applications, and often

outperform humans for example in board games [12] and image recognition [13]. How-

ever, in certain domains [8] the increase of the complexity and dimensionality of data,

makes it more difficult to truly reap the benefits of machine learning. The concept of

Quantum Machine Learning is gaining traction due to the expectation that such systems

could be the answer to complex, machine learning problems [14; 15]. In 2012, Physicist

John Preskill [16] first coined the term of quantum supremacy, capturing the idea that

quantum computers will soon able to execute tasks or solve problems that classical com-

puters cannot. In order to achieve this, quantum computing scientists need to provide

evidence or super-polynomial speedups over their best classic counterparts. There are

number of quantum algorithms that provide evidence: quantum algorithms providing sig-

nificant speed-ups over their best classic counterparts. for quantum supremacy including

Shor’s algorithm. In 1994 Peter Shor invented a quantum factorization algorithm which

provides a super-polynomial speedup over the best known classical algorithm [17]. The

same applies for Grover’s search algorithm by Lov Grover [18], which is a quantum search

algorithm that is capable of finding target elements in an unstructured database of N

elements using an average of O(
√
N) steps, that constitutes a quadratic speed up over

the best possible classical solution at O(N) steps. Moreover, researchers at different com-

panies have declared their intent to prove quantum supremacy, this includes Google [19]

and IBM [20]. The current objective of both companies is to increase number of qubits

needed for quantum supremacy.

While most of the big companies are eventually targeting full-scale quantum computers,

progress and breakthroughs have recently been made in the domain of small-scale devices.

The era that we are entering is sometimes called the noisy intermediate scale quantum

(NISQ) computing era [16]. Most of these devices have a limited number of qubits and

3

1.1 Background & Motivation

do not allow error correction. With these small-scale devices, we can test advantages of

quantum computing to not only give us new experiment-driven research topics, but also

to provide more tangible results of what quantum computers may bring, when applied to

problems which may be very difficult for classical computers. The focus has been to find

computational problem(s) that can solved by small-scale devices.

Recently the term quantum machine learning attracted a increasing amount of research.

For instance, Lloyd et. al [21], provided one of the first quantum machine learning al-

gorithms in supervised and unsupervised learning. The novel developments in quantum

machine learning were followed up by a monograph by Wittek [22] titled “Quantum Ma-

chine Learning—What quantum computing means to data mining”, where he reviews a

number of concepts from both worlds and summarises some of the early papers. From

2013 onwards, the number of research papers on the topic has dramatically grown, wit-

nessed by a collection of review papers on the topic [10; 15; 23; 24]. In the same period, a

new breed of hybrid classical-quantum algorithms started to emerge. Variational quantum

circuits (also referred to as parametrized quantum circuits) were introduced by Peruzzo

et al [25] as a member of hybrid quantum-classical techniques. Variational circuits are

unitary transformations - thus, processes that can be run on a quantum computer - which

depend on a set of tuneable parameters (θ). In other words, we have quantum devices

which have tuneable parameters that allow changes to the specifications of an otherwise

fixed computation. The key insight is that the circuit parameters can be adjusted until

the variational circuit produces the desired output.

Quantum machine learning has several approaches. One approach is concerned with su-

pervised learning, which will be the main focus of this thesis. In supervised learning one

has access to dataset with labels, which can be thought of as solutions to a problem. A

common example are pictures of cats and dogs, that are labeled as cats and dogs (the

problem is then: is a given picture a picture of a cat or of a dog?). In general supervised

learning, the learning algorithm learns from data which are independent and identically

distributed training example sets {(x1, y1), . . . , (xM , yM)}, where xi ∈ RN are the data

points, and yi ∈ {−1, 1} are binary labels specifying the class to which a data point be-

4

1.2 Research Question

longs. N represents number of features i.e., the dimensionality of the data vector and M

is the number of training instances. Here, the data in the training set is already classified

and the objective is to classify new - unseen - data. One famous example of supervised

learning algorithms is the support vector machine algorithm, where the separation of data

points is achieved by using a hyperplane separator. Classical computers can find such an

optimal classifier, that is, finding the maximum margin separating hyperplane in time

O(log(ε−1)(poly(N,M))) [23]. Thus, computational limitation arises when the dimension

become very high. With a quantum computer this task can become more efficient, mainly

because quantum computers have the ability to perform certain computations much faster.

In [23] the authors have proven that a variant of the quantum support vector machine

can be implemented with O(log(NM)) run-time on both training and classification, when

the data is given in a quantum form. However when the data is provided using classical

computers, then the methods of [23] cannot be applied. In [1], IBM researchers proposed

a family of feature maps for classical data encoding and an SVM type classifier that pro-

cesses the data provided classically. The classifier we are going to focus on in this thesis

report is the quantum variational classifier, which operates using a variational quantum

circuit to classify a training set in direct analogy to conventional SVMs. These methods

do not speed up conventional techniques, in the same way as [23], but may provide means

to use “quantum classifiers” which have different generalization performance than possible

for a classical computer.

In this thesis we will explore the quantum variational classifier in the context of supervised

learning.

1.2 Research Question

Our goal in this thesis is to explore the use of variational circuits as classifiers, to study

their performance on real datasets, and to see how new quantum model parameters influ-

ence the supervised learning performance. In other words the specific research question

5

1.3 Overview

of this thesis is:

How does using a larger (more qubit) shallow quantum circuit(s) improve

the classification performance on real datasets?

As increasing the qubit number increases the optimization space, we will also explore the

subsidiary question: How does the number of qubits used in the quantum classifier affect

the required number of optimization (training) steps?

1.3 Overview

This thesis report is structured in five parts. In Chapter 2, we briefly discuss the fun-

damental concepts of quantum computing. In Chapter 3, we introduce supervised learn-

ing, classification, and learning models in general. In Chapter 4, we introduce concepts

adopted from [1] including quantum feature mapping for encoding classical information

into quantum state and variational circuits for classification purposes. In Chapter 5, we

present our results and experiments and provide a discussion of our findings. Finally, we

conclude the thesis in Chapter 6.

6

Chapter 2

Quantum Computing

In this section we briefly introduce quantum computing in contrast to classical computers.

In Section 2.1 we discuss the unit of information in quantum computers. In Section

2.2 and 2.3 we discuss quantum gates and quantum circuits, respectively. Finally, we

briefly introduce IBM’s quantum experience platform, which we use to program quantum

computations.

2.1 Qubits

Classical computers, which are made of transistors, function by manipulating bits which

are pieces of data. The unit of information is a bit and the state (or value) of a classic

bit is described by the values 0 and 1. In the quantum world, the quantum computation

is based on an analogous concept, referred to as quantum bit or qubit, which can be in

not only the discrete quantum states |0〉 and |1〉, but also in a superposition the two states.

In quantum computing, the state of a qubit is a unit vector in a two-dimensional complex

vector space. Consider a two dimensional quantum system, specified by the so-called

computational basis states |0〉 and |1〉. These basis states are numerically represented

with the column vectors

[
1

0

]
and

[
0

1

]
, respectively. This forms an orthonormal basis for

the qubit vector space (known as the Hilbert space).

7

2.2 Gates

The main difference between classical bits and quantum bits is that quantum bits can be

in a different states other than |0〉 or |1〉. A qubit can be in both states simultaneously

(a superposition of two states), for example

|ψ〉 = α |0〉+ β |1〉 (2.1)

When a qubit is measured in the computational basis, the result will yield either a state

|0〉 with a probability equal to |α|2 or a state |1〉 with a probability equal to |β|2. α and

β are called probability amplitudes such that |α|2 + |β|2 = 1.

More generally, for a register of n qubits, each of which can be in any of the two basis

states, the general quantum state can be in any superposition (linear combination) of

the 2n possible bit configurations, so in the state |ψn〉 =
∑

b1,...bn
αb1,...bn |b1, . . . bn〉, where

bj ∈ {0, 1}, with the normalization constraint
∑

b1,...bn
|αb1,...bn|2 = 1. The numerical

representative of this state is the exponentially long vector of the quantum amplitudes

αb1,...bn . The exponential size of this vector is one of the key bottlenecks in the classical

simulation of quantum computations. Given such a state, the probability of measuring

(observing) any of the bit-configuration (b1, . . . bn) is given by P (b1, . . . bn) = |αb1,...bn|2.

2.2 Gates

To manipulate a register of quantum bits, and thereby its quantum state, we use quantum

gates. There are a number of gates for both single-qubit and multi-qubit gate systems.

One commonly used quantum gate operation is the Hadamard gate H. The Hadamard

gate acts on a single-qubit and it is represented as:

H =
1√
2

[
1 1

1 −1

]
(2.2)

By Applying H gate to |0〉 we change the state of the qubit to 1√
2
(|0〉 + |1〉). Measuring

it in computational basis yields 0 with probability 1
2

and 1 with probability 1
2
. Below, we

8

2.3 Circuits

have an example of such an operation.

H

[
1

0

]
=

1√
2

[
1

1

]
(2.3)

Which is the state
|0〉+ |1〉√

2
. (2.4)

There are other gate operations such as X-gate, phaseflip gate Z operation and CNOT

operation. The latter is a multi-qubit gate operation. Below we give the unitary matrix

representation of CNOT: 
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


In general, single qubit gates can also be parametrized by real parameters. For instance

the Z(φ) gate is given by

Z(φ) = diag(1, exp(iφ))

where diag(a, b) represents a diagonal matrix with diagonal elements a, b, and the overall

matrix represents a single qubit rotation around the Z basis, by the angle φ.

2.3 Circuits

A quantum circuit is a collection of gates that are applied on a register of n quantum bits.

9

2.3 Circuits

Figure 2.1: A simple quantum circuit

In Fig. 2.1 we have a quantum circuit diagram. Each line depicts a qubit. The initial

value of a qubit is usually |0〉, but this is not always true. In Fig. 2.1 we have a circuit

with two qubits and two gates. The first gate applied on the first qubit is an H gate. By

applying H gate we create a quantum superposition in the illustrated case 1√
2
(|0〉+ |1〉).

This is followed by a CNOT gate we mentioned earlier. A CNOT is applied on both the

first and second line making the first qubit a control qubit and the second a taget qubit.

CNOT gate can be used to create an entangled state. An example we have in Fig. 2.1.

The circuit we have here creates an entangled state for each state of the computational

basis |00〉, |01〉, |10〉 and |11〉 which we input to the circuit. We will illustrate the effect

of this circuit shortly in more detail.

In general, quantum mechanics allows all unitary operations, which are in general speci-

fied by 2n × 2n complex unitary matrices. Recall a rectangular matrix U is unitary if its

conjugate transpose U † is its inverse, so UU† = U †U = I. In quantum computing, we

utilize quantum circuits to construct important subsets of all possible unitary operations,

much like boolean logic gates (AND, NOT) are used to construct arbitrary boolean func-

tions in classical computing. It can be shown that single qubit Z-rotations, Hadamards

and CNOT gates we introduced suffice to generate all unitary transformations, much like

AND, NOT and fan-outs suffice for all classical boolean functions [26]. It is important to

note that applying even local single qubit gates on a n-qubit quantum system can require

the update of all of the exponentially many amplitudes specifying the final quantum state.

This exponential cost of representation is one of the reasons simulating quantum com-

putation may take exponential time and space in the number of qubits of our quantum

computer. Of particular interest to this thesis are so-called short-depth quantum circuits,

10

2.4 IBM Q Experience

that is, quantum circuits which are of constant depth. They correspond to the type of

computations we may expect to be achievable by real-world quantum computers in the

near-term.

Another essential operation in quantum computing is measurement. A qubit can be in

different states, but when measured the quantum bit in state |ψ〉 collapses and is now

basically a classical bit with a state of either 0 or 1. In other words, measurement

destroys the information about the superposition of a quantum state - that is, the values

of α and β - of a quantum bit. However, critically, as explained earlier, the values of the

amplitudes affect the probabilities of individual measurement outcomes. Circuit symbol

for measurement represented in Fig. 2.2.

Figure 2.2: Measurement circuit symbol representation

Although quantum mechanics allows quantum measurements relative to any basis, we will

focus only on the so called Z-basis measurements which “project” a quantum register of

qubits to one bit string configuration, with probability given by the amplitude-squared of

the bit string configuration in the quantum state, as explained earlier.

2.4 IBM Q Experience

IBM researchers developed an online platform called IBM Q Experience. Here, one can

program and experiment with a real quantum chip. The interface is easy to use and quite

self-explanatory. To start, one must create a circuit. Afterwards, one can start adding

gates by dragging it to the circuit, as shown in Fig. 2.3.

11

2.4 IBM Q Experience

Figure 2.3: IBM quantum composer

Here, we have rebuilt our representation in Fig. 2.1, which consists of 2-qubits and both

are initialized to |0〉. We apply H gate on the first qubit, which creates a uniform su-

perposition |0〉+|1〉√
2

. Next, we apply the CNOT operation such that the second qubit is

conditionally flipped, dependent on the state of first qubit. If the state of the first qubit

is |0〉, then no action would occur on the second qubit and result is just the state |0〉 |0〉.
However, if the state of the first qubit is |1〉, then a NOT would be applied to the second

qubit and the register would be in the state |1〉 |1〉. By the superposition principle, then

if we prepare the first qubit in the state 1√
2
(|0〉 + |1〉), the output is the entangled state

1√
2
(|0〉 |0〉+ |1〉 |1〉).

Furthermore, IBM researchers developed an open-source library called Qiskit (quantum

information software kit)[27] written in Python scripting language, which offers the pos-

sibility to either use local quantum simulators or REST API1 to deploy jobs on a real

quantum chip developed by IBM. Qiskit consists of different components2. Every compo-

nent has its own set of tools one can use for different purposes.

1https://en.wikipedia.org/wiki/Representational state transfer
2More about, please follow the link https://qiskit.org/

12

Chapter 3

Classical Machine Learning

Machine learning has become an important field in computer science and also in our daily

lives. Nowadays, many of the devices we interact on a daily basis have a learning algorithm

behind it. Research in this field is growing incredibly fast and lots of applications are be-

ing developed and deployed almost on a daily basis. In this section we will talk about a

sub-field of machine learning and that is Supervised Learning. Given the amount of top-

ics this category has, we will focus only on a small subset of topics relevant for our project.

In the subsequent sections we will explain how supervised learning works in general

and then move on to models and specifically the support vector machine. Further, we will

talk about optimizers and briefly talk about high dimensionality techniques and reduction

of this to fit number of qubits we have1.

3.1 Supervised Learning

One of the tasks in machine learning is supervised learning. In supervised learning the

objective is to learn from labelled training data to make future predictions on unseen

data.

This mode of learning is called supervised because correctly labeled examples are pro-

1This is described in Section 3.6

13

3.2 Overfitting and underfitting

vided to the learning model. Here, the algorithm receives a set inputs along with known

outputs (we will refer to input data as data-points and data-vectors, and to the labels

as outputs, interchangeably), which then tries to predict a label based on features that

the learning algorithm distilled through the training process. One example of supervised

learning is of e-mail spam filtering, where we train a model on a labeled dataset - emails

that are marked as spam or not-spam - to predict if a new incoming email is spam or

not. This is a typical classification task, where a supervised learning algorithm predicts a

discrete class labels i.e., a category the data belongs to. Classification with two labels is

called binary classification, and in this thesis we will be exclusively dealing with this case.

There are number of algorithms that can be used to solve classification problems such as

Neural networks (NN), K-Nearest Neighbor Classifier (KNN), Decision Tree, Naive Bayes,

Logistic Regression and Support Vector Machine (SVM) [28] 1, which will be the focus

this thesis.

3.2 Overfitting and underfitting

Overfitting and underfitting are two common problems in machine learning in general.

Overfitting refers to the settings where the learning model performs (very) well on the

training set, but fails to generalize this performance to unseen (future) data. It often

arises in noisy scenarios when the learning model is complex relative to the true na-

ture of the noise-free training data. In this case the model can learn (or specialize to) the

noise, rather than the data features themselves, yielding poor generalization performance.

Underfitting, the opposite of overfitting, occurs when the model is either too simple

(performs poorly) for the defined problem or unable to draw patterns or learn from the

data. One possible solution is to select a more powerful model i.e., a model with more

parameters. In Fig. 3.1 the problem of overfitting and underfitting illustrated using a

more complex, nonlinear decision boundary.

1(explained in Section 3.4).

14

3.3 Cross-Validation

Figure 3.1: Overfitting & Underfitting in machine learning models [29]

It is important to avoid both problems. Often the only way in practice that allows us

to verify whether the learning model generalizes well to new unseen data is to test it.

For this, a technique such cross-validation is recommended as it is good way to test the

generalization performance of the model.

3.3 Cross-Validation

Generalization is one of the key steps in correctly using a machine learning model that

invokes the estimates of the performance of the model on unseen data. For example, if we

fit1 a model on training data and use the same data to test our model, the performance

will either suffer from underfitting or overfitting. Note that such testing cannot be done

on the training data itself.

To obtain reliable estimates on how well a model will do on a class of data, cross-validation

technique and specifically k-fold cross-validation is used. k-folds cross-validation splits

the training dataset into k subsets, called k-folds, where, where k-1 folds are used for the

model training and one fold is used for testing. This results in k model generalization

performance estimates. We then calculate the average performance of each model, which

is based on the independent folds, this to obtain model performance that is less sensitive

than a single performance estimate on the entire training set. Figure 3.2 summarizes the

1The terms “fit”, “train” and “learn” a model are often used interchangeably.)

15

3.4 Support Vector Machine

concept of k-fold cross-validation where k = 10.

Figure 3.2: k-fold cross-validation - figure from [30]

In Figure 3.2, the training set is divided into 10-folds. Nine folds are used for training

and 1-fold is used for testing and model evaluation. The estimated performances Ei, is

used to calculate the estimated average performance E of the model.

Note that the standard values for k-fold cross-validation are between 5 and 10. This

number of course depends on how large the dataset is and the number of instances it has.

For small sets 10-folds is recommended [31].

3.4 Support Vector Machine

Support Vector Machine (SVM) [28], is a supervised machine learning classification al-

gorithm that constructs a separating hyperplane for classification. SVMs are typically

used for binary classification, and we will often refer to two binary labels in {0, 1} in this

section. The objective behind SVM is to maximize the margin. Margin is defined to be

the distance between the separating hyperplane and the training samples (of both 0 and

1 instances) that are closest to this hyperplane.

16

3.4 Support Vector Machine

Figure 3.3: A hyperplane for separating 2-dimensional data - figure from [32]

Having decision boundaries with large margins yields a low generalization error - due

to poor training performance, whereas decision boundaries with small margins tend to

be more prone to overfitting. Our goal is to find the best separating hyperplane with

maximum margin. Hyperplanes are in general defined with:

~wT~x+ b = 0 (3.1)

where b is the off-set, ~w is the normal vector, ~x, and ~x the data vector so:

~w =


w1

w2

...

wn

 , ~x =


x1

x2

...

xn

 (3.2)

The SVM classifier is then defined with

yi = f(x) = sgn(~wTxi + b) (3.3)

The goal of training an SVM is to find the parameters w and b which specify the maximal

margin hyperplane, see [28; 32; 33] for more details on how this can be done.

17

3.4 Support Vector Machine

3.4.1 Kernel-based SVM

Often, the training data will not be linearly separable. Not being linearly separable

simply means that no hyperplane can correctly separate samples to classes. In SVM this

problem is solved by applying a non-linear transformation to the input data, which maps

the data to a higher dimensional so-called feature space1. Representing data in a higher-

dimensional space φ(x), where φ is a suitably chosen non-linear function, makes it more

likely that the mapped data points will be linearly separable in the feature space, see Fig.

3.4 for a simple example.

Figure 3.4: Data points of two classes which cannot be separated by a hyperplane (left),
However, if we project non-linear data points into higher dimension (3 dim, in this case),
then we can find a hyperplane in the feature space (right) - figure from [34]

The idea to use non-linear combinations of the original features to generate easily sep-

arable representations is central to so-called kernel methods such as SVMs. Also, the

key point behind kernels is that to actually find the optimal classifiers, i.e., to train the

model, we only need to be able to compute dot product of the mapped points, defined

with K(xi, xj) = φ(xi) · φ(xj). The function K, is then called the kernel function. So, as

long as the kernel function can be computed without explicitly mapping xi 7→ φ(xi), we

can avoid having to deal with high-dimensional representation. Thus, perhaps the most

interesting property of kernel functions in SVMs is that there is no need to explicitly

compute the feature maps, as long as the kernel functions can be computed for all pairs

of data points. This can lead to significant training speed-ups, and in fact, allows us to

1There are other methods which employ soft-margins, and allow for error in classification, but we will
not be discussing those here.

18

3.5 Cost Function in Learning

use feature maps with formally have infinitely-dimensional feature spaces such as those

reached by the so-called radial basis functions.

3.5 Cost Function in Learning

A cost function (also called a loss function), provides a distinctive measure of the perfor-

mance of our model on a given data point. Simply stated, the loss function is a function

that measures the distance from the model’s estimated value (output or label) to the

real expected value. In supervised learning, the value of the cost function on a point is

referred to as loss, and it measures how far the model predictions are from the target

labels. A third closely related term is the accuracy of the model for on both the training

and testing, which is essentially the averaged loss over the entire dataset. We will discuss

this in more detail shortly. In the majority of machine learning techniques what we are

trying to do is to minimize the cost function for better results. This shows how right or

wrong the model is when predicting an outcome, which depends on the learning stage.

After training process, we evaluate a model on a separate set of test data with respect to

the same cost function.

In this work we will adopt the cost function defined in [1], which is essentially the averaged

number of missclassifications, and explained in Section 4.2.1. Other possibilities include

the cross entropy [35], which is particularly well suited when the output is a sample

according to some probability distribution.

3.6 Dimensionality Reduction

The datasets used for machine learning and statistics are growing in size, becoming high

in dimension i.e., high in number of features, and are usually noisy. High dimensionality

usually causes problems which is known as the curse of dimensionality [36]. The curse

of dimensionality is referring to a set of phenomena that occurs when dataset is high-

dimensional. This has unfortunate consequences on the behavior and performances of

learning algorithms. One problem is overfitting the dataset - the model has a low power

19

3.6 Dimensionality Reduction

of generalization - and also, performance degradation of the model.

One of the key aspects of the curse of dimensionality is the fact that the search space

grows exponentially with the number of dimensions. That is, to characterize even a low-

dimensional manifold (which is embedded in a high dimensional space), the number of

points needed to describe it scales exponentially with the embedding space, even if the

manifold dimension is low [37].

A good method to resolve this problem is to reduce number of dimensions, but the down-

side of this method is the potential loss of valuable information. One such method is

Principal Component Analysis (PCA). PCA reduces the number dimensions of the

data, by linearly transforming the features to uncorrelated weightings of the original fea-

tures (feature components). This is done in a manner which attempts to maintain the

full variability of the data, so still allowing for the identification of the relevant patterns

[38; 39].

Figure 3.5: PCA finds the maximum amount of variance in in one-dimensional directions
[38]. Keeping the data variance ensures that the quintessential patterns in the data are
preserved even though the dimensionality is (dramatically) reduced.

PCA uses methods like singular value decomposition to find a linear transformation to a

new set of coordinate axes (a new basis of the vector space), such that the variance along

each of the new axes is maximised (see Fig 3.5). For our purpose, we used PCA as a

pre-processing step to reduce number features a dataset has to match number of qubits

our circuit has.

20

3.7 Optimization

3.7 Optimization

Optimization methods are one of the fundamental techniques used in machine learning

algorithms to find the best parameters for a given model. Optimization problems consists

of an objective that needs to be either maximized or minimized and parameters that can

be tuned.

In this thesis we will be using a particular class of optimizers, motivated by the nature

of quantum computers. As we discussed earlier, quantum computers are fragile and more

more error-prone than their classical counterparts. By performing quantum computa-

tions quantum computers undergo so-called quantum decoherence, a phenomenon where

the environment perturbs the quantum state, leading to error, or noise, as it is more

generally referred to. When quantum decoherence occurs, qubits lose information to the

environment over time and because of this it destroys the results of the calculation hence

causing the qubit to collapse into a classical state [40].

In our work, the classifier we train will be a quantum computation, so itself is prone

to decoherence and resulting noise and errors.

One of the optimizers recommended for noisy experimental settings is simultaneous per-

turbation stochastic approximation (SPSA) [41]. SPSA is a global optimizer that is based

on stochastic gradient descent algorithm and minimizes the loss function by following the

gradient method. In short, the objective of stochastic gradient descent (SGD) is to iterate

a weight update based on the gradient of the loss function. SPSA comes with a number

of features and methods that are designed to find the global minima. In Section 2.4 we

briefly discussed Qiskit. One of the many features Qiskit offers is optimization. By sim-

ply importing optimization modules, one is able to use many of the already implemented

optimizers.

21

Chapter 4

Learning with Quantum Circuits

In the previous section we discussed classification in machine learning and how to use

linear and non-linear SVM methods to solve certain problems. However, limitation of

this method starts when the feature space becomes large, and kernel functions become

hard to estimate.

In this thesis we focus on one of the two quantum variational classifiers developed in [1],

and which builds on [42; 43]. Here, a variational classifier is used to generate a separating

hyperplane in the quantum feature space, which may be high-dimensional and difficult to

work with on a classical computer, yet tractable for a quantum machine.

In this chapter we present the techniques proposed in [1]. Specifically, encoding classical

information into a quantum state, called quantum input state preparation. Input state

preparation could be a big challenge for achieving a quantum advantage with existing

quantum machine learning algorithms. Then, we discuss how short-depth quantum cir-

cuits can be used for training and classification. In the end we will discuss how artificial

data for initial testing of the resulting quantum classifier is generated.

22

4.1 Quantum Feature Mapping

4.1 Quantum Feature Mapping

The key idea of quantum SVM are kernels which distinguish it from classical SVM kernels

(such as Gaussian or Polynomial Kernels). Quantum feature mapping function maps

classical data points, i.e. input ~x, non-linearly to a quantum state, i.e. realizes the map:

φ : ~x 7→ |φ(~x)〉 〈φ(~x)| . (4.1)

The authors of [1] undertook a balancing act: the construction of feature maps whose

mathematical properties are on one hand complex enough so that data could be easily

separable after their mapping, and yet simple enough to be implementable on a real

quantum processor. One of the feature maps we adopted in our implementation is defined

via the unitary:

UΦ(x) = exp

i ∑
S⊆[1,n]

φS(~x)
∏
i∈S

Zi

 (4.2)

Where S ∈ {0, 1, ..., n− 1, (0, 1), (0, 2), ..., (n− 2, n− 1)}, φi(~x) = xi, φ(i,j)(~x) = (π − xi) ∗
(π − xj) [44]. Note, the mapping φ from 4.1 is a classical to quantum map, whereas each

of the φi maps simply transform the individual coordinates. This notation was used in

[1]. Uφ(~x) is a feature map function defined on n-qubits, whose dimension is exponential

in the data dimension and qubit number, generated by the unitary:

Uφ(~x) = Uφ(~x)H
⊗nUφ(~x)H

⊗n (4.3)

which maps classical data input ~x into a quantum state. More specifically, to realize the

mapping φ from Eq. 4.2, we apply Uφ(~x) to a fixed quantum state. So the data points

are embedded in the unitary Uφ(~x) and not the input state. We will also refer to the

unitary Uφ(~x) as “the feature map”. Note that the unitary Uφ(~x) is built by the repetition

of the block Uφ(x)H
n, and in 4.3 this block is repeated d=2 times. However, to realize

more complicated, deeper, feature maps, this quantity can be increased Note that in [1],

the authors used d=2 (d is the depth of the circuit Uφ(x)H
⊗nUφ(x)H

⊗n in the circuit)

for their implementation. For our experiments in Section 5, we used the same value for

23

4.1 Quantum Feature Mapping

the feature mapping circuit. So the parameters (d, φ(x)) are tunable for classification

algorithm explained in Section 4.2.

Figure 4.1: Feature mapping circuit - Figure from [1]

The circuit in fig 4.1 for feature mapping consists of two steps, repeated two times (d = 2).

First, Hadamard gates are applied onto all qubits, then a diagonal gate, which depends

on the data.

One of the ideas behind these maps is to need to encode the data in a way classical

algorithm(s) will have trouble simulating, thereby having the opportunity to obtain an

advantage over classical approaches. The map Uφ(x), for the two qubit case, has a simple

form:

Figure 4.2: Uφ details - Image from [1]

where the φ gate are just rotations following this rule: φi(~x) = xi and φi,j(x) = (π −
xi)(π − xj). The gates in Fig.4.2 are defined and briefly explained in Section 5.2.2.

Finally, the classical data input ~x is loaded by applying the unitary function to the initial

24

4.2 Variational Circuit

quantum state |0〉⊗n:

|φ(~x)〉 = Uφ(~x) |0〉⊗n (4.4)

Depending on the connectivity graph of the quantum device quantum feature mapping

has about n(n−1)
2

(n denotes number of qubits) further parameters that can be used to

encode more data. After feature mapping, short-depth quantum circuit is applied to the

feature state. The output is then trained through multiple layers of parametric gates, by

adjusting the parameters (weights).

4.2 Variational Circuit

The overall quantum classifier will consist of two concatenated circuits. The first is the

“feature map” circuit, we just discussed. The other, combined with the measurement,

effectuates a hyperplane classification in the feature spaces. The parameter of this second

circuit are the training parameters of the model we consider. This second circuit is a

variational circuit, also referred to as short-depth quantum circuit W (~θ). A variational

circuit is a hybrid quantum-classical circuit [25] which consists of parameterized gates that

depends on set of parameters θ as well as an learning algorithm and objective function.

In our case, we will train the circuit to correctly label the data-points.

If we use some circuit parameters to feed inputs into the circuit and compute the results

(outputs), we can now see that a variational circuit has similar intuition as other super-

vised learning models. Variational circuit are used for various near-term applications,

such as optimization [45] and in context of machine learning, as explored in this thesis.

Note that the name variational reflects the variational approach to changing the param-

eters.

The authors of [1] designed a variational circuit that is composed of l layers is parame-

terized by ~θ ∈ R2n(l+1) that will be optimized during the training using the classification

error on the training set as feedback. Here, l denotes the depth of the variational circuit,

i.e. the number of repetitions of so-called entangler blocks (so blocks of two qubit gates

25

4.2 Variational Circuit

which can introduce entanglement), and single-qubit rotation layers, denoted as W (θ)

and defined as such:

W (θ) = U
(l)
loc(θl)Uent...U

(2)
loc (θ2)UentU

(1)
loc (θ1). (4.5)

This is presented in Fig. 4.3.

Figure 4.3: Variational circuit - Figure from [1]

As Fig.4.3 shows, each Uloc unitary consists of n single qubit unitaries R(θi) [denoted

only with the angle in the figure] acting on each qubit. These angles constitute the free

parameters. The number of controlled-phase gates is n+1 in each entrangler block. More

about this in Section 5.2.2.

The single qubit rotations correspond to Z-rotations and Y-rotations and the entangler

Uent block consists of controlled-Z gates. This to simplify number of parameters to be

handled by the classical optimizer. Practically, this means that we have 2n(l + 1) pa-

rameters to optimize (two per gate). Variational circuits have a good similarity to neural

networks, which has weights that we need to optimize, and were referred to as quantum

neural networks in the early days of quantum computing.

4.2.1 Training

The variational algorithm designed in [1] consists of two parts: a training stage and a

classification stage. For the training, a set of labeled points are given to perform training.

We first train the classifier by optimizing the set of parametrizing angles (~θ). As men-

tioned before, we utilized SPSA optimizer, which is based on stochastic gradient decent

26

4.2 Variational Circuit

algorithm, for optimization.

Figure 4.4: The process of variational circuit - Figure from [46]

More specifically, our overall objective is to find an optimal classifying circuit W (θ) that

separates the data sets with different labels. For the optimization we need to define a cost

function in order to minimize the probability of assigning the wrong label.

In this work we will use the empirical risk Remp(θ) is defined as a cost function, given by

the error probability Pr(m̃(~x)) 6= m(~x) of assigning the incorrect label averaged over the

samples in the training set T

Remp(θ) =
1

|T |
∑
~x∈T

Pr(m̃(~x 6= m(~x)). (4.6)

Where m̃(~x) is the new predicted label and m(~x) is a given output label. We deal with

probabilities, as we will explain in more detail later, our classification model is not deter-

ministic.

4.2.2 Classification & Labeling

Next, we describe how our quantum model assigns labels to data-points in more detail.

After constructing our variational circuit, we encoded data and now we would like to

extract information from it i.e., how we convert quantum information into classical one?

27

4.2 Variational Circuit

By measuring the circuit. To stabilize the stochastic effects of the measurements, the

circuit will actually be measured a number of times, as to estimate the probability of its

outcomes, which will then be used to assign the label.

In fact, we will be running the circuit which we describe next some R times (or shots;

in Qiskit literature, one sampling from the output distribution of a quantum circuit is

referred to a shot, and many shots are needed to estimate the probabilities), and this

value R will constitute yet another hyperparameter of the model.

Note that each time we take a shot (run the circuit), we are preparing the quantum

circuit from scratch.

Figure 4.5: Running the quantum circuit multiple times to estimate the expectation value
of some chosen observable - Figure from [47]

Specifically, for a two label classification y = {+1,−1}, a binary measurement charac-

terized by the projection operators {My}y=0,1 is applied to the state W (θ)Uφ~x |0〉n. For

a binary classification task, the results are measured in computational basis. The binary

measurement is obtained from the parity function f = Z1Z2. The results, which are

bit strings z ∈ {0, 1}n, assigned to a label based on a predetermined boolean function

f : {0, 1}n → {−1, 1}. In other words, the classifier is defined by:

• measuring the circuit outcome (which yields a bit string of length n)

• by computing the parity of the bit string, so a measurement consisting of

an even number of ’1’s is mapped to the first class, and a measurement outcome consisting

of an odd number of ’1’s is mapped to the second class.

28

4.2 Variational Circuit

Note that the classifier described here is probabilistic ,which it means we might get dif-

ferent outcomes on each run, with the same parameters. The probability of measuring

either label y ∈ {+1,−1} is given by:

py =
1

2
(1 + y 〈φ(~x)|W TfW (θ) |φ(~x)〉 (4.7)

Where the diagonal operator f is defined as such

f =
∑

z∈{0,1}n
f(z) |z〉 〈z| (4.8)

And f is a parity function (a XOR of all the bits), yielding -1 for odd, and 1 for even

parities as explained. By taking R shots (running the circuits many times) for a single

data-point r, we derive the empirical probabilities of assigning the first or second class.

For a given training data-point and the corresponding training class label, we calculate a

cost value which represents the probability of correct/false classification.

The following steps summarise the procedure of the quantum classifier described above.

1. We combine the two circuits: Variational and feature mapping circuit, we encode

data input x using the feature map function defined in Eq. 4.2.

2. Apply a θ-parametrized variational circuit to the feature state W (θ)Uφ~x |0〉n.

3. Measure the circuit R shots for a binary measurement My. Here, using a parity

function we assign a class label to the measurement outcome, which are given as

a bit strings. After running the same circuit many times, we derive the empirical

probabilities of assigning the first or second class.

4. Minimize the circuit error with the defined cost function using the SPSA optimizer.

5. Evaluate the overall performance of the training set and use this as the objective

function to train our classifier and update θ accordingly.

29

4.3 Artificial Data

4.3 Artificial Data

To check the implementations and evaluate the performance and feasibility of the quantum

classifier, the authors in [1] proposed a family of artificial data sets which can be used for

initial testing. Specifically, in [1] the model was tested only on artificial data sets. Here

we will describe how the artificial data sets are generated for the case n = 2, where n

denotes number of qubits.

After training, the data should be separated, using the above described feature map by a

hyperplane in the quantum state space. For our classifier, we are given a training set T and

a test set S of a subset Ω ⊂ Rd. Both are labelled by a map m : T ∪ S → {+1,−1}. The

labels for the training and testing are generated by choosing a parity function f = Z1Z2

and random unitary V ∈ SU(4). V is applied to the state φ(~x) and then expectation

value 〈φ(~x)|V TfV |φ(~x)〉 of the parity operator Z1Z2 is evaluated and is used to assign

a label to labelled data point. Afterwards, we map each value to -1 or +1 according to

function f : {0, 1}n → {−1, 1}. Sampling from the final state returns a value in [−1, 1] for

a given x with a constant threshold (separation gap - more on this in Section 5.3) value of

∆ = 0.3. We assign label +1 if 〈φ(~x)|V TfV |φ(~x)〉 ≥ ∆ and −1 when 〈φ(~x)|V TfV |φ(~x)〉
≤ ∆. To provide some intuition behind this dataset, note that if the variational circuit

of the quantum classifier is tuned as to approximate the unitary V , then by construction

that classifier will correctly label the points. The ∆ margin ensures that the stochastic

effects do not jeopardize the classification performance nor the training.

30

Chapter 5

Experiments & Results

In this chapter we provide information about our experimental setup followed by results

and analysis of the trade-off between different chosen parameters. Although the quantum

SVM is intended to be run on a real quantum computer, due to limited access, the entire

study was performed on simulators without any noise. Even in the noiseless case, the

simulation times were quite significant, highlighting the need for quantum computers, as

the model size increases.

5.1 Experimental Design

In our experiments, we first verified and experimented with our implementations on ar-

tificial data described in Section 4.3. Following this we performed experiments on more

standard data sets, specifically MNIST, Breastcancer and Wine [48].

The quantum models come with a number of hyperparmeters (described in the next

subsection), and we explored the performance of the models as a function of some of them.

We tracked empirical risk (training performance), test performance, the difference between

the two (generalization performance), and required training times. The key performance

category, generalization performance, was evaluated using k-fold cross-validation.

31

5.2 Circuits Implemented

5.1.1 Choice of Parameters

The hyperparameters we chose to tweak and experiment with are:

– Qubits (n) - Number of qubits a circuit has.

– Shots (s) - Number of times a circuit is run to achieve desired output.

– Epochs (e) - SPSA [49] optimizer takes a constant (fixed) maximum number of

iterations to perform. Note, also the choice of the optimization method is a hyper-

parameter.

– v-depth (l) - Depth of the variational circuit.

– f-depth (f) - Depth of the feature mapping circuit.

Aside from the parameter choice, to fit our data onto the dimensionality the quantum

model allows (in our case, the qubit number n) we used dimensionality reduction meth-

ods. Although there are a number of options here, we mostly used principal component

analysis, and only report on those results here.

5.2 Circuits Implemented

In this section we briefly explain the two circuits (feature mapping and variational) we

implemented using Qiskit [27]. The figures below are for a 2-qubit system, and depth is 2

as well. In later experiments we increased n (number of qubits) to 3 and l (depth of the

circuit) to 4.

5.2.1 Quantum Feature Mapping

In Section 4.1 we explained the working of quantum feature mapping. Here, we construct

our feature mapping circuit. The circuit we implemented is illustrated in Fig. 5.1. Recall

that in the quantum classifier, the input vector values are mapped into the parameters

32

5.2 Circuits Implemented

in the unitary. In the example Fig. 5.1 we have used the data points

(
x1 = 1.5

x2 = 0.3

)
, which

generated the angles as given in the figure1.

Figure 5.1: Feature Mapping Circuit

As mentioned in Section 4.1, H-gate is initially applied on all qubits. This allows us to

prepare an equal superposition of all bitstrings. This is followed by a controlled-u1 gate,

which is the controlled version of the u1 single qubit gate, and it is useful as it allows us

to apply a quantum phase and its defined with:

u1(φ) =

(
1 0

0 eiφ

)
,

Furthermore, a multi-qubit gate controlled-NOT is applied. Recall controlled-NOT gate

flips the target, when the qubit state is in |1〉. Controlled-NOT is defined as such:

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



The purpose of this circuit is to encode classical data into a quantum state. Thus, the

circuit in Fig. 5.1 maps classical input datapoint ~x to the quantum feature space whose

dimension is exponential in the number of qubits. As we explained in detail earlier, af-

terwards a short-depth quantum circuit (discussed in subsequent section) W (~θ) is applied

1Note: For illustration purposes we used u1 gate instead of rz gate. Both gates have the same effect.

33

5.2 Circuits Implemented

to the feature state.

5.2.2 Variational Circuit

We also talked about variational ciruits in Section 4.2 and what purpose it serves. Here,

we translate Eq. 4.5 into Python code using Qiskit [27]. The results are presented in Fig.

5.2.

Figure 5.2: Variational Circuit

In the variational circuit presented in Fig. 5.2 we also utilize the gate Ry(θ) which rotates

a qubit around the Y-axis by the angle θ, given with:

Ry(θ) =

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2).

)

In Fig 5.2 we also denote the controlled-Z gate by the symbol:

Figure 5.3: Controlled Z gate graphical representation

For completeness, we highlight that this gate (Cz) is represented with the following matrix:

34

5.3 Results - Artificial Data

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



5.2.3 Circuits Generalization

Both circuits (feature mapping and variational) were designed/constructed to fixed num-

ber of qubits and depth. In order experiment with both 2-qubits and 3-qubits system, we

need to generalize both circuits as such that it expands in dimensions based on number of

qubits. For this, we followed the suggestions of [1], and developed our code as such that

we first check the given f -depth of the circuit (in terms of the feature mapping circuit)

and then apply the necessary gates mentioned previously. The circuit will act on |0〉n as

initial state. The φ rule in this case is φi(x) = xi and φi,j(x) = (π − xi)(π − xj). For

the variational circuit, similar techniques were used to generalize the circuit. Note, we

use only two-point φ functions, where a single angle depends at most on two entries of

the input data vector. This can in principle be generalized. Finally, we again check the

v-depth and n-qubits to apply the necessary gates.

5.3 Results - Artificial Data

5.3.0.1 Number of qubits = 2, Depth = 4

As a warm up to our study, we tested the performance of the quantum classifier on

artificial datasets, explained in section 4.3. For all experiments here, we have fixed the

shot numbers and the v-depth, but have explored the performance relative to the number

of epochs (optimization steps), and total qubit numbers used.

Figure 5.4 tell us we almost have a near-perfect classification with a separation gap of

magnitude 0.3 between them (white areas). In total we have 20 points per label training.

The green data points, which are correctly classified, are on the green area and same

35

5.3 Results - Artificial Data

applies for the purple colored data points.

Figure 5.4: 20 data points separated by a magnitude of ∆=0.3 between them (white
areas).

In table 5.5 we have our results for 2-qubit operation only. Here, we see that we already

have a perfect classification of 100% using 200 epochs only. Increasing the epochs to

400 does not return the same results. In fact the results, in terms of classification on

training and testing, are slightly decreased. But again, setting the epochs to 600 yields

a fully classified data. Further investigation in terms of optimization steps simply does

not guarantee the improvement of the training accuracy (or the test accuracy). Note that

number of shots is a fixed number. In figures (5.5) we see the convergence of the cost

function defined in Eq. 4.6 after 200 and 400 iterations/epochs. Here, we can see that the

algorithm successfully learned the right hyperspace after 100-150 epochs and converged

(almost) all the data points in the dataset. We will discuss the possible reasons for this

instability shortly. Here, we are reproducing the results from the first method (quantum

variational classifier) mentioned in [1], with similar settings and hyperparameters. Our

36

5.3 Results - Artificial Data

re-constructed model yields the same results as in [1]. Note, the results for artificial data

is not cross-validated.

qubits v-depth epochs shots Acc (on training) Acc (on testing)
2 4 200 2000 100% 100%
2 4 400 2000 95% 90%
2 4 600 2000 100% 100%

Table 5.1: results of artificial data on 2-qubits

ACC training 95% ACC training 100%

Figure 5.5: Average cost value over all training data where n = 2. Reminder: Remp is the
empirical risk (cost function) defined in 4.6 to reduce the error on the training set.

5.3.0.2 Number of qubits = 3, Depth = 4

For 3-qubit system, another dimension z is added to the artificial data1. The φ rule in

this case is φi(x) = xi and φi,j,z(x) = (π − xi)(π − xj)(π − xz).
We start with 200 epochs which yields 92% on training and 88% on testing. Increasing the

optimization steps yields a good accuracy on both sets. However, as mentioned before,

increasing the optimization steps does not guarantee good results hence the optimization

steps we set to 800 which on the first run returned good results but on the second run

1Disclaimer: The codebase for artificial data was published by Qiskit team.

37

5.3 Results - Artificial Data

slightly decreased. In Figures 5.6 we can see how the cost function stabilizes the model,

on each run (shot).

qubits v-depth epochs shots Acc (on training) Acc (on testing)
3 4 200 2000 92% 88%
3 4 400 2000 92% 90%
3 4 800 2000 95% 90%
3 4 800 2000 91% 88%

Table 5.2: results of artificial data on 3-qubits

ACC training 92% ACC training 92%

ACC training 95%

Figure 5.6: Average cost value over all
training data where n = 3.

38

5.4 Results - Practical Data

5.3.0.3 Preliminary Discussion - Artificial Data

The results we obtain for n=2 and n=3 are consistent with the results reported in [1],

so we are confident in our implementation. In both cases we see that it is likely that

the optimization/training step is non-trivial. Already for n=2 the increase of the epochs

(training steps) does not guarantee the improvement of the training accuracy (or the test

accuracy). This effect is just more pronounced for n=3, where the search space is signif-

icantly larger. One aspect of the problem is that the optimizer may get stuck in a local

minimum. Note that although the feature space is 4 and 8 dimensional for n=2,3 qubits,

respectively, the search space of the optimizer is not exponential in the qubit number.

The number of parameters are 40 and 70, for n=2 and n=3 respectively, which although

are not scaling exponentially (like the feature space dimension), are still much larger than

the feature space dimension for small n. This in principle may cause some overfitting for

small n. Still it should not be the case that the optimizer gets stuck for this classification

method to be useful. We will discuss this again later on. It is more likely that the conver-

gence problems and instability come from the fact that not just the optimization method,

but also the classifier itself is stochastic. That means that the performance evaluation

may not be stable. We have confirmed this by running the 800 epoch training sequence

twice, only to obtain significantly different results.

This highlights further need to investigate training procedures to achieve stable perfor-

mance. However, due to the time limitations of this project, we leave these deeper studies

for future work, and move on to the analysis of real-world datasets.

5.4 Results - Practical Data

The new quantum models provide a number of possible hyperparameters whose study is

interesting. In this thesis we focus on perhaps the most fundamental parameter: number

of qubits required. This is practically very important as large quantum computers are

difficult to build. However, it also offers a conceptual challenge as we wanted to study

the classifier performance on the same set for differing n, yet, this directly changes the

39

5.4 Results - Practical Data

required dimension of the dataset. To this end we used PCA to to reduce the dimension-

ality of the dataset to match the dimensionality of the qubits we have. Consequently, the

entire study does not just study the capacities of differing n in isolation, but coupled to

a fixed dimensionality reduction technique. In practice, this is meaningful as the main

proposals on how quantum classifiers should be used is always coupled with dimension-

ality reduction methods, as the quantum classifiers are limited in dimensions they can

natively accept. Using PCA may lead to interesting effects, since for datasets where low

PCA dimensions (n=2) suffice, using n=3 may lead to over-fitting, as the third principal

component will not carry useful information. We will further discuss this in subsequent

sections.

The following datasets were used for the experiments: Wine, BreastCancer and MNIST

[48] which have 13, 30 and 64 dimensions, respectively. For all datasets we used 2 la-

bels only. Operatively, this means we trained and tested our methods on subsets of the

datasets. In terms of hyperparameters, we fixed de the depth of the variational circuit

(v-depth) to 4 and feature mapping depth (f-depth) to 2. For each dataset, we tested our

model on n=2 and n=3 qubits system. Number of shots (s) was fixed1. Furthermore,

for a better model performance estimation we used cross-validation discussed in 3.3. For

binary classification, the accuracy for evaluating classification models is measured. For-

mally, accuracy has the following definition:

Accuracy =
Number of correct predictions

Total number of predictions
(5.1)

1We tested various numbers starting from 200 to 1024 and in the end decided to use 2000. This, as
mentioned earlier, the overall process can suffer from stochastic instabilities, and setting to shot number
relatively high at least removed one source of stochastic noise. Also, we are adopting the same number
of shots (for training/classification) mentioned in [1]

40

5.4 Results - Practical Data

5.4.1 Wine dataset

Wine dataset [48] are related to red and white vinho verde wine samples, from the north

of Portugal. The wine dataset has 13 attributes in total i.e., the dimension is 13, 3 classes,

and number of instances are 178. One label has 80 instances and the other has 98.

5.4.1.1 2-qubits results

On 2-qubits, the results in table 5.3 are comparable. Note that the only change in hyper-

parameters here is number of epochs, which we increase this by 200 for every run of the

model. On this note, we started with 400 epochs that delivered us 77% accuracy on test

set and 94% accuracy on training. With 600 epochs we are getting better results on both

sets. However, increasing the epochs to 800 or 1000 does not seem to improve the results

(i.e, the learning stops).

qubits v-depth epochs shots Acc (on training) Acc (on testing)
2 4 400 2000 94% 77%
2 4 600 2000 96% 84%
2 4 800 2000 95% 80%
2 4 1000 2000 95% 83%

Table 5.3: results of Wine dataset on 2-qubits

5.4.1.2 3-qubits results

In table 5.4, we increase number of qubits1 to 3. Here, the results mostly suggest overfit-

ting. The results are over-fitted because the model is actually low dimensional, and PCA

delivers noise and this coupled with the fact that the model is actually quite powerful,

it makes us learn noise. We will discuss this later. We also noticed that the accuracy

on training did not yield higher results relative to n=2. This is indicative of the search

space being big, and things being difficult to optimize. Also, the features may become

complicated as there is a lot of effective noise in the third dimension.

1Note: Hilbert space grows rapidly with the size of a quantum system

41

5.4 Results - Practical Data

qubits v-depth epochs shots Acc (on training) Acc (on testing)
3 4 400 2000 89% 60%
3 4 600 2000 88% 55%
3 4 800 2000 91% 64%
3 4 1000 2000 91% 64%

Table 5.4: results of Wine dataset on 3-qubits

ACC training 89% ACC training 88%

ACC training 91% ACC training 91%

42

5.4 Results - Practical Data

5.4.2 Breast cancer dataset

UCI ML Breast Cancer1 Dataset [48] contains 30 features and 569 samples. It has 2 labels,

whether a cell mass is malignant or benign, and the goal of our classification system is to

predict this. We split the data 114 as the testing size, and 454 for training.

5.4.2.1 2-qubits results

In table 5.5 we see that the generalization error as measured by performance on the testing

set is quite low.. Again, starting with 400 epochs our classifier yields 97% accuracy on the

training set and 88% on the test set. Increasing number of epochs to 600 yields the same

accuracy on training and slightly improved accuracy on the test set. With 800 epochs, we

see that the accuracy on the test set is further improved to 91% and 99% on the training

set. In short, the results are suggestive of over-fitted, but the difference, in accuracy,

between the testing and training sets sets is not big.

qubits v-depth epochs shots Acc (on training) Acc (on testing)
2 4 400 2000 97% 88%
2 4 600 2000 97% 89%
2 4 800 2000 99% 91%

Table 5.5: results of breast cancer dataset on 2-qubits

5.4.2.2 3-qubits results

On 3-qubits, the generalization error is higher than when using a 2-qubit system, which is

indicative of overfitting. Here, the accuracy on training set is quite similar as on 2-qubits,

but on testing set the results are drastically lower. There is little improvement between

running the model on 400 epochs, which yields 71% accuracy on testing and 92% on

training, and 600 epochs, which 73% on testing and 93% on training. Unfortunately, due

to technical issues our run on 800 epochs was terminated before it was finished.

1Note: There are different sets of Breast Cancer. The one is we used is diagnostic, specifically made
for classification task(s).

43

5.4 Results - Practical Data

qubits v-depth epochs shots Acc (on training) Acc (on testing)
3 4 400 2000 92% 71%
3 4 600 2000 93% 73%

Table 5.6: results of Cancer dataset on 3-qubits

ACC training 92% ACC training 93%

5.4.3 Digits dataset

MNIST dataset which has 10 classes, 1797 samples of handwritten grayscale digit, which

are 8x8 images encoded as an unsigned integer (0-255). Finally, it has 64 dimensions. For

this dataset we only considered 2 labels which are the subset of digits “0” and “1”. In

the end we split the data 1437 as training set and 360 for testing.

5.4.3.1 2-qubits results

The results on MNIST dataset on 2-qubits is surprisingly good. Our tests on 400 epochs

yields 89% accuracy on the testing set and 96% on training. However, on 600 and 800

epochs the models accuracy on both sets are slightly decreased.

44

5.4 Results - Practical Data

qubits v-depth epochs shots Acc (on training) Acc (on testing)
2 4 400 2000 96% 89%
2 4 600 2000 96% 84%
2 4 800 2000 91% 87%

Table 5.7: results of MNIST dataset on 2-qubits

5.4.3.2 3-qubits results

In the case of this third dataset, increasing the qubit number from n=2 to n=3 actually

significantly improved performance. Running the model on 400 epochs yields a good 96%

accuracy on the training and 88% on the testing set. Increasing epochs to 600 delivers

better results, which are 97% on the training set and 90% on the testing set. In short, the

results on both 2 or 3 qubits are suggestive of a slight overfitting, but overall we consider

this a good fit.

qubits v-depth epochs shots Acc (on training) Acc (on testing)
3 4 400 2000 96% 88%
3 4 600 2000 97% 90%
3 4 800 2000 97% 89%

Table 5.8: results of MNIST dataset on 3-qubits

ACC training 96% ACC training 97%

45

5.5 Discussion

5.5 Discussion

In this section we discuss how the experimental results elucidate the central questions of

this thesis. As a warm-up, we first discuss our subsidiary question.

Subsidiary: How does number of qubits affect the required number of optimization

steps?

To monitor how the increase in the number of optimization steps affects the training and

testing performance of the classifier, we trained our model many times and for each run

we gradually increased number of optimization steps.

On 2-qubits system, and as mentioned before, with 200 epochs we already have 100%

correctly classified artificial dataset. Here, our results are similar to the results mentioned

in [1]. However, we see that the training may be unstable, as increasing the training times

does not monotonically lead to better performance. Thus a study of how much training is

actually optimal (or whether other optimizers are needed) is worth considering for follow-

up work. Second, a separate study to see how much stochastic effects play a part is also

of interest. This will be even more relevant when noisy and real QC implementations are

considered.

Since the feature space dimension grows exponentially with n, n=3 already has a signif-

icantly larger search space. We suspect a main training issue is the stochasticity of the

model, which makes training difficult. In most of our experiments, our classier is not

able to classify the data points perfectly regardless number of shots or optimization steps.

This can be caused either by having insufficient optimization steps (we cannot conclude

this based on the trends we see, as increasing of the epoch numbers did not necessarily

improve performance), or the issue may be other hyperparameters. Specifically, the depth

of the circuit l is certainly a limitation of the expressivity of the model, and as n grows,

l should actually grow exponentially to guarantee full expressivity for arbitrary datasets.

This is a consequence of the fact that the size of the unitary operations on n qubits is

exponential in n. Thus for low-depth circuits, it remains to be further investigated which

datasets can be handled well. To study just the convergence properties, the artificial data

46

5.5 Discussion

sets need to be tailored to be handled by the low-depth circuit. For real-world datasets,

extensive experimentation is still warranted. This further motivates our main question:

is using larger n beneficial in general at all.

Main question: How does using a larger shallow quantum circuits improve the

classification performance on real datasets?

This question is chosen as our main question as it is possibly most interesting. In the do-

main of shallow circuits (which roughly match the types of quantum computers we expect

to have available in the near term), the “quantumness” of the system is not increased by

deeper circuits, but just by their size (qubit number n). Thus it is an obviously interesting

question how this hyperparameter influences the performance. However, as it turns out,

this question is quite non-trivial, as the size n is, at least in the approach proposed in [1]

which we adhered to, intertwined with the dimensionality of the data points the model

takes. Thus to compare the performance of this hyperparameter on the same dataset, we

must somehow manipulate the dimension(s). As mentioned before we used PCA to reduce

the d-dimensional dataset to match the number of n qubits we have. A consequence of

this is that we study not the pure effect of n on performance, but rather the performance

is coupled with the fact that we use PCA and will thus also be sensitive to the type of

the dataset we use, and whether PCA does useful feature extraction on it.

(a) Training set of Wine dataset after PCA (b) Training set of Cancer dataset after PCA

Figure 5.7: An example of PCA on the partitions after training set is split for the purposes
of cross-validation.

47

5.5 Discussion

Thus, strictly speaking, we study the the influence of the quantum SVM parameter n,

together with PCA. Due to practical limitations of small sized quantum computers and

our simulations, we will not be able to use large n-values as it is important to study the

relationship between real data dimensions/complexity, a chosen dimensionality reduction

technique, and the quantum SVM parameter n. This is not trivial as dimensionality

reduction techniques themselves may make classification very simple, or unnecessarily

complicated.

We have studied the effects the settings n = 2 and n = 3 on three datasets: Wine, Breast-

cancer and MNIST, with native dimensions 13, 30, 64, respectively. In general, based on

Wine and Breastcancer, we cannot conclude that increasing n improves performance. It is

worsened, both for testing and training performance. In contrast, MNIST dataset perfor-

mance does seem to improve, both in terms of training and generalization performance.

We have a few possible explanations for this phenomenon, all of which can be traced

to the use of PCA. The worsening of the training performance on the lower-dimensional

datasets suggest that the PCA creates an increasingly difficult to separate/classify land-

scape. Our assumption is that the third dimension of the PCA is essentially capturing

noise (See Fig. 5.8) as the correct labeling is essentially fully captured by the first two

principal components.

In this case, our model may either fail to even train properly, and even if it did, it would

most likely have poor generalization performance as noise is learned. In the case of MNIST

sets, it is known that higher principal components still do carry information about the

labels, hence the performance is not decreased, but, as expected improved as n increased.

To test some of our conjectures, we explored the structure of the PCA outputs where

n =3 (see Fig 5.7).

48

5.5 Discussion

(a) PCA applied on Wine training set - two com-
ponents X and Y axis - Side view

(b) PCA applied on Wine training set - two com-
ponents X and Z axis - Side View

(c) PCA applied on Wine training set - two com-
ponents Y and Z axis - Side view

Figure 5.8: An example of PCA applied to Wine training set. Here, we can point out
that axis XY and XZ have valuable information/components. However, the axis Y Z do
not correctly group the labels, so learning it would lead to overfitting.

Beyond the issues involving PCA, even on the bare level of the quantum classifier, it

is not obvious to what extent the increasing n increases the “richness” of the classify-

ing functions. Intuitively, by increasing the number of qubits, thereby increasing the

dimensionality of the feature space, we should be able to better separate/classify com-

plex landscapes. However, recall that since we work with fixed-depth variational circuits,

the power/ability of our variational circuit to exploit the high-dimensionality of the fea-

ture space decreases (in a proportional sense) when we increase the number of qubits.

Specifically, in the SVM interpretation of the quantum SVM algorithm the purpose of the

variational circuit is to rotate the fixed hyperplane, specified by the measurement, into

49

5.5 Discussion

the optimal position for classification. However, since our circuit is shallow, we cannot

implement all (unitary) rotations, and, roughly speaking, the “density” of all unitaries we

can implement with fixed depth decreases as the dimension grows - even though the total

parameter number grows. The only example where this effect may have been observed is

the MNIST dataset, but to study this in more detail, we would require to go to higher

dimensions beyond n=3, which was beyond our computational capacities. This remains

an interesting question for a follow up work.

50

Chapter 6

Conclusions

Quantum machine learning aims to harness the laws and properties of quantum mechanics

to outperform its classical counterparts. It is expected that quantum computers will play

a significant role in many data processing fields, and also specifically in the domain of big

data, where the datasets are pushing our conventional computational resources to their

limits.

This thesis investigated the potential of one class of quantum classifiers for supervised

learning. We have build upon the approaches of [1], and have implemented the quantum

classifier which exploits the exponentially large quantum features of the quantum Hilbert

space. Here our goal was to investigate new types of model parameters, such as the qubit

number and optimization steps and how this influence the classification performance.

To summarise our approach, we utilized a feature map to encode (or transform) data

~x ∈ Rn according to the equation defined in Eq. 4.2, depending on the depth, we duplicate

the same circuit d times, where d is the depth of the circuit. Secondly, a short depth

quantum circuit defined in 4.5 is applied to the feature state. This circuit with l-layers

is parameterized by θ ∈ R2n(l+1) that was optimized during the training. Afterwards,

label classification and measurement takes place as described in 4.2.2. Based on these

results and experiments we conducted, we can conclude that our quantum classifier can

learn to a certain degree (i.e., it has good convergence rate on average on all datasets)

where it returns a good accuracy on both the training and testing sets. Also, we have

found out that even by reducing dimensionaity of the data via PCA, our classifier is

51

still capable of achieving relatively good accuracy on both 2 and 3 qubits. Note that

our tests and experiments were executed on a simulated qubit(s) using Qiskit [27]. Due

to technical limitations with IBM Quantum Experience, we were not able to run our

experiments on a real quantum-chip. In this work we have opted to use PCA as the

dimensionality technique to map the data onto the limited quantum classifier. However,

intuitively, the quantum classifiers strengths are likely to lie in its capacity to decode

very complex data landscapes. Consequently, to make the most out of it, it makes sense

to experiment with broader classes of dimensionality reduction techniques. For instance,

using “Uniform Manifold Approximation and Projection (UMAP)” [50] maybe a good

idea. In this thesis we focused on the performance of the idealized quantum classifier

which was executed with no noise. As near-term quantum devices will certainly be quite

noisy, it would be important to re-run similar experiments using noise simulators (such as

Qiskit ignis package [51]) or using actual quantum computers. While the results of this

thesis highlight many potential pitfalls of near-term quantum classifiers, it is obvious that

the potential of these upcoming quantum technologies should not be overlooked.

52

References

[1] V. Havĺıček, A. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow,

and J. M. Gambetta, “Supervised learning with quantum-enhanced feature spaces,”

Nature, vol. 567, pp. 209–212, 03 2019. i, 2, 5, 6, 19, 22, 23, 24, 25, 26, 30, 35, 36,

37, 39, 40, 46, 47, 51

[2] T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka, “Stock market prediction system

with modular neural networks,” in 1990 IJCNN International Joint Conference on

Neural Networks, pp. 1–6 vol.1, June 1990. 1

[3] H. Mizuno, M. Kosaka, H. Yajima, and N. Komoda, “Application of neural network

to technical analysis of stock market prediction,” vol. 7, 01 1998. 1

[4] M. A. Holmstrom and D. Z. Liu, “Machine learning applied to weather forecasting,”

2016. 1

[5] G. K. Venayagamoorthy, V. Moonasar, and K. Sandrasegaran, “Voice recognition

using neural networks,” in Proceedings of the 1998 South African Symposium on

Communications and Signal Processing-COMSIG ’98 (Cat. No. 98EX214), pp. 29–

32, Sep. 1998. 1

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” CoRR, vol. abs/1409.1556, 2015. 1

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate,” ArXiv, vol. 1409, 09 2014. 1

53

REFERENCES

[8] I. M Johnstone and D. Michael Titterington, “Statistical challenges of high-

dimensional data,” Philosophical transactions. Series A, Mathematical, physical, and

engineering sciences, vol. 367, pp. 4237–53, 11 2009. 1, 3

[9] F. Lardinois, “Uk government $194m to commercialize quantum computing,” 06

2019. 2

[10] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine

learning,” Contemporary Physics, vol. 56, 09 2014. 2, 4

[11] “Model Generalization: challenges of generalization in machine learning.” https:

//bit.ly/2TkuoX0. Accessed: 2019-06-27. 3

[12] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,

T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks

and tree search,” Nature, vol. 529, pp. 484–489, 01 2016. 3

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2016. 3

[14] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quan-

tum machine learning,” Nature, vol. 549, 11 2016. 3

[15] V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence in the quan-

tum domain,” 09 2017. 3, 4

[16] J. Preskill, “Quantum computing and the entanglement frontier - rapporteur talk at

the 25th solvay conference,” 03 2012. 3

[17] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer,” SIAM Journal on Computing, vol. 26, pp. 1484–

1509, 10 1997. 3

54

https://bit.ly/2TkuoX0
https://bit.ly/2TkuoX0

REFERENCES

[18] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Pro-

ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,

STOC ’96, (New York, NY, USA), pp. 212–219, ACM, 1996. 3

[19] E. Pednault, J. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and

R. Wisnieff, “Google plans to demonstrate the supremacy of quantum computing,”

10 2017. Accessed: 2019-06-17. 3

[20] E. Pednault, J. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and

R. Wisnieff, “Breaking the 49-qubit barrier in the simulation of quantum circuits,”

10 2017. 3

[21] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for supervised and

unsupervised machine learning,” 07 2013. 4

[22] P. Wittek, Quantum Machine Learning: What Quantum Computing Means to Data

Mining. 08 2014. 4

[23] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big

data classification,” Physical Review Letters, vol. 113, 07 2013. 4, 5

[24] M. Benedetti, E. Lloyd, and S. Sack, “Parameterized quantum circuits as machine

learning models,” arXiv e-prints, p. arXiv:1906.07682, Jun 2019. 4

[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of

variational hybrid quantum-classical algorithms,” New Journal of Physics, vol. 18,

p. 023023, feb 2016. 4, 25

[26] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-

tion: 10th Anniversary Edition. New York, NY, USA: Cambridge University Press,

10th ed., 2011. 10

[27] “ Qiskit: An open-source quantum computing framework for leveraging today’s quan-

tum processors in research, education, and business).” https://qiskit.org/. Ac-

cessed: 2019-05-31. 12, 32, 34, 52

55

https://qiskit.org/

REFERENCES

[28] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20,

pp. 273–297, 1995. 14, 16, 17

[29] “Javier Ruiz Hidalgo: Methodology (dlai d6l2 2017 upc deep learning for artificial

intelligence)).” 15

[30] “ Sebastian Raschka: Machine learning faq).” https://sebastianraschka.com/

faq/docs/evaluate-a-model.html. Accessed: 2019-05-31. 16

[31] ritchieng, “Cross-validation explained,” 09 2018. Accessed: 2019-07-15. 16

[32] “Support Vector Machine support vector machines.” https://www.learnopencv.

com/support-vector-machines-svm/. Accessed: 2019-05-13. 17

[33] “Support Vector Machine support vector machines.” https://bit.ly/2pFAPFo. 17

[34] . P. F. . Schuld, M., “Supervised learning with quantum computers,” Springer, vol. 98,

03 2018. 18

[35] “Cross entropy: cross-entropy is commonly used to quantify the difference between

two probability distributions..” https://en.wikipedia.org/wiki/Cross_entropy.

Accessed: 2019-05-13. 19

[36] “Curse of dimensionality curse of dimensionality.” https://en.wikipedia.org/

wiki/Curse_of_dimensionality. Accessed: 2019-05-13. 19

[37] S. Lloyd, M. Mohseni, and P. Rebentrost, “About the curse of dimensionality,” 07

2018. Accessed: 2019-07-08. 20

[38] “ PCA: Understanding principal component analysis.” https://bit.ly/2YCAckx.

20

[39] “ PCA: Principle component analysis).” https://bit.ly/2Ma1Kaq. Accessed: 2019-

06-02. 20

[40] B. Skuse, “The trouble with quantum computing,” 06 2019. 21

56

https://sebastianraschka.com/faq/docs/evaluate-a-model.html
https://sebastianraschka.com/faq/docs/evaluate-a-model.html
https://www.learnopencv.com/support-vector-machines-svm/
https://www.learnopencv.com/support-vector-machines-svm/
https://bit.ly/2pFAPFo
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://bit.ly/2YCAckx
https://bit.ly/2Ma1Kaq

REFERENCES

[41] J. C. Spall and S. Member, “Multivariate stochastic approximation using a simul-

taneous perturbation gradient approximation,” IEEE Transactions on Automatic

Control, vol. 37, pp. 332–341, 1992. 21

[42] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,”

Physical Review A, vol. 98, 03 2018. 22

[43] E. Farhi and H. Neven, “Classification with quantum neural networks on near term

processors,” 02 2018. 22

[44] “ Qiskit: The second order expansion feature map from qiskit.” 23

[45] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp,

A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller,

W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme, “Quantum optimization

using variational algorithms on near-term quantum devices,” Quantum Science and

Technology, vol. 3, p. 030503, jun 2018. 25

[46] “Variational Circuits variational circuits (also called parametrized quantum cir-

cuits).” https://qmlt.readthedocs.io/en/latest/variational.html. Accessed:

2019-05-05. 27

[47] “ Dawid Kopczyk: Enthusiastically about algorithms).” https://bit.ly/2YVTbSo.

Accessed: 2019-06-31. 28

[48] D. Dua and C. Graff, “UCI machine learning repository,” 2017. 31, 40, 41, 43

[49] “SPSA: simultaneous perturbation stochastic approximation.” https://qiskit.

org/documentation/aqua/optimizers.html. Accessed: 2019-05-13. 32

[50] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “Umap: Uniform manifold ap-

proximation and projection,” The Journal of Open Source Software, vol. 3, no. 29,

p. 861, 2018. 52

[51] “ Qiskit Ignis: is a framework for understanding and mitigating noise in quantum

circuits and devices.).” https://qiskit.org/ignis. Accessed: 2019-05-08. 52

57

https://qmlt.readthedocs.io/en/latest/variational.html
https://bit.ly/2YVTbSo
https://qiskit.org/documentation/aqua/optimizers.html
https://qiskit.org/documentation/aqua/optimizers.html
https://qiskit.org/ignis

REFERENCES

[52] “ Qiskit Terra: provides the foundational roots for our software stack.).” https:

//qiskit.org/terra. Accessed: 2019-05-08.

[53] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of

physical reality be considered complete?,” Physical Review, vol. 47, pp. 777–780, May

1935.

[54] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[55] L. Lamata, “Basic protocols in quantum reinforcement learning with superconducting

circuits,” Scientific Reports, vol. 7, p. 1609, 05 2017.

[56] C. Zoufal, A. Lucchi, and S. Wörner, “Quantum generative adversarial networks for

learning and loading random distributions,” 03 2019.

[57] E. Aimeur, G. Brassard, and S. Gambs, “Quantum speed-up for unsupervised learn-

ing,” Machine Learning, vol. 90, pp. 261–287, 02 2013.

[58] V. Dunjko, J. Taylor, and H. J. Briegel, “Quantum-enhanced machine learning,”

Physical Review Letters, vol. 117, 09 2016.

[59] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,”

Nature Physics, vol. 10, 07 2013.

58

https://qiskit.org/terra
https://qiskit.org/terra

	1 Introduction
	1.1 Background & Motivation
	1.2 Research Question
	1.3 Overview

	2 Quantum Computing
	2.1 Qubits
	2.2 Gates
	2.3 Circuits
	2.4 IBM Q Experience

	3 Classical Machine Learning
	3.1 Supervised Learning
	3.2 Overfitting and underfitting
	3.3 Cross-Validation
	3.4 Support Vector Machine
	3.4.1 Kernel-based SVM

	3.5 Cost Function in Learning
	3.6 Dimensionality Reduction
	3.7 Optimization

	4 Learning with Quantum Circuits
	4.1 Quantum Feature Mapping
	4.2 Variational Circuit
	4.2.1 Training
	4.2.2 Classification & Labeling

	4.3 Artificial Data

	5 Experiments & Results
	5.1 Experimental Design
	5.1.1 Choice of Parameters

	5.2 Circuits Implemented
	5.2.1 Quantum Feature Mapping
	5.2.2 Variational Circuit
	5.2.3 Circuits Generalization

	5.3 Results - Artificial Data
	5.3.0.1 Number of qubits = 2, Depth = 4
	5.3.0.2 Number of qubits = 3, Depth = 4
	5.3.0.3 Preliminary Discussion - Artificial Data

	5.4 Results - Practical Data
	5.4.1 Wine dataset
	5.4.1.1 2-qubits results
	5.4.1.2 3-qubits results

	5.4.2 Breast cancer dataset
	5.4.2.1 2-qubits results
	5.4.2.2 3-qubits results

	5.4.3 Digits dataset
	5.4.3.1 2-qubits results
	5.4.3.2 3-qubits results

	5.5 Discussion

	6 Conclusions

