Universiteit Leiden

Opleiding Informatica

Skippy: Automated configuration of CNNs
with skip connections

Name: Christiaan Lamers
Date: 15/08/2019

st supervisor: Bas van Stein
2nd supervisor: Thomas Back

MASTER THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

It takes time and requires expertise to design Convolutional Neural Networks (CNNs) that can
be trained to a high accuracy. Because the search space is large and training times are long,
it is infeasible to automatically test all possible CNN architectures and hyper parameters. A
Mixed Integer (MI) optimization heuristic, named S-Metric Selection Mixed Integer Parallel
Efficient Global Optimization (SMS-MIP-EGO), was used to combat this problem. It applies
architectural design parameter optimization and hyper parameter optimization in order to
construct CNNs and optimizes on both validation accuracy and training time. SMS-MIP-EGO
generates M| vectors using Mixed Integer Evolutionary Strategies (MIES), which are evaluated
on a fast surrogate model. This surrogate model is trained on parameters of actually evaluated
solutions.

A method called Skippy was developed to construct deep CNNs with skip connections from a
given MI vector. The networks were optimized on both accuracy and training time. The best
found network was submitted to an extra step of hyper parameter optimization, in which the
training schedule was optimized.

The first goal is to see if the SMS-MIP-EGO heuristic can find high performance networks using
the Skippy construction method. The second goal is to analyze the architectural parameters
and hyper parameters in order to find best practices for designing CNNs.

Contents

(1__Introductionl
2 Related Work

B_Skippyi

[3.1 CNN construction with skip connections|

[4 Research question|

Pre-experiments|

Base experiment|

[/ Fine-tuned search space experiment]
(7.1 Dataanalysis|.
[7.1.1 Highvs. low accuracy|
[7.1.2 Feature importance|

[6 Pruning one node layers experiment|
[8.1 Pre-experiment|.
[8.2 Main experiment|
(8.3 Dataanalysis|.
[8.3.1 High vs. low accuracy|
[8.3.2 Feature importance|

[0 Comparison with RESnet-30|

(10 Data augmentation experiment]
(10.1 Data analysis|.
(10.1.1 High vs. low accuracy|

(11 Training schedule optimization experiment|
(11.1 Data analysis|.
(11.1.1 High vs. low accuracy|

(12 Extra training of best networks|

14 Conclusion|

15 Future Work

PP §

14
14
19

22
24
24
26

27
27
27
32
32
36

36

37
40
40

47
47
50

52
52
54
56

59

1 Introduction

Convolutional Neural Networks (CNNs) are used in a wide range of fields, ranging from com-
puter vision to natural language processing [4]. A CNN consists of stacked layers, that contain
nodes, which perform convolutions on an image or a matrix. For clarity the term “image” will
be used from now on.

The nodes in such a layer are called kernels. A kernel is a matrix that contains learnable
weights. A weight is a float point number that is used in a dot product.

One convolution layer consists of a series of these kernels. A convolution is a operation that
performs dot products on the kernels and sections of the image, resulting in one output pixel
per operation, as can be seen in figure [I} At first, the left top corner of an image is selected
as a section, making one output pixel. In the next step, an adjacent section more to the right
is taken as a selection, resulting in a different output pixel. When the end of the image is
reached, the leftmost part, just below the first selection is selected to produce an output pixel.
After this, a section to the right is selected, etcetera. The output pixels will form a new image,
called a feature.

The reason why these convolutions are useful, is because of the fact that the weights in the
kernels are trainable through supervised learning. Kernels tend to learn certain patterns like
vertical or diagonal lines, which then can be detected in images. The resulting features show
where in the image these patterns are present. The next layer can detect more abstract patterns
in these features. A combination of certain line patterns can form a circle for example. When
stacking more and more of these layers on top of each other, the learned patterns can become
more and more abstract, up until the point where eyes, noses and ears can be detected. These
features can then be used to detect faces, dogs or cats for example.

CNNs come in all sizes and shapes. Design choices include the type of activation function, the
size of the kernels, the width of each layer, the depth of the network, what training schedule
to use, etcetera. These choices are often based upon what is described in literature, or they
require high expertise to make. Automated machine learning can be used to make these choices
instead. It aims to automatically generate and evaluate these design choices. It requires less
expertise, design time and has the potential to find novel solutions.

Training a CNN requires time. Training a CNN on a GPU for only ten epochs can last for
multiple hours. It is not uncommon for a CNN to be trained for days. Because of these time
constraints, evaluating every CNN that is being automatically generated is infeasible. Instead
it is useful to construct a surrogate model. This surrogate model predicts the effectiveness of a
CNN based on a vector of given parameters. These parameters would be used by the construc-
tion method to decide how to build the CNN. Such a surrogate model can predict the accuracy
or training time in a fraction of the time of actually training the CNN. The downside is that
a surrogate model is never 100% accurate. However, a surrogate model is useful for quickly
evaluating a lot of configurations and selecting a high performance network with a reasonable
amount of certainty. This selected network can then be evaluated using the expensive method
of actually training it on a GPU. The accuracy and training time information from training
the network can then be used to train a new surrogate model, continuing the cycle.

Deep neural networks are an increasingly popular machine learning method that is proven to
be very powerful in the area of image classification. However, the deeper the network, the
smaller the values in the gradient of the loss function get, making it hard to train the network.
This is referred to as the “vanishing gradient problem” . The result is that making a network
deeper will result in better performance up to a certain point. Once the network gets too deep,

the performance declines. A Residual Neural Network (RESnet) [10] tackles this problem by
building a network out of residual blocks. A residual block consists of a stack of convolutions
circumvented by a skip connection. As the name suggests, a skip connection skips convolu-
tional layers, allowing for shorter paths in the network and thus better gradient preservation.
Up until now, these RESnet structures could not be automatically constructed and optimized.
The Skippy method is proposed to solve this problem. It is able to add skip connections to
deep CNNSs as specified by their own parameters. These parameters can then be optimized
along with all other parameters of the network using automated machine learning. The heuris-
tic that is used for automated machine learning in the proposed method is called S-Metric
Selection Mixed Integer Parallel Efficient Global Optimization (SMS-MIP-EGO). This heuristic
is explained in section [3]

Image Kernel

i | i
--------- X T A T = O I + N i + + *1i =
e k
+
+
+
+
i
S
¥ v
: 4

. for n convolutional filters
giving n features

Figure 1: How 2D-convolutions with multiple channels work: The dot product is taken of
a section of a stack of images (depicted in green) and a 2D-convolutional filter (a stack of
kernels, depicted in blue), which forms a pixel in the output feature. A stack of kernels is
repeatedly offset by a number of pixels determined by the stride value, generating a new
feature. Each convolutional filter generates a new output feature. All output features are
stacked on top of each other to form a new stack of features, upon which the next layer
of 2D-convolutions can act.

2 Related Work

Automated machine learning can be implemented in many ways. The methods differ in the
way new configurations are generated as well as the order of configuration manipulation and
training. Some methods alternately train networks and change their topology, while other
methods keep the configuration manipulation and training separated. The method of Gaier et
al. [9] bypasses the need for vectors of fixed length. It uses kernel-based surrogate models to
allow predictions on variable topologies instead of on fixed-length vectors. Its surrogate model
can predict performance by only using the distances between samples using a given distance
metric.

In the method of Elsken et al. [8] effective Neural Networks are searched for by combining a
hill climbing algorithm with the “NetMorph” operation. NetMorph generates a group of child
networks from a parent network by altering the topology of the network, while keeping the
functionality identical. These child networks and parent network are then trained for one epoch
and the best is selected to be the new parent network. Thus alternating training and topology
modification.

Similar to the method of Elsken et al, a method is described in Wei et al. [21] that alters the
topology of a network while keeping the behaviour identical. This method is used to create a
pool of altered child networks from a parent network. These child networks are then trained
for one epoch. The best result is selected to be the parent network for the next iteration. This
way a network topology is grown, while at the same time it is trained.

Another example of simultaneously training networks while evolving the topology is the method
of Stanley and Miikkulainen [I9]. It uses the NeuroEvolution of Augmenting Topologies
(NEAT) to simultaneously evolve the topology of networks as well as their weights. Networks
and their weights are represented as genetic information. Innovations are protected using spe-
ciation, which classifies networks into niches. Small networks are incrementally made more
complex.

The method of Zoph and Le [3] uses a Recurrent Neural Network (RNN) as a controller for
the hyper parameters, separating optimization and training. This method is more similar to
the proposed method, where the S-Metric Selection Mixed Integer Parallel Efficient Global
Optimization (SMS-MIP-EGO) heuristic selects parameters. Instead of a RNN to select pa-
rameters, SMS-MIP-EGO uses Mixed Integer Evolutionary Strategies (MIES) [14].
SMS-MIP-EGO uses multi-objective (bi-objective) optimization, just like the method of Tan
et al. [20] uses multi-objective optimization to optimize CNNs. The CNNs it optimizes are
intended for use on mobile devices, on accuracy as well as latency. For optimization, reinforce-
ment learning approach is used, whereas SMS-MIP-EGO uses MIES.

The idea to add skip connections to the Skippy construction method came from the Residual
Neural Network (RESnets) from He et al. [10]. Its findings are that RESnets suffer less from
the vanishing gradient problem thanks to their use of skip connections. RESnets generally keep
performing better the deeper they get.

RESnets are more prone to overfitting according to Ebrahimi et al. [7], therefore data aug-
mentation was used in one Skippy experiment. The parameters for the data augmentation
were part of the search space SMS-MIP-EGO optimized on. The results of Perez and Wang
[16] show that traditional data augmentation is very effective in increasing the accuracy of a
Neural Network.

3 Skippy

In this section the proposed method to automatically build CNNs, called Skippy, is introduced
and explained. The heuristic used for automatically generating CNN configurations is called
S-Metric Selection Mixed Integer Parallel Efficient Global Optimization (SMS-MIP-EGO). It
is a bi-objective optimizer that is used to minimize the training time and the validation loss
of CNNs. Minimizing the validation loss will maximize the validation accuracy. It constructs
random forests [5] as surrogate models for both the training time and the validation loss. A
random forest is a model that is trained on a set of data by building decision trees that split
the data on a feature with maximal information gain out of a set of randomly selected features.
These decision trees can perform regression in order to make predictions. A MIES algorithm
[14] is used to generate new configurations. The MIES algorithm uses the surrogate models
to evaluate the fitness of its generated configurations. The fitness is calculated using Pon-
weiser's [17] S-metric. After the MIES algorithm made its choice for a solution, this solution is
evaluated by training it on a GPU. The resulting training time and validation loss are used to
retrain the time and loss surrogate models. SMS-MIP-EGO is and adaptation of van Stein's
[22] MIP-EGO method, which is a single objective optimizer.

3.1 CNN construction with skip connections

To construct a CNN from a given Mixed Integer (MI) vector, a construction method called
Skippy is proposed. This construction method is based on the construction method of van
Stein's [22] MIP-EGO method. Just like van Stein’s construction method, Skippy builds a
CNN that consists of a certain number of stacks. A stack consists of a convolutional part
followed by a dimension reduction part, which decreases the feature size. Each stack has its
own parameters, such as the number of convolutional layers, the width of the convolutional
layers and the size of the kernels used by the convolutions, as well as the amount of reduction
in feature size.

Skippy differs from van Stein’s method in the sense that it uses more stacks in order to a allow
a search space where a network exists similar to RESnet-34, as described in figure 3 of He et
al. [10]. The method of van Stein uses no Max pooling layers, but convolutional layers with a
stride larger than one. Van Stein's method does this because it is simpler, more elegant and
because of the claim of Springenberg et al. [18] that Max pooling layers can be replaced by
Convolutional layers. Skippy allows dimension reduction with either the use of convolutional
layers or Max pooling layers.

The main difference with van Stein's method and Skippy is Skippy’s use of skip connections.
These skip connections create shortcuts between layers that are more than two layers apart in
depth. This allows for more feature recombination options as well as better gradient preser-
vation. Skip connections form chains that traverse the network. After a skip connection is
attached, a new skip connection is formed immediately. Each CNN can have up to five chains
of skip connections. The number of layers a skip connection skips and at what depth a chain
of skip connections begins is determined by separate parameters per chain. These parameters
are part of the search space of SMS-MIP-EGO.

Connecting layers using skip connections, and thereby combining features, is not trivial. When
convolutions and strides act on features, they produce output features with different dimen-
sions. The length and width of features can change as well as the number of features. For this

reason, most of the time, the dimensions of the skip connection feature does not match the
dimensions of the feature it needs to be connected to.

The way convolutions act on features is depicted in figure [Il The top of the figure shows a
kernel being aligned with one part of the incoming layer. The dot product of the kernel and
the part of the incoming feature becomes a new pixel. One node of a convolutional layer is
made of a stack of these kernels. Such a stack of kernels produces a stack of pixels. These
pixels are added together forming one pixel of one output feature. A stack of kernels moves
over the incoming feature, creating one pixel for each convolution. These pixels together form
one outgoing feature. All n stacks of kernels in the convolutional layer perform such an oper-
ation, creating n outgoing features. These outgoing features are stacked on top of each other
creating the input for the next layer.

In order to connect a skip connection feature neatly, the feature must match the size of the
feature it connects to. Figure 2| shows an example of a CNN with a skip connection. The
features at the input side are sent through an outgoing skip connection and are depicted as
a red cube. At the point of the incoming skip connection, the feature to be connected to
and the incoming feature must be concatenated, but their size does not match necessarily. If
the length and width of the incoming skip connection feature is larger than the feature to be
connected to, the incoming skip connection feature's size is reduced by Max pooling. Since
Max pooling can result in less than perfectly matching length and width, it is opted to make
the length and width of the incoming skip connection feature equal to or smaller than the
width and length of the feature to be connected to.

After this, a Dropout layer can be added, when the skip connection skips any Dropout layer
in the main part of the network. The value of Dropout is equal to the last main part Dropout
layer skipped. If the length and width of the incoming skip connection feature are smaller due
to rigorous Max pooling, or the incoming skip connection feature being too small in the first
place, the incoming skip connection feature is zero padded to match the length and width of
the feature to be connected to exactly. Then the feature to be connected to and the incoming
skip connection feature are concatenated.

If multiple incoming skip connection features are connected at this point, they are all concate-
nated after their length and width have been altered in the same manner. In order to avoid an
explosion of features and to promote feature recombination, the concatenation is sent through
a convolutional layer with a kernel size of 1 x 1. This way no actual convolutions take place,
but learning how to recombine features through weight updates is still possible. This makes it
possible to recombine features in a more relevant way. This is an advantage over the addition
operation, which recombines features in an arbitrary manner, and thus does not check which
feature to recombine with which. Wistuba et al. [15] describe the method of a 1 x 1 convo-
lution to alter the number of features between layers in figure 3 of their survey. This method
can behave the way RESnet [10] connects skip connections. The weights selecting the feature
to be connected to could all be one and the weights selecting the features of the incoming
skip connection layer could act as a projection. Thereby adding a projection of the incoming
skip connection layer to the layer to be connected to. If the weights selecting the incoming
skip connection feature are all one and the rest is zero, a feature is reused completely.
Unfortunately, an unnecessary extra dropout layer was added after the global average pooling
layer, in case global average pooling was specified by the MI vector. This error was removed
before commencing the experiments that use data augmentation in section [10]

bal %

K * Ky

—~
fz Skip connection in

¥z o
4 Skip Connection out

i —_ >

Activation function
ks " kp Dropout p=d,

@ @ - ‘ ‘ ‘ @ T
.) ¥ =X

R <y
f3
l Skip connection in Max Pooling fy
¥3 Xs

Dropout p=d,
Zero Padding

Skip Connection out
Activation function

Dropout p=d;

Ks " Kg

g0-U!

[

= - =4

[

- J
fa Skip connection in

Activation function
Dropout p=dy

Figure 2: How Skippy connects skip connections: A stack of features a (green or red)
consist of f, features. Fach feature is x, by y, pixels. A 2D-Convolutional layer b (blue)
has f,11 stacks of kernels. Each kernel is k;, by k; pixels. Each stack of kernels consists of
f» kernels.

A skip connection carries over a stack of features from a higher layer (shown in red) to
be connected to the “skip connection in” point. In order to concatenate both stacks of
features, their dimensions must match. If the z; and y; dimensions of the skip connection
features are larger than x3 and y3 dimensions of the features to be connected to, they are
reduced using Max pooling, to make it at least as small as the z3 and y; dimensions. A
Dropout layer is added here, if the skip connection passes over a Dropout layer in the
main network. The amount of dropout is equal to that of the last Dropout layer skipped,
namely d;. If the y; and x; dimensions are too small, Zero padding is performed in order
to make x; and y; match x3 and y3 perfectly. Both stacks of features are concatenated. A
1 x 1 2D-Convolutional layer reduces the number of features to the number at the “skip
connection in” point, namely f3. The resulting feature is passed through the rest of the
network as well as to a new skip connection.

10

Parameter Explanation

filters Number of filters for each stack’s head and tail

kernel size Kernel dimensions for each stack’s head ant tail

strides Stride for dimension reduction part of each stack

stack_sizes Number of layers per convolutional part for each stack

activation Type of activation to be used after convolutions

activation_dense | Type of activation function for output layer

step Whether or not to decrease learning rate during training
global_pooling Whether or not to use global pooling in stead of flattening

skstart Start points of each chain of skip connections

skstep Number of layers to be skipped per skip connection (1 means no skip connection)
max_pooling Whether to use Max pooling in stead of convolutions with stride > 1
dense _size Width of the two dense layers before the output layer

drop_out Dropout value for each dropout layer

Ir Learning rate

12_regularizer Amount of 12 kernel regularization

Table 1: Search space explanation

3.2 General architecture

Algorithm [1}, [2] and figure [3] explain the general architectural rules Skippy uses to build a
CNN. Algorithm [I] shows in pseudocode how a CNN is built by Skippy given a MI vector of
parameters. Algorithm [2| shows in pseudocode what steps are taken to create and connect
skip connections. Figure [3|is a visual representation of the pseudocode of algorithm [I} Table
shows a brief explanation of the parameters in the MI vector.

A dropout layer is added immediately after the input. Next, a series of stacks follows. Each
stack consist of a convolutional part followed by a dimension reduction part. The convolutional
part consists of a number of repetitions of the following trio: a convolutional layers, followed
by an optional skip connection input/output, followed by an activation layer. The dimension
reduction part consist of either one Max pooling layer, or one Convolutional layer with a stride
larger of equal to one, followed by an optional skip connection input/output, followed by an
activation layer. Associated with each stack are a number of parameters as stated in table [T}
After these stacks, the output is flattened by either Global Pooling, or a Flatten operation.
This is followed by two densely connected layers each followed by an Activation and Dropout
layer. Finally, the output layer is added using a Softmax function.

The “Pruning one node layers” method, a variation of Skippy, is a method that prunes the last
layers from a network. It is described in section [8] The feature's length and width dimensions
tended to lower down to one somewhere along the depth of the network. Since this resembled
a densely connected network more than a CNN, it was decided to try and cut this 1 x 1 feature
part from the network. This method detects when the feature’s length and width dimensions
become one. As soon as this happens, the method stops building convolutional layers, flattens
the features and immediately builds the final three fully connected layers. Figure and
are an examples of using the standard Skippy method versus the “Pruning one node layers”
method.

11

Algorithm 1 Skippy

1:
2
3
4
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

procedure SKIPPY

add Input layer
add Dropout layer
for all stack in stacks do
for all layers in stack do
add Conv2D layer
Connect_Skip(previous_layer)
add Activation layer
end for
if Max pooling then
add MaxPooling layer
else

add Conv2D layer with larger stride

Connect_Skip(previous_layer)
add Activation layer
end if
add Dropout layer
end for
if global pooling then
add global pooling layer
add Dropout layer
else
add Flatten layer
end if
add dense layer 0
add Activation layer
add Dropout layer
add dense layer 1
add Activation layer
add Dropout layer
add last dense layer
add Softmax activation layer

33: end procedure

Algorithm 2 Connect_Skip

1:
2
3
4:
5:
6
7
8

9:

procedure CONNECT_SKIP(layer)

for all skip connections in memory do
pool skip connection layer if needed
add dropout layer if needed
pad skip connection layer if needed

Concatenate layer and skip connection layer

> end skip connections if needed

Convolute Concatenated layer with 1 x 1 kernel

end for
begin skip connections if needed

10: end procedure

12

Skip out

Skip out

Skip in
i Stacks foriin {0,1,..,n-1}

e

Kzie1 * Kist
Dimension reduction |‘ M ‘ N i | ‘
Conval
ki

envolution with stride ;=1 Max pooling layer with stride s> = 1

pin

Skip out

l Activation

I Drapout i+1

Global Pooling
Dropout n

- Fiatten

Dense layer O
Dense Activation
Dropout n+1

Dense layer 1
Dense Activation
Dropout n+2

Dense layer 2
Softmax Activation

Output

Figure 3: The general architectural rules Skippy uses to build a CNN: After the input, a
dropout layer is added. After this n stacks follow. Each stack consists of a Convolutional
part and a dimension reduction part. Each stack has its own set of parameters as denoted
in table [I} The “Skip in ” point is where skip connections are connected to the network.
The “Skip out” point is where skip connections split from the network. Dimension reduc-
tion can take place either using convolutions with a stride greater than one, or with a Max
pooling layer. After all stacks, Global Pooling is performed if the MI vector specifies this.
After this, two fully connected layers are connected, followed by an output layer using
Softmax activation.

13

4 Research question

A series of experiments is performed, with the aim to answer the following question:

Can SMS-MIP-EGO, when combined with Skippy, successfully find CNNs in a given
search space, minimizing training time and maximizing validation accuracy, and can
these CNNs beat current state-of-the-art CNNs?

The second goal is to analyze the found configurations and to distill good design strate-
gies or rules of thumb.

A series of iterative experiments were performed. They consisted of running SMS-MIP-EGO
with the Skippy construction method. The goal was to find CNNs with good performance.
During the experiments, data analysis was performed in order to improve the next experiments.
All experiments used the CIFAR10 data set [12].

SMS-MIP-EGO uses a predefined search space to find Ml vectors. Table [1| shows a brief ex-
planation of what each parameter of the search space stands for.

The networks were trained on a cluster of sixteen Nvidia Tesla K80 GPUs. Each individual
network was trained on one GPU at a time. Up to ten networks were trained in parallel.

The code of the SMS-MIP-EGO and Skippy methods can be found online [13].

Data analysis was performed on some experiments. The corresponding data can also be found
online [13] in the "data_thesis” folder.

5 Pre-experiments

To validate the performance of Skippy, a series of early experiments was performed. The goal
of these experiments was to test if the skip connections add to the functionality, and to see
if certain design choices can be beneficial. The variations of the method are called Skippy3
and Skippy4, simply because they were the third and fourth variation implemented. The first
method implemented was vanilla Skippy. The second method implemented was Skippy?2, this
method sent features through an activation function, before connecting skip connections. This
method was not further tested, since it was less like the method of He et al. [10], which
first connected skip connections and then sent the combined features through an activation
function, just like vanilla Skippy, Skippy3 and Skippy4.

Table [2| shows the parameters used to build network variations, similar to RESnet-34 as de-
scribed by He et al. [10], using the vanilla Skippy method. The only difference between He
et al.'s version and this one is that skip connections are built using Skippy’s method, thus
skip connections are not connected using projection, padding and addition, but instead use
pooling, padding, concatenation and dimension reduction. A schema of the networks, built by
the vanilla Skippy method, is shown in figure [4a

A network without skip connections was built. The goal is to see if skip connections add to
the functionality of the network. A schema of the built network is shown in figure [4b]
Skippy3 does Max pooling and padding, just like vanilla Skippy, but after this it does dimension
reduction using the 1 x 1 2D convolution, before concatenation. The dimension reduction is
only done when the width of the skip layer is bigger than k times the width of the layer it is to
be concatenated with. This is tested for & € {1,3,7}. In older iterations of the Skippy method,
no dimension reduction was done after connecting skip connections, thereby maximizing the

14

chance of feature reuse. However, this resulted in excessive growth of the features that were
passed by the skip connections, often resulting in a network that did not fit in the memory of
the GPU. This method of connecting skip connections allows for more feature re-use, while
keeping the amount of excessive feature growth reduction variable. Four networks were built
using the Skippy3 method, using the parameters of table[2] Figure [4d shows a schema of this
of network, for k = 1, figure [d| for &k = 3 and figure ba| for & = 7. The goal is to see
how variating k& impacts the validation accuracy and memory requirements. Figure |5b| shows
a schema of this network, for £ = 1, where no dropout layer is used in the skip connections.
The goal was to see if these skip connection dropout layers impacted the network'’s validation
accuracy.

Skippy4 does Max pooling and padding, after which it does dimension reduction using the
1 x 1 2D convolution. It does not use concatenation like the previous methods, but addition.
This implementation is the closest to the method of He et al. [10]. Two networks were built
with the Skippy4 method, using the parameters of table [2} Figure [5d shows a schema of this
network. Figure [bd| shows a schema of this network, without dropout layers in the skip con-
nections.

Table [3 shows the number of trainable parameters, the training accuracy and the validation
accuracy for networks built by different Skippy versions and parameters. All networks were
trained for 20 epochs.

Comparing the results of the vanilla Skippy method with the Skippy method that uses no skip
connections, it can be seen that omitting the skip connections reduces the validation accuracy
to the level of random guessing: namely 0.1, where CIFAR10 has ten classes. Thus is it a good
choice to use the skip connections.

The Skippy3 method shows some validation accuracy improvement over vanilla Skippy, but
the number of trainable parameters is also increased, meaning more GPU memory is needed.
This means that networks in the search space tend to be bigger, thus the chance is higher
that a built network does not fit in the GPU memory. When increasing k£ from one to seven,
the validation accuracy increases from 0.7359 to only 0.7832, while the number of trainable
parameters more than doubles from 3.37e7 to 7.57e7, giving diminishing returns. Therefore,
vanilla Skippy was deemed more simple and elegant, and thus chosen as the method for the
big experiments. Omitting the dropout in the skip connections showed a slight but insignificant
increase in validation accuracy. In order to counteract overfitting through the skip connections,
it was opted to keep the dropout layers in the skip connections.

Skippy4 shows a slightly higher validation accuracy than vanilla Skippy, but not enough to
be significant. It was opted to use vanilla Skippy, instead of Skippy4, because vanilla Skippy
allows for complete feature reuse and recombination of every feature with every feature per
layer, before the 1 x 1 projection layer, as is described in subsection [3.1] Thus, vanilla Skippy
is the most flexible method and the most interesting to be tested.

15

Parameter Value
stack_0 1
stack_1 6
stack_2 4
stack_3 4
stack 4 6
stack_5 6
stack_6 6

s-0 2

s-1 2

52 1

5.3 2

s 4 1

5.5 2

5.6 1
filters 0 64
filters_1 64
filters_ 2 64
filters_3 64
filters 4 128
filters_5 128
filters_6 128
filters_7 128
filters 8 256
filters 9 256
filters_10 256
filters_11 256
filters_12 512
filters_13 512
k0 7

k.1 1

k2 3

k.3 1

k4 3

k.5 1

k.6 3

k.7 1

k8 3

k9 1
k.10 3
k.11 1
k.12 3
k.13 1
activation relu’
activ_dense "softmax’
dropout_0 0.001
dropout_1 0.001
dropout_2 0.001
dropout_3 0.001
dropout_4 0.001
dropout_5 0.001
dropout_6 0.001
dropout_7 0.001
dropout_8 0.001
dropout_9 0.001
Ir 0.01
12 0.0001
step False
global_pooling | True
skstart_0 1
skstart_1 1
skstart_2 1
skstart_3 1
skstart_4 1
skstep_0 2
skstep_1 1
skstep_2 1
skstep_3 1
skstep_4 1
max_pooling | True
dense_size_0 1000
dense_size_1 0

Table 2: Parameters of the network similar to RESnet-34 used in the early experiments

16

(a) CNN similar to
RESnet-34 built by

Skippy

(b) CNN similar to
RESnet-34 built by
Skippy but without
skip connections

(c) CNN similar to
RESnet-34 built by
Skippy8 using one
times current layer
width as dimension
reduction trigger

Figure 4: RESnet34 variations

(d) CNN similar
to RESnet-34 built
by Skippy3 using
three times current
layer width as di-
mension reduction
trigger

Method # Trainable Parameters | Train acc. | Validation acc.
Skippy 23972930 0.9422 0.7219

Skippy no skip connections 21626242 0.0980 0.1000
Skippy3 max layer width 1 33691778 0.9620 0.7359
Skippy3 max layer width 3 55841410 0.9757 0.7601
Skippy3 max layer width 7 75740290 0.9837 0.7832
Skippy3 max layer width 1 no dropout in skip | 33691778 0.9646 0.7376
Skippy4 21799170 0.9901 0.7305
Skippy4 no dropout in skip 21799170 0.9885 0.7396

Table 3: Early experiments results. Networks were trained for 20 epochs

17

(a) CNN similar
to RESnet-34 built
by Skippy3 using
seven times current
layer width as di-
mension reduction
trigger. Note that
almost no skip con-
nection, a 1 x 1
2D Convolution is
used. This means
that every feature
appears at almost
every depth in the
network.

(b) CNN similar
to RESnet-34 built
by Skippy3 using
one times current
layer width as di-
mension reduction

trigger, using no
dropout in the skip
connections

(c) CNN similar to
RESnet-34 built by
Skippy4

Figure 5: RESnet34 variations

18

(d) CNN similar to
RESnet-34 built by
Skippy4, using no
dropout in the skip
connections

Parameter Type Bounds # Dimensions
filters Discrete [10, 600] 14
kernel size Discrete 1, 8] 14
strides Discrete 1, 5] 7
stack_sizes Discrete 0, 7] 7
activation Nominal ["elu” ”relu”,” tanh” ”sigmoid”,”selu”] | 1
activation_dense | Nominal [”softmax”] 1
step Nominal [True, False] 1
global pooling | NominalSpace | [True,False] 1
skstart Discrete 0, 7] 5
skstep Discrete 1, 10] 5
max_pooling Nominal [True, False] 1
dense_size Discrete [0,2000] 2
drop-out Continuous [le-5, 0.9] 10
Ir Continuous [le-4, 1.0e-0] 1
12_regularizer Continuous [le-5, le-2] 1

Table 4: search space of the “Base” experiment

Time (s) | Loss | Acc
316.16 2.30 | 0.10
395.52 2.30 | 0.10
401.37 1.47 1 0.23
951.97 1.33 | 0.27
952.83 0.90 | 0.41
1007.84 | 0.31 | 0.74

Table 5: Paretofront of the “Base” experiment: each entry is trained for ten epochs.

6 Base experiment

The first big experiment evaluated 410 networks on CIFAR10 by training them for ten epochs.
MIES used a maximum of 500 iterations, with random forests containing ten trees as surrogate
models. The search space of this experiment can be seen in table [4]

Table 23] in the appendices shows the file name information of the data file and the file name
of the construction script used in this experiment. The data file can be found online [13].
Figure [shows the performance of networks evaluated by SMS-MIP-EGO. Table [5] shows the
training time, validation loss and validation accuracy of the Pareto optimal solutions. Of this
experiment, 4.15% of the produced networks did not fit in the memory of the GPU.

After this experiment, the configurations were split into two groups based on their validation
accuracy. Configurations with a validation accuracy greater or equal to 0.4 were put into the
group of “good” configuration, while the ones with a validation accuracy smaller than 0.4
were put into the group of “bad” configurations. The networks that were too large to fit in
memory, and thus received a large penalty value, were filtered out for all analyses. The “Base”
experiment results contain only one network in the “good” section, so it was not used. It
contained 392 networks in the “bad” section. The found trends, as shown in figure 7] [8a] [8b]
and [9b] were used to improve the bounds of the search space.

19

20

05

X

[]
0.0

Figure 6: The “Base” experiment on CIFARI10. 410 samples taken, using ten evaluation
epochs, ten trees in the random forest. Init: 20 solutions sampled to start off SMS-MIP-
EGO, Heuristic: solutions evaluated by SMS-MIP-EGO, Pareto: Pareto optimal solutions.

N

k 0 k 1k 10k 11k 12k 13k 2 k3 k4 k5 k6 k7 k8 k9

Figure 7: The distribution of the kernel sizes of configurations of the “Base” experiment,
split on validation accuracy greater or equal to 0.4 (green) and smaller than 0.4 (red).

Init
Heuristic
Pareto

[

I

I

[

I

time (s)

20

[]

I

50 - -
45
40 — -

35

25
20 1
1.0 S B = T

(a) The distribution of the strides of configu-
rations of the “Base” experiment, split on vali-
dation accuracy greater or equal to 0.4 (green)
and smaller than 0.4 (red).

1750
1500
1250
1000
750
500

250

dense_size 0 dense_size_1

(b) The distribution of the dense layer sizes of
configurations of the “Base” experiment, split
on validation accuracy greater or equal to 0.4
(green) and smaller than 0.4 (red).

Figure 8: Distributions of features of the “Base” experiment

10
08

06

04

0.2

00

Ir

(a) The distribution of the learning rate of
configurations of the “Base” experiment, split
on validation accuracy greater or equal to 0.4
(green) and smaller than 0.4 (red).

0.007

0006

0005

0.004

0.003

0.002

0.001

0.000
Ir

(b) Close up of he distribution of the learn-
ing rate of configurations of the “Base” exper-
iment, split on validation accuracy greater or
equal to 0.4 (green) and smaller than 0.4 (red).

Figure 9: Distributions of features of the “Base” experiment

Parameter Type Bounds # Dimensions
filters Discrete [10, 600] 14
kernel size Discrete 1, 16] 14
strides Discrete 1, 10] 7
stack_sizes Discrete 0, 7] 7
activation Nominal ["elu” ”relu”,” tanh” ”sigmoid”,”selu”] | 1
activation_dense | Nominal [”softmax”] 1
step Nominal [True, False] 1
global_pooling | Nominal [True,False] 1
skstart Discrete [0, } 5
skstep Discrete 1, 10] 5
max_pooling Nominal [True, False] 1
dense_size Discrete [0,4000] 2
drop-out Continuous | [le-5, .9] 10
Ir Continuous | [le-4, 1.0e-2] 1
12_regularizer Continuous | [le-5, le-2] 1

Table 6: search space of the “Fine-tuned search space” experiment

7 Fine-tuned search space experiment

To follow up the “Base” experiment, the search space was altered according to the trends
shown in figure [7], [8a] [8b] [9a] and [Ob] so that it contained more useful configurations. The
kernel_size parameter was increased from [1, 8] to [1,16], since kernel size zero, six and nine
were on the higher side in the group of “good” solutions. The strides parameter interval was
increased form [1, 5] to [1,10], because the value of stride three was more widely spread out in
the group of “good” solutions. The dense_size parameter interval was increased form [0,2000]
to [0,4000], because the group of “good” solutions had a slightly higher dense_size_0. The Ir pa-
rameter interval was decreased from [le-4, 1.0e-0] to [le-4, 1.0e-2], because all “good” solutions
lie in this drastically smaller interval.

810 networks were evaluated, where 7.41% did not fit in the memory of the GPU. Table
shows the train time, validation loss and validation accuracy of the Pareto optimal solutions.
Table [24] in the appendices shows the file name information of the data file and the file name
of the construction script used in this experiment. The data file can be found online [13].
Figure [LO| shows a plot of the train time and validation accuracy of all evaluated networks.

22

Time (s) | Loss | Acc
451.33 2.16 | 0.11
469.70 0.50 | 0.61
580.81 0.49 | 0.62
717.48 0.46 | 0.63
822.89 0.39 | 0.68
1093.18 | 0.37 | 0.69
1235.70 | 0.31 | 0.73
1643.25 | 0.28 | 0.75
2701.50 | 0.27 | 0.76
2938.25 | 0.25 | 0.78
5448.46 | 0.22 | 0.81

Table 7: Paretofront of the “Fine-tuned search space” experiment each entry is trained
for ten epochs

25

Init
* Heuristic
@® Pareto

20

05

00

Figure 10: the “Fine-tuned search space” experiment on CIFAR10. 810 samples taken,
using ten evaluation epochs, ten trees in the random forest

23

7.1 Data analysis

In order to be able to analyze the data, the data was split on a validation accuracy of 0.7 into
a group of “good” networks with an accuracy greater or equal to 0.7 and a group of “bad”
networks with an accuracy smaller than 0.7. The “Fine-tuned search space” experiment results
contains 65 “good” networks and 685 “bad” networks.

7.1.1 High vs. low accuracy

In order to discover trends in “good” versus “bad” networks, a box plot was created for both
the “good” and “bad" sets, using Pandas’ box plot method [2]. This can be seen in the figures
11} [I2] [13]and [I4]. In these figures, green boxes indicate the distribution for “good” networks,
red for “bad” networks. The boxes indicate the Q1 to ()3 quartile, with a line in the middle
at Q2. The whiskers extend by 1.5 % (3 — Q1) from the edges of the box. Values that lie
beyond these whiskers are considered to be outliers, and are not plotted. Boolean values are
casted to float point values, where “True” is 1.0 and “False” is 0.0. The following trends were
found:

The “good” networks tend to have a larger average kernel size (avg_kernel_size) and a
larger number of trainable features (num_features).

e A longer training time per epoch seems to yield higher accuracy (time). The “good”
networks all have a dropout_0 value close to zero, indicating it is not a good idea to add
a dropout layer right after the input layer. This will not make the network more robust,
it will just make it blind.

e The average dropout (avg_dropout) over all layers is significantly lower among the
“good” networks. This is partly due to the dropout in layer zero being ideally close
to zero, but in other dropout layers, the “good” networks also tended to have less
dropout than the “bad” networks. This indicates that the best dropout rate is in the
lower sections of our search space. Among the “good” networks, it averages around
0.23, indicating this is the optimal value.

e The /2 kernel regularization tends to be close to zero in the “good” networks, averaging
around 0.0001. This shows that a low value is preferred for a high accuracy. It might
mean it is better not to do /2 kernel regularization at all.

e All the “good" networks use the elu activation function [6], as can be seen by the boolean
value elu being True for all “good” networks. It indicates that this function works best
for this dataset and the general network architecture.

e The “good” networks tend to have a higher learning rate (/r). This indicates the ideal
learning rate lies in the higher regions of the search space, averaging around 0.0079.

24

10000

8000

6000

2000

avg_kemel_size

5]

num_features

Figure 11: Fine-tuned search space experiment: Comparison of parameters
“good” (accuracy > 0.7) in green and “bad” (accuracy < 0.7) in red.

12000
10000
8000
6000
4000

2000

Figure

0.8

06

04

02

—— 0.0

12: Fine-tuned search space experiment

1

dropout_0

: Comparison of parameters

“good” (accuracy > 0.7) in green and “bad” (accuracy < 0.7) in red.

06
05
04
03
02

0.1

Figure

0.005

0.004

0003

0.002

0.001

0.000

avg_dropout

13: Fine-tuned search space experiment

: Comparison of parameters

“good” (accuracy > 0.7) in green and “bad” (accuracy < 0.7) in red.

25

between

between

between

10 0010

0.8 0.008

06 0.006

0.4 0.004

02 0.002

00 0.000 =

elu Ir

Figure 14: Fine-tuned search space experiment: Comparison of parameters between
“good” (accuracy > 0.7) in green and “bad” (accuracy < 0.7) in red.

Feature | Importance

activation 0.31
dropout_9 0.09
skstep_3 0.05

dropout_7 0.04
dropout_b 0.04
dropout_8 0.03
dropout_6 0.03
dropout_4 0.02
dropout_0 0.02

skstep_1 0.02

Table 8: Top ten feature importance of the “Fine-tuned search space” experiment

7.1.2 Feature importance

In order to get more insight into how a surrogate model predicts the validation accuracy based
upon a MI vector of parameters, a feature importance analysis is performed. If a parameter has
a high feature importance, it is considered to greatly influence the performance of a network.
On the data of the “Fine-tuned search space” experiment, a random forest was built with
1000 trees, using the parameters of the MI vector as input and the loss value as output.
Table [8 shows which parameters are considered to be the most relevant by the random forest
model, trained on validation accuracy. The activation function was the most indicative of the
performance. This was to be expected, since all “good” networks of the “Fine-tuned search
space” experiment used the elu activation function. The other important parameters are mostly
dropout values, indicating that correctly setting the dropout is important for the performance
of a network. The skip-step three and one values are also considered to be important. The fact
that skip-step three is considered to be more important than skip-step one must be due to
random chance, because they both control the step size of an arbitrary skip connection chain.

26

8 Pruning one node layers experiment

Configurations tended to reduce the feature dimensions to one by one before the network
reached its fully connected part. Technically this is no convolution anymore and actually the
same as a fully connected layer, which is undesirable. Therefore, the “Pruning one node lay-
ers’ method was implemented. This method cuts the one by one part from the network and
immediately attaches the dense fully connected part.

8.1 Pre-experiment

A test run was done on the configuration denoted by table [9] The network without the cut
operation can be seen in figure and with the cut operation in figure [I6] Both networks
were trained for 20 epochs. The network with the cut operation reached an accuracy of 0.61
and a validation accuracy of 0.63 in 1734.69 seconds. The network without the cut operation
reached an accuracy of 0.61 and a validation accuracy of 0.61 in 1659.75 seconds. Since the
cut operation did not seem to impact the performance it was considered to be fit for testing.
The goal was to see if using the cut operation resulted in higher accuracy and lower memory
requirement, which would decrease the percentage of networks that would not fit in memory.

8.2 Main experiment

After testing if the “Pruning one node layers” method produces reasonable results, an ex-
periment was performed. As an extra feature, the epochs to train in the evaluation function
(epoch_sp) and the batch size (batch_size_sp) were added as parameters in the search space.
Epochs were varied between five and 25. The batch size was varied between 50 and 200. In
order to prevent any kind of information leakage, the CIFAR10 data set was split into a test
set, a train set and a validation set. The original train set was split into a train set and a
validation set.The validation set consist of 2000 samples picked from the original train set. It
contained roughly the same amount of samples per class. Networks were trained on the train
set. SMS-MIP-EGO optimized on test set accuracy and training time. Separately from this
experiment, the network with the highest accuracy was trained again and evaluated on the
validation set, as is presented in section [12] All the following experiments use this threefold
separation of data sets.

For the experiment 804 networks were evaluated, where 6.09% did not fit in the memory of
the GPU. This was a small decrease from the 7.41% that did not fit in memory during the
“Fine-tuned search space” experiment. From this small difference, it can be concluded that the
“Pruning one node layers” method does not significantly reduce the memory needed compared
to the standard Skippy method. On the other hand, data analysis in subsection [8.3| shows that
the networks generated by the “Pruning one node layers” method have a significantly smaller
number of features. However, the features that were cut from the network by the “Pruning
one node layers” method all had a size of 1 x 1, meaning they used almost no memory in the
first place. Table shows the training time, validation loss and validation accuracy of the
Pareto optimal solutions. Table [25] in the appendices shows the file name information of the
data file and the file name of the construction script used in this experiment. The data file
can be found online [13]. Figure shows the training time and validation accuracy of the
evaluated networks.

27

Paramter Value

stack_0 2

stack-1 4

stack_2 2

stack_3 6

stack_4 6

stack_5 4

stack_6 0

s-0 3

s_1 7

s_2 7

s_3 1

s 4 6

S5 1

s_6 9

filters_0 108

filters_1 374

filters_2 55

filters_3 579

filters_4 409

filters_b 112

filters_6 246

filters_7 350

filters_8 554

filters 9 502

filters_10 351

filters_11 493

filters_12 239

filters_13 141

k-0 8

k.1 10

k2 1

k3 8

k4 5

k.5 11

k6 13

k.7 5

k8 12

k9 9

k_10 14

k.11 4

k12 15

k.13 3

activation "tanh’

activ_dense ’softmax’

dropout_0 0.12495090785008392
dropout_1 0.00244978236390256
dropout_2 0.10503529076687178
dropout_3 0.4258548492846925
dropout_4 0.5454956319314442
dropout_5 0.7148625620753165
dropout_6 0.09603825810959132
dropout_7 0.7656562067402091
dropout_8 0.6713796132485909
dropout_9 0.3676723784593959
Ir 0.004860286083081829
12 0.0018527840854743725
step False

global_pooling | False

skstart_0 6

skstart_1 1

skstart_2 1

skstart_3 3

skstart_4 2

skstep-0 9

skstep_1 4

skstep_2 3

skstep_3 5

skstep_4 8

max_pooling True

dense_size_0 3884

dense_size_1 3232

batch_size_sp | 170

epoch_sp 33

Table 9: Parameters of the network used to compare using the “Pruning one node layers”
method versus not using it

28

Figure 15: network without non-convolutional part cut

29

Figure 16: network with non-convolutional part cut

Parameter Type Bounds # Dimensions
filters Discrete [10, 600] 14
kernel size Discrete 1, 16] 14
strides Discrete 1, 10] 7
stack_sizes Discrete 0, 7] 7
activation Nominal ["elu”,”relu”,” tanh” ”sigmoid”,”selu”] | 1
activation_dense | Nominal [”softmax”] 1
step Nominal [True, False] 1
global pooling | Nominal [True,False] 1
skstart Discrete 0, 7] 5
skstep Discrete [1, 10] 5
max_pooling Nominal [True, False] 1
dense _size Discrete [0,4000] 2
drop_out Continuous | [le-5, 0.9] 10
Ir Continuous | [le-4, 1.0e-2] 1
12_regularizer Continuous | [le-5, le-2] 1
epoch_sp Discrete [5, 25] 1
batch_size_sp Discrete [50, 200] 1

Table 10: search space of the “Pruning one node layers” experiment

30

Time (s) | Loss | Acc
90.84 2.02 1 0.13
99.43 0.72 | 0.49
159.84 0.60 | 0.55
217.65 0.46 | 0.63
258.27 0.45 | 0.64
408.72 0.43 | 0.65
451.312 | 0.41 | 0.67
461.42 0.40 | 0.67
529.44 0.40 | 0.67
563.65 0.33 | 0.72
1189.82 | 0.27 | 0.76
1890.37 | 0.25 | 0.78
6998.60 | 0.25 | 0.78
9858.69 | 0.24 | 0.78
12237.98 | 0.22 | 0.80

Table 11: Paretofront of the “Pruning one node layers” experiment. Training epochs vary
per entry.

25

Init
» Heuristic
@ Pareto

20 []

05

00

Figure 17: The “Pruning one node layers” experiment on CIFARI10. 804 samples taken,
using epochs as search parameter (5 - 25), using batch size as search parameter (50 - 200),
ten trees in the random forest

31

8.3 Data analysis

The data was split into a set “good” and “bad” networks on an evaluation accuracy of 0.7.
An evaluation accuracy greater or equal to 0.7 was considered to be “good”, smaller than 0.7
was considered to be “bad”. It resulted in 57 “good” networks and 698 “bad” networks.
The addition of adding a variable batch size and epochs to the search space did not seem
to impact the performance. It did not improve the hyper volume as can be seen in Table [22]
However it must be mentioned that the training set is now smaller, due to the evaluation set
being split from it.

8.3.1 High vs. low accuracy

All networks had a zero layer size from filters eight to thirteen, meaning there were no networks
with four to six stacks. This was due to all networks reaching a feature size of 1 x 1 before
this layer, thus instructing the “Pruning one node layers” method to immediately attach the
dense layers and output layer. Since the last layers were never used, this method created a loss
of diversity. Therefore in the following experiment, the “Pruning one node layers” method was
not used, but instead the maximum possible stride value was reduced.

Figures [18] [19} [20] [21} [22] and [23] show a box plot of feature values of the “good” and “bad”
networks. The following trends were found:

e The avg dropout tends to be lower for the “good” networks, indicating that the opti-
mal average dropout value is at the lower side of the search space. The average for the
“good" networks is around 0.24, indicating this is the optimal value. For the “Fine-tuned
search space” experiment, the average was around 0.23, which is very close to 0.24. This
indicates that this dropout value might be a good rule of thumb.

e The avg kernel_size is almost identical among the “good” and “bad” networks. It indi-
cates that the average kernel size does not seem to matter much for the performance of
a network. In the “Fine-tuned search space” experiment, a slightly higher average kernel
size seemed to benefit accuracy.

e The batch_size_sp value is slightly lower among the “good” networks. It averages at
around 120. For the “bad” networks, it averages around 130.

e The dropout_0 value tends to be around zero for the “good” networks. This indicates
that adding a dropout layer directly after the input is not a good idea. The “Fine-tuned
search space” experiment showed the same result.

e The elu activation function is used by the “good” and “bad” networks. This box plot
does not indicate any trends, where the “Fine-tuned search space” experiment showed
that the elu activation function was to be preferred.

32

e The epoch_sp value tends to be higher among the “good” networks. This was to be
expected, since more epochs means more training opportunity, thus a higher accuracy.

e The /2 kernel regularization was lower among the “good” networks, indicating that there
was an optimal value on the lower side of the search space. The average value among the
“good” networks lies around 0.0016, indicating this is the optimal value. In the “Fine-
tuned search space” experiment it averaged even lower around 0.0001 for the “good"”
networks. These results indicate that |2 kernel regularization might not be needed, and
if needed, its value should be close to zero.

e The Ir (learning rate) value was slightly higher among the “good” networks. It av-
eraged around 0.0066 among the “good” networks, indicating an optimal value. In
the previous “Fine-tuned search space” experiment, it averaged around 0.0079 among
the “good” networks.

e All “good” networks used the max_pooling option. This means Max pooling layers have
an added benefit over just using 2D convolutions in a network.

e The num_features range was smaller among the “good” networks. Its average was 2000
among the “good” networks. In the previous “Fine-tuned search space” experiment, the
number of features was slightly higher among the “good” solutions versus the “bad”
solutions. The “good” solutions’ number of features averaged around 5400 in the “Fine-
tuned search space” experiment, more than twice the amount of features as the average
amount of features in the “good” solutions of the “Pruning one node layers” experiment.
This was to be expected, since the “Pruning one node layers” method cuts all features
of size 1 x 1. Since these features do not take up a lot of memory in the first place, the
“Pruning one node layers” method unfortunately does not save a lot of memory.

e The time values were greater among the “good” networks. This indicates that more
training time means higher accuracy. This can be partly explained by the fact that more
epochs tend to lead to a higher accuracy and that more epochs require more training
time. However, the “Fine-tuned search space” experiment shows higher accuracy for
longer training times even when the number of epochs is fixed in this experiment.

33

06 14

05

04

03

02

01

— 2 —_—

avg_dropout avg_kernel_size

Figure 18: Pruning one node layers: Comparison of parameters between “good” (accuracy
> 0.7) in green and “bad” (accuracy < 0.7) in red.

200 —r
0.4

180

160 03

140

120 02

100

01

80

. 1 T
0.0

batch_size_sp dropout_0

Figure 19: Pruning one node layers: Comparison of parameters between “good” (accuracy
> 0.7) in green and “bad” (accuracy < 0.7) in red.

10 250
25
08
200
06 17.5
15.0
04 125
10.0
02
75
0.0 50 '
elu epoch_sp

Figure 20: Pruning one node layers: Comparison of parameters between “good” (accuracy
> 0.7) in green and “bad” (accuracy < 0.7) in red.

34

0.010 o 0.010

0008 0.008
0.006 0.006
0.004 -1 0.004
0.002 0.002
l L
0.000 J . 0.000 e

Figure 21: Pruning one node layers: Comparison of parameters between “good” (accuracy
> 0.7) in green and “bad” (accuracy < 0.7) in red.

6000

0.8 5000

06

3000
04

2000

02

1000

0.0 0 —4

max_pooling num_features

Figure 22: Pruning one node layers: Comparison of parameters between “good” (accuracy
> 0.7) in green and “bad” (accuracy < 0.7) in red.

17500
15000
12500

10000

7500

5000

2500

Figure 23: Pruning one node layers: Comparison of parameters between “good” (accuracy
> 0.7) in green and “bad” (accuracy < 0.7) in red.

35

Feature | Importance

activation 0.17
dropout_9 0.07
skstep_3 0.04

dropout_0 0.03
dropout_7 0.03
dropout_1 0.03
dropout_6 0.03
filters_11 0.02

filters_3 0.02
dropout_3 0.02

Table 12: Top ten feature importance of the “Pruning one node layers” experiment

8.3.2 Feature importance

A random forest was trained with 1000 trees on the data of the “Pruning one node layers”
experiment, using the parameters of the M| vector as input and the loss value as the training
goal. Table[12|shows the top ten feature importance. Just like in the “Fine-tuned search space”
experiment, the activation function is considered to be the most important. After this, the
choice for the dropout values is most important, just like in the “Fine-tuned search space”
experiment. Apart from the activation function, all importance values are small. Because it
did not add to any gained insights, it is not used further on.

9 Comparison with RESnet-30

The proposed method was compared with a state-of-the-art RESnet-30 architecture that is
publicly available [23]. The best network from the “Fine-tuned search space” experiment and
the state-of-the-art RESnet-30 network were trained for 200 epochs and their results were
compared as can be seen in figure [24] For the first 80 epochs, the best network from the
“Fine-tuned search space” experiment performs similarly to the state-of-the-art RESnet-30
network. At around 80 epochs, the state-of-the-art network jumps up significantly in perfor-
mance. This is at the same time when the learning rate drops due to its training schedule.
The state-of-the-art network used data augmentation, where the best network from the “Fine-
tuned search space” experiment does not. Also the “Fine-tuned search space” experiment
evaluated its networks for only ten epochs. It is highly unlikely that it could predict a jump at
80 epochs. Therefore two last experiments were proposed. In the first step, called the “Data
augmentation experiment”, data augmentation parameters were added to the search space. In
the second step, called the “Training schedule optimization” experiment, the network with the
highest validation accuracy was selected and this network’s training schedule was optimized
and trained for 100 epochs. SMS-MIP-EGO was used as an optimizer.

36

State-of-the-art

—— Fine tuned search space
09

=)
=5}

accuracy
2

06

05

0 25 50 75 100 125 150 175 200
epochs

Figure 24: Comparison of state-of-the-art RESnet-30 [23] and the best network from the
“Fine-tuned search space” experiment, trained for 200 epochs

10 Data augmentation experiment

In the “Pruning one node layers” experiment, almost no networks used the last stacks. This
was a waste of possible diversity per stack, since the network could also be made shallower by
decreasing the stack sizes. Therefore the maximum stride was decreased to four. The maximum
value for dropout was capped at 0.42 because in the “Pruning one node layers” experiment,
all “good” networks, except for the outliers, had an average dropout in this range. Because
training for more epochs resulted in higher accuracy in the “Pruning one node layers” experi-
ment, it was harder to distinguish which architecture was better suited for training and which
accuracy was simply trained for more epochs. Therefore, the epoch_sp parameter was removed
from the search space.

Table [13]| explains the features that were added to the search space in order to perform data
augmentation. Table [14] shows the ranges of all parameters that make up the search space.
Note that the featurewise_center, samplewise_center, featurewise_std_normalization and sam-
plewise_std_normalization parameters are always False. This is done because it interfered with
the normalization that was already in place and resulted in low accuracy

In this experiment, 807 solutions were chosen to be evaluated for ten epochs. 13.14% of the
solutions did not fit in memory and were not evaluated.

Table [15 shows the training time, evaluation loss value and evaluation accuracy of the Pareto
optimal solutions. Table in the appendices shows the file name information of the data
file and the file name of the construction script used in this experiment. The data file can be
found online [13]. Figure [25| shows a plot of the training time and the evaluation accuracy of
all evaluated networks.

37

Parameter Explanation

Set input mean to 0 over the dataset, feature-wise.

Set each sample mean to 0.

Divide inputs by std of the dataset, feature-wise.

Divide each input by its std.

epsilon for ZCA whitening.

Apply ZCA whitening.

Degree range for random rotations.

fraction of total width, if < 1, or pixels if > 1.

fraction of total height, if < 1, or pixels if > 1.

Shear Intensity (Shear angle in counter-clockwise direction in degrees)
Range for random zoom. [lower, upper] = [1-zoom range, 1+zoom range].
Range for random channel shifts.

One of {”constant”, "nearest”, "reflect” or ”wrap” }.

Value used for points outside the boundaries when fill_ mode = ”constant”.
Randomly flip inputs horizontally.

Randomly flip inputs vertically.

featurewise_center
samplewise_center
featurewise_std_normalization
samplewise_std _normalization
zca_epsilon

zca_whitening

rotation_range
width_shift_range

height _shift_range
shear_range

zoom _range

channel shift_range

fill mode

cval

horizontal flip

vertical flip

Table 13: Extra search space parameters for the “Data augmentation” experiment expla-
nation, which uses the Keras’ “keras.preprocessing.image.ImageDataGenerator” function.

Explanations are according to the Keras documentation [1J.

Parameter Type Bounds # Dimensions
filters Discrete (10, 600] 14
kernel size Discrete 1, 16] 14
strides Discrete [1, 4] 7
stack sizes Discrete [0, 7] 7
activation Nominal [elu”,”relu”,” tanh”,”sigmoid”,”selu”] | 1
activation_dense Nominal ["softmax”] 1
step Nominal [True, False] 1
global_pooling Nominal [True,False] 1
skstart Discrete [0, 7] 5
skstep Discrete [1, 10] 5
max_pooling Nominal [True, False] 1
dense_size Discrete [0,4000] 2
drop_out Continuous (0.0, 0.42] 10
Ir Continuous [le-4, 1.0e-2] 1
12_regularizer Continuous [le-5, le-2] 1
batch_size_sp Discrete (50, 200] 1
featurewise_center Nominal [False] 1
samplewise_center Nominal [False] 1
featurewise_std_normalization | Nominal [False] 1
samplewise_std normalization | Nominal [False] 1
zca_epsilon Continuous [0.5e-6, 2e-6] 1
zca_whitening Nominal [True,False] 1
rotation_range Ordinal [0, 360] 1
width_shift_range Continuous (0.0, 1.0] 1
height_shift_range ContinuousSpace | [0.0, 1.0] 1
shear_range Continuous (0.0, 45.0] 1
Zoom _range Continuous (0.0, 1.0] 1
channel shift_range Continuous [0.0, 1.0] 1
fill_ mode Nominal [“constant”, “nearest” “reflect”, “wrap”] | 1
cval Continuous (0.0, 1.0] 1
horizontal flip Nominal [True,False] 1
vertical flip Nominal [True,False] 1

Table 14:

search space of the “augmented” experiment

38

Time (s) | Loss | Acc
754.83 1.85 | 0.16
891.18 1.19 | 0.31
1072.66 | 0.81 | 0.44
1574.26 | 0.46 | 0.63
6163.14 | 0.35 | 0.71

Table 15: Paretofront of the “Data augmentation” experiment each entry is trained for
ten epochs

25

Init
» Heuristic
@ Pareto

20

05

0.0

Figure 25: The “Data augmentation” experiment on CIFAR10. 807 samples taken, using
batch size as search parameter (50 - 200), ten trees in the random forest

39

10.1 Data analysis

The configurations of the “Data augmentation” experiment were split on a validation accuracy
of 0.4. Configurations with a validation accuracy greater or equal to 0.4 were considered to
be “good” solutions, while those with a validation accuracy smaller than 0.4 were considered
to be “bad” solutions. This split the resulted in 77 “good” solutions and 624 “bad” solutions.

10.1.1 High vs. low accuracy
Figure [26] [27] 28} [29, 30} 31} 32, 33} [34] [35] and [36] show box plots of these features. The

following trends were found:

e The avg_kernel_size is slightly smaller in the “good” solutions, but this is insignificant.
The average of the average kernel size per network lies around 7.5. In the “Fine-tuned
search space” experiment, “good” solutions tended to have slightly bigger kernel sizes
than the “bad” solutions, averaging around 8 for the “good” networks. In the “Pruning
one node layers” experiment, average kernel size was almost equal for “good” and “bad”
networks, averaging around 8 for the “good” networks. It can be concluded that there
is no clear optimal kernel size that can lead to a high accuracy. In the experiments, the
average kernel size tends to be around 8.

e The num_features is slightly larger among the “good” networks, averaging around 5400.
Indicating more features in a network improve the accuracy. The same result can be seen
in the “Fine-tuned search space” experiment. In this experiment, it averaged around
5400. The “Pruning one node layers” experiment, this result is not present. In this ex-
periment, it averaged around 2000. It can be concluded that there might be a positive
correlation between the number of features and the validation accuracy.

e The time value tends to be slightly larger among the “good” solutions, although the
average training time value is almost the same among the “good” and “bad” solutions.
Since the amount of epochs trained for is the same for all networks, this parameter
indicates how long it takes to train for each epoch. It is to be expected that a network
with more trainable features will yield better results and also needs more training time
per epoch. Therefore it is to be expected that a longer training time per epoch will yield
better results on average. The “Fine-tuned search space” experiment and “Pruning one
node layers” experiment also show more training time leading to a higher accuracy.
Therefore it can be concluded that more training time will lead to a higher accuracy,
even when the number of epochs is fixed.

e The dropout_0 value is close to zero among the “good” solutions. This result was also
present in the “Fine-tuned search space” experiment and “Pruning one node layers”
experiment. So even with data augmentation, it is good practice to omit a dropout layer
between the input and the network. It can be concluded that it is bad practice to put a
dropout layer directly after the input.

40

e The avg. dropout value is slightly lower in among the “good” solutions and centred
around 0.16. This indicates this is the optimal value for most networks. In the “Fine-
tuned search space” experiment this value was centred around 0.23, where it was centred
around 0.24 for the “Pruning one node layers” experiment. This difference might be ex-
plained due to the fact that dropout protects for overfitting. However, data augmentation
also protects from overfitting. Therefore when using data augmentation, less dropout is
needed. From these experiments it can be concluded that it is advisable is to use dropout
values around 0.23 as a start point for tweaking when not using data augmentation and
around 0.16 when using data augmentation.

e The /2 regularization value is centred around 0.001 for the “good” solutions. This is
considered the optimal value for this experiment. In the “Fine-tuned search space” ex-
periment, it was centred around 0.0001, while in the “Pruning one node layers” exper-
iment it was centred around 0.0016. It can be concluded that 12 regularization should
only be used with small values under 0.002, or that it should not be used at all.

e None of the “bad" solutions use the elu activation function. In the “Fine-tuned search
space” experiment, all the “good” solutions used the elu activation function. The “Prun-
ing one node layers” experiment showed no clear trend. However, there is an indication
that the elu activation function works well with Skippy. It might mean that the elu
activation function is the preferred function when building CNNs.

e The /r value is slightly higher among the “good” solutions. The learning rate value is
centred around 0.006 for the “good” solutions. This is considered to be the optimal value
for this experiment. For the “Fine-tuned search space” experiment, it centred around
0.0079, while for the “Pruning one node layers” experiment it centred around 0.0066.
Thus, a learning rate of about 0.007 is a good starting point for this type of network
and dataset.

e The batch_size_sp value is centred around 140 for the “good” solutions and around 130
for the “bad” solutions. For the “Pruning one node layers” experiment, the average
value was centred around 120 for the “good” networks and around 130 for the “bad"”
networks. In conclusion, the batch size has little impact on the accuracy of a network.

e The channel_shift_range is lower among the “good” solutions. This indicates that chan-
nel shifting in the data augmentation should only be done with small values between
zero and 0.05, or be omitted.

41

e No “good” solutions used the constant infill method. This indicates that using a con-
stant value to fill in the gaps created by shearing an image is not a good idea. None
of the “bad” solutions use the nearest infill value when using shearing, while some of
the “good” do. This indicates that it not a bad idea to use the nearest pixel as an infill
value when using a shear transformation in data augmentation. The reflect infill method
is used by the “good” and the “bad” solutions, while no solutions used the wrap infill
method. Thus, the nearest pixel or the reflect method can be used as an infill value, but
avoid the constant value and do not use the wrap method.

e None of the “bad” solutions use global_pooling. Since the “Data augmentation” experi-
ment uses a smaller stride range, the chance of features being reduced to a size of 1 x 1
pixels is small, in which case global pooling can help in reducing the complexity of the
dense layers of the network. This result indicates that global pooling is also beneficial
for the accuracy or a network. The “Fine-tuned search space” and “Pruning one node
layers” experiment’s networks did not show this trend. It can be concluded that it is
good practice to reduce the feature size to 1 x 1 before connecting the dense layer, and
if this is not the case, to use global pooling.

e The height_shift_range is cantered around 0.35 for the “good” networks, while at 0.45
for the “bad” solutions. This indicates that data augmentation works best for a height
shift range between zero and 0.35.

e All of the “bad” solutions use the horizontal flip data augmentation parameter, while
some of the “good” solutions use it and some don't. This indicates that the random
horizontal flipping of images is not necessary for high performance.

e All networks use the max_pooling layer, with the exception of some outliers, instead of
a 2D convolutional layer with a stride larger than one for reducing the size of images.
It is unclear why this is the case, but it might be that SMS-MIP-EGO senses this is
good design practice. In the “Pruning one node layers” experiment, all “good” networks
use Max pooling. These results challenge the findings of Springenberg et al. [18], that
question the necessity of Max pooling layers.

e The rotation_range is centred around 100 for the “good” solutions and around 180 for
the “bad” solutions. This indicates better results are yielded when images are rotated
for smaller amounts, during data augmentation, preferably between zero and 100 degrees.

e All of the “bad” solutions use the vertical_flip, while some of the “good” solutions use it
and some don't. This indicates that flipping images among the vertical axis during data
augmentation is not needed for good results.

42

10000 -T—

8000

8 6000

avg_kernel_size num_features

Figure 26: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

20000 0.4
17500

15000 03

12500

10000 0.2

7500

5000 01

2500 I

— 0.0

time dropout_0

Figure 27: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

e The width_shift_range is centred around 0.18 for the “good” solutions and around 0.5
among the “bad” solutions. This indicates that it is best not to shift the width too much
when using data augmentation, ideally only between zero and 0.18.

e The zoom_range is centred around 0.35 for the “good” solutions, while it is centred
around 0.55 for the “bad” solutions. This indicates that images should not be zoomed
too drastically during data augmentation. Ideally they should stay within a range between
zero and 0.35.

43

0.30

025

020

0.15

0.10

0.05

avg_dropout

0.010

0.008

0.006

0.004

0.002

0.000

Figure 28: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

0.8

06

04

02

0.0

elu

0.010

0.008

0.006

0.004

0.002

0.000

Figure 29: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

200

180

160

140

120

100

Figure 30: Data augmentation: Comparison

batch_size_sp

08

06

0.4

02

00

0.4) in green and “bad” (accuracy < 0.4) in red.

44

I
T
—

channel_shift_range

of parameters between “good” (accuracy >

1.0 1.0
0.8 0.8
06 06
04 04
0.2 0.2
0.0 0.0
constant global_pooling

Figure 31: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

1.0 —_— 1.0
0.8 08
0.6 06
04 04
02 0.2
0.0 —— 00
height_shift_range horizontal_flip

Figure 32: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

10
1.0
08 08
06 06
04 04
02 02
00 0.0
max_pooling nearest

Figure 33: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

45

300
0.8

250

06
200

04 150

100
02

0.0 0

reflect rotation_range

Figure 34: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

1.0 1.0 T
0.8 08
0.6 06
04 0.4
02 0.2
0.0 00
vertical_flip width_shift_range

Figure 35: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

004

08

002

06

0.00 —_—

04

02

0.0 ——

wrap Zoom_range

Figure 36: Data augmentation: Comparison of parameters between “good” (accuracy >
0.4) in green and “bad” (accuracy < 0.4) in red.

46

25
Init

[X X KX ROXEK- K X X % Heuristic
@® Pareto

20

05 X X
X X
X

BB RRIHK XX M @O X

00
6x10

time (s)

Figure 37: The “Training schedule optimization” experiment on CIFAR10. 104 samples
taken, ten trees in the random forest

11 Training schedule optimization experiment

The network with the highest validation accuracy of the “Data augmentation” experiment's
results had its training schedule optimized. Table|17|explains the parameters that are optimized.
Note that the SMS-MIP-EGO optimizer searches for the optimal training optimizer, thus an
optimizer optimizes over a set of optimizers. Table [L8|shows the ranges upon which SMS-MIP-
EGO optimizes these parameters. Its parameters are listed in table[16] The upper bound of the
learning rate search space was chosen to be two times the learning rate of this best network as
found by the “Data augmentation” experiment, in order to give SMS-MIP-EGO some room to
work with, without straying to far from a possible optimum. The basic structure of the network
is fixed at this point, assuming that the “Data augmentation” experiment found a near optimal
network. The network was trained for 100 epochs for each training schedule and 104 training
schedules were evaluated. Table [27]in the appendices shows the file name information of the
data file and the file name of the construction script used in this experiment. The data file
can be found online [13].

11.1 Data analysis

To analyze the training schedules, the results were split into “good” and “bad” configurations,
splitting on a validation accuracy of 0.86. Networks with a validation accuracy greater or equal
to 0.86 were considered to be “good”, those with a validation smaller than 0.86 were considered
to be “bad”. This resulted in 28 “good” training schedules and 76 “bad” training schedules.
Almost all training schedules used the Stochastic Gradient Descent (SGD) training optimizer.
This can be explained by the fact that during the “Data augmentation” experiment, the SGD
optimizer was used. Therefore, the networks were optimized to work good with this optimizer.
SMS-MIP-EGO has the ability to sense this optimizer is a good choice, thereby almost always
selecting this optimizer.

47

Paramter Value

stack_0 3

stack_1 1

stack_2 2

stack_3 1

stack_4 5

stack_5 0

stack_6 0

s 0 2

s_1 1

s2 3

s.3 3

s 4 3

s.5 3

s 6 3

filters_0 246

filters_1 120

filters_2 397

filters_3 473

filters_4 191

filters_5 109

filters_6 535

filters_7 202

filters_8 353

filters_9 339

filters_10 305

filters_11 507

filters_12 474

filters_13 350

k0 2

k1 11

k2 4

k.3 4

k4 14

k.5 10

k6 8

k7 9

k8 9

k9 5

k_10 10

k11 9

k.12 4

k.13 4

activation “selu”

activ_dense “softmax”
dropout_0 0.005004155479145995
dropout_1 0.16597601970646955
dropout_2 0.3496803660826153
dropout_3 0.11567654065541401
dropout_4 0.025329970168830974
dropout_5 0.09773198911653828
dropout_6 0.19656398582242512
dropout_7 0.2567508735733037

dropout_8
dropout_9

12
global_pooling
skstart_0
skstart_1
skstart_2
skstart_3
skstart_4
skstep_0

skstep4
max_pooling
dense_size_0
dense_size_1
batch_size_sp
featurewise_center

samplewise_center

feature

std_normalization

samplewise_std_normalization

zca_epsilon
zca_whitening
rotation_range
width_shift_range
height_shift_range
shear_range
zoom_range
channel shift_range
fill.mode

cval
horizontal flip
vertical flip

0.10220859898802954
0.282536761776477
0.00043366714416766863
True

False

False
1.2393513955305375e-06
False

31
0.11326574574565945
0.5512549395731117
4.413108635288765
0.02446592218470434
0.002134671459292783
“nearest”
0.24779638415638786
True

False

48

Table 16: Parameters of the network used optimize the training schedule on.

Parameter

Explanation

Ir

drop
epochs_drop
momentum
optimizer
rho

The learning rate

Constant the learning rate is multiplied by after a number of epochs specified by “epochs_drop”
The number of epochs it takes for the learning rate to drop

This parameter is used by the “SGD” optimizer.

The optimizer that optimizes the training process

This parameter is used by the “RMSprop” and “Adadelta” optimizer.

Table 17: Extra search space parameters for the “Training schedule optimization” exper-
iment explanation.

Parameter | Type Bounds # Dimensions
Ir Continuous | [le-4, 2 * 0.003521543292982737] 1
drop Continuous | [0.1, 0.95] 1
epochs_drop | Discrete 1, 40] 1
momentum | Continuous | [0.8,0.99] 1
optimizer Nominal [“SGD”, “RMSprop”, “Adagrad”, “Adadelta”, “Adam”, “Adamax”, “Nadam”] | 1
rho Continuous | [0.8,0.99] 1

Table 18: search space of the “Training schedule optimization” experiment

Time (s) | Loss | Acc
56003.90 | 2.30 | 0.10
56993.21 | 1.76 | 0.17
58603.34 | 0.15 | 0.86
58802.00 | 0.14 | 0.87
58969.00 | 0.14 | 0.87
62196.51 | 0.14 | 0.87
62881.96 | 0.14 | 0.87

Table 19: Paretofront of the “Training schedule optimization” experiment each entry is
trained for 100 epochs

Parameter Value
Ir 0.0016
drop 0.82
optimizer “SGD”
epochs_drop | 13

rho 0.92
momentum | 0.96

Table 20: The best configuration of the “Training schedule optimization” experiment

49

Bl

0.8

06

04 15
10
02 5

drop epochs_drop

Figure 38: Training schedule optimization: Comparison of parameters between “good”
(accuracy > 0.86) in green and “bad” (accuracy < 0.86) in red.

11.1.1 High vs. low accuracy

Figure [38] [39] and [39] show box plots of these sets of “good” and "bad” training schedules.
The following trends were found:

e The “good” training schedules tend to have a higher drop value than the “bad” training
schedules. This indicates that the learning rate should be gradually reduced. The average
lies around 0.75 for the “good” schedules

e The “good” training schedules tend to have a higher epochs_drop value than the “bad”
training schedules. The average is around 19 epochs for the “good” schedules.

e The averaged Ir for the “good” training schedules lies around 0.0016, which is lower
than the 0.0035 that was found by the “Data augmentation” experiment.

e The average momentum value lies around 0.93 for the “good” training schedules. The
“good” and “bad” training schedules do not differ a lot on this point, with the exception
that more “good” schedules have a lower momentum value.

e Since almost all training schedules use the SGD optimizer, the rho value does not matter,
since SGD does not use this value.

20

0.007 == —
0975 I

0.006

0.950

0.005

0925

0.004 0900

0003 0.875

0002 0.850
0.001 0.825
0,000 —— 0.800

Ir momentum

Figure 39: Training schedule optimization: Comparison of parameters between “good”
(accuracy > 0.86) in green and “bad” (accuracy < 0.86) in red.

0.975

0950

0925

0.900

0875

0.850

0825

0.800

Figure 40: Training schedule optimization: Comparison of parameters between “good”
(accuracy > 0.86) in green and “bad” (accuracy < 0.86) in red.

o1

09

08

=}
=

accuracy

o
@

05

State-of-the-art
—— Fine tuned search space

—— Pruning one node layers
0.4 —— Data augmentation
—— Training schedule optimization

0 25 50 75 100 125 150 175 200
epochs

Figure 41: Overview of the evaluation accuracy of the best networks trained for 200 epochs.

12 Extra training of best networks

Figure and its zoomed in version, figure [42, show the validation accuracy of the con-
figurations that had the highest validation accuracy during the SMS-MIP-EGO step, when
trained for 200 epochs. Note that the highest validation accuracy “Fine-tuned search space”
experiment result used an evaluation set that was also used during the optimization of SMS-
MIP-EGO, thereby having the potential to leak information and overfit on the validation set.
The configurations with the highest validation accuracy of the “Pruning one node layers”,
“Data augmentation” and “Training schedule optimization” experiment however, used a val-
idation set independent from the validation set that was used in the optimization step. The
original train set was split into a new train set and a validation set, containing 2000 samples,
with roughly the same amount of samples per layer. During the search performed by SMS-
MIP-EGO, the configurations were trained on the new train set and evaluated on the original
test set. In the last training session, networks were again trained on the new train set but
evaluated on the validation set.

Table [21] shows the maximum validation accuracy reached during the training of the networks
with the highest validation accuracy from the different methods. The state-of-the-art RESnet-
30 [23] has the highest validation accuracy with 0.93, closely followed by the network with the
highest validation accuracy from the “Data augmentation” experiment combined with the best
training schedule from the “Training schedule optimization” experiment, which had resulted
in an accuracy of 0.90.

13 Summary

A summary of all experiments can be seen in table 22| The “Fine-tuned search space” and
“Pruning one node layers” experiment have the highest hypervolume value. The “Data aug-
mentation” experiment showed the smallest hypervolume, the highest percent dysfunctional
networks and the smallest amount of Pareto optimal solutions. Nonetheless it was deemed to
be the method with the highest potential, since it uses data augmentation.

52

095
State-of-the-art

—— Fine tuned search space
—— Pruning one node layers
—— Data augmentation

090 —— Training schedule optimization

=3
™
@

accuracy

o
=3
o

0.75

0 25 50 75 100 125 150 175 200
epochs

Figure 42: Close up of the overview of the evaluation accuracy of the best networks trained
for 200 epochs.

Method Max validation accuracy
State-of-the-art 0.93
Fine-tuned search space 0.88
Pruning one node layers 0.82
Data-aug 0.88
Training schedule optimization | 0.90

Table 21: A comparison of the maximum validation accuracy of the best networks when
trained for 200 epochs

Experiment Tterations || Hypervolume | % dysfunctional | # paretofront | highest acc.
Base 410 5.37 €5 4.15 6 0.74
Fine-tuned search space 810 5.55 eb 7.41 11 0.81
Pruning one node layers 804 5.55 eb 6.09 15 0.80
Data augmentation 807 5.27 ed 13.14 5 0.71

Table 22: Results of different experiments using the Skippy method. During the evalu-
ation step, networks were trained for ten epochs. The reference point for hypervolume
calculation is (200000, 3). The “Base” experiment was run for only 410 iterations, since
the search space needed tweaking, before spending too much resources. The rest of the
experiments were run for at least 800 iterations. The slight difference in the number of
iterations in these “800 plus” experiments was caused by a different amount of parallel
execution for each experiment, resulting in stop criteria being triggered at a different
amount of iterations. This slight difference was considered to be irrelevant.

23

14 Conclusion

After the experiments, it can be concluded that SMS-MIP-EGO, when combined with Skippy,
can successfully find CNNs in a given search space, minimizing training time and maximizing
validation accuracy. The found CNNs did not beat the current state-of-the-art CNNs, as can
be seen in the comparison in section (12|

Results that are able to compete with the current state-of-the-art CNNs were found in the
“Fine-tuned search space” experiment in the first ten epochs as is described in section [7]
Adding data augmentation and further training schedule optimization resulted in a validation
accuracy close to the state of the art (0.90) when trained for 200 epochs as is described in
section [12

SMS-MIP-EGO could be applied as a general black box optimization algorithm, because it can
optimize CNN architectures as well as training schedules as shown in section [10] and [11]

The validation accuracy of deep networks is improved by adding skip connections, as can be
seen in section [5] The tested network’s performance deteriorated to random guessing when
omitting skip connections, whereas the version with skip connections reached an evaluation
accuracy of 0.72 in 20 epochs.

Section [8] shows that pruning the last non-convolutional part of a network did not matter
significantly. It did not impact the overall performance of networks and also did not signifi-
cantly impact the memory requirements. In section [I0] the amount of stride in the network
was constricted to not make this reduction to a 1 x 1 feature size happen.

According to section [7] and [8] the choice of activation function matters the most for the ac-
curacy of a network.

Data analysis in subsections[7.1} [8.3] and led to the discovery of the following best
practices. However, these best practices do not necessarily generalize to other architectures or
data sets other than CIFAR10. The practices found were:

It is bad practice to put a dropout layer directly after the input. This does not benefit
training a network, it merely muddles the input.

e More training time generally means higher accuracy, even when the amount of epochs
is fixed. The more complex the network, the more training time is needed. Thus, the
complexer the network, the more potential it has for reaching a high accuracy.

e A learning rate around 0.007 is a good starting point to train a CNN with skip connec-
tions for CIFAR10.

e Another rule of thumb is to use dropout values around 0.23 as a starting point for tweak-
ing when not using data augmentation and around 0.16 when using data augmentation.

e L2 regularization should only be used with very small values under 0.002, or not at all.

e The results indicate that the elu activation function works well with Skippy.

o4

e The batch size has little impact on the accuracy of a network.

e It is good practice to reduce the feature size to 1 x 1 before connecting the dense layer,
or else to use global pooling.

e The “good” networks in the results tend to use the option to do Max pooling. These
results challenge the findings of Springenberg et al. [18], that question the necessity of
Max pooling layers.

e In data augmentation, channel shifting should only be done with small values between
zero and 0.05, or be omitted.

e The results show that, when using a shear operation as a data augmentation technique,
use the nearest pixel as an infill value, or the reflect method for infill, but avoid the
constant value and do not use the wrap method.

e The results show that when shifting the height of images during data augmentation, it
works best to use a height shift range between zero and 0.35.

e When using image rotation as a data augmentation technique, the highest validation
accuracy is yielded when images are rotated for smaller amounts, preferably between
zero and 100 degrees.

e Flipping images among the vertical axis during data augmentation is not needed for
good results.

e For a high validation accuracy, it is best not to shift the width too much when using
data augmentation, ideally only between values of zero and 0.18

e Images should not be zoomed too drastically during data augmentation, because this
can negatively impact the validation accuracy. Ideally stay within a range between zero
and 0.35.

In the configuration datasets, correlations were analyzed. No interesting or meaningful corre-
lations were present, aside from obvious ones. These results are therefore omitted.

An a priori rule finding algorithm was used to find rules in discretized versions of the con-
figuration datasets. No clear rules could be found by this algorithm. Its results are therefore
omitted.

95

15 Future Work

It would be interesting to use the Skippy3 method, as described in section [5, and vary the
amount of feature reduction by putting it as a variable in the search space. This method
showed potential, but was not used due to the amount of GPU memory it needed. It can be
interesting to see how this method performs with an increased amount of memory, for example
to run it on multiple GPUs, or to wait for GPUs with more memory to be developed.

Skippy uses a fixed number of stacks. It might be an option to make the number of stacks
variable. Parameters like layer width and kernel size can be varied by picking a value for the
first stack and then increase or decrease it by a constant factor, or use a function with its own
parameters to increase or decrease the values.

Networks could be trained for 100 epochs in the evaluation step to get better estimates of
the networks' performance. Training schedule optimization can be added to the search space
immediately. Evaluating 800 networks that were trained for ten epochs took two weeks when
using ten Nvidia Tesla K80 GPUs simultaneously. Scaling up the experiment by a factor of ten
would take roughly 20 weeks for it to complete. Halving the amount of GPUs reduced to five
so as not to take up too many resources would double this to 40 weeks.

It could be interesting how SMS-MIP-EGO with Skippy performs on less commonly used data
sets. The state of the art results are so highly optimized on CIFAR10, that they are hard to
beat.

Since SMS-MIP-EGO is not the best M| optimizer available, it would be interesting to use
different state of the art optimizers, like Yang's method [11] for example, with Skippy to see
if it can then beat state of the art networks.

o6

References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Keras documentation: Image preprocessing. https://keras.io/preprocessing/
image/. Accessed: 2019-07-20.

pandas.dataframe.boxplot. https://pandas.pydata.org/pandas-docs/stable/
reference/api/pandas.DataFrame.boxplot.html. Accessed: 2019-07-20.

Quoc V. Le Barret Zoph. Neural architecture search with reinforcement learning. /ICLR
2017 conference submission, 2017.

Ashwin Bhandare, Maithili Bhide, Pranav Gokhale, and Rohan Chandavarkar. Applica-

tions of convolutional neural networks. International Journal of Computer Science and
Information Technologies, pages 22062215, 2016.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Mohammad Sadegh Ebrahimi and Hossein Karkeh Abadi. Study of residual networks for
image recognition. arXiv preprint arXiv:1805.00325, 2018.

Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. Simple and efficient architecture
search for convolutional neural networks. arXiv preprint arXiv:1711.04528, 2017.

Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. Data-efficient neuroevolu-
tion with kernel-based surrogate models. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 85-92. ACM, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Thomas Back Kaifeng Yang, Koen van der Blom and Michael Emmerich. Towards single-
and multiobjective bayesian global optimization for mixed integer problems. 2018.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 dataset. https://www.cs.
toronto.edu/~kriz/cifar.html. Accessed: 2019-07-20.

Christiaan Lamers. Data and the code of method. https://github.com/
christiaanlamers/sms-mip-ego. Accessed: 2019-08-03.

Rui Li, Michael TM Emmerich, Jeroen Eggermont, Thomas Back, Martin Schitz, Jouke
Dijkstra, and Johan HC Reiber. Mixed integer evolution strategies for parameter opti-
mization. Evolutionary computation, 21(1):29-64, 2013.

Tejaswini Pedapati Martin Wistuba, Ambrish Rawat. A survey on neural architecture
search. arXiv:1905.01392, 2019.

Luis Perez and Jason Wang. The effectiveness of data augmentation in image classifica-
tion using deep learning. arXiv preprint arXiv:1712.04621, 2017.

o7

https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/christiaanlamers/sms-mip-ego
https://github.com/christiaanlamers/sms-mip-ego

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze. Multiobjective
optimization on a limited budget of evaluations using model-assisted s-metric selection.
In International Conference on Parallel Problem Solving from Nature, pages 784—794.
Springer, 2008.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striv-
ing for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99-127, 2002.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet:
Platform-aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626,
2018.

Yong Rui Tao Wei, Changhu Wang and Chang Wen Chen. Network morphism.
arXiv:1603.01670, 2016.

Bas van Stein, Hao Wang, and Thomas Back. Automatic configuration of deep neural
networks with ego. arXiv preprint arXiv:1810.05526, 2018.

Yuxin Wu. cifarl0-resnet.py. https://github.com/tensorpack/tensorpack/blob/
master/examples/ResNet/cifar10-resnet.py. Accessed: 2019-07-20.

o8

https://github.com/tensorpack/tensorpack/blob/master/examples/ResNet/cifar10-resnet.py
https://github.com/tensorpack/tensorpack/blob/master/examples/ResNet/cifar10-resnet.py

Appendices

Parameter | Value Explanation
save_name | “data_skippy_cifar10_big_one” | Head of save file names
objective | “./all_cnn_bi_skippy.py” Name of construction method program

Table 23: File-name information of the “Base” experiment. The file of the objective func-
tion can be found online[13]. The data file can also be found online [13] in the “data_thesis”
folder.

Parameter | Value Explanation
save_name | “data_skippy_cifar10_big_one_tweaked restarted” | Head of save file names
objective | “./all_cnn_bi_skippy.py” Name of construction method program

Table 24: File-name information of the “Fine-tuned search space” experiment. The file of
the objective function can be found online[13]. The data file can also be found online [13]
in the “data_thesis” folder.

Parameter | Value Explanation
save name | “data_skippy_cifar10_big one_cut_smaller restart 2” | Head of save file names
objective | “./all_cnn bi_skippy_cut.py” Name of construction method program

Table 25: File-name information of the “Pruning one node layers” experiment. The file of
the objective function can be found online[13]. The data file can also be found online [13]
in the “data_thesis” folder.

Parameter | Value Explanation
save_name | “data_skippy_cifarl0_better_data_augmentation_big_one restarted1” | Head of save file names
objective | “./all_cnn_bi_skippy_aug.py” Name of construction method program

Table 26: File-name information of the “Data augmentation” experiment. The file of the
objective function can be found online[I3]. The data file can also be found online [13] in
the “data_thesis” folder.

Parameter | Value Explanation
save_name | “data_skippy_cifarl0_better_data_augmentation_train_tweak_big one_restarted1” | Head of save file names
objective | “/all_cnn_bi_skippy_aug_tr_tw.py” Name of construction method program

Table 27: File-name information of the “Training schedule optimization” experiment. The
file of the objective function can be found online[13]. The data file can also be found online
[13] in the “data_thesis” folder.

29

	Introduction
	Related Work
	Skippy
	CNN construction with skip connections
	General architecture

	Research question
	Pre-experiments
	Base experiment
	Fine-tuned search space experiment
	Data analysis
	High vs. low accuracy
	Feature importance

	Pruning one node layers experiment
	Pre-experiment
	Main experiment
	Data analysis
	High vs. low accuracy
	Feature importance

	Comparison with RESnet-30
	Data augmentation experiment
	Data analysis
	High vs. low accuracy

	Training schedule optimization experiment
	Data analysis
	High vs. low accuracy

	Extra training of best networks
	Summary
	Conclusion
	Future Work
	Appendices

