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Abstract

Community detection is an important subject in the ϐield of complex networks. It has a wide variety of
applications ranging from detecting groups in (online) social networks, to ϐinding proteins with similar func-
tionality inside a biological cell for a protein interaction network. In this thesis, we discuss fourmethodological
problems which make community detection a non-trivial task. In response to these problems, we present two
solutions. As a ϐirst solution, we propose a novel method for ϐinding communities by creating an ensemble
of partitions of different community detection algorithms using fast consensus clustering. Our method shows
improvements on commonly usedmetrics in literature, such as conductance andmodularity for networkswith
a relatively low clustering efϐicient. This approach is validated on over 40 real-world networks. As a second
solution, we introduce a new method for assessing the quality of a partition in real-world networks. This is a
problem due to the fact that multiple quality metrics exist. To solve this challenge, we use pareto fronts to ϐind
trade-offs between multiple metrics. Because similar quality metrics can be obtained for completely different
partitions, the analysis should be done in context of the community size distribution which is included in our
method. Our method of assessing the quality of a partition enables us to ϐind trade-offs and provides a better
understanding of the resulting partition.
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Chapter 1

Introduction

Networks are structures which can be used to represent connected systems by using nodes and edges. In fact, a
lot of structures can be modelled as a network. Examples include (online) social networks, infrastructure net-
works and biological networks. To retrieve knowledge from these networks, a lot of research is done in the ϐield
of network analysis.

An important topic in network analysis is community detection. Community detection is about ϐinding
groups within a network that contain nodes which are more tightly connected to each other compared to the
edges going outside of the group. Practically, community detection helps ϐinding for example functional mod-
ules in protein protein interaction networks. Figure 1.1 shows the Zachary Karate club network [1]. The nodes
in this network represent the members of the club. An edge represents if an interaction outside the club be-
tween two members exists. Communities are represented with different colors. The division of a network in
communities such that each node belongs to one community is called a partition. While the example from Fig-
ure 1.1 seems quite simple, various challenges arise with community detection algorithms. In this thesis, we
deϐine four problems which make community detection a hard problem to solve.

The ϐirst problem is that a lot of different community detection algorithms exist. These methods adopt dif-
ferent types of approaches, with options ranging from statistical to optimization-based. Solid overviews are
provided by recent surveys [2, 3, 4]. In the past years, a lot of research has been done, leading to new algo-
rithms [5, 6, 7]. The wide range of algorithms is a problem, because eacch methods still has problems of its
own. For example, they can contain random components, which result in different solutions for multiple runs
of the same algorithm. Other approaches can become blind for communities of speciϐic sizes [8]. The second
challenge is that there can exist multiple good solutions. This means that two completely different results can

Figure 1.1: An example of the Zachary karate clubnetwork. The communities are displayedwith different colors.
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be interpreted as equally good. This is a problem because this makes comparing solutions in an objective way
hard. This leads to the third problem. There are a lot of different deϐinitions of a community. This results in
a large number of available quality metrics. This makes solutions hard to compare because an improvement
in one quality metric often leads to a decrease in another. The ϐinal problem is that some methods work bet-
ter for speciϐic network structures. When working with real-world networks, it is often hard to know what to
expect in terms of structure of the network. Thismakes it hard to select the best community detection algorithm.

Our research question touches all the problems mentioned before: Can existing community detection
methods be combined in such a way, that the performance can be improved on commonly used quality
metrics?

To research this problem, we dive into the most important methods used in the literature. Of course, each
method has its own advantages and disadvantages. Next, we observe the wide range of available metrics. To
validate our work, we also need to test our implementation. We are aware that methodological research in
community detection is often validated by the Lancichinetti–Fortunato–Radicchi (LFR) benchmark [9]. This
benchmark creates a network with artiϐicial communities. As these communities are known a-priori, algorithm
results can be compared with the expected values. However, in this thesis our focus will be on real-world net-
works. This is a conscious choice because this gives us an intuition of the problems occurring with real-world
data sets. Finally, both the proposedmethod and the current state-of-the-artmethods have to be tested on these
networks. It allows us to pinpoint why a method performs like it does, relating performance to network prop-
erties.

The outline of this thesis is as follows. First, we will provide some deϐinitions of networks and community
detection in Chapter 2. Next, we discuss related work (Chapter 3) to get an understanding of the ϐield. We
categorise the different types of algorithms, discuss them and dive into one algorithmwithin that category. The
quality metrics popular in the literature are also discussed.

Chapter 4 will give an overview of the data sets used in the experiments. For this thesis, we will focus on a
range of real-world networks from different categories. Further, Chapter 5 shows our approach. We introduce
the algorithms used for our proposed method of ensemble community detection. Next, we elaborate on the
functionality of the algorithm and how we asses the quality of the resulting partition. In Chapter 6, the experi-
mental setup is discussed as well as the results from these experiments. We show when the proposed method
results in increased performance and how to ϐind the best partition when considering multiple criteria at the
same time. Finally in Chapter 7, we draw conclusions based on these results and provide suggestions for future
research.
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Chapter 2

Deϐinitions

This section provides a background and gives deϐinitions for networks and communities. It should give a more
formal background into networks and community detection.

2.1 Networks

Networks are simply a tuple of nodes and edges. Nodes may represent people, corporate boards or proteins,
while edges may represent connections like friendships, bridges, or molecular binding interactions. Networks
can be used to model a wide variety of applications such as from infrastructure networks, social networks and
biological networks. We will adopt both the set notation and the matrix notation. A deϐinition of a network can
be found in Deϐinition 1.

Deϐinition 1 A networkG, is an ordered pair (V,E), where V is called the vertex set and E is called the edge set
(E ⊆ V × V.). Within each e ∈ E, we associate two vertices u, v ∈ V .

Further, the number of nodes is deϐined as n = |V | and the number of edges is deϐined as m = |E|. The
adjacency matrix of network G is denoted as A. A is is an n×n matrix. If node i and node j are neighbours,
Aij = 1 . This can be extended with weights whereAij = wij . An example weighted network is a road network
containing the distance between cities as weight. If node i and j are not connected,Aij = 0.

One important aspect of networks is direction. Figure2.1 graphically shows thedifferencesbetweendirected
and undirected networks. To give a practical example, friendships can be modelled through an undirected net-
work, as being friends (often) goes both ways. Modelling one-way streets in a road network however, can be
done by using a directed network. More formally, a network is undirected if Equation 2.1 holds. This equation
basically says that both edges (u, v) and (v, u) should be in edge set E meaning that the edge set is symmetric.
This means that an edge goes both ways. If this does not hold, the network can be considered directed.

Figure 2.1: The difference between an undirected and a directed network visualised.
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(u, v) ∈ E ⇒ (v, u) ∈ E. (2.1)

Network properties

Networks have various properties. These properties can help to describe a network and its structure. In this
subsection, we discuss some of the most important properties.

One of these properties is the degree of a node. Equation 2.2 shows that the degree is the number of edges
connected to a node. Average degree (Equation 2.3) calculates this metric over the complete network. For
example, howmany friends a person has on average within a social network. The (2) in Equation 2.3 should be
added for undirected networks, and can be discarded for directed networks.

deg(v) =
∑
j

aij , (2.2)

avg deg(G) =
(2)m

n
(2.3)

Equation 2.4 gives the node clustering coefϐicient. This value indicates the extent to which a node v forms
triangles with its neighbours. The network clustering coefϐicient calculates this metric over the complete net-
work (Equation 2.5), which is the average of all the node clustering coefϐicients. The clustering coefϐicient is
measures the degree to which nodes in a graph tend to cluster together.

C(v) =
2 · |(u,w) ∈ E : (u, v) ∈ E ∧ (v, w) ∈ E|

deg(v) · (deg(v)− 1)
(2.4)

C(G) =
1

n
·
∑
v∈V

C(v) (2.5)

Anothermetric is the network density (Equation 2.6). The density of a network decreases when the number
of nodes within a network increases. Again, a distinction has to be made between directed and undirected
networks. We can discard the (2) by the ϐirst and have to include it with the latter.

density(G) =
(2)m

n(n− 1)
(2.6)

2.2 Communities

The informal deϐinition of a community is that nodes in a community are more connected to each other than to
nodes in the rest of the network. To give a formal deϐinition, we have to introduce some additional concepts like
subgraphs (Deϐinition 2). For the deϐinition of a community, we follow Fortunato [10].

Deϐinition 2 A subgraph S of a network G is a network whose node set V (S) is a subset of the node set V (G),
that is V (S) ⊆ V (G), and whose edge set E(S) is a subset of the edge set E(G), that is E(S) ⊆ E(G) such that
each node in edge set E(S) is included in V(S).

We deϐine the number of nodes in a subgraph as ns and number of edges in a subgraph asms. We deϐine the
internal degree kintv of a node in subgraph S as the number of edges connecting node v to other nodes inside
subgraph S. For the external degree, we deϐine kextv as the number of edges from nodes within S connected to
nodes outside S. Next, The internal degree kSint and external degree kSext are deϐined as the sum of the degrees
of its nodes within S for respectively the internal and external degree.

To work towards the deϐinition of a community, we have to introduce some more variables. Intra-cluster
density is deϐined as δint(S) = kint

S

ns(ns−1)/2 . This basically means that we calculate a ratio between the number of
edges within a subgraph and the total number of possible edges within S. A similar ratio can also be calculated
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for the edges going outside of the subgraph. Inter-cluster density is deϐined as δext(S) = kS
ext

ns(n−ns)
.

For subgraph S to be considered a community, it has to hold for three constraints which are enumerated
below. Basically, this aligns with the informal deϐinition stated earlier this section.

1. First, δint(S) should be larger than the density δ(G) over the complete network. This indicates that the
nodes within the subgraph have more edges within the subgraph, than expected based on the graph den-
sity.

2. Next, δext(S) should be a lot smaller than δ(G). This indicates that the nodes within the subgraph have a
lot less edges going outside the subgraph, than you would expect based on the graph density.

3. There should be a path between each node within subgraph S by edges from within the subgraph (con-
nectedness).

A partition P is the division of a network into non-overlapping subgraphs. This means that each node can
only be in one subgraph (or community; if the aforementioned constraints hold). One example partition is the
singleton partition. In this partition, each node v is in its own subgraph S. To ϐind a partition of communities for
a given network, community detection algorithms can be used. These algorithms receive a networkG as input
and then calculate an output partition P which is a mapping of nodes and their community.
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Chapter 3

Background & Related work

This chapter discusses the related work. Section 3.1 provides insights in several methods for community detec-
tion. Section 3.2 gives an overview of the metrics which are used to quantify the quality of the results.

3.1 Algorithms

First, we start with the different approaches for calculating a partition. Several categorisations of algorithms
exist in literature.

In this thesis, we follow the categorisation proposed by Fortunato [4]. Other categorisations exist as well
and can be based on the clustering notion they adopt [11]. The reason we choose the one by [4] is that it groups
methods in terms of the methodological approach which is often used in the literature. Based on [4], we ϐind
the following categories and some example methods in Table 3.1.

Table 3.1: An overview of the different categories and examples of introduced methods.

Method category Methods
Methods based on spectral properties Spectral clustering [12]
Methods based on statistical inference SBMs [13], Oslom [14]
Methods based on optimisation Louvain [15], Leiden [5]
Methods based on dynamics Walktrap, InfoMap [16, 17]
Methods based on edge removal GN [18]
Other methods LabelPropagation [19]

In this thesis, we will focus on methods based on optimisation and dynamics due to their performance on
large networks and dominant adoption in the ϐield of network science. As these are an integral part of our
methodology, we discuss them in detail in Chapter 5. For the remaining methods, we give a short description.
Because wewill not use thesemethods in our proposed algorithm, we believe the formal aspects of thesemeth-
ods are out of scope for this thesis.

Methods based on spectral properties

Spectral clustering is an approach to detect communities using the spectral properties of the network [12]. An
important beneϐit of spectral community detection is that it is simple to implement and based on linear algebra.
The basic idea is to create a partition based on the eigenvectors. This approach has some drawbacks which are
elaborated on by Nadler [20] and are also discussed by Von Luxburg [12]. Another drawback is that ϐinding
eigenvectors for large matrices is slow andmemory-intensive. These are also the reasons that we will not focus
on using spectral methods in this thesis.
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Methods based on statistical inference

Another approach is statistical inference. The Stochastic Block Model (SBM) [13, 21] appears to be the most
popular within this category. This works by ϐitting a generative network model. Stochastic blockmodels fall in
the class of random network models and a lot of research has been done in this direction [22, 23]. While the
ideas originate from decades ago, research is still done in this ϐield. The most recent work can be seen in the
overview work of Lee [24].

The idea is that we assume that the network is generated by a probabilistic model. This model has a block
structure built into it, and the goal of using SBM community detection is to retrieve this. An important drawback
of this type of approach is that we need to specify the number of communities beforehand. This number is
usually unknown in real-world networks. Because this, our focus for this thesis will not be on methods based
on statistical inference.

Other methods: LabelPropagation

Raghavan et al. [19] presented a method based on iterative propagation of labels throughout a network. The
algorithm works as follows. The network is initialised as a singleton partition. This means that every node is
in its own community. Next, the labels (representing the nodeś communities) are propagated throughout the
network. This is done by iterating over all the nodes and choosing the community which occurs most frequent
among the neighbours. In case of a tie, one node is selected at random from themost frequently occurring com-
munities given an uniform distribution. The nodes are processed in a random order.

The expectation for a sensible stopping condition would be that the algorithm can be terminated if no la-
bels are changing. However, due to the way ties are handled, it is possible that several nodes switch between
iterations from the one to the other community. To tackle this problem, the algorithm runs until every node
in the network has a label to which the maximum number of its neighbours belongs. Some improvements on
the original LabelPropagation algorithm have been made over the years. For example the work of Fiscarelli [7],
which introduces memory; MemLPA. While normal LabelPropagtion sometimes gets stuck in local optima, the
goal of MemLPA is to prevent this. This is done by keeping a list containing a counter with labels for each node
in memory. This list is updated after each iteration so assignments from earlier iterations are considered. Old
assignments disappear by deϐining a maximum number of items in the list.

Methods based on optimisation

Nowadays, themost popular approachof doing communitydetection is byusingmethodsbasedonoptimisation.
These methods try to maximize a function which indicates the quality of a partition. Methods on optimisation
are always based on heuristics resulting in an approximation of the exact solution. The function to optimize
which receives the most attention is modularity [18], introduced by Newman and Girvan. We elaborate on
the quality function modularity in Subsection 3.2. As these approaches are part of our approach, we discuss
modularity maximization methods in Subsection 5.1. Next to modularity, other quality functions exist like the
Constant Potts Model (CPM) [25].

Methods based on dynamics

Communities can also be identiϐied by using dynamics. Especially the idea of random walkers is often used in
this category. The intuition is that if a nodes are tightly connected within the community, while there are only a
few connections outside the group, the random walker would be trapped in a community for quite some time.
Some popular methods are based on node similarity (such asWalkTap [26]), while others are a based on the so-
calledmap equation. In this thesis, we focus on using the latter. Because thesemethods are part of our approach,
we discuss them in detail in Subsection 5.1.
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3.2 Quality metrics

Different quality metrics exist for quantifying the quality of a given partition. To explain themetrics relevant for
this research, a distinction has to be made between community detection on real-world networks and commu-
nity detection on artiϐicial networks.

Artiϐicial networks

Assessing the quality of a community detectionmethod is often donewith the Lancichinetti–Fortunato–Radicchi
benchmark (LFR) [9] by Lancichinetti et al. With this benchmark, one generates several artiϐicial networkswith
a priori knowledge of the communities within these networks. The algorithm uses several parameters for the
degree distribution (γ) and community size distribution (β). It also has a mixing parameter (µ), which can
be used to set the fraction of edges between communities. The actual comparison is often done with help of
normalizedmutual information (NMI), which compares the similarity of the artiϐicial and discovered partitions.
For this thesis however, we will focus on real-world networks, because these give a better intuition on actual
applications where no information is a-priori available about the community structure. Because we cannot use
this information, community detection on real-world networks requires other quality metrics than by using the
LFR benchmark.

Metrics for real-world networks

In this subsection, we follow a categorisation often used in literature. According to Coscia [27], the landscape
of quality metrics can be classiϐied according to process, deϐinition and performance. In their paper they in-
troduce similarity as additional category. However, in this thesis, we follow the categorisation by Leskovec et
al [28] because this grouping is quite popular in literature. They divide thesemetrics into two categories: single
criterion scores and multi-criterion scores. It is discussed that there are two important criteria when thinking
about the quality of a community. First, the number of edges inside a community. Second, the number of edges
between the nodes in the community and the rest of the network. Multi-criterion scores combine both criteria
while single criterion scores only use one of the two. Subsequent to these scores, which provide a single value,
we will dive into another approach. In Section 3.2, we look into the distribution of different community sizes
within a partition.

Single criterion scores

In this subsection we list the single criterion scores. We start with an overview of quality metrics to show that
many different quality metrics exist. This supports one of the problems stated in the introduction of this thesis.
After that, wedive intomodularity as this is themostwidely usedmetric in literature. Itmust be noted thatmany
of these metrics are deϐined on S and not on the resulting partition P . These subgraph quality metrics can be
used to get a feeling about the quality of the partition. For example by taking the average over all the subgraph
scores which we will do in rest of this thesis when not stated otherwise. A lower f(S) generally means a better
community, except for the later introduced modularity.

• Modularity ratio: mS

E(mS) . This metric calculates the number of edges between nodes in the community,
compared to the expected number of these edges (E(ms)) within the subgraph.

• Volume: This can be calculated by summing the degree deg(v) for all the nodes within S. Formally, we
can deϐine volume as∑v∈S deg(v).

• Edges cut: Deϐines how many edges need to be removed, to completely disconnect the subgraph S from
the network. Denoted as cS . Again, lower is better.
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Modularity The concept of modularity [18], introduced by Newman and Girvan, is one of the most popular
metrics to evaluate the quality of a partition. The value of modularity lies between−1 and 1 [29]. This value is
positive when the observed connections within the same community exceed the expected number under ran-
dom connections. Optimizing modularity is NP-Hard [30]. Different types of algorithms can be used for opti-
mising modularity such as simulated annealing [31]. In practice, the most popular algorithm in this category is
the Louvain algorithm (discussed in Section 5.1).

Equation 3.1 gives the formula for calculating modularity.

Q =
1

2m

∑
ij

[
wij −

didj
2m

]
δ(ci, cj) (3.1)

The weighted degree of node i is di =
∑

j wij . We consider wij as an element of adjacency matrix A. Un-
der uniform random selection, the expected number of edges between two nodes is didj

2m . Basically, modularity
calculates the difference between the observed and the expected (wij − didj

2m ). Here, δ(ci, cj) is the Kronecker
delta function which resolves to 1 if both values are in the same community. The value resolves to 0 if they are
not in the same community.

Although modularity is a widely used function, it does have some drawbacks. Fortunato [8] shows that the
resolution limit is a problem which occurs with modularity. This basically states that that the optimisation of
modularity is blind to communities whose size is smaller than

√
2m. This means that smaller communities can

remain undetected when working with networks at a larger scale. Figure 3.1 shows an example of the resolu-
tion limit. The network consists of a ring of cliques, each with four nodes. We would expect that each clique
will be seen as a separate community. However, due to the resolution limit, multiple cliques combined into a
single community, result in a higher modularity score (see dashed lines). Based on the notion that modularity
is blind for communities smaller than

√
2m, we ϐind that increasing the size of the ring by adding more cliques,

also increases the community size. This means that multiple cliques are combined into one community. The
result is that the ϐinal partition does not necessarily capture the real community structure of the network.

Figure 3.1: Standard resolution limit example of a ring with cliques of four nodes from [4]
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Arenas et al. [32] proposed a solution to this resolution limit by adapting the function to optimize. Their
method allows multiple resolution screening by providing each edge with a self-loop of the same magnitude r.
This way, the connectivity of the network remains the same while it allows search at different scales. We use ns

as the number of nodes in the subgraph, whilen andm represent respectively the number of nodes and edges in
the complete network. Further, we use kins as the internal degree and ks as the total degreewithin the subgraph.

QAFG(r) =
∑
s

[kins + nsr

2n+ nr
−

(ks + nsr

2m+ nr

)2] (3.2)

Another possible solution is created by Reichardt and Bornholdt [33]. Their approach is to tune the null
model with a parameter γ as shown in Equation 3.3.

QRB(γ) =
∑
s

kins
2m

− γ
[ ks
2m

]2 (3.3)

Lancichinetti [34] shows that multiresolution modularity maximization is characterized by two things: the
tendency to merge small communities and to split large ones. He shows that it is very difϐicult to tune the
resolution such to avoid both biases simultaneously. We can conclude from this, that although solutions do
exist, it is hard to actually use them in practice.

Multi-criterion scores

This subsection gives an overview of multi-criterion scores. These score combines both the number of edges in
the community and the number of edges to nodes outside the community. Again, we provide this list to give a
sense of the possible approaches for quality metrics in community detection. We do this to support the earlier
mentioned fact that there are a lot of different quality metrics.

• Expansion: cS
nS

The ratio between the total of edges leaving community and nS as the number of nodes
within the subgraph.

• Internal density: 1− mS

nS(nS−1)) The internal density of the community.

• Cut ratio: f(S) = cS
nS(n−nS) The part of the edges leaving the community compared to all possible edges

within the community. This is denoted by (nS(n− nS).

• Maximum-ODF: The maximum fraction of edges of a node pointing outside the community within the
complete community. Maximum-ODF again uses S as an input.

• Average-ODF: The average number of edges for a node that point outside the community.

• Flake-ODF: The number of nodes in the subgraph that have fewer edges inside, than outside the commu-
nity.

Conductance Conductance [35, 36], can be considered one of the simplest notions of community quality. It
can be thought of as the ratio between the number of edges inside the community and the number of edges
leaving the community. Based on the equation f(S) = cs

(2)ks
int+cs

, we show that a lower conductance score is
better. The number of edges pointing outside the community, or simply the number of edges cut, is denoted as
cs. The (2) in the denominator is added for undirected networks and can be discarded for directed networks.
The conductance of a network G is the minimum conductance over all the communities S. Conductance has
some interesting extensions like the network community proϐile plot (NCP) proposed by Leskovec [37]. This
extension applies conductance over a range of size scales of communities.
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Community size distribution

Research has shown that the same modularity value can give completely different results in terms of commu-
nity assignment. We have also seen that, althoughwe reach a good score in our chosenmetric, it is possible that
the ϐinal partition does not provide valuable results due to problems like the resolution limit. To get a better
understanding, Dao [38] proposed a method to compare community size distributions. He shows that we can
compute some high-level measures, for example: minimum community size, maximum community size, mean
and median about the community size distribution.

Similar information can be visualized in a joyplot (or ridgeline plot). These plots show the distribution of
community sizes for different solutions. The results on the vertical axis can consist of community detection al-
gorithms or can different type of parameters which eventually result in different partitions. Figure 3.2 gives an
example joyplot of the partitions when applied on the LĊĘ MĎĘĊėĆćđĊĘ network [39]. This networks models
the co-occurances of characters. The distributions are smoothed for visualization purposes, otherwise the ϐig-
ure would be very hard to read. This ϐigure gives a lot more insights compared to the simple metrics deϐined
earlier. For example the similarity in community size distribution between the Leiden algorithm and the Lou-
vain algorithm (both algorithmswill be introduced in Section 5.1). This can be explained because bothmethods
contain similar components and optimize the same objective function. Initial results show that methods which
are not based on optimizing modularity, generally prefer a smaller community size (although this difference is
only small). This can be explained from the fact that optimizing for modularity becomes blind for speciϐic sized
communities when networks reach a certain size (the aforementioned resolution limit).

Figure 3.2: Joyplot with the community size distribution for different community detection algorithms on the
LĊĘ MĎĘĊėĆćđĊĘ network [39]. The different colors are used for aesthetics and to used the improve the dif-
ference between algorithms.
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Chapter 4

Data sets

In this chapter, we introduce the data sets used for this thesis. To be able to verify the workings of our proposed
method, we use a wide variety of networks. As stated in Section 3.2, we focus on real-world networks. Many of
these networks are made available by the KONECT [40] network repository. We follow the categorisation from
this repository, as this gives us a brief overview of the large range of networks we have tested. A summarization
of the categories is displayed in Table 4.1. Table 4.2 lists all data sets.

Figure 4.1 gives an overview of the data sets and their nodes and edge counts. We observe that some cate-
gories, like HumanContact, hold overall smaller networks while social networks tend to be bigger. Generally we
see an upward trend in the number of edges when the number of nodes is increased, which is expected. Next,
most of the categories appear to be useful, as they group together similar networks.

To get a better understanding of the different data sets, we make a distinction based on network properties.
Figure 4.2 shows a smoothed version of the clustering coefϐicient for the different categories. We see a clear
difference for each of the different categories. The lines as the bottom represent individual measurements.
For the infrastructure networks, we ϐind a lower clustering coefϐicient. The large peak indicates that a lot of
networks within this category show similar results. As one would expect, the Misc category contains a wide
range of different networks. Therefore, it is hard to ϐind a clear distribution for the clustering coefϐicient. From
this network, we can conclude that the categories provided by KONECT are actually quite valuable and related
to higher order network properties.

Table 4.1: An overview of the different type of networks categories.

Category Description
Animal Animal networks consist of interactions between animals.
Authorship Authors who have written work together.
Coauthorship Unipartite network connecting authors who have written works together
Communication Includes networks with messages between persons, like mail
Computer Actual computer networks, nodes are computers and edges are connections
HumanContact Networks of real contact between persons,Often this is collected by giving RFID tags to people
HumanSocial Real-world social network between humans. In contrast to HumanContact, edges represent a state
Infrastructure Actual infrastructure. For example, roads and power grids.
Lexical Made of words from natural languages and the relations between them.
Metabolic Model the set of processes that determine the properties of a cell.
Misc Contains a wide variety of networks such as actor collaboration, co-purchasing networks and more
OnlineContact Consist of people and interactions between them. Contact networks are unipartite
Social Represents connections in online social networks like Facebook or Twitter.
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Figure 4.1: Overview of the data sets, with each color/marker representing the category. The horizontal axis
represent the number of nodes while the vertical axis represents the number of edges.

Figure 4.2: Overview of the different categories and their distribution of clustering coefϐicient. The horizontal
axis represents the clustering coefϐicient.
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Table 4.2: Overview of the data sets

Data set Average degree Clustering coefϐicient Density Number of edges Number of nodes Category
out.tntp-ChicagoRegional 1.769598 0.000000 0.001207 1298 1467 Infrastructure
out.sociopatterns-infectious 13.487805 0.467220 0.032978 2765 410 HumanContact
out.as-caida20071105 4.032559 0.333351 0.000152 53381 26475 Computer
out.arenas-email 9.622242 0.254032 0.008500 5451 1133 Communication
out.youtube-u-growth 5.816738 0.168090 0.000002 9375374 3223585 Social
out.ucidata-gama 7.250000 0.539187 0.483333 58 16 HumanSocial
out.as20000102 4.292555 0.399239 0.000663 13895 6474 Computer
out.com-youtube 5.265046 0.172258 0.000005 2987624 1134890 Social
out.arenas-meta 9.006623 0.655140 0.019926 2040 453 Metabolic
out.wordnet-words 8.999678 0.655310 0.000062 656999 146005 Lexical
out.dblp_coauthor 8.078133 0.735391 0.000006 5179945 1282461 Authorship
out.petster-carnivore 50.337069 0.527765 0.000081 15699276 623766 Social
out.loc-brightkite_edges 7.353095 0.270675 0.000126 214078 58228 Social
out.maayan-vidal 4.293648 0.106378 0.001371 6726 3133 Metabolic
out.com-dblp 6.622089 0.732135 0.000021 1049866 317080 Coauthorship
out.livejournal-links 18.898082 0.344557 0.000004 49174464 5204175 Social
out.contiguous-usa 4.367347 0.507044 0.090986 107 49 Infrastructure
out.livemocha 42.132945 0.058236 0.000405 2193083 104103 Social
out.moreno_names_names 10.300056 0.720819 0.005813 9131 1773 Lexical
out.arenas-pgp 4.553558 0.440288 0.000426 24316 10680 OnlineContact
out.ϐlixster 6.276330 0.205821 0.000002 7918801 2523386 Social
out.ca-cit-HepPh 224.144591 0.593976 0.007979 3148447 28093 Coauthorship
out.facebook-wosn-links 25.640112 0.253149 0.000402 817035 63731 Social
out.adjnoun_adjacency_adjacency 7.589286 0.189785 0.068372 425 112 Lexical
out.douban 4.223952 0.048037 0.000027 327162 154908 Social
out.wikiconϐlict 34.713119 0.477703 0.000297 2027871 116836 OnlineContact
out.hyves 3.960180 0.103493 0.000003 2777419 1402673 Social
out.ca-AstroPh 21.101699 0.676854 0.001124 198050 18771 Coauthorship
out.ego-facebook 2.064404 0.802965 0.000715 2981 2888 Social
out.sociopatterns-hypertext 38.867257 0.539530 0.347029 2196 113 HumanContact
out.actor-collaboration 78.688307 0.784772 0.000206 15038083 382219 Misc
out.petster-friendships-cat-uniq 72.802605 0.405529 0.000486 5449275 149700 Social
out.petster-friendships-dog-uniq 40.047706 0.182532 0.000094 8546581 426820 Social
out.moreno_kangaroo_kangaroo 10.705882 0.873564 0.669118 91 17 Animal
out.moreno_lesmis_lesmis 6.597403 0.735525 0.086808 254 77 Misc
out.roadNet-PA 2.834132 0.056204 0.000003 1541898 1088092 Infrastructure
out.mit 52.895833 0.751503 0.556798 2539 96 HumanContact
out.com-amazon 5.529855 0.429740 0.000017 925872 334863 Misc
out.ucidata-zachary 4.588235 0.587931 0.139037 78 34 HumanSocial
out.moreno_train_train 7.593750 0.711229 0.120536 243 64 HumanContact
out.petster-hamster 13.710635 0.614647 0.005654 16631 2426 Social
out.moreno_propro_propro 2.435294 0.152989 0.001303 2277 1870 Metabolic
out.subelj_euroroad_euroroad 2.413969 0.019962 0.002058 1417 1174 Infrastructure
out.as-skitter 13.080877 0.296292 0.000008 11095298 1696415 Computer
out.ϐlickr-links 18.132883 0.374615 0.000011 15551250 1715254 Social
out.ϐlickrEdges 43.741585 0.089392 0.000413 2316948 105938 Misc
out.arenas-jazz 27.696970 0.633447 0.140594 2742 198 HumanSocial
out.petster-friendships-hamster-uniq 13.491927 0.167109 0.007265 12534 1858 Social
out.roadNet-CA 2.815590 0.055424 0.000001 2766607 1965206 Infrastructure
out.dolphins 5.129032 0.302932 0.084082 159 62 Animal
out.loc-gowalla_edges 9.668062 0.316284 0.000049 950327 196591 Social
out.ca-cit-HepTh 213.444910 0.611741 0.009318 2444798 22908 Coauthorship
out.moreno_zebra_zebra 8.222222 0.875914 0.316239 111 27 Animal
out.moreno_beach_beach 15.627907 0.653434 0.372093 336 43 HumanContact
out.topology 6.197750 0.421236 0.000178 107720 34761 Computer
out.maayan-pdzbase 2.301887 0.013268 0.010909 244 212 Metabolic
out.contact 15.503650 0.902887 0.056790 2124 274 HumanContact
out.roadNet-TX 2.785182 0.057460 0.000002 1921660 1379917 Infrastructure
email-Enron.txt 10.020222 0.715642 0.000273 183831 36692 Communication
out.opsahl-powergrid 2.669095 0.106539 0.000540 6594 4941 Infrastructure
out.dnc-corecipient 23.022075 0.791403 0.025439 10429 906 OnlineContact
out.reactome 46.640430 0.646518 0.007373 147547 6327 Metabolic
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Chapter 5

Approach

In this chapter, we discuss the approach of our proposed algorithm to combine community detection methods
in such a way, that performance can be improved on commonly used quality metrics. This includes the relevant
existing algorithms onwhichwe build in Section 5.1, ways to aggregate partions in Section 5.2 and our proposed
ensemble community detection algorithm in Section 5.3.

5.1 Algorithms

In this section we introduce the algorithms used in our approach.

Louvain

Louvain, named to the afϐiliation of the creators, is an algorithmbyBlondel et al. [15] based on the idea of greedy
modularity optimisation. The literature shows that this algorithm is very popular, mainly because of the good
performance in terms of modularity combined with the execution time of the algorithm.

Algorithm The functionality of the Louvain algorithm is as listed below. Figure 5.1 gives a visual explanation
of how the algorithm works. The ϐigure shows the different steps which are applied inside a single iteration.

1. Start with a singleton partition by assigning each node to its own community.

2. For each node, we try to realise a modularity improvement. We do this by observing the adjacent nodes
and their communities. For each combination of the selected node and the neighbouring node, calculate
the resultingmodularity when the community of the selected node is merged into the neighbouring node.
The node combination which results in the largest modularity improvement is merged. If there is no
modularity improvement possible, leave the node in the same community. This step is continued until no
changes in community assignment occur.

3. Create a new network by aggregating the communities to nodes and create edges when communities are
connected. Theweights of the edges represent the number of connections between the communities. This
is nicely visualized in Figure 5.1 and is called the community aggregation step.

4. Again, iterate over all the nodes of the aggregated network and try to optimize modularity by merging
communities.

5. Transfer the communities from the aggregated network back to the original network. Go back to step 2
until no further improvements in modularity possible.

The algorithm outputs one partition per iteration of step 2. Aynaud et al. [41] state that both the average size of
the communities and the modularity increase from one iteration to another. This happens by deϐinition. If the
size of communities does not increase, it means that the algorithm is ϐinished.

17



Ensemble community detection in real-world networks.
Chapter 5 by Lars Hopman (s1289152), © May 28, 2019

Figure 5.1: Louvain algorithm step-by-step from [15].

Advantages The Louvain algorithm has several advantages compared to non-optimisation based methods.
The algorithm is known to run inO(n log n) [15]. Overall, it gives quite good resultswithin a reasonable amount
of time. The algorithms also incorporated a resolution parameter in their modularity function to handle com-
munities at multiple scales.

Drawbacks The Louvain algorithm has some parts which are not deterministic. First, the point where two
neigbouring nodes offer the same modularity increase, and second the order in the nodes are processed. It has
to be noted that in most cases, the difference between the best and the worst modularity obtained over several
experiments only amounts to a few percent. Another problem is that the result can contain communities which
contain disconnected nodes.

Leiden

The Leiden algorithm [5] by Traag et al. can be considered an improved version of the Louvain algorithm. It
has some additional beneϐits where the nodes within a community are guaranteed to be connected. It also has
some improvements which help the algorithm to run faster than the Louvain algorithm, while providing better
modularity scores.

Algorithm In contrast to the Louvain algorithm, an iteration of the Leiden algorithm consists of ϐive steps:
local moving nodes, reϐinement of the partition, aggregation of the network, local move of the aggregation net-
work, reϐinement of the aggregation network. Again, we show the functionality both visual (Figure 5.2) and by
using an enumeration.

1. Start with a singleton partition, like we did with Louvain.

2. In the ϐirst step, the algorithms moves nodes from one community to another if the modularity value
increases. Basically this is similar as with Louvain, with some small improvements which speed up this
step. The authors call this the local moving phase.

3. The next step is the reϐinement phase. In this phase, we start with a reϐined partition which is a singleton
partition. Next, apply local moving of nodes, but only within each community of the partition resulting
from step 1. Next to that, they can only be merged if sufϐiciently well connected to their community in the
partition from the previous step. This phase also contains some randomness, as nodes are note always
labelled with the community which yields the largest modularity increase. This selection is done ran-
domly from the collection of neighbours given a certain probability. The larger the modularity increase,
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Figure 5.2: Leiden algorithm step-by-step from [5].

the higher the probability that a community is selected. Due to the fact that communities can only be as-
signed within the subgraph from the previous step, this step makes sure that the number of communities
does not increase.

4. In this phase, we create an aggregated network based on the reϐined partition. This means that we create
a networkwith the communities as node and edges when the nodes from two different communities have
an edge between them.

5. Finally, the whole algorithm is simply repeated on the aggregated network, without starting from a sin-
gleton partition, but from the partition that was previously found.

Advantages The Leiden algorithm has several advantages over the Louvain algorithm. The algorithm has sev-
eral guarantees. For example, the connectedness of communities. With Louvain, it is possible that a community
exists of nodes that are not connected. This cannot happen with the Leiden algorithm. Second, the improved
performance in terms of run time. In the local moving phase, the Leiden algorithm only reconsiders the nodes
that have changed.

Drawbacks Although theLeidenalgorithmhas several advantagesover theLouvain algorithm, it still has some
drawbacks. Most of these drawbacks are inherited from the base method. Just like the Louvain algorithm, it is
sensitive to the resolution limit because of the function they both optimize (modularity). It also contains a
random component which results in possibly different results when running the algorithmmultiple times.

InfoMap

InfoMap is a community detection method introduced by Rosvall [16, 17] based on the Map Equation. It uses
the idea of a randomwalker through a network. Therefore, we can say that InfoMap has a focus on the ϐlow (or
dynamics) inside the network which is quite different from the other approaches.

Algorithm InfoMap tries to apply principles from minimum description length (MDL) statistics [42] to ϐind
structures within a network. The idea is that by using a random walker, the walker will visit nodes which are
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Figure 5.3: Infomap algorithm step-by-step from [16].

tightly connected more often.

Figure 5.3 gives an overview of the algorithm. Below we enumerate the steps executed by this algorithm.

1. The algorithmwith randomwalkers traverses through the network. As thewalker progresses through the
network, the idea is that it stays within parts which are more tightly connected. The visualization of this
algorithm (Figure 5.3) shows this by the thicker lines.

2. In the second step, we create the so-called codewords of the Huffmann Codebook [43]. Huffman code is
used to compress information and here, we use this to apply a code to each node.

3. InfoMap uses multiple codebooks together with an index codebook. Different codebooks correspond to
different communities. Communities receive unique names but the names of nodes within communities
are reused.

4. Finally, reporting only the module names, and not the locations within the modules, provides an opti-
mal coarse-graining of the network. In practice of course, the mapping from step 3 is used for the actual
partition.

Advantages One of the advantages compared to Leiden or Louvain, is that InfoMap is not as vulnerable to
the resolution limit [44]. This is because it does not optimize modularity. InfoMap has good results on the LFR
benchmark and even outperforms Louvain for some networks [2].

Drawbacks One of the advantages of Leiden and Louvain is that they are relatively fast algorithms. Unfortu-
nately, InfoMap is a bit slower as shown by Lancichinetti et al. This can become a problem at scale [9]. Yang [2]
also shows that InfoMap becomes unreliable for larger values of µ (the mixing parameter) when running the
LFR-benchmark.
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Figure 5.4: Difference between InfoMap and Louvain in terms of speed , image from [45]. The number of nodes
in a network is on the horizontal axis and the run time on the vertical axis.

5.2 Aggregation

This section is about combiningmultiple partitions into one. We discuss are consensus clustering and its exten-
sion fast consensus clustering.

Consensus clustering

Consensus clustering [46], as proposed by Lancichinetti and Fortunato, is a method to generate stable results
out of a set of partitions. Most community detection methods are not deterministic and can provide different
results for multiple runs. Consensus clustering can be used to provide stability and robust results. One of the
main advantages is that it can be usedwith all types of community detection algorithms, as long as they support
weighted networks. It is important to note, that the goal is not to ϐind the optimal partition, but to ϐind the most
stable partition.

The algorithm has two parameters. Parameter r is the number of partitions that need to be combined and
the threshold parameter τ is added to have some ϐlexibility regarding the speed of the algorithm.

Figure 5.5: Resulting partition from consensus clustering on a network from [46]

21



Ensemble community detection in real-world networks.
Chapter 5 by Lars Hopman (s1289152), © May 28, 2019

Figure 5.5 shows a network with four partitions. Some of them have two communities (solution 1 and 2),
while others (solution 3 and 4) have three of them. Each iteration, the edge weights are updated based on
whether nodes are in the some community in the previous iteration. In the ϐigure, this is shown by the thick-
ness of the edges. The algorithm uses these weights as input for a new run of the community detection. This
process continues until all partitions are equal.

Of course, consensus clustering has its drawbacks. Because we combine results of many partitions, the con-
sensus matrix becomes a dense matrix very quickly. For computational reason, everything below threshold τ
is discarded. Unfortunately, by discarding certain edges below the threshold, it is possible that some nodes be-
come disconnected from the rest of the network. This is resolved by connecting them to the neighbour with the
highest weight. Another drawback of this dense matrix is that it becomes slow for larger networks resulting in
a time and complexity ofO(n2). Even though it has quite some drawbacks, the advantages should not be forgot-
ten. Consensus clustering supports a range of different algorithms and is still is a useful method for combining
partitions.

Fast consensus clustering

Fast consensus clustering is a faster technique to calculate consensus partitions. It can be considered an im-
provement to normal consensus clustering. One important problem with the original algorithm is the calcula-
tion of the consensus matrix, which is used to determine how often a certain edge is in the same community.
The calculating of this matrix can become slow for larger networks.

To solve this problem, Tandon et al. [47] introduce fast consensus clustering. With fast consensus clustering,
the consensus matrix is only computed for a subset of all node pairs. The algorithm has several parameters, a
threshold parameter (τ) and a parameter for the stopping condition (δ). This parameter inϐluences the conver-
gence. The algorithm stops when the fraction δ of the edges has a weight not equal to 1. Instead of calculating
for all node pairs, we only calculate theweights for the nodeswhich are actually connected. Themain difference
is that we compute up to 2m elements of the consensusmatrix, which becomes useful when the network is very
sparse. The advantage is that the calculation of consensus matrix can reach space and time complexity O(m),
which is a lot faster than traditional consensus clustering.

Using a subset to reduce the necessary calculations, also has its drawbacks. The resulting partitions aremore
noisy and are even unlikely to converge at all. This is no problem, because the algorithm has a different stopping
condition compared to the original consensus clustering. Fast consensus clustering stops when enough entries
have are different from 0 and 1.

5.3 Ensemble community detection

Recall from Section 1 that the goal of ourmethod of ensemble community detection is to combinemultiple com-
munity detection algorithms to improve the performance compared to a single community detection algorithm.

Our algorithm combines existing algorithms and fast consensus clustering. It can be considered a modiϐi-
cation to the procedure mentioned in Section 5.2. The most important novelty lies in the step of deriving the
input partitions. Instead of applying the same community detection algorithm multiple times, we work with
the results from different algorithms. Our algorithms of choice in this thesis are InfoMap and Louvain. The ap-
proach is modular, one can swap either of these for a different one if desired, as long as the algorithm supports
weighted networks.

The algorithm has several parameters. First, the delta (δ) which is used in the stopping criterion. Next,
the threshold parameter (τ). The algorithm runs every ratio between two community detection algorithms re-
stricted by themaximum number of algorithms at the same time (np). We show this ratio by using a percentage
Louvain compared to a percentage InfoMap (i.e. 75%/25%). The algorithms of choice can be considered an
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input as well. The resulting partitions are interpreted as explained in Section 6.1. The ϐinal partition is chosen
by looking at predeϐined quality metrics in combination with the community size distribution.

Figure 5.6 shows how our algorithm operates. Below, we explain how to get the resulting partition for a
single ratio, in our example 75%/25%with np = 4.

1. First, we start by running the the community detection algorithms. In our example, we run Louvain three
times and InfoMap once. The input network is the same for both algorithms.

2. Second, we use the resulting partitions as input and we update the weights in the same way as with fast
consensus clustering. This is explained in Section 5.2 and visualized in Figure 5.6. Basically, the resulting
weight of an edge is higher, if both nodes from an edge are in the same community when considering
multiple input partitions. This step outputs a network with updated weights.

3. This output network is then used as input network. The community detection algorithms are run again
like in step 1, in the same ratio, but with the new network. The algorithm stops when the fraction δ of the
edges for the consensus clustering step has a weight not equal to 0 or 1. We ϐinally return the resulting
partition.

Pareto fronts

Several solutions exist when working with multiple quality metrics. To visualize multiple quality metrics at the
same time, we propose that pareto fronts can be used. Pareto fronts are widely used in economics and in the
ϐield of multi-objective optimisation [48]. Figure 5.7 gives an example visualization of a pareto front. In this
example, both modularity and conductance should be minimized. The vertical axis is inverted to easily ϐind
good solutions. The points at the left bottom corner are perceived better than points to the right and on top of
in the ϐigure. The point (7/3) can be considered pareto efϐicent, which basically means that neither objective
function can be improvement without decreasing the other.

Figure 5.6: An example of ensemble community detection. We see that the input partitions from different algo-
rithms can be used. For this particular example, a ratio of 75% Louvain / 25% is used with np = 4

23



Ensemble community detection in real-world networks.
Chapter 5 by Lars Hopman (s1289152), © May 28, 2019

Figure 5.7: An example visualization of a pareto front for the RĊĆĈęĔĒĊ [49] biological network.
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Chapter 6

Results

In this chapter, we discuss the results of our experiments. We start with our experimental setup in Section 6.1.
Next, we try to pinpoint when our algorithms performs better or worse by assessing the relation between net-
work properties and performance in Section 6.2. Later, we try to solve the problem regarding the range of
different options for quality metrics in Section 6.3. We assess the suitability of pareto fronts together with com-
munity size distribution of the data sets.

6.1 Experimental setup

The experiments have been executed on a machine provided by the LIACS Data Science Lab. The machine con-
tains 1TB of RAM and 64 cores of Intel Xeon E5-4667v3 CPUs. This enabled us to run a lot of experiments in
parallel. The source code is written in Python and we use the popular igraph package. For fast consensus clus-
tering, we used the code provided by the authors [47].

In terms of parameters for consensus clustering, we modiϐied the parameters for the clustering algorithm
slightly to improve convergence speed. We tried to stay close to the original paper, because the scope of this the-
sis is not about optimizing fast consensus clustering parameter. For the threshold parameter, we used τ = 0.35.
For the convergence threshold, we will use the value δ = 0.1 from the original paper. The paper states that
results are stable for thresholds at least up to 10%. We test all the possible ratios given np = 10.

To compare our ensemble method with Louvain and InfoMap, we compare our results versus the baseline.
This baseline is chosen by picking the partition leading to the best result formodularity between 100% InfoMap
or 100% Louvain. This makes sense, because this would be the algorithms we would have used if we did not
have used our proposed ensemble approach. Although wewould expect that Louvain performs better given the
fact that it optimizes modularity, initial research has shown that this is not always the case. This is why we can
use this as baseline. As introduced before, we look at improvements of conductance, modularity, expansion and
the internal density. To make sure that the community size do not change a lot, we have to keep an eye on that
as well. To provide an overview of the results, we included these results in percent change compared to the
baseline in the table.

As the Louvain algorithm returns a dendogram of partitions at different scales, we pick the partition on the
lowest level possible. Thismeans that the input partition for the consensus clustering has themost communities
available compared to the other options available with the Louvain algorithm. We are aware that partitions on
the higher levels yield better modularity, but initial experiments have shown that using these partitions result
in problems with convergence of the algorithm.

A lot of community detection algorithms contain random components. This includes the algorithms used
in our experiments: InfoMap and Louvain. This means that multiple runs can lead to different results. Fortu-
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nato [4] already mentioned the stabilising, as in robust to randomness, effects of consensus clustering. While
this is true for the experiments from [4], we are not sure if the same properties apply for our ensemble commu-
nity detection. To test this, we will run the experiments multiple (n = 5) times, to verify if the same properties
hold. The results shown in this thesis are the average over all these runs.

Assessing quality of community detection results

Using a combination of both community size distribution (with a joyplot) and other metrics provides us with
a solid overview of the resulting partitions. None of the approaches by itself is sufϐicient to fully grasp and de-
termine the quality of a given partitions. This is especially the case when working with large networks where
visualisations of the networks become hard to interpret. Our experiments try to ϐind two things.

First, we look at some basic network properties. For now, the properties we consider are average degree,
density and the clustering coefϐicient. Because we are trying to pinpoint how algorithm results are affected by
these network properties, we look at the pearson correlations between these properties and the qualitymetrics
discussed below. This way, it should be clear on what kind of networks the proposed algorithm provides good
results.

In Section 3.2, we discussed several ways to measure the quality of a partition (or subgraph). No single
method ϐits all the aspects of a partition quality. To tackle this problem, we will have to look at multiple met-
rics. For now, wewill look at the followingmetrics: modularity (maximise), conductance (minimise), expansion
(minimize), internal density (maximise) and the community size distribution. Essentially, we are evaluating the
results on multiple quality metrics at the same time. To get a better understanding of how to asses the quality
of multiple metrics, we use pareto frontiers. These pareto fronts show the trade-offs between certain metrics
and allow us to make choices between the different algorithm settings. We combine these Pareto fronts with
the community size distribution to make an actual assessment of the resulting partitions.

6.2 Network properties and their effect on ensemble community detection

This section is about hownetwork properties affect the results of our ensemble community detection algorithm.

Table 6.1 gives an overview of the resulting metrics on different data sets. Each column is this table is the
percentage difference compared to the baseline (discussed in 6.1). Based on these results, we ϐind that the
proposed algorithm gives better results for some networks, but not all. Note that given how these metrics are
deϐined, the goal is thatmodularity increases, while conductance should decrease. The table directly shows that
a reduction of modularity does not mean a reduction of conductance. Given the results from Table 6.1, we can
see that our method results in better conductance scores than it does on modularity.

Figure 6.1 shows the pearson correlations between the network properties and the resulting qualitymetrics.
This ϐigure is based on the data provided in Table 6.1. We compared the solutions against a baseline solution
(best modularity between InfoMap and Louvain). The difference between our best partition is calculated in
percents. For example, an increase in average degree results in a decrease in modularity, but an increase in
expansion. We already saw a performance improvement for the conductance performance measure. Figure 6
shows that there exist a correlation (ρ = 0.64) between conductance change and the clustering coefϐicient. This
means that if the clustering coefϐicient goes up, conductance goes up as well. We can conclude from this, that
ourmethod performs better on networks with a smaller clustering coefϐicient because wewant tominimise the
conductance. Also, while there exists a correlation (ρ = −0.49) between modularity change and the clustering
coefϐicient. Although correlation does not imply causation, it gives some intuition in how certain values affect
each other.
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Figure6.1: Correlationmatrix showinghowachange in certainnetworkproperties reϐlects in a changeof quality
metrics.

If we consider the expansion and internal density metrics, we ϐind a correlation (ρ = 0.62) between ex-
pansion and the clustering coefϐicient. This strengthens our indication that our ensemble community detection
algorithm is sensitive to the clustering coefϐicient of the network. A decrease in clustering coefϐicient results

Table 6.1: An overview of results of our algorithm on a collection of data sets compared to a baseline. Reported
values are percentage of change.

∆Modularity ∆ Conductance ∆Min com. ∆Max com. ∆Median com. ∆ |com.|
data_set
out.arenas-jazz -75.12 0.00 0.0 0.00 0.00 0.00
out.ca-AstroPh -74.96 0.00 0.0 0.00 0.00 0.00
out.petster-hamster -64.41 0.00 0.0 0.00 0.00 0.00
out.petster-friendships-hamster-uniq -64.07 0.00 0.0 0.00 0.00 0.00
out.arenas-email -61.24 0.00 0.0 0.00 0.00 0.00
email-Enron.txt -60.44 0.00 0.0 0.00 0.00 0.00
out.moreno_zebra_zebra -54.51 0.00 0.0 0.00 0.00 0.00
out.as-caida20071105 -0.18 -22.35 0.0 181.85 166.67 -61.45
out.moreno_propro_propro -0.13 -58.03 0.0 4.26 33.33 -41.56
out.adjnoun_adjacency_adjacency 0.00 0.00 0.0 0.00 0.00 0.00
out.tntp-ChicagoRegional 0.00 -64.13 0.0 23.08 0.00 -1.56
out.arenas-pgp 0.00 -47.40 0.0 0.00 0.00 -10.84
out.contiguous-usa 0.00 -34.81 0.0 14.29 11.11 -3.00
out.ucidata-zachary 0.00 -56.49 0.0 54.55 0.00 -5.00
out.reactome 0.00 0.00 0.0 0.00 0.00 0.00
out.ego-facebook 0.00 0.00 0.0 0.00 0.00 0.00
out.maayan-pdzbase 0.00 -62.75 0.0 108.33 0.00 -3.21
out.maayan-vidal 0.16 -37.62 0.0 0.00 33.33 -38.77
out.as20000102 0.85 -21.49 0.0 198.14 0.00 -5.96
out.dolphins 6.02 -26.27 0.0 42.86 14.29 -9.00
out.opsahl-powergrid 24.16 -61.24 0.0 227.27 50.00 -21.87
out.subelj_euroroad_euroroad 27.33 -63.66 0.0 260.00 0.00 -6.76
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(a) Raw results with conductance on the horizontal axis and
modularity on the vertical axis. The points correspond to the
partitions, and are annotated with the ratio.

(b) Community size distribution for the OĕĘĆčđ-
ĕĔĜĊėČėĎĉ network. On the horizontal axis the com-
munity size is shown, while on the vertical axis the number
of occurrence of a certain community size density is shown.

Figure 6.2: Results for theOĕĘĆčđ-ĕĔĜĊėČėĎĉ network.

in a decrease in expansion. As we would like to minimise this value, we can again conclude that our algorithm
returns a partition with more community like subgraphs for networks with a lower clustering coefϐicient.

Important to note is that while we test all the different combinations between InfoMap and Louvain, not
every combination is guaranteed to converge (see Section 5.2). This is no problem as long as at least one of the
combinations converges.

Our method has more impact on conductance and expansion than on the internal density of the communi-
ties. This indicates that one should always look atmultiple qualitymetrics, while assessing the quality of a given
partition.

6.3 Validating real-networks with multiple metrics

We have seen that our community detection algorithm can lead to better results for networks with a low clus-
tering coefϐicient. So, we have to validate our results on multiple quality metrics. We picked two networks to
show an example of how to analyse community detection results by using this method.

Figure 6.2a and Figure 6.3a show the pareto fronts for theOĕĘĆčđ-ĕĔĜĊėČėĎĉ andDĔđĕčĎēĘ network.
The pareto fronts show both modularity and conductance. For practical reasons in both ϐigures, we inverted
the vertical axis. This way, both quality metrics can be minimised. Values lower and more to the left should be
interpreted as better. The ratio between Louvain and InfoMap (InfoMap/Louvain) is added as an annotation.

We see that for the OĕĘĆčđ-ĕĔĜĊėČėĎĉ network (Figure 6.2a), which is an infrastructure network, our
algorithm outperforms full Louvain or InfoMap. For the ratios (30%/70%, 10%/90%, 20%/80%), we reach
better results for both modularity and conductance. Because the results are close to each other, we can use
community size distribution to look into the differences between the partitions. Figure 6.2b shows these com-
munity size distributions. Again, we smoothed the result for visualization purposes. Themissingmeasurements
on the vertical axis indicate that this ratio has not converged.

Figure 6.3a shows the Pareto front for the Dolphins network. This network has edges when there has been a
frequent association between two dolphins. Here, we see that our algorithm outperforms even the 100% Lou-
vain community detection. It does this with a large difference, especially when considering conductance. Even
though the ratios (20%/80% and 30%/70%) give the best performance when considering these two metrics,
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one can also take (10%/90%) or even (0%/100%) into account when deciding on what partition to use. Fig-
ure 6.3b shows the different community size distributions. Again, we see that the algorithm has not converged
for some ratios (i.e. 50%/50%). This is not a problem as we have other, better performing partitions as well.
Next, we observe large differences between the better scoring partitions (visualized on the left), and the ones
that are discarded for visualization purposes. Instead of smaller communities, a distribution with more vari-
ance in community sizes leads to better results in this case. We observe that only a few of the combinations have
converged.

Advantages Our method has several beneϐits. First, our algorithm return better results when networks have
a low clustering coefϐicient. Next, we can use this method with all kinds of different algorithms, as long they
support weighted networks. The algorithm returns partitions for all the different ratio outputs. Using pareto
fronts, this gives us freedom to decide on what quality metrics to prefer. We can conclude that our proposed
method gives, most of the times, at least similar results as 100% InfoMap or Louvain. In some cases, we can
reach an improvement in one of both metrics at the cost of worsening the other one. Our algorithm performs
especially well when network have a low clustering coefϐicient.

Drawbacks Oneof thedrawbacks of themethod is that it is relatively computationally expensive. Although the
calculation of the consensus partition can reach linear complexity (as it origins from fast consensus clustering),
the overall performance will decrease when slower community detection algorithms are used. The algorithm
will run each combination between the community detection algorithms. This is a constant factor in the com-
plexity. In our implementation, this is ran in parallel. But, if this is not possible, the calculation will slow down
a lot. Next, in the proposed combination of Louvain/InfoMap, we show that the results not necessarily improve
on all the networks. Also, because no single metric is perfect, even with multiple metrics in apareto front and
given the community size distribution, human interpretation remains to be needed.

Discussion Some recent research in this ϐield is done by Poulin [poulin2019ensembleoriginal, 6], lead-
ing to their ensemble clustering algorithm (ECG) algorithm. In their paper, they apply Louvain in combination
with consensus clustering on data generated with the LFR benchmark. We want to stress the differences in
our approach compared to the approach chosen by Poulin. Although they use consensus clustering to combine

(a) Raw results with conductance on the horizontal axis
and modularity on the vertical axis. The points corre-
spond to the partitions, and are annotated with the ra-
tio. The results for (8/2), (9/1), (10/0), (7/3) and (6/4)
fall outside the ϐigure andarediscarded for visualization
purposes.

(b) Figure showing the community size distributions. If we
combine themwith the information fromFigure 6.3a, it gives
us a good overview of the quality of speciϐic mappings. On
the horizontal axis the community size is shown, while on
the vertical axis the number of occurrence of a certain com-
munity size density is shown.

Figure 6.3: Results for theDĔđĕčĎēĘ network.
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different partitions, their focus is solely on the Louvain algorithm. This idea is in fact already describe by For-
tunato in his overview work. Our algorithm tries to combine both InfoMap (Section 5.1) and Louvain (Section
5.1) given in a certain ratio into a consensus partition. Next to that, their work is validated by using the LFR
benchmark instead of using a range of real-world networks.
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Chapter 7

Conclusion and FutureWork

Community detection on real-world networks is a widely researched subject. Many different methods for creat-
ing a partition exist. While the general idea of a community feels quite natural, practice shows that community
detection on real-world networks is difϐicult. To ϐind out why community detection is a non-trivial task, we
conducted an extensive literature review. As a result, in our introduction, we deϐine four problems: the large
number of different algorithms, the fact that there is no single good solution, the large number of metrics and
the fact that speciϐic algorithms perform better on speciϐic structures. To tackle some of these problems, we
propose two solutions.

As ϐirst contribution, we propose an ensemble community detection method. Our method uses the frame-
work of fast consensus clustering to combinemultiple community detection algorithms. The algorithm outputs
partitions for all the ratios between the two algorithms. These partitions can then be analyzed based on the de-
sired quality metrics. One of the beneϐits of our approach is that we can use any community detection method
as long as they support weighted networks. For our experiments, we used the widely used Louvain algorithm
which is oriented at modularity optimization, together with InfoMap which is a dynamics oriented approach.
To validate the performance of our algorithm, we tested the performance on over 40 real-world networks from
different categories. We show that the proposed algorithm performs better on networks with a low clustering
coefϐicient resulting in lower conductance scores and increased modularity.

The second contribution addresses two problems: the problem with the large number of metrics and the
fact that there is no single good solution. We use Pareto fronts to optimize formultiplemetrics at the same time.
This enables us to ϐind trade offs between different metrics. These results are then interpreted in context of the
community size distribution. These distributions can then be analyzedwith domain knowledge to decidewhich
partition is the most useful for that particular use case.

Several topics can be considered as future work. First, improvements to the algorithm. For example, chang-
ing the ratio between the algorithms for each iteration of the consensus clustering algorithm can improve the
performance and use the strong points of certain algorithms. Other improvements can be made by considering
other algorithms instead of Louvain and InfoMap. Research can also expand on the number of algorithms, for
example by adding more than two algorithms. Next to improvements to the algorithm, additional research can
be done by validating the performance of the current algorithm with the LFR-benchmark. This way, we test
against artiϐicial networks resulting on a more object estimation about the quality of the method.

Ensemble community detection proves to be an easily extendable framework for applying community de-
tection with the possibility of swapping out algorithms. By using this approach, the beneϐits from the selected
algorithms can be combined in a new and better ensemble algorithm.
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