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Abstract

The overwhelming amount of data that is nowadays available, leads to an increased
demand for techniques that automatically identify abnormal or anomalous behavior. In
this paper, we consider this problem in the context of networks and investigate how
network-based anomaly detection techniques can be used for the purpose of law enforce-

ment and criminal investigations in the field of electronic discovery.

This problem is firstly investigated on static networks. Examples of anomalies in static
networks are network intruders in physical networks or spammers spreading unwanted
advertisements in online social networks. While existing methods typically identify
anomalies from a local perspective, we propose a novel method that identifies nodes from
a global perspective. The proposed community-aware CADA algorithm outperforms
previous methods on both synthetic and real-world data and scales remarkably well to

larger networks.

Second, we approach the problem in networks that change over time. We compare two
existing methods that indicate to what extent two graphs are similar to each other.
Results on real-world data show that the techniques successfully indicate points in time
when something significant happened in the network. In general, these network-driven
techniques can uncover critical information about events in the data that was otherwise

not discovered.
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Chapter 1

Introduction

An important problem in a large variety of fields is the identification of illegal behavior.
Spammers, terrorist groups, drug cartels, and network intruders may all be considered
as groups that should be acted upon. Due to the rapidly growing amount of data,
detecting such behavior by hand becomes increasingly complex and time-consuming.
Therefore, machine learning techniques can be adopted to enhance and accelerate the
detection of anomalous behaviour in large data sets. The research field of identifying
phenomena that diverge from what is considered to be normal is referred to as anomaly
detection [3], further discussed in Section 1.1. In Section 1.2, we introduce the problem
statement that guides this research. To answer the problem statement, we formulate
two research questions in Section 1.3. In Section 1.4, we describe the structure of the

rest of the thesis.

1.1 Anomaly detection in networks

The main goal in the field of anomaly detection is to automatically identify anomalies
in multi-dimensional data points. However, this approach does not account for the
interdependence between data objects. Network analysis can be utilized to represent
and analyse complex relationships between objects and therefore provide a powerful
approach to anomaly detection. The power of network science has already been shown

in a variety of fields, such as pharmacology [4], epidemiology [5], and physics [6].

A network is described as a set of objects (or nodes) and a set of edges (or links), where
each interaction represents a connection between a pair of objects. The formal definition
of a network is dependent on the context of the application, as the definition of an object

or interaction may vary. Note that, while some authors claim there may be a formal
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difference between networks and graphs, we use both terms interchangeably throughout

this paper.

Using a network-based approach to anomaly detection can be useful due to the fact
that fraud is expected to occur in at least two different ways [7]: (1) by word-of-mouth,
where it is likely that acquaintances of fraudulent nodes also commit fraud, and (2) by
collaboration, where fraudulent nodes attempt to commit fraud as a group. In various
domains the potential of network-based anomaly detection was already demonstrated,

including spam detection [8] and network intrusion [9].

One of the first network-based anomaly detection algorithms observed the evolution of
a telecommunication network to monitor so-called communities of interest (COI) [10].
The interactions between each phone are based upon the call quantity and duration
between those calls. By observing the temporal evolution of the graphs on a daily basis,
they (1) confirmed the word-of-mouth fraud theory by finding that fraudulent nodes are
connected to each other with close proximity, and (2) that fraudulent objects can be
detected by measuring the similarity between fraudulent objects and new communities

of interest.

Many techniques do not label a node as anomalous, but provide an indication to what
extent a certain node is anomalous by assigning an anomaly score to each node [2,
11]. In many cases, the boundary of what should be considered anomalous is not so
straightforward; non-fraudulent objects can simply behave anomalously and anomalous
objects can behave ordinarily. Therefore, most anomaly detection techniques require
qualitative evaluation by a domain expert to conclude whether an object should truly
be considered anomalous. It is therefore of utmost importance to include the domain

expert in the process of anomaly detection [12].

One application area for network-based anomaly detection is the field of electronic dis-
covery (e-discovery). E-discovery is defined as the discovery of identifying, collecting and
producing electronically stored information in response to a request for production in a
law suit or investigation [13]. The large volumes of data require techniques to rapidly
detect underlying correlations and to identify what kind of network interactions are rel-
evant for the investigations. E-mail is a commonly used medium that actors utilize to
organize fraud. The tremendous amount of incoming and outgoing e-mails include a
lot of irrelevant information, and automatically identifying the interesting nodes for an

investigator may significantly enhance the process of investigation.
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1.2 Problem statement

The challenging task in this study is to identify and evaluate network-based anomaly
detection techniques that accelerate and enhance the anomaly detection process for a
domain expert. Although there are a large number of anomaly detection techniques
available, there is no one-size fits all to detect anomalies efficiently and effectively to
support the domain expert in real-world data sets. In this research, we investigate how
network-based anomaly detection can be beneficial for a domain expert in the field of
law enforcement and investigations. Therefore, the problem statement of this research

reads as follows.

Problem statement: How can network-based anomaly detection algorithms support

domain experts in detecting anomalous behavior in real-world networks?

One could wonder when a domain expert is considered to be supported. We believe a do-
main expert is supported when at least one of the three conditions is met: (1) the domain
expert understands how to evaluate and compare several results from anomaly detection
techniques, (2) the domain expert is provided with a list of objects that demonstrate
divergent behavior as a starting point of the investigation, and (3) the domain expert
knows why a certain event in time has occurred. Note that there are more methods
to support the detection of anomalous behavior, but these occur in a semi-supervised
or supervised setting. This research focuses on anomaly detection in an unsupervised

setting.

1.3 Two research questions

In order to answer the problem statement, two research questions are formulated. There
are various approaches to detect anomalous behaviour in real-world networks. The first
distinction is made between anomaly detection in static or dynamic networks. Anomaly
detection in static networks attempts to identify anomalies in a network that does not

change over time. Therefore, the first research question reads as follows.

Research question 1: To what extent can network-based anomaly detection techniques

be utilized to identify anomalous behaviour in static real-world networks?

Contrary to static networks, anomaly detection in dynamic networks attempt to identify
anomalous behaviour in networks that change over time. Due to the different nature
of the analysis and the underlying data, they both require different approaches and
detect different kinds of data points that deviate from what is considered to be normal.

Real-world networks operate in a constantly changing environment, where edges and
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nodes can be modified, appear, and disappear. The addition of the time component
in network-based anomaly detection could be of critical importance to effectively detect
unusual behaviour in a dynamic real-world context. Hence, the second research question

reads as follows.

Research question 2: To what extent can the addition of the dynamic component in

network-based anomaly detection affect the performance of anomaly detection?

Answering these two research questions allows us to formulate an answer to the problem

statement.

1.4 Structure of the thesis

This rest of this paper is structured as follows. In Chapter 2, we introduce network
science and anomaly detection separately. Subsequently, we bring both fields together
in Chapter 3. In Chapter 4, we introduce anomaly detection methods that are further
investigated in this paper. In Chapter 5, the experimental setup is described to evaluate
on anomaly detection techniques. In Chapter 6, the results of the performed experi-
ments are described. We follow up with a discussion about the results in Chapter 7.

Conclusively, we answer the problem statement and research questions in Chapter 8.



Chapter 2

Background

Before we are able to understand how anomaly detection techniques can support the
domain expert in decision making, we should understand the relationship between fraud
and anomaly detection. Therefore, we discuss the fraud triangle in Section 2.1. Then,
we discuss two fields separately: network science and anomaly detection. In Section 2.2
we describe the properties of real-world networks. A well-studied and relevant problem
in the field of network science is community detection, further discussed in Section 2.3.
As there exist no publicly available labeled data set for anomaly detection, we discuss
synthetic graph generation in Section 2.4. Lastly, we provide relevant information about

anomaly detection in Section 2.5.

2.1 Investigations as a domain expert

Criminologist David Cressey introduced the fraud triangle that is used to describe the
reasons behind committing fraud [14]. The first of the three factors, motivation, refers
to the phenomenon where an individual copes with serious problems (e.g., financial
problems) that motivates him/her to commit the crime. The second factor, opportunity,
describes to what extent a certain possibility arises to solve its financial problem with a
low perceived risk of getting caught. The last factor, rationalization, refers to the fact
that most persons that commit fraud do not perceive themselves as criminals, and the

individual should be able to justify himself in a way that it makes it an acceptable act.

Understanding the fraud triangle can enhance the prevention and detection of fraud-
ulent behavior, as organizations can act upon individuals that show characteristics of
each of the three factors. Although the fraud triangle is able to explain occupational

frauds, it has been criticized since it is ineffective in explaining group fraud [15]. The
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SEC Accounting and Auditing Enforcement Releases reported that 89% of fraudulent
financial reporting included involvement of the CEO, CFO, or both [16]. As the board
of directors is not directly involved in managing the account records, it implies collab-
oration between multiple actors to organize fraud. Utilizing techniques from the field
of network science may therefore provide useful information about the individuals that

committed unethical behavior collaboratively.

The rapidly growing amount of data of today raises the issue that is known as ’drowning
in data’, where the overwhelming chunks of data that need to be analyzed for an inves-
tigation becomes increasingly complex and time-consuming. Automated techniques are
necessary to structure, summarize and evaluate the data quickly, so that individuals that
demonstrate fraudulent behavior can be detected and further investigated. A common
approach to investigate cases is by organizing the data to answer the golden W’s: who,
where, what, when, and why. These are commonly combined with two extra questions,
how and how much. Answering these questions can shed light upon a multitude of

aspects about the reasons behind the fraud.

The investigator iteratively attempts to answer each of these questions with so-called
hypothesis testing, where one attempts to confirm a hypothesis by searching for evidence
in the large volumes of data. The entire process can already be largely automated to
enhance the process of the investigator, so that the investigator can solely focus on
reviewing and testing the hypothesis. The process and components of the digital forensic
process are shown in Figure 2.1, and are based on [17] and an interview with a domain

expert in the field of law enforcement and investigations.

Artificial Intelligence led law enforcement and investigations

Automated Quality control
Discover Analysis / Prioritization Review [ investigate Disclosure
Data processing Hypothesis testing Analyze golden W's Relevant documents
Data organization Identify golden W's Attribute Report findings / redaction
Data collection Pattern recognition Evaluate Communicate
Data preservation Fraud triangle elements Interpret Present findings
N N T
ESI Discover ——— Analyze —_— Review Disclosure

\/ U/ % /

FIGURE 2.1: The components and aspects in each phase of the digital forensic process
for investigators.
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2.2 Real-world networks

Before we are able to describe what could be considered an anomaly in a network, we
should understand what is considered normal behavior in networks and what a network

is comprised of.

A network G = (V, E) consists of a set of vertices V' and a set of edges E. There are
many different ways to describe vertices and edges. Throughout this paper, We use
the terms nodes, objects, and vertices interchangeably. The same holds true for edges,
links, and connections. The total number of nodes and edges are referred to as n and
m respectively. The degree of a node k, is the number of adjacent lines for node v.
One can also make a distinction between the number of incoming (indegree) or outgoing
(outdegree) links of a node. Initially it was assumed that the node degree distribution
of a real-world network follows a Poisson distribution. However, the opposite seemed
true [18]. As an example, consider a large tulip exporter with five departments. It
is irrational to assume that each employee has an equal probability to interact with
random people from all departments, as most employees will interact with many people
from their own department. This is one of the many network properties that correctly

depict a real-world network. We mention the most significant of them below.

(1) The scale-free property [18]. Instead of following a Poisson degree distribution, a
real-world network follows a asymptotic power law degree distribution in the form of
P(k) ~ k=, where P(k) describes the fraction of nodes that have k connections in the
network. A is the power law exponent that typically falls in the range of 2 < A < 3. This
means that there are many nodes that link to few other people and a few nodes that
connect to many other nodes. The latter type of nodes are often referred to as hubs, as
they connect to many people that are not connected to each other. In the example
of the tulip exporter, one could expect that managers are the ones communicating

interdepartmental, and therefore function as hubs.

(2) The small world phenomenon [19]. The distance between a pair of nodes is described
as the shortest path between two nodes. The average distance between each pair of nodes
appears to be relatively small, a phenomenon also known as the six degrees of separation
[20]. Tt describes that there is an average of six edges between any pair of nodes. For
example, you might know someone that knows the prime minister of your country, that
in turn shook hands with the president of the United States. Hence, there are only
three handshakes between you and the American president. Hubs play an important
role in the six degrees of separation since they significantly decrease the number of steps

between any pair of nodes.
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(8) Low density. Networks are sparse, meaning that a node is mostly connected to a
small part of the network and not to the entire network. Density is measured as the
number of edges divided by the maximum number of edges in the network. For a directed
network, the maximum number of edges is n(n — 1) and for an undirected network the
maximum number of edges is n(n — 1)/2. We compute the network density by dividing

the number of edges in the network by the maximum number of edges.

(4) High clustering coefficient [20]. The clustering coefficient of a node describes to what
extent direct neighbors of a node connect to each other. The clustering coefficient of a
node can be computed by dividing the number of edges between neighbors of a node
by the maximum number of such edges. The direct neighborhood of a node and links
between those nodes is often described as the egonet of a node. The average clustering
coefficient of a network is the average clustering coefficient over all nodes. A real network

exhibits a high average clustering coefficient.

These four properties collaboratively describe small-world networks. Many networks fol-
low these network properties, such as protein interaction networks, science collaboration

networks, and actor networks.

2.3 Community detection

A well-studied task in networks is to identify groups of persons that tend to cluster
together, also known as community detection [21]. A large variety of community detec-
tion algorithms exist in literature, and we will discuss two of them more in more detail:

Louvain [22] and Infomap [23, 24].

2.3.1 Louvain Modularity

The Louvain Modularity algorithm attemps to optimize the so-called Modularity mea-
sure. Modularity is a measure of quality for the division in a network that was introduced
by Girvan and Newman [25]. It measures the fraction of edges m that connect vertices
in the same community in relation to the expected value of the the network if the
m edges are randomly distributed while maintaining the same vertex degree distance.

Mathematically, the modularity function @ is denoted as follows.

Q= L Z (Aij — Tij)d(ci,cj) (2.1)

ij
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Here, c; is the community to which vertex 7 is assigned. Moreover, A;; is a binary number
that states 1 if there exists an edge between vertices i and j. (¢, c;) is 1 if vertices 4
and j fall in the same community and 0 otherwise. k;k;/2m denotes the probability that
there is an edge between ¢ and j if the graph is randomly generated. 7 is the so-called
resolution parameter that denotes the size of the communities to be found: a smaller 7
provides more communities. k; is the degree of node i. For a weighted network, A;; can

take any non-negative value.

As each node should be assigned to a cluster to measure the Modularity @), and identify-
ing the optimal community structure is proven to be a NP-hard problem [26], we use the
greedy Louvain method described in [22]. In short, the Louvain algorithm is executed
as follows. First, all nodes are assigned to their own community. The algorithm will
then iteratively walk through the nodes, and replace each node to the community that
maximizes Modularity. Once we passed all nodes, we aggregate the nodes and edges
of each community into one node and in turn iterate through the aggregated nodes to
find the highest increment in modularity. The algorithm terminates once there is no

improvement in Modularity found.

2.3.2 Infomap

To understand Infomap, one first needs to understand the concept of random walkers. A
random walker is somebody or something that is randomly traversing through the edges
of the graph. By analyzing the path of a random walker for a longer period of time, one
expects to find a pattern, where a random walker traverses through a community for a
longer period of time. Infomap attempts to describe the list of nodes that are visited by
a random walker in a minimal way, i.e., it tries to find the minimum description length

of the path of a random walker.

Compressing the description length is often done with Huffman coding, where terms
that occur often get a short code word, while terms that occur rarely get a long code
word. Finding the theoretical compression limit can be done using Shannon’s source
coding theorem, that describes that the average length of a code word can not be less
than the entropy of a random variable R, if [ code words are used to describe the
l states of R that occur with frequencies p;. The entropy of R can be described as
H(X) = —>]pilog(pi). The average number of bits to describe a step from a random
walker can then be computed in terms of the frequency distribution P to visit nodes in

the network with a lower bound of H(P).

Infomap uses a two-level description to compress information in the graph. Firstly, each

cluster is provided with a unique name following Huffman coding, where nodes in the
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same cluster are provided with names from a different Huffman coding. An extra ’exit’
code word is provided to capture whether the random walker is leaving a cluster, followed
by the code word of the new cluster. By using the two-level description approach, one
can significantly reduce the description length of the random walker in the network.
Given the set of communities C, the average description length of a single step by the

random walker is computed with the so-called map equation L as follows.

L(C) = qH(0) + 3 piH(I') (2.2)

Here, g describes the probability to leave a cluster, and H(O) the entropy of the module
names. Furthermore, H(I?) is the entropy of within cluster movements, including the
exit code word for cluster . Finally, p; is formally described as the fraction of within-
cluster movements for cluster 4, and the probability of leaving cluster ¢ so that chzl =
14 ¢. Now, one can search for an optimal community structure by minimizing the map

equation L.

For the minimization, the authors follow the Louvain method by replacing nodes to the
clusters that minimize the map equation. Once no more increase in L can be found,
the same aggregation procedure is also followed. Furthermore, two extra steps are per-
formed to ensure that the algorithm does not get stuck on local minima: (1) submodule
movements, where each cluster is treated as its own network and the algorithm is ap-
plied on that network. If any submodules were found in the submodule, the algorithm
is reapplied on the entire network where the submodules can move freely between other
modules. and (2) single-node movements, where each node is assigned to be part of its
own module, and then the algorithm is ran subsequently to see whether the node may

belong to a different cluster.

2.4 Graph generation

As real-world networks often consist of noise that obscure the evaluation of performance
measures, and the availability of labeled data sets in the field of anomaly detection
is scarce, a common approach to measure the performance of network-based anomaly
detection algorithms is to generate synthetic graphs that obey the properties of real-
world networks. Synthetic graph generation is a field of large interest, and the number
of graph generators has increased significantly over the past decades [18, 27]. The

identification of a suitable graph generator is therefore a difficult problem. For reasons
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we show later, communities in graphs are closely related to anomaly detection in a static

context.

Therefore, the LancichinettiFortunatoRadicchi (LFR)-benchmark, a graph generator
that generates graphs with the unique property that it obeys the network properties
of heterogeneity for the community sizes and node degrees, appears to be most satisfac-
tory for static anomaly detection [27]. Moreover, the range of parameters to tune makes
the benchmark extremely suitable for the generation of unweighted, weighted, undi-
rected, and directed networks. To elaborate on the parameters, it is best to describe
them in the context of how the graphs are constructed. The graphs are constructed as

follows.

1. A network of n nodes is generated where each node is given a degree extracted
from the power law minus exponent A\; with ki, and kpax so that the average

degree is d.

2. Community sizes are generated from the power law minus exponent Ae with com-
munity sizes Spin and Spax 80 that symin > kmin and Smax > kmax, and the sum of
community sizes is n. If these are not chosen, the community sizes will be chosen

close to the degree extremes.

3. Each node is assigned to a community, as long as the community does not exceed
the set community size. If the number of edges within the community exceeds
the community size, the node becomes homeless. Homeless nodes are randomly
assigned to a community. If the community size is exceeded then a randomly
selected node of that community becomes homeless. The process terminates if all

communities are completed.

4. The algorithm rewires the nodes so that each node has a fraction of approximately
p internal neighbors and 1 — p external neighbors, whilst the nodes retain their

degree.
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2.5 Anomaly detection

As described earlier, anomaly detection

refers to the problem of identifying data o Cluster 1
points that diverge from what is con- b .‘.o : il_u.:i:,;ruie
sidered to be normal [3]. It can result 0 * °‘:. e e
in insights into how to prevent and act 20| o ‘?.'g .': .

upon types of malicious behavior, such . ‘e ..': . ®

as a breach into a system or a hacked = ) . ¢

credit card. Figure 2.2 provides a two- 1 ‘e

dimensional visual representation of a 05

data set that includes two types of anoma-

lies; (1) a white crow, a data point that -

clearly does not belong to any of the two ~ ™°

clusters, and (2) an in-disguise anomaly, a ’ 1 ’ x ’ ) 5

data point that attempts to behave like a FIGURE 2.2: A visual representation of a data
normal data point but actually attempts set where an anomaly occurs.

to breach into the cluster.

2.5.1 Types of anomaly detection

Research in anomaly detection dates back to the 19th century [28]. Since then, many
techniques have been developed in the field of anomaly detection. The majority of these
techniques can be divided into six categories [3]: (1) classification based, (2) clustering
based, (3) nearest neighbor based, (4) statistical, (5) information theoretic, and (6)
spectral. The techniques in each category are similar to the data mining categories,
only with another purpose. As an example, a clustering-based technique attempts to
detect anomalies by clustering the data set and identifying the nodes that do not belong
to any of the clusters, as is clearly the identification of a white crow anomaly illustrated

in Figure 2.2.

Furthermore, there are three different approaches to detect anomalous behavior: (1)
unsupervised anomaly detection, that identifies anomalies in unlabeled data, (2) super-
vised anomaly detection, where the data is already labeled anomalous or not, and (3)
semi-supervised anomaly detection, where a model is constructed on a labeled training
data set, and one measures the likelihood that other instances follow the same anoma-
lous pattern. In this research, we identify anomalous nodes in an unsupervised fashion

because there are no publicly available labeled data sets.
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2.5.2 Challenges in anomaly detection

One of the main challenges in anomaly detection is to determine whether a node should
truly be considered anomalous or not. As an example, consider a student that attempts
to conduct a survey on a social network channel on the one hand. The student may
send a lot of friend requests to gain more exposure to complete the survey. On the
other hand, we consider a spammer, that also attempts to send malicious messages to as
many people as possible. The spammer also sends a lot of friend requests to maximize
its reach. The behavior of the student and spammer can be extremely similar, while the

spammer should be considered fraudulent and the student should not.

Therefore, the exact definition of each anomaly differs for each domain. Anomalies are
usually the result of malicious actions, and it is of critical importance to correctly define
the anomaly one is looking for. Still, the persons that commit illegal actions may be
aware of the methods to uncover illegal activities and attempt to hide by acting as
normal persons would (illustrated as the in-disguise anomaly in Figure 2.2). Therefore,
domain experts should be involved throughout the process to determine whether the

flagged node should be acted upon.

2.5.3 Anomaly detection examples

A simple but effective statistical approach to
99.7% of the dat: ithi . . .

e s stndard devtonsorthemesn ——— | anomaly detection relies on the assumption
95% within

2 standard deviations
68% within

<— 1standard —>|

deviation lustrated in Figure 2.3, a normal distribution

has the property that about 68% of the data

E—

that the data follows a normal distribution. Il-

points falls within one standard deviations o

of the mean p and 95% of the data falls within
20 of p. If the data is normally distributed,

n=3¢  w-2 w-o x wte w2 w+30  gnomalous data points are those points with

FIGURE 2.3: A normal distribution (ob- the furthest distance towards p. A threshold

tained from [1]). can be set to flag all data points that are not
covered within 30 from the p as anomalous.
Often, the median Z is used instead of the mean as the mean can become skewed due
to outliers. Although this is a very intuitive approach, the assumptions that the data
follows a normal distribution and can be reduced to a one-dimensional value does not

always hold true.

Another relatively simple approach to anomaly detection is by utilizing the k-means

clustering algorithm [29]. k-means clustering focuses on assigning each observation, that
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consists of a vector of features, to one of the k clusters. It starts by initializing k clusters
and assigning or estimating the centroid of the k clusters. The algorithm iteratively runs
two steps: (1) the clustering step, where each observation is assigned to the cluster of
the closest centroid, and (2) the centroid update step, where the centroid is repositioned
in the vector space by averaging each feature that belongs to that centroid. The distance
between each feature vector can be computed with several distance measures, yet the

Euclidean distance is commonly used and is described as follows.

Here, p and ¢ are two vectors of size N, where p; and ¢; denote the ith value of the
vector space. When searching for anomalies with the k-means algorithm, the challenge
is to find those data points in the cluster that are furthest away from the centroids of the
clusters. In other words, we select the nodes that have a large intra-cluster distance given
a certain threshold. Although k-means offers no accuracy guarantees, it offers simplicity
and performance. In case of Figure 2.2, the white-crow anomaly can be detected by
initializing the algorithm with & = 2 to find the purple and blue clusters. The white
crow anomaly will either be assigned to the purple or blue cluster, but the distance
to the centroid of both clusters remains high, which makes the k-means algorithm a

suitable approach for detecting white-crow anomalies.
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Related work

Contrary to anomaly detection in regular data sets, using a network-based approach to
capture the relationship between objects can provide different insights into the network
and its anomalies. As mentioned before, in many domains it is expected that fraud
spreads by word-of-mouth, and that organized fraud occurs in closely related groups [7].
Therefore, we bring two fields together in this Chapter: anomaly detection and network
science. We discuss the network anomaly types in Section 3.1. In Section 3.2, we
provide a variety of applications of network-based anomaly detection. In Section 3.3,
we address five different methods on how to evaluate on anomaly detection algorithms.

The contributions of this research are described in Section 3.4.

3.1 Network anomaly types

According to [7, 30, 31], There are four types of anomalies that can be detected in
networks: (1) anomalous nodes, (2) anomalous edges, (3) anomalous sub-graphs, and

(4) events. We discuss each one of them below shortly.

Node anomaly is an object that behaves considerably different compared to other
objects in the network. One of the most prominent node anomalies in the field of static
network-based anomaly detection, is the node that connects to random nodes in the
network [2, 11, 32-34]. There are two reasons why node anomalies can be considered
anomalous: (1) these nodes are considered hubs and therefore play an important role in
the network by connecting two or more distinct communities (e.g. opinion leaders), and
(2) these nodes are not aware of the global network structure and therefore connect to
many random nodes (e.g., spammers that send e-mails to as many e-mail addresses as

they could find on the web).

15
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Edge anomaly describes interactions between two nodes that seem irregular. An edge
anomaly can occur in a variety of ways. An typical example of an edge anomaly is that
there exist an extremely strong tie between two nodes, while both nodes do not have
strong ties to any other nodes in the network [2, 33]. Other than strong ties, interactions
that connect two groups of objects in the network that were otherwise not connected

could be considered anomalous [35].

Sub-graph anomaly can be described as a group of nodes that collaboratively show
anomalous or fraudulent behaviour. In large groups, it is unlikely that everybody knows
each other and groups that are very strong connected to each other may indicate collu-
sion. For example, in a review network where users are connected if they both reviewed
a specific product, groups of fake reviewers can be identified as they constantly review

each other or the same products [2, 36].

Event anomaly is an anomaly where a significant change in the network happened
between time step ¢ and previous time steps. An event anomaly can only be detected
in a dynamic network, where several network features are monitored over consecutive
graphs. A graph in the stream of consecutive graphs can be flagged anomalous if the
graph significantly differs from the rest of the graphs [37, 38]. Analyzing a network over
time may provide new insights into the network, but also requires techniques with low

computational complexity to analyze the network in a rapid fashion.
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(a) Node anomaly (b) Edge anomaly (c) Sub-graph anomaly

FIGURE 3.1: Examples of anomaly types in static networks as defined in [2]. Note that
the Event anomaly is not illustrated, because that only occurs in a dynamic context.

3.2 Anomaly detection in networks

The anomalies described in the previous section can be detected with various tech-

niques. We divided the techniques in five categories: (1) local-structure based, (2)
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global-structure based, (3) clustering based, (4) factorization based and (5) event detec-

tion.

3.2.1 Local-structure based

The first type of network-based anomaly detection refers to anomaly detection by only
measuring local structural properties of each node. As an example, the Oddball algo-
rithm was introduced for weighted graphs that (1) extracts a number of features, such
as the number of nodes and edges, from the ego-network of each node. (2) identifies
a pattern of normal behaviour by fitting so-called power laws on these features, and
(3) detects points that deviate from these power laws. The algorithm is able to detect
stars (node anomaly) or near-cliques (sub-graph anomaly), and dominant links (edge
anomaly) in a weighted graph [2]. Each of the detected anomalies was also described
in the context of a real-world network. For example, a star may accurately represent
spammers in networks, because spammers are typically not aware of the local clustering

structure and therefore send a message to people that are not connected to each other.

3.2.2 Global-structure based

Many studies in the field of network science focus on measuring the centrality of each
node, i.e., the importance of a node in the network. The results can provide insights into
the key players in the network and may therefore be of critical importance to identify
objects that influence other nodes in the network. Using centrality-based methods, one
can uncover the most important nodes in a network (those nodes with a high centrality).
While centrality measures do not truly belong to the field of network-based anomaly
detection, these techniques can be beneficial for the domain expert to get insight into

the network. Therefore, we mention the five well-known ones below.

The degree centrality is described as the number of nodes that a node is connected to
in the network. It therefore indicates the popularity of a node, being in contact with a
lot of other nodes in the network. One could also make a distinction between indegree
centrality (the popularity of an object), and outdegree centrality (objects that want to

connect to many other objects).

The betweenness centrality is the fraction of shortest paths in the network that pass
a specific node. Therefore, it indicates which nodes influence the flow throughout the
network. Hence, these are nodes that act as a ’bridge’ in the network, and therefore
play an important role in connecting communities. Another approach is to compute

the betweenness centrality on a local part of the graph, so one can identify local hubs
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in the network. For example, Hassanzadeh et al. extended the Oddball algorithm by
extracting the average betweenness centrality of each ego-network and comparing that
against the number of edges, detecting stars or near-stars and cliques or near-cliques

more accurately than the Oddball algorithm [32].

An alternative centrality measure is closeness centrality, one that indicates how close the
node is to all other nodes in the network. It is computed as the fraction of shortest paths
between a node and all other nodes. Nodes with a high closeness centrality are nodes
that should be reached out to if one wants to rapidly spread information throughout the
entire network. The closeness centrality can also be useful to determine the person that
is most central in a certain sub-graph, to identify the persons that are closely connected

to everyone else in that group.

Lastly, an interesting centrality measure for the purpose of investigations is the PageR-
ank centrality [39]. Created by Google founder Larry Page, the PageRank centrality is a
measure that is based on random walks. Intuitively, the PageRank algorithm generates
a probability distribution that represents the likelihood that a specific person will arrive
at any particular object in the network by randomly navigating through the network.
In other words, a node is considered important if there exists a link from another im-
portant node or if the node has many incoming links. PageRank centrality is useful as
it does not only take into account one-hop away neighbors, but also two, three, or k-hop
neighbors with decreasing weight. To compute the PageRank centrality, consider a set
of nodes V, where each node v € V is initialized with a ranking factor PR(v;) of .
Then, in each iteration the value PR(v) is updated and distributed over all nodes v is

connected to. It is repeatedly computed as follows.

PR(v))
outdeg(v;)

PR(vi)zl_a—Fa Z

n .
pj€indeg(v;)

(3.1)

Where a is a damping factor that describes if an individual stops navigating through
the network and stays on the node. Note that in each iteration, each node gets a value
of at least I_Ta that represents the probability that a random surfer starts over on a new
node. a is commonly set to 0.85. As we can infinitely update the PageRank values,
the algorithm is set to converge once there is no significant difference in the updated
PageRank value. Note that there are many variants of the PageRank centrality. For
example, the Eigenvector centrality is equal to the PageRank centrality if the graph is

undirected and unweighted.
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3.2.3 Clustering based

Another approach to identify anomalous behaviour in static real-world networks is to
cluster the nodes in the network. Nodes or sub-graphs can then be considered anomalous
if (1) the structure of a cluster, such as the density, is different compared to the other
clusters in the network, or (2) if the node does not belong to a cluster or is a link
between multiple clusters. Note that it is sometimes claimed that normal community
detection methods are not suitable for the purpose of anomaly detection as the results

of community detection algorithms are affected by the presence of anomalies [11].

Other techniques that solely cluster the nodes from a local perspective can be used to
identify clusters and anomalies. As an example, the Structural Clustering Algorithm for
Networks (SCAN) is a method that clusters nodes together if a pair of nodes share at
least a common set of neighbors. Nodes that do not belong to any cluster and connect

to multiple clusters can then be considered hubs in the network [40].

In the field of dynamic network-based anomaly detection, a wide variety of methods
utilize clustering techniques. For example, Tang et al. identify persons of significance
in a community to model the evolution of significant communities over time [41], while
Wang et al., utilize a clustering-based approach to identify whether a sudden change
in the network structure is caused internally in a community or globally by a group of

communities [42].

3.2.4 Factorization based

Factorization based methods construct an adjacency matrix or matrix with features of
the graph for each time step, to further decompose the matrix to capture the underlying
structure of the data. As an example, Tong et al. introduced the novel technique Non-
negative residual Matrix Factorization (NrMF) for bipartite graphs. Bipartite graphs
are graphs where the vertices are decomposed in two disjoint sets (Vi, V2), where there
only exist relationships between the one and the other set. An example of such a network

is a user to movie rating network.

NrMF captures underlying correlations of the graph by decomposing the bipartite ad-
jacency matrix with the unique property of imposing non-negativity constraints on the
residual matrix R [33]. Mathematically, the low-rank approximation of the adjacency
matrix is presented as A = A+ R = FS+ R, where F' = n; X g and S = ¢ x ng reveal the
community structure of the graph, while the residual matrix R is an indicator of which
nodes do not obey the underlying patterns in the data and can therefore be considered

anomalous. By imposing the non-negativity constraint on the residual matrix, one can
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use this approach to detect four anomalous patterns: (1) strange connection between
two remotely connected communities, (2) port scanning, a node from V; that connects to
many other nodes in V3, (3) ddos, a node from V5, that connects to many other nodes in
V1 and (4) bipartite core, where a group in V; and a group in V5 are strongly connected

to each other.

3.2.5 Event detection

In the field of dynamic network-based anomaly detection, events can be detected by
investigating the difference in graph structure between time step ¢t and t+1. A common
approach is to extract features of the graph at each time step and compute the similarity
of the network with respect to previous time steps. One then sets a threshold on the

similarity to flag a certain network as anomalous.

As an example, the algorithm NetSimile firstly extracts f features of each network, such
as the number of neighbors of each node, the clustering coefficient, and the number
of incoming and outgoing edges in the egonet, to generate a n x f matrix [38]. The
authors found that the n x f matrix can be reduced by aggregating the n vectors to one
vector by solely capturing statistical measures of the vectors such as the median, mean,
standard deviation, skewness and kurtosis' of each feature for the graph. A variety of
distance measures can then be used to measure the similarity between the current and

past networks.

Koutra et al. found that one could also measure the change in flow of the network by
computing a similarity score between two graphs with the same number of nodes by
measuring the difference of affinity of each node i to j in the graphs [37]. The node
affinity is computed using Fast Belief Propagation [43], a belief propagation algorithm
that is guaranteed to converge. It then measures the distance between the node affinities

of the current and earlier networks to provide an indication of the similarity of the graph.

A shortcoming of these methods is that they are biased towards flagging events when
the network becomes sparser or denser than the previous time step. To solve this issue,
La Fond et al. introduced a variety of statistics that are normalized over the size of the

network, and is therefore able to flag size independent events [44].

!The kurtosis is a measure that describes whether the distribution is light- or heavy-tailed.
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3.3 Evaluation of anomaly detection algorithms

As we described earlier, one of the main challenges in anomaly detection is what should
be considered normal or anomalous. Another problem of network-based anomaly de-
tection is that there is no available labeled data set to evaluate anomaly detection
techniques. According to [7], there are five evaluation methods that are commonly used

in the field of anomaly detection and we describe each one of them below shortly.

e Internal evaluation - This type of evaluation utilizes the statistical distribution
of the anomaly scores to quantify to what extent a node does not belong to the
distribution. This is an internal evaluation because it solely clarifies the outlier
score of the model that is used and cannot be used to compare results with other

models.

o Qualitative evaluation - Qualitative evaluation is described as finding explanations
for why the anomaly was detected by performing an in-depth analysis on a real-
world data set. This approach may require incorporation of domain knowledge to

determine whether the anomalies should truly be considered anomalous.

o Synthetic graph injection - In many fields of network science, such as community
detection, there is the need to be in control of the network structure to properly
evaluate how the technique performs on different network structures. One is able to
quantitatively evaluate the anomaly detection technique by generating a network

and evaluate on the manually imputed anomalies that the model detected.

e Anomaly injection - Contrary to the previous approach, anomaly injection focuses
on imputing anomalies in real-world data sets, instead of synthetic data, to quan-
titatively evaluate on the detected anomalies. A limitation of this method is that
the real-world data set may contain anomalies by itself and therefore obscure the

performance of uncovering anomalies.

o Validation by external source - The last evaluation method triangulates multiple
data sources to evaluate whether an identified anomaly truly demonstrates anoma-
lous behavior. As an example, one can identify a fraudulent node by considering
only the graph structure, and then use meta information about the node to observe

whether the node should be considered anomalous.
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3.4 Contributions

As the field of network-based anomaly detection has had a lot of attention in the last
decade, a variety of complementary surveys have been conducted that describe the
difference between the anomaly detection techniques on a high level [7, 30, 31]. A
group of algorithms, that are further discussed in the next Chapter, identify similar

anomalies.

The contribution of this thesis is threefold. Firstly, we identify and utilize methods
that uncover similar anomalies in a static network, and report on the performance of
each of these methods on synthetic and real-world data sets. Secondly, we introduce
a new method, named CADA, and demonstrate that the community-aware approach
performs better than previous approaches in uncovering the node anomaly. CADA is
also described in a dedicated paper [45]. and (3) we show how dynamic network-based
anomaly detection methods can be used to identify events in consecutive graphs over
time. Furthermore, we show to what extent these anomaly detection algorithms can
assist law enforcement and investigations in rapidly organizing the data to answer the
two of the golden W’s: who and when by identifying suspicious nodes or suspicious

moments of interests that should be further investigated.
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Methods

As we have provided information about anomaly detection techniques for networks in
general, this Chapter provides an extensive description of the methods that are further
used in the paper. These techniques are chosen as they are prominent in the field
of network-based anomaly detection [7, 30]. In Section 4.1 we address how to detect
anomalies in networks at one point of time, also known as static network-based anomaly
detection. In Section 4.2 we describe how to detect events in networks that evolve over

time.

4.1 Identifying persons of interest in a static network

In this section we describe how network-based anomaly detection algorithms can support
domain experts in identifying anomalous behavior in a static context. It encompasses an
extensive description of four static anomaly detection algorithms that are investigated.
It begins with ODDBALL, an algorithm that identifies four types of anomalies and is also

used as a baseline in terms of identifying anomalies in static networks.

One of the identified anomalies, is the node anomaly, the node that connects to many
nodes that are not connected to each other. There are many other types of node anoma-
lies, but from now on we refer to this anomaly as the node anomaly. As a follow-up
on ODDBALL, we describe two other methods that can be used to detect the node
anomaly. Then, we propose our new community-aware approach CADA to identify the
node anomaly. In some cases, we use the well-known Zachary’s Karate Club Network

to illustrate the technique with an example. The network is illustrated in Figure 4.2.

23
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4.1.1 Oddball

ODDBALL analyses the ego-network for each node in the network [2]. The ego-network
is the direct neighborhood of a node, and the connections between those nodes. The
authors extracted multiple features of each ego-network and identified four features that
follow a power law and accurately describe normal behavior in networks. The extracted
features are (1) the number of neighbors of ego-network i, (2) the number of edges in
ego-network 7, (3) the total weight of ego-network i, and (4) the principal eigenvalue
of the weighted adjacency matrix of ego-network ¢. By illustrating the features in two-
dimensional space, they found that the combination of two features sometimes followed

so-called power laws. We mention the three observed power laws below.

1. Egonet Density Power Law (EDPL): the number of nodes n; and the number of

edges m; of the ego-network ¢ follow a power law (m; o n;?).

2. Egonet Weight Power Law (EWPL): the total weight w; and the number of edges

m; of the ego-network ¢ follow a power law ((w; oc m3™).

3. Egonet \,, ; Power Law (EPPL): the principal eigenvalue of the weighted adjacency
matrix A, ; and the total weight w; of ego-network ¢ follow a power law (A ; o<
w?" )

These power laws exhibit normal patterns of the data set. The authors defined four

anomaly types that can be identified if an ego-network does not obey one of the power

laws, and we define how these may be useful for an investigator:

1. Star or Near-star: Nodes that connect to many nodes that are not connected
to each other (i.e., a low clustering coefficient, extracted from EDPL). Typical
examples of stars are network intruders in physical networks or spammers spread-
ing unwanted advertisements in online social networks. Other examples of star
anomalies can be key players in the network as they connect to an extremely large

amount of groups.

2. Clique or Near-Clique: ego-networks that have an extremely high density (i.e., a
high clustering coefficient, extracted from EDPL). It is expected that fraud spreads
by word-of-mouth, so it may be useful to find those nodes that are very tightly

connected to each other.

3. Heavy Vicinity: ego-networks that have an extreme weight compared to the num-
ber of edges (extracted from EWPL). This is a follow up on (2), because ego-

networks with a high activity may even empower the assumption made in (2).
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FIGURE 4.1: Egonet Density Power Law on Zachary’s Karate Club network. The blue
line shows at what point a star ego-network occurs.

The heavy vicinity indicates that there was a high activity of e-mails in the ego-

network, and may therefore yield similar results as (4) for denser graphs.

4. Dominant Pair: nodes that have an extremely strong tie compared to the rest
of the edges in the ego-network (extracted from EPPL). A high activity between
nodes persons in the network compared to the other links from that person indi-

cates that something unusual occurs between those two nodes.

As the data points follow a power law, we can fit the function f(z) = Cz%, where C is
a constant, and x is the variable of interest where the power law should be fitted on. &
is the power law exponent. The resulting fitting line can be used to measure to distance
of each ego-network to the fitting line, which in turn can be used as an indicator of the
deviance of a node compared to the rest of the network. Hence, for each ego-network i,
where y; describes the real value of the feature, we compute the anomaly score ob as the

distance to the fitting line as follows.

max(y;, Cz&)

ob(i) = log(y; — Cx + 1) (4.1)

min(y;, C’x?)
An example of such a plot, the Egonet Density Power Law (EDPL), is illustrated in
figure 4.1 on Zachary’s Karate Club network. If the node is near or on the ’Star’ line,
it indicates that the node connect to different nodes that are not connected to each
other. To obtain a list of most anomalous nodes, one sorts the list of anomaly scores in

descending order.
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4.1.2 Structural Clustering Algorithm for Networks

The Structural Clustering Algorithm for
Networks (SCAN) is a method devel- .

oped to detect communities in networks o © ° °

Cluster 1
Cluster 2
Cluster 3
Hubs
Outliers

®
0000

[40]. Many community detection algo- e o
rithms solely focus on graph partitioning,
while not considering (1) hubs, nodes that ¢ . °
connect multiple clusters, and (2) out-
liers, nodes with only one connection in s
the network. SCAN attempts to achieve °
this by creating structure-connected clus- - ®
ters, meaning that nodes are clustered to-

gether if they share many common neigh- FIGURE 4.2: The results of SCAN with param-

eter setting ¢ = 0.5 and Kk = 2 on the Karate

. Th 1 similarity i fi
bors e structural similarity is defined Club Network.

as follows.

I'(v) NT'(w)

V) = r ) i)

(4.2)

Where I'(v) denotes the neighborhood of node v, including the node v. Since v(v,w)
returns a measure between 0 and 1, a threshold e is set to assign cluster membership of
a node. Nodes that share a structural similarity of at least € with at least s neighbors, is
defined as a core vertex. The core vertices are used to assign cluster membership. € and
k are two parameters that determine whether the node should be assigned to the cluster
of a vertex core. An additional of SCAN is that the algorithms detects anomalous
nodes by identifying (1) hubs, nodes that belong to no cluster and connect multiple
clusters, and (2) outliers, by identifying nodes that do not belong to any cluster and
solely connect to one cluster. An example of SCAN on Zachary’s Karate Club Network

is given in figure 4.2.

SCAN requires accurate and careful selection of parameters to detect hubs and outliers
in an accurate manner. The authors propose to extract the nearest structural simi-
larities of the neighbors for a sample of the nodes. By ordering the nodes by nearest
structural similarity, one could identify the turning point at which the nodes tend to
cluster together. One is able to use that measure to determine at what point a node
should be considered a anomalous. An example of such a plot is given in figure 4.3 for
the Karate Club network. Furthermore, the authors recommend to set k = 2, which
remains an intuitive choice to ensure that the algorithm identifies a vast number of core

vertices to further cluster nodes in the network.
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FIGURE 4.3: A nearest structural similarity plot for the neighbors of each node on
Zachary’s Karate Club network.

One issue of the SCAN algorithm is that it provides a list of hubs, while not providing
an indication of the deviance of each hub. In some cases, the number of hubs detected
can be of substantial size and an indication of the anomaly score of each hub may be
necessary. By testing on synthetic networks, we found that the best way to uncover the
node anomaly, was to assign an anomaly score sc to each node by computing the average
structural similarity between each hub and its neighbors. A lower average structural
similarity indicates that the node does not share any common neighbors with any of
its neighbors. We also considered normalizing it solely over the degree and number of
communities it is connected to, and chose this measure as it performed best on synthetic

data.

4.1.3 Embedding approach

An emerging technique in the field of network science is that of network embedding. Net-
work embedding focuses on embedding each node to a multi-dimensional vector while
preserving the network structure in the embedding [46]. In general, network embedding
techniques attempt to preserve the global structure to best summarize the network in a
set of vectors. Hu. et al approached the problem of network-based anomaly detection by
using a slightly different embedding approach. More precisely, they focused on identify-
ing nodes that connect to a number of influential regions by preserving the local linkage
structure of each node, instead of the global linkage structure [11]. Those nodes may be
considered structural inconsistencies, as they obscure the community structure of the
network and therefore decrease the performance of community detection methods. The

embedding approach is described as follows.

Given an undirected graph G = (V| E), associate each node i € V with a R-dimensional
vector X;, where R is the number of influential regions and item X[ describes the
relationship between node v and region r. As we want to embed each node into a

vector, we want to find an embedding where nodes that are connected should have
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similar values of X;, while disconnected nodes should have distinct values of X;. In
other words, EMBED attempts to find an embedding of the nodes where the following

equation holds true.

1%~ X1 = o (4.3)

Where ||X;|| is the Euclidean norm of vector X;. The resulting value will always be
between 0 and 1 because the authors impose non-negativity constraints on the vector
and an upper bound of @ for ||X;||. However, this approach is not realistic, since
there are many nodes that connect disconnected nodes, and those nodes cannot have
similar values of || X;|| for both disconnected nodes. Therefore, a so-called stress function
S(X;, X;) was defined that describes to what extent the ideal embedding is violated. The

stress function is described below.

— 1Xi — X512 if (i,j) € E
S(Xiy Xj) =<9 (4.4)
(X = X5l - 1) if (i,)) € E

As this provides an embedding of the local linkage structure, we could formalize this as
an objective function that can be minimized. However, as most networks are sparse and
thus the quantity of non-edges is relatively high compared to the number of edges, there
should be a balancing factor v that ensures that there is a balance between the edges
and non-edges. v can be estimated by dividing the number of edges by the number of
non-edges in the network. An more elegant way is to sample a set of non-edges that is
of equal size to the number of edges, to approximately define the objective function Om

as follows.

Om= 3 IG-X|P+ 3 0= -Tlh =t 49
(i.j)eE (i.5)¢E

The optimal embedding can then be found by using gradient descent. Since gradient
descent is not scalable for large networks, the authors adopt a mini-batch gradient
descent approach and solve the minimization as a nonlinear programming problem.
Hence, the gradient descent method iteratively updates the embedding of each node ¢
by

Xi,t—l—l — Yz — At -VOm (46)
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Here, A; is the step size of the tth iteration. A ¢ of 50 is sufficient. The authors further
propose to approximately represent Om by removing 5 and equal the number of existent

edges (E) and non-existent edges F to balance the optimization, leading to the following
VOm.

VOom= Y 2Xi-X|-VIKi-X;||+ > 20X Xl -1)-VI[X; = Xj|| (4.7)
(i,))EE (3,7)EEs

To further enhance the process, the authors propose to, (2) to initialize the vectors
with equal embedding values if nodes belong to the same partition according to network
partitioning method METIS, and (3) reduce the number of dimensions in vectors of the
embedding to k4, where k is the average degree and 3 a toleration factor for the number
of regions node anomalies connect to. According to the authors, § = k/4 is sufficient.
After successful minimization of the network embedding, we represent the correlation of

node i with r regions as follows:

NB(i) = (i yi) = Y (-IX-Xl)-X; (4.8)
(ENB)

The EMBED anomaly score em(i) of node i can then be computed as follows.

[

R
em(i) = Z y'- (4.9)
j=1

Sex

Here, y¥ is the maximum of (y7,...,47). Embed runs in O(t - m - (k + j3)), where t is
the iteration threshold of gradient descent, again with m the number of edges and k the
average degree. A drawback of EMBED is that the results are dependent on the number

of dimensions R, that are chosen, and as such the approach is not parameter-free.

4.1.4 CADA

The methods discussed above, mainly focus on identifying the node anomalies from a
local perspective, or are not parameter-free. Although it is sometimes postulated that
the presence of anomalies might affect the performance of community detection algo-
rithms [11], one may wonder to what extent it truly does so. In particular because

community detection algorithms typically find an optimum of some function or quality
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metric, and as such can deal quite well with imperfect divisions of a network into com-
munities, for example because of anomalous nodes. The efficiency of modern community
detection methods times has furthermore improved drastically over the years (they run in
O(m)), allowing us to extensively investigate their performance for networks with more
obvious as well as more obfuscated community structures, as we will do in Section 6.
The proposed Community-Aware Detection of Anomalies algorithm consists of

two steps.

First, CADA (cd in short) assigns each node to a particular community using an out-
of-the-box community detection method [21]. In this paper, we employ two well-known
community detection algorithms that both scale linearly in the number of edges and as
such run in O(m): the Louvain algorithm [22] and the Infomap approach [24]. These
are extensively described in Section 2.3. We refer to CADA} or cd; when Louvain
is used as community detection method, and to CADA; or cd; when Infomap is used
as community detection method. Both assign each node to a community, and can
handle undirected and directed networks (Louvain would ignore link direction), and can

incorporate weights.

The second step of CADA is to assign an anomaly score to each node, based on the
communities each node connects to. The anomaly score describes to what extent the
neighbors of a node belong to a diverse number of communities, while not strongly
belonging to one of them. Thus, for each node ¢, we create a vector g;, where g{ represents
the number of neighboring nodes of node ¢ that belong to community c. g; represents
the maximum number of neighboring nodes that belong to the same community. We

can then compute an anomaly score for each node as follows:
>
cd(i) = ZL (4.10)
=19

4.2 Identifying moments of interest in dynamic networks

Contrary to static networks, dynamic networks are networks that change over time.
Research in the field of anomaly detection in dynamic networks has seen increased
interest in recent years, as one is able to define normal behavior of a node and its
connections over time. This makes it a powerful approach to identify points in time
where a node, sub-graph, or entire network behaves considerably different compared
to other moments in time. While a variety of techniques exist in the field of dynamic

network-based anomaly detection, we will focus on one approach in particular: event
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detection. Event detection is useful for the investigator, because it can uncover moments

of critical importance in the network that is under investigation.

The problem of event detection can be described as follows. Given a graph stream, or
a sequence of graphs, G1,Ga, ..., G, where T is the total number of time steps in the
network, identify graphs in time where the network has changed significantly compared
to previous points in time. Note that choosing the width of each time step t between G;
and G;_1 with 0 < t < T is crucial to correctly identify anomalous points in time, because
events can be very context specific. For example, in a corporate e-mail network, one
can expect to find low e-mail activity in the weekends, causing inconsistencies in various
statistics of the graphs in the graph stream if observed on a daily basis. Moreover, by
comparing graphs on a monthly basis, the width may be to wide to accurately understand

on what day or week the anomaly occurred.

4.2.1 EdgeDiff

A straightforward approach to detect events in networks, is to observe the difference in
edge count of the network over time. We refer to this approach as EDGEDIFF. One
can expect that at an important moment in time, the activity in the network increases,

leading to a growth in the number of edges at that moment in time.

Although this may be a simple and effective approach, it may oversee crucial information
that can only be discovered by monitoring other graph statistics over time. As an
example, consider an communication network of an organization. At a certain moment
in time, the CEO is replaced by a newcomer. The newcomer decides to change its
board of directors, and higher-level management. While the activity of communication
between the old and new board of directors may still be relatively similar, the change
of management leads to a change in the global structure of the network, obscuring the

old network structure.

Hence, we introduce two measures that indicate to what extent two graphs are similar
to each other for the purpose of event detection: NETSIMILE [38], and DELTACON [43].
Lastly, we discuss how these measures can be compared to detect anomalous events in

time.

4.2.2 NetSimile

NETSIMILE was the first to measure the similarity between two graphs [38]. It consists
of three steps: (1) feature extraction, (2) feature aggregation, and (3) comparison. We

discuss each step below shortly.
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The first step, feature extraction, computes several features f on a local basis for each
node. NETSIMILE computes the following features for each node, but note that NET-

SIMILE is not limited to these features:

k;: Degree of node 17

e ¢;: Clustering coefficient of node ¢

e K;: Average number of two-hop away neighbors of node 4

e ¢; : Average clustering coefficient of the neighboring nodes of node 4
e m;: Number of edges in the ego-network of node 7

® m; out: Number of outgoing edges from ego-network ¢

e nb;: Number of neighbors of ego-network i

The feature extraction results in a n x f matrix Fg, for each graph G; in the graph
stream. The second step, feature aggregation, summarizes each feature of the graph
matrix Fg, to five values, namely the median &, mean p, standard deviation o, skewness
skew, and kurtosis kurt. While the former three are relatively straightforward, the latter
two can be described as follows. The skewness provides an indication of asymmetry of

the distribution.

2izoYi — p)*/n (4.11)

skew =
o3

Here, Y; denotes the ¢th value in the distribution. The kurtosis describes to what extent

the distribution is light tailed or heavy tailed. Mathematically, it is denoted as follows.

S (Y )/ 12

kurt =
ot

The feature summarization step results in a signature vector Sg, with fn = f x5
ordinates for each graph in the graph stream. The last step is to measure the similarity
between the signature vectors Sg, and Sg, , for the entire graph stream. The authors
found that the Canberra Distance suited best for comparison, as it is sensible for small

changes near zero. The Canberra distance D¢y, is described as follows:

Sti — Sty1.il

4.13
St i+ St+1 7 ( )

Dcan(St, Si+1) Z |
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4.2.3 DeltaCon

DELTACON was constructed to measure the similarity in the node affinity of each node
to every other node in the Gy and G¢_1. The rationale behind the method is that connec-
tions between nodes that connect multiple communities should be accounted for more
as a similarity difference compared to sole connections in the network. As an example,
consider the three graphs in Figure 4.4. While these are nearly similar, graph (b) is
different to graph (a), because one connection is missing in one of the two communities.
Similarly, in graph (c) one connection is missing. However, the connection links both
communities, and as such the difference between graph (a) and graph (c) should be

accounted for more compared to graph (a) and graph(b).
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FIGURE 4.4: Example graphs for DELTACON. Figure (a) illustrates a normal network,

figure (b) illustrates a change in a sub-graph of network (a), while figure (c) illustrates

a change that causes the two sub-graphs to become separate. DELTACON penalizes for
changes that lead to a change in the global structure of the network.

With this intuition, the authors propose to use Fast Belief Propagation [43], a variant
of Random Walks with Restarts that is based on maximum likelihood estimations. Fur-
thermore, the underlying technique takes into account k-hop away neighbors as well with
decreasing weight and therefore suits the intuition that nodes that function as bridge in
the network should be accounted for more in terms of similarity. The n x n node affinity

matrix B is defined as follows.

B =|by] =[I+ K —¢A]™! (4.14)

Here, I is the identity matrix, K the diagonal matrix with the degree of node ¢ on the Kj;
dimension, and A the adjacency matrix of the graph. ( captures the influence between
neighbors. Among the many measures that were investigated, the authors propose to
use the Matusita distance because it is similar to the Euclidean distance, while it usually
gives better results because it even detects small changes in the graph. The Matusita

distance D, is defined as follows.



FExperimental setup 34

n n

Dirat = Z > (Vorij = V/bryrig)? (4.15)

i=1 j=1

Here, s;; is the node affinity of node 7 to node j of the affinity matrix s on timestep t.

Note that we obtain the similarity between consecutive graphs by sim = W.

4.2.4 Anomaly detection in graph time series

The similarity measures and the difference in number of edges of consecutive graphs
provide how the networks differ to each other over time. By using these methods, we
obtain a set of data points for each similarity measures. Now, the challenge is to flag
data points that deviate significantly from the rest of the distribution. Recall that we
discussed how to flag data points as anomalous from data distributions in Section 2.5.
The authors of NETSIMILE and DELTACON chose a similar approach. That is, that data
points that exceed the & 4+ 30 (for NETSIMILE), or  — 30 (for DELTACON) are flagged

as anomalous. Here, Z is the median, and o the standard deviation.



Chapter 5

Experimental setup

In this Chapter we describe how we answer the problem statement and research ques-
tions. Throughout this research, it became clear that it is difficult to evaluate network-
based anomaly detection algorithms for a variety of reasons. Therefore, we narrow down
the scope to one specific anomaly in static anomaly detection: the node anomaly, the
node that is unaware of the global structure of the graph. But before we are able to ex-
tensively review the anomaly detection algorithms, we discuss the data sets that are used
in this research in Section 5.1. In Section 5.2 we discuss the settings of each anomaly
detection algorithm that is discussed in the previous Chapter. Lastly, we discuss how

the algorithms are compared to each other in Section 5.3.

5.1 Data sets

As we described in Section 3.3, there are no available labeled data sets to evaluate
network-based anomaly detection techniques. Therefore, we described five mechanisms
to evaluate the algorithms, and consider two of them most suitable for evaluation pur-
poses: (1) synthetic graph injection, and (2) qualitative evaluation. These two are chosen
because they allow to quantify and qualify the performance of each anomaly detection

algorithm. We describe the construction of the data sets below.

5.1.1 Synthetic data sets

We generate synthetic networks with ground-truth community structure ranging from
1,000 to 500,000 nodes with the LFR benchmark graph [27]. The LFR benchmark is
chosen because it satisfies many real-world properties. Moreover, the range of param-

eters to tune in the LFR benchmark makes the benchmark extremely suitable for the

35
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TABLE 5.1: Parameter settings for generating LFR benchmark networks.

Parameter  Description Setting
n The number of nodes from 103 to 5-10°
d Average degree 2.-nt5/n
Emaz Maximum degree pt/(ti-1)
A1 minus exponent for degree distribution 3
Ao minus exponent for community size dis- 2
tribution
P Mixing parameter for topology from 0.1 to 0.6

generation of unweighted, weighted, undirected, and directed networks. The parameters
are illustrated in Table 5.1, and chosen to cover a wide variety of network structures. We
generated 10 networks of 100,000 nodes for each mixing parameter between 0.1 to 0.6,
and 10 networks for each size ranging from 1,000 to 500,000 with a mixing parameter of
0.4.

Following the approach suggested in [11] we employ two generative processes to insert

anomalies in the synthetic networks, that reflect on the node anomaly.

Random anomaly is inspired by the fact that infiltrating nodes are not aware of the
global network structure and therefore connect to random nodes in the network. The
anomalies are injected by adding n/100 nodes that connect to  random existing nodes,
where z is between k and k4. For each inserted node, the value of x is set by drawing a

value from the the same power law degree distribution as that of the synthetic network.

Replaced anomaly first generates n 4+ h nodes with the LFR benchmark. The goal is
to replace h nodes to obtain n + n/100 nodes. We randomly select x existing nodes in
the network that have a degree lower than 2 - k. An anomaly is injected by rewiring all
edges from the x nodes to the new anomaly. The x nodes are then removed from the
network. the value of x ranges from 2 to 21, with an increment of 1, until n + n/100

nodes are obtained.

5.1.2 Real-world data sets

Ranshous et al. provide a clear overview of fifteen data sets that can be used in either a
static or dynamic context [31]. The Enron data set is the main focus of our investigations,
because it closely reflects to real-world data in the field of electronic discovery. The Enron
data set is made available by the Federal Energy Regulatory Commission as a part of the
investigations of the Enron scandal. It consists of e-mail boxes from about 150 former

Enron employees that had a senior position. During our experiments, we noticed that
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there were some issues in reproducing work of other papers, such as [2, 38, 43], as they
do not elaborate on the way the network data set was extracted. We therefore describe

precisely how the data set should be processed to obtain similar results.

We extracted all one-to-one and one-to-many e-mails on a weekly basis, including CC
and BCC, where the nodes represent e-mail addresses and the edges represent whether
two nodes have sent an e-mail to one another from a preprocessed database, published
at http://www.ahschulz.de/enron-email-data/. An e-mailbox often consisted of
multiple e-mail addresses belonging to the same person. All those e-mail addresses are
normalized to the foremost e-mail address of that e-mailbox. Furthermore, the Enron
data contains a lot of duplicates. For example, if an e-mail was sent from one to the
other e-mail box, the e-mail belongs to both e-mail boxes. Hence, we deleted duplicate
e-mails if the from, to, and message identifier were equal. We generated a network for

each week, starting from July 1999 to December 2002.

Lastly, it is important to note that one can obtain different kinds of communication
networks. One possibility is to include all e-mails that were sent from or to one of the
e-mail boxes. This results in a network with many nodes that only sent one e-mail, and
includes irrelevant and spam e-mails. However, it may also contain relevant information
about e-mail addresses that interacted with the senior employees of the network. We
therefore chose to create two Enron data sets, (1) Enrongy.e, that only consists of the
e-mail addresses of the senior employees from the e-mailboxes, and (2) Enrony,;, that

consists of all encountered e-mails addresses in the data set.

Furthermore, to support our results in static anomaly detection, three other real-world
data sets were chosen to qualitatively assess the performance of the anomaly detection
algorithms. Douban (http://socialcomputing.asu.edu/datasets/Douban) is a Chi-
nese recommendation website where a link exists between two users if they had an explicit
friendship connection. Amazon (http://snap.stanford.edu/data/amazon0601.html)
is a co-purchasing network where a link exists between two articles if these products
are frequently purchased together on Amazon. DBLP (http://projects.csail.mit.
edu/dnd/DBLP) is a collaboration network based on co-authorship between mostly com-
puter scientists, extracted from the popular DBLP listing website. See Table 5.2 for
an overview of the data sets. The number number of messages is only relevant for the

Enron network as the weight of the links is also included in the analysis.


http://www.ahschulz.de/enron-email-data/
http://socialcomputing.asu.edu/datasets/Douban
http://snap.stanford.edu/data/amazon0601.html
http://projects.csail.mit.edu/dnd/DBLP
http://projects.csail.mit.edu/dnd/DBLP
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TABLE 5.2: Properties of the real-world network data sets.

Data set Description n m
Enroncore E-mail network 149 1,853
Enroniotal E-mail network 75,377 293,200
Douban Social network 154,907 327,162
Amazon Co-purchase network 403,394 2,443,408
DBLP Co-authorship network 1,412,414 5,947,085

5.2 Settings of anomaly detection algorithms

In this section we describe the parameter settings for each algorithm. We firstly discuss
the settings of the proposed static anomaly detection algorithms. Then, we discuss how

the parameters are tuned to consider a graph in time as anomalous in Section 5.2.2.

5.2.1 Static algorithm settings

The static anomaly detection algorithms rely on different concepts of machine learning,
such as clustering and network embedding. Therefore, some algorithms require param-
eter selection to detect anomalies. We discuss each algorithm and its settings below

shortly.

ODDBALL is completely parameter free. However, the distance to the fitting line needs to
be computed to measure the anomaly score of each node. For the purpose of identifying
the node anomaly, we only need to identify the stars, i.e., the nodes below the fitting

line of the EDPL. Thus, we can redefine Equation 4.1 as follows.

ob(i) = C% log(y; — Czd + 1) (5.1)

Yi

For ScAN, we choose two parameters, k and €. Recall, that x and € can be selected by
identifying the turning point in the structural similarity plot as was shown in Figure
4.3. We noticed that the structural similarity plot was not always helpful in selecting
a good value for e. We finally set x to 2, and € to 0.3 on the synthetic data sets to
maximize performance. This provided us with a list of hubs, and the hubs were ordered
in ascending order of average structural similarity with the neighbors of each hub in
the network as an indicator of deviance. Hence, hubs with lowest average structural

similarity were considered most anomalous.

EMBED relies on the number of dimensions R. As mentioned in the paper, R = n/500

has shown to provide good results for various graphs. However, this does not scale
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properly with network size. Hence, we set R = /n to let the algorithm scale with all

network sizes.

CADA is completely parameter free. However, one can tune the performance of CADA
by tuning parameters of the out-of-the-box community detection algorithms. As an ex-
ample, one can tune the resolution parameter of the Modularity maximization algorithm

Louvain. We set the resolution parameter to 0.1.

5.2.2 Dynamic algorithm settings

There are no parameters to tune for the dynamic algorithms. However, we must decide
when a certain moment in time should be considered anomalous. Recall that, DELTA-
Con and NETSIMILE both suggest to solely observe the median of the network and
flag moments as anomalous when the similarity between consecutive graphs exceeds a

threshold of the median and z standard deviations x &+ z - o. The authors set z to 3.

We approach the problem in a similar fashion, in which we tune z to maximize perfor-
mance. Furthermore, note that this approach may flag two consecutive graphs in time
as anomalous, because one of them was considerably different compared to the previous
and upcoming graph. This leads to a low similarity for two consecutive graphs. In this
case, we only flag the first consecutive graph as anomalous. Note that for DELTACON,
graphs are flagged anomalous if the similarity is below z — z - o, while data points for
NETSIMILE and EDGEDIFF are considered anomalous if the similarity is below x—z-o.
Furthermore, an anomaly is considered correct if the anomaly is detected 4+ 10 days

from the ground-truth event.

5.3 Perform comparative experiments

In this section, we define how we evaluate and compare the anomaly detection algorithms

in a static (see Section 5.3.1) and dynamic context (see Section 5.3.2).

5.3.1 Static anomaly detection

We will qualitatively and quantitatively evaluate the static anomaly detection algo-
rithms. Combining both mechanisms gives us a fair performance overview of each algo-

rithm.
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5.3.1.1 Evaluation on synthetic data sets

As it is hard to quantitatively evaluate on unlabeled data sets, we can only evaluate on
synthetic graphs. The output of what is considered an anomaly can vary per technique.
For example, one technique provides an anomaly score for each node, while the other
technique labels whether the node is anomalous or not. To fairly evaluate and compare
the algorithms with each other, we have defined an anomaly score for each node as is
described in Section 6.1. Therefore, we can sort the list of anomaly scores to obtain the

first £ most anomalous nodes and evaluate on the difference between them.

We perform the quantitative evaluation by firstly imputing a fixed number of ¢+ = 0.01n
anomalies in each synthetic graph. We flag nodes as anomalous as follows. We firstly
run Cada; on each data set. Then we compare the 1% most anomalous nodes according
to each algorithm with the ground-truth anomalies by computing the F1-score. The F1-
score is based on recall and precision. Recall is the fraction of true positives (discovered
anomalies) divided by the total number of ground-truth anomalies (that we inserted),
while precision is equal to the true positives divided by the number of nodes that are

flagged anomalous. The F}-score is then:

=2 precz:sz:on X recall (5.2)
preciston + recall

5.3.1.2 Evaluation on real-world data sets

The qualitative evaluation is twofold: (1) we provide a case study of the nodes on the
Enron e-mail network and the DBLP network, and (2) we compare how many common
nodes are found in the top 1% most anomalous nodes of the considered real-world
networks. Note that this could be slightly more than 1% because nodes could have
the same anomaly score, in which case we included all nodes with the same score as the
node at the exact cutoff. For two sets of discovered node anomaly sets A1 and As, we

use the Jaccard similarity, defined as follows:

ATNA
S (53

5.3.2 Dynamic comparative experiments
To evaluate on the dynamic anomaly detection algorithms, we use ground-truth data of

events that happened in the last years of Enron. Hence, we can check whether anomalous

graphs that are discovered by any of the methods, correspond to the ground-truth events.
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Performance of each method can be further described in terms of recall, precision, and
Fy, as described in Section 5.3.1.1. Furthermore, we observe the distribution of each
similarity measure over time, to examine whether we are missing crucial items that

should actually be flagged anomalous.

Note that, the significance of events is merely subjective, as a variety of newspapers
highlight different moments as important in the last years of Enron. We selected the
most important events that follow the timelines of the NY times', The Guardian?, and
the movie Enron: The smartest guys in the room. The ground-truth events are listed
in Table 5.3.

TABLE 5.3: Ground-truth events from the Enron scandal between June 1999 and
February 2002.

Date Description

May 5, 2000 Operation Death Star announced

July 19, 2000 Enron announces deal with Blockbuster
August 23, 2000 Enron hit all time high

December 13, 2000 Enron announces Skilling will take over as CEO
February 12, 2001 Skilling takes over as CEO

March 5, 2001 Bethany McLean releases article

April 17, 2001 The asshole call

May 14, 2001 Mintz sends memorandum to Skilling on LJM paperwork

June 22, 2001 Skilling hit in the face by a pie in California

August 14, 2001 Skilling resigns as CEO while stating company is doing well

October 16, 2001 Enron reports gigantic loss

October 23, 2001 Lay supports Fastow during conference call with analists

October 24, 2001 Fastow fired

November 19, 2001 Enron restates its third-quarter earnings and discloses to
restructure

February 4, 2002 Lay resigns from board

February 7, 2002 Skilling testifies before congress

"Mttps://www.nytimes.com/2006/01/18/business/worldbusiness/timeline-a-chronology-of-enron-corp.
html
“https://www.theguardian.com/business/2006/jan/30/corporatefraud. enron


https://www.nytimes.com/2006/01/18/business/worldbusiness/timeline-a-chronology-of-enron-corp.html
https://www.nytimes.com/2006/01/18/business/worldbusiness/timeline-a-chronology-of-enron-corp.html
https://www.theguardian.com/business/2006/jan/30/corporatefraud.enron

Chapter 6

Results

In this Chapter we illustrate and describe the results of the experiments of graph-based
anomaly detection algorithms. In Section 6.1, we report how each of the static anomaly
detection algorithms performs on both synthetic and real-world networks. Then, we

follow up with the detection of events in consecutive graphs in Section 6.2.

6.1 Static comparative experiments

This section encompasses results of the four discussed static anomaly detection algo-
rithms on real-world networks (see Section 6.1.1) and synthetic networks (see Section
6.1.2).

6.1.1 Results on real-world data

We firstly illustrate an anomaly found on ENRON4.1, using ODDBALL, with the EDPL,
to measure the distance to the fitting line for each node. Ilustrated in Figure 6.1, the
foremost node anomaly is Kenneth Lay, CEO of Enron and key player in the ENRON

scandal.

All other methods did not flag Kenneth Lay as an anomalous node. As a matter of fact,
EMBED, SCAN and CADA gave Kenneth Lay a low anomaly score. One reason why this
could be the case is that Kenneth Lay connects to a large number of persons that have no
further connections in the graph, which causes CADA and EMBED to classify neighboring
nodes to the same group. Furthermore, there is a lot of room for interpretation to fully
comprehend the anomalies on the Enron data set, and we have no extensive ground-truth

information about the nodes in the network.

42
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F1GURE 6.1: ODDBALL Egonet Density Power Law on the ENRON,:4; network, where
CEO Kenneth Lay, key player in the ENRON Scandal, is flagged as an anomaly.

Therefore, we decided to zoom in on the DBLP data set, and two noteworthy findings
were detected by CADA. These anomalies were solely identified by CADA with Infomap,
but ignored by ODDBALL, SCAN, and EMBED. First, we found authors that have pub-
lished with many different authors, such as prof. dr. H. Vincent Poor, who was president
of the IEEE Information Theory Society, and at the time of the data set has published
with over 400 authors from all over the world. Second, many discovered anomalies were
actually authors with the same name, such as 63 distinct authors named "Wei Liu’ that
collaboratively published with over 1332 different authors. Other such authors were
"Jing Li’, ’Yan Zhang’, and "Yu Zhang’. This illustrates that apart from outliers such as
authors with extremely large number of publications, also errors in the underlying data

can efficiently be identified using anomaly detection techniques.

After a careful check, we found that there is a small overlap in the anomalies that were
detected by each method. Therefore, we also zoomed in on the agreement between dif-
ferent methods on real-world data sets, of which results in the form of Jaccard similarity

are reported in Table 6.1.

6.1.2 Evaluation on synthetic data sets

To quantitatively evaluate the static anomaly detection algorithms, we generated LFR
benchmark graphs and imputed Random Anomaly and Replaced Anomaly in the syn-
thetic graphs, as described in Section 5.1.1. We firstly evaluate the performance on

synthetic networks with different degrees of community structure, by illustrating the
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TABLE 6.1: Jaccard similarity of the most anomalous nodes on DBLP, Amazon,
Douban, Enroniotar, and Enroneere (left to right, up to down). ODDBALL (ob), EMBED
(em), CADA Louvain (cdy), and CADA Infomap (edy).

sC em cdr, cdr sC em cdr, cdr ob em cdr, cdr
ob 0.0 0.02 0.02 0.02 ob 0.03 0.11 0.11 0.17 ob 0.1 0.00 0.00 0.00
sc - 0.09 0.16 0.22 sc - 0.06 0.06 0.09 sc - 0.09 0.09 0.11
em - - 0.22 0.24 em - - 0.17 0.20 em - - 0.37 0.43
cdr, - - - 0.24 cdr, - - - 0.21 cdr, - - - 0.34

sc em cdr, cdr ob em cdp cdr

ob 0.07 0.03 0.02 0.02 ob 015 0.0 0.36 0.0

sc - 0.07 0.04 0.07 sc - 0.0 0.0 0.0

em - - 0.25 0.23 em - - 0.07 0.03

cdr, - - - 0.15 cdr, - - - 0.0

performance of each algorithm on networks with different mixing parameters (a higher

mixing parameter means a less present community structure) in Figure 6.2.

Besides evaluating on networks with different community structures, another evaluation
metric is to assess the performance on networks with varying network sizes. The results
on networks with network sizes of 1,000 to 500, 000 nodes with a fixed mixing parameter

of 0.4 are illustrated in Figure 6.3.
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FIGURE 6.2: Fj-score for different values of the mixing parameter for networks with
100,000 nodes.



Results

45

-

Fi-score

0.4 N e ODDBALL
—— SCAN
EMBED
| |-e— Capayp,

—8— CADA;
——2 =

g

E01)

Fi-score

Network sizes (x1000)

1 1 1 1 1
12 5 10 20 50 100 200 500

—— ODDBALL i

g

SCAN
EMBED
CADAj,
CADAJ

5
5
e
I

2

1 1 1 1 1
5 10 20 50 100 200 500
Network sizes (x1000)

(a) RandomAnomaly (b) ReplacedAnomaly

FI1GURE 6.3: Fj-score for different network sizes with fixed mixing parameter 0.4.

6.2 Results on dynamic networks

In this section, we identify anomalous moments in time by observing the similarity
of the consecutive graphs on a weekly basis with three different similarity indicators,
EDGEDIFF, NETSIMILE and DELTACON. We illustrate the number of edges at each

time stamp in Figure 6.4.
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FIGURE 6.4: The number of new edges at each time stamp of Enron.,.. over the time
span of June 1999 to July 2002

First, we quantify the performance for different settings of the number of times z that
the standard deviation o should deviate from the median . The results are illustrated
in Figure 6.5. The illustration shows that EDGEDIFF and DELTACON perform best on

the real-world Enron data set.

F'1-scores indicate how well the graph is performing, but we are also interested in whether
the metrics show to identify similar anomalies. To further qualify the performance, we

illustrate the flagged anomalous events for each similarity metric in Figure 6.6. The value
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FIGURE 6.5: Fj-score for each similarity metric for various z on the Enron,,,. network,
where z represents the number of times that the standard deviation should diverge from
the median to consider a data point as anomalous.
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of z was selected from Figure 6.5, so that the threshold maximizes F'1-score. Hence, we

set z to 1.5, 0.0, and 1.4 on EDGEDIFF, NETSIMILE, and DELTACON respectively.
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Chapter 7

Discussion

In the previous Chapter we reported results of both static and dynamic anomaly detec-
tion algorithms. In this Chapter, we discuss the results obtained in the previous Chap-
ter. In Section 7.1, we discuss the results of the static anomaly detection algorithms. In

Section 7.2, we discuss the results of the dynamic anomaly detection algorithms.

7.1 Static anomaly detection algorithms

To accurately evaluate on the static network-based anomaly detection algorithms, we
performed experiments on both synthetic networks and real-world networks. The results
on real-world network data is discussed in Section 7.1.1, and the results on synthetic
network data is discussed in Section 7.1.2. In Section 7.1.3, we discuss how each method

is beneficial for a domain expert.

7.1.1 Results on real-world networks

The results on real-world networks demonstrate that the static anomaly detection al-
gorithms under investigations were capable of identifying anomalous nodes. The first
finding was illustrated in Figure 6.1, where ODDBALL provided a clear overview of the
graph in two-dimensional space. Furthermore, Kenneth Lay, key player in the Enron

scandal, was flagged as the most anomalous node in the network according to ODDBALL.

It is rather straightforward why Kenneth Lay was considered an anomaly, as he received
e-mails from over 1,000 objects in the network. Of course, Kenneth Lay was in contact

with a variety of people, may it be colleagues, journalists, or people that simply tried to
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reach the CEO. Unsurprisingly, the high degree with many unrelated objects implies a

low clustering coefficient, that results in a high anomaly score according to ODDBALL.

Other techniques that were investigated, were limited in the sense that they erenot able
to give a similar two-dimensional overview as ODDBALL. However, by zooming in on the
DBLP data set, we were able to give meaning to the anomalies discovered by EMBED
and CADA. As a matter of fact, CADA found relevant anomalies that were not discovered

by any of the other methods.

Table 6.1 demonstrates that the overlap in anomalous nodes on all real-world data
sets under investigation varies a lot. It uncovers a limitation of CADA, as one would
expect that the overlap between nodes from CADA; and CADA; would be higher than
the overlap between nodes from CADA and the other methods. It illustrates, that the
technique is dependent on the community detection performance of the network, and
unfortunately there is no universal method to detect communities most accurately in
each network. A possible step for future research may be to check which community

detection algorithm performs best for CADA.

7.1.2 Results on synthetic networks

Results on the LFR benchmark networks show that each method is capable of uncovering
node anomalies in the networks. We have illustrated how each algorithm performs
in identifying the node anomaly with two methods, namely by (1) varying with the
strengths of community structures (see Figure 6.2), and (2) by varying with the graph

sizes (see Figure 6.3).

Figure 6.2(a) illustrates that the algorithms perform very well on networks with a strong
community structure, that is, Fj-scores of 0.9 or higher for a mixing parameter of 0.1
on the Random Anomaly. Once the mixing parameter increases, the results of both
ODDBALL and SCAN, that approach the node anomaly detection from a local perspec-
tive, perform worse than the other two methods. The performance of SCAN decreases
most significantly, followed by ODDBALL. EMBED and CADA are performing signifi-
cantly better, where CADA takes the lead with the Louvain and the Infomap community

detection method.

Figure 6.2(b), again, illustrates that CADA; performs best in identifying the Replaced
Anomaly on graphs with varying community structure. ODDBALL closes in when the
community structure diminishes. It further demonstrates that CADA}, performs worse
than CADA;, which is likely due to the resolution limit, which starts to play a larger

role for higher values of the mixing parameter [47].



Discussion 49

Furthermore, CADA performs best on both anomalies for networks of all sizes, with
EMBED closing in, especially once the network becomes larger than 200,000 nodes.
EMBED starts performing better on larger networks as the number of dimensions R may
play a smaller role on larger networks. In Figure 6.3(b), CADA with Infomap consistently

performs best, but the difference with other methods is smallest.

7.1.3 Uses for the domain expert

While a variety of static network-based anomaly detection techniques exist, many of
them focus on one specific anomaly; a node that connects to many communities while
not belonging to one of them. We investigated how the anomaly detection techniques

can benefit the domain expert, and we discuss each one of them below shortly.

The ODDBALL algorithm defines normal behavior by fitting a line on the data. It can
be easily visualized in two-dimensional space and thus assist in navigating through the
network. With the visualization it is rather easy to interpret why nodes are anomalous
according to the algorithm. The most expensive task of the anomaly detection method
is to extract the features from the egonet, with a complexity of O(n - d?), where d is
the average degree of the network. ODDBALL is not only limited in identifying the node
anomaly, but is a best-of-suite method that can identify other anomalies by taking other
features of the ego-networks into consideration. A clear shortcoming of the Oddball
algorithm is that it solely identifies anomalies by observing the local neighborhood of a

node, instead of utilizing regional features for the detection of anomalies.

SCAN does not only detect outliers, but also clusters the network from a local perspec-
tive. It can therefore inform the domain expert on two aspects: (1) by providing an
overview of the groups of clusters in the network, and (2) by providing a list of anoma-
lous nodes. However, the parameter optimization requires a lot of effort and it is difficult
to determine whether the parameters are accurately selected. Furthermore, Figure 6.2
and 6.3 illustrates that SCAN flags many false positives as anomalies on the synthetic
data set, especially as the mixing parameter increases. Later on it became clear why this
is the case: the structural similarity becomes tremendously low for nodes that connect
to many other nodes in the network, that is not limited towards nodes that are unaware

of the global structure of the network. The time complexity of SCAN is O(m).

EMBED solely focuses on identifying nodes that connect to a number of influential re-
gions. It takes into account regional features (e.g. cluster membership), for identifying
such nodes. It does, however, require that one chooses the number of dimensions R to
find the optimal embedding. As a rule of thumb the authors claim that R = n/500 is

a good initial value. However, this does not scale well with networks of various sizes
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and different parameter settings gave rather different results. After some tuning, we
set R = \/@ . EMBED scores well on synthetic data with a variety of network statis-
tics, outperforming ODDBALL and SCAN on most networks, and closing in on CADA
on networks with larger sizes. A shortcoming of EMBED is the time complexity, being

O(t-m - (k+ p)), and that the method is not completely parameter-free.

CADA, the new method that is proposed, is (1) parameter free, (2) scales linearly with the
number of edges, (3) provides a list of groups that cluster together in the network, and
(4) incorporates global features of the graph by using highly performing community de-
tection methods to find anomalous nodes. It outperforms all above methods on a variety
of synthetic data sets. On real-world data, CADA shows to identify relevant anomalous
nodes that were not discovered by the other methods. Hence, the node anomaly is most
accurately detected by CADA, making it a suitable approach for providing insight into

the communities of the network and suitable for identifying anomalous nodes.

7.2 Dynamic anomaly detection algorithms

Time brings a completely new dimension to the analysis of networks. This is beneficial
and relevant for the purpose of anomaly detection, because one is able to define how
nodes, edges, or (sub-)graphs behave normally over time. While there exist a wide
variety of applications in dynamic anomaly detection, we focused on event detection,
where we used three different metrics to measure the similarity between consecutive

graphs over time.

The similarity metrics were able to identify anomalous points in time that are meaningful
in the context of the Enron scandal. Illustrated in Figure 6.5, EDGEDIFF and DELTACON
perform well on the data set, while NETSIMILE performs considerably worse. EDGEDIFF

performs most consistent manner, while DELTACON shows some fluctuation.

By zooming in on the distributions over time in Figure 6.6, we see that EDGEDIFF flags
many anomalous events accurately, while missing other relevant events. DELTACON,
that performed similarly to EDGEDIFF in terms of Fj-score, flags different moments in
time as anomalous. This indicates that DELTACON is suitable to identify moments in
time as anomalous that were elsewise not discovered. Moreover, due to the low similarity
of first anomaly detected by DELTACON, we did a careful check. The anomaly flagged is
on December 26, 2000. While this is not an event that corresponds with the Enron data

set, it is clear that the graph is different compared to previous graphs due to Christmas.

It also became clear why NETSIMILE performs worse. First of all, most anomalous

points are detected between July 1999 and January 2000. Due to the low activity in
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terms of edges, the small differences between those graph are accounted for more for
NETSIMILE. After February 2000, NETSIMILE performs better and identifies nearly as
much anomalous events as false positives. This also leads to a drawback of our current

approach to flag moments in time as anomalous.

By determining the median and standard deviation on the entire distribution of data
points, one also takes into account statistics of the future. The network can change
over time, with a growing or shrinking number of nodes, causing a change in what can
be considered a normal similarity in the graph. As an example, one can expect that
once the number of nodes and edges grow in general, the similarity between consecutive
graphs becomes lower in general. Considering data points of the graph stream may
therefore lead to a higher standard deviation, that causes the techniques to inaccurately
flag moments in time as not anomalous. This could be further investigated in future

work.

Nonetheless, our results illustrate that graph similarity measures can be used to indicate
when events occurred in the network. Therefore, it can support the domain expert
by illustrating at which moments in time something happened between the persons of
interest in the investigation, that might lead to relevant moments in time that can be

acted upon.



Chapter 8

Conclusions

In this Chapter we provide an answer to the three research questions and the problem
statement formulated in Chapter 1. In Section 8.1 we provide answers to the research
questions. In Section 8.2 we answer the problem statement. Finally, we discuss future

work in Section &.3.

8.1 Answers to the research questions

In this section, we provide an answer to each of the research questions formulated in

Chapter 1.

Research question 1: To what extent can network-based anomaly detection techniques

be utilized to identify anomalous behaviour in static real-world networks?

To answer this research question, we firstly identified and implemented three existing
network-based anomaly detection techniques. One of them, demonstrated that anoma-
lous nodes, edges, and sub-graphs could be found by observing various features of the
direct neighborhood of each node of the graph in two-dimensional space. Other tech-
niques discovered a similar node anomaly, the node that is unaware of the global struc-
ture of the graph. Typical examples of such anomalies are network intruders in physical

networks or spammers spreading unwanted advertisement in online social networks.

The previously proposed techniques identified the node anomaly from a local perspective,
or were not parameter-free. That motivated us to introduce a new method, named
CADA, or Community-Aware Detection of Anomalies. CADA identifies anomalous nodes
based on whether they connect to large number of communities, while not belonging

to one distinct community themself. As such, it tackles the problem from a global
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perspective. An advantage of this community-aware approach is that it scales linearly
with the number of edges, improving upon previous techniques. Furthermore, it is
parameter free and highly effective. Experiments showed that our proposed community-
aware methodology can spot anomalies in both synthetic and real-world data sets that
were not discovered by other methods. Furthermore, on all synthetic benchmark data
sets, CADA outperformed previous approaches. In addition to uncovering the node
anomaly, CADA provides a list of groups of people that tend to cluster together in the

network.

Therefore, the answer to the first research question reads as follows. Network-based
anomaly detection techniques can be used to gain insight into anomalous behaviour in
static real-world networks. The techniques can be used to summarize the graph and
uncover nodes that do not obey common patterns in the graph. Furthermore, most
techniques also have additional benefits, where our new anomaly detection technique
CADA also uncovers groups of people that tend to cluster together in the network.
Hence, static network-based anomaly detection techniques can be a powerful technique

to provide insight into the network for a domain expert.

Research question 2: To what extent does the addition of the dynamic component in

network-based anomaly detection affect the performance of anomaly detection?

To answer this research question, we firstly discussed a variety of anomalies that can
be detected in networks that change over time. A benefit of dynamic network-based
anomaly detection is that one can learn how nodes, edges, or (sub-)graphs behave nor-
mally over time. One can utilize this information to discover at what points in time

parts of the graph behave considerably different and mark those points as anomalous.

Although the possibilities of dynamic network-based anomaly detection are endless, we
have focused on detecting one anomaly in specific, the event anomaly. We showed that
one can use various graph features to quantify the similarity between consecutive graphs
over time. Anomalous points in time can then be uncovered by using simple statistical
anomaly detection methods on the set of similarities or by observing the similarity plots

over time.

Therefore, the answer to the second research question reads as follows. In real-world
applications, networks are constantly evolving over time. Incorporating the dynamic
component when detecting anomalies can be of critical importance to accurately reduce
the amount of manual work that should be done by the domain expert. Hence, event de-
tection on networks can be a vigorous approach to identify activities that have occurred

in a network of persons that are under investigation.
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8.2 Answer to problem statement

Problem statement: How can network-based anomaly detection algorithms support

domain experts in detecting anomalous behavior in real-world networks?

In this thesis we investigated whether we can assist domain experts in the field of elec-
tronic discovery by using network-based anomaly detection techniques. Our aim was
to provide an overview of the current network-based anomaly detection techniques and
compare them to each other in a unsupervised setting. We investigated (1) anomaly de-
tection techniques in a network at one moment in time, and (2) the detection of events

in graphs over time.

In Chapter 1, we defined when a domain expert is considered supported, which was
when at least one of the three conditions is met: (1) the domain expert understands
how to evaluate and compare several results from anomaly detection techniques, (2) the
domain expert is provided with a list of objects that demonstrate divergent behavior,

or (3) the domain expert knows why a certain event in time has occurred.

From our investigations, we may conclude that network-based anomaly detection tech-
niques can be used to support domain experts in the field of electronic discovery to a
certain extent. The methods can be used to rapidly summarize statistics of the network
to uncover nodes or moments in time that deviate considerably from the expected pat-
terns in the data set. These anomalies can be used as a starting point of the investigation,

and therefore enhance the process of an investigator.

However, in some cases, it may be difficult to understand why certain nodes are con-
sidered anomalous. Therefore, domain knowledge can be of critical importance to com-
prehend the data set and accurately flag anomalous nodes or events. Of course, each
network-based anomaly detection technique can be used to find such anomalies, but a
combination of multiple methods and collaboration with a domain expert may signifi-
cantly enhance the process of anomaly detection and uncover useful anomalies that can

be acted upon in real-world networks.

8.3 Future work

This section provides recommendations for further research. Network science has more
to offer than solely network-based anomaly detection, and therefore we have multiple

recommendations that can support the domain expert in the field of electronic discovery.
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For the e-discovery field, we have three recommendations for future work in the field of

network science.

e Network visualization and navigation: While lists of anomalous nodes and mo-
ments in time are useful for a domain expert, navigating through the networks over
time can truly support the domain expert in comprehending the graph. Hence, it
allows the domain expert to analyze the network and its most important nodes in

an accessible manner.

o Community evolution: The research field of community evolution focuses on iden-
tifying how significant communities shrink, grow, appear, and dissapear over time.
Modeling such behavior may show how certain groups started to appear and how

they have collaborated with each other over time.

e (Centrality-based methods: This methods focus on identifying the most important
nodes in the network, that is already done on the Enron data set [48]. Further

research may be useful in combination with network visualization and navigation.

For network-based anomaly detection, we also have three recommendations for future

work.

e Node anomaly detection: An interesting step in future development of CADA is
identify which community detection methods are most robust for node anomaly
detection, and whether a hybrid method combining both global and local features,

may yield more accurate and relevant anomalies.

o Attributed anomaly detection: We only took into consideration network nodes and
edges. The methods could be enriched by incorporating node and edge attributes,
such as the weight of the graph. Hence, developing algorithms that use graph fea-

tures and information about the nodes can provide new insights into the network.

e Fuvent detection: As we mentioned in Section 7.2, a drawback of the current ap-
proach is that the median and standard deviation of the entire data set are used.
Improvements may be achieved by investigating whether other statistical methods
to anomaly detection, such as moving windows, can more accurately flag events as

anomalous.
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