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Abstract

Convolutional neural networks (CNNs) can be a very e�ective and straightforward method for performing

text classi�cation tasks, mostly because feature engineering and feature extraction are completely taken

care of by the network itself. However, global optimization of expensive black-box models, such as neural

networks, is a very complex task that is highly unlikely to be solved by hand. The many di�erent

parameters that have to be con�gured lead to high dimensionality and heterogeneity of the search space

and make the problem very di�cult. The black-box nature of neural networks makes that the quality of a

speci�c con�guration can only be determined empirically (i.e., by training the network and evaluating the

performance), which is a very time-consuming process. In this work, we adopt a framework for Bayesian

Optimization (MiP-EGO) to automatically con�gure CNNs for binary text classi�cation. To this end,

we introduce a simple, con�gurable model (TXT-CNN ) that achieves state-of-the-art performances after

(automated) optimization with MiP-EGO. Furthermore, the original MiP-EGO algorithm is extended

to allow asynchronous execution of parallel processes running on di�erent GPUs to obtain maximal

optimization e�ciency.
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1 Introduction

The availability of digital documents and other forms of (unstructured) textual data has been increasing

rapidly with the growth of the World Wide Web over the last few decades. Much of this data is user-generated

content that typically lacks a pre-de�ned data model, examples being web blogs, e-mails or customer reviews.

One way of organizing this kind of data is to automatically assign them to one or more pre-de�ned classes

(i.e. text classi�cation ). In this work we focus on sentiment analysis of movie reviews, an application of

text classi�cation where movie reviews are categorized as having either positive or negative sentiment [1, 2].

Text classi�cation is an important and well-studied task on the border of information retrieval and machine

learning, and many di�erent approaches exist for solving this task [3]. Traditional techniques applied to this

problem include Naive Bayes classi�cation and Support Vector Machines [4, 5, 6]. In order to successfully

apply such techniques to text, tedious feature engineering and selection are very important [7]. Recently,

several papers have been published that involve convolutional neural networks (CNNs) for performing text

classi�cation without the need for manual feature engineering that achieved very promising results [8, 9].

Neural networks are widely used in (supervised) machine learning, for example for performing image classi�-

cation tasks. With the rise of GPUs, deep learning software packages and well-established architectures like

CNNs and RNNs, they are relatively easy to use and often provide more than satisfactory results. One of the

most often praised properties of neural networks is their ability to automatically extract features from data,

thus removing the need of manual feature engineering as in traditional techniques (e.g. Naive Bayes, Support

Vector Machines). However, practitioners are still stuck with the task of designing the network architecture

and selecting many speci�c parameters, which can be a very tedious job. The most straightforward approach

is performing a grid-search: de�ning a grid of parameters with pre-de�ned value ranges, exhaustively chang-

ing one parameter at a time while keeping the others static in order to �nd the best performing model. The

problem of such an approach is the high probability of getting stuck in a local optimum, and it has even been

shown that a random search might perform better than a grid search for hyperparameter tuning of machine

learning models [10]. More sophisticated methods are thus needed for optimizing neural network architecture

and hyperparameter con�guration.

In this work, we adopt a Bayesian Optimization approach for e�ciently optimizing CNN architecture and

hyperparameters for text classi�cation. To that end, we use an adapted version of the popularE�cient

Global Optimization (EGO) algorithm [11], which we will refer to as Mixed-integer Parallel EGO (MiP-

EGO) [12]. The original EGO-algorithm has been developed for the optimization of expensive black-box

functions. Examples of such functions are geographically determining location sites for oil drilling, measur-

ing drug e�ectiveness in clinical trials and �nding neural network performance where network training often

takes long.

In this paper, we introduce a con�gurable model (TXT-CNN) and apply MiP-EGO to it for automatic

con�guration and optimization. Furthermore, the original MiP-EGO algorithm was extended to allow asyn-

chronous execution of parallel processes running on di�erent GPUs in order to obtain maximal e�ciency

during optimization (this is described in more detail in section 4). We test the algorithm under di�erent

setups on our dataset and compare the results of the found (sub)optimal solutions to networks that were

tuned using grid-searches.
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1.1 Problem statement

The problem of optimizing the architecture and hyperparameter con�guration of a convolutional neural

network can be stated concisely as

max
x 2 S

f (x) (1)

That is, we want to optimize the performance of our network (a non-linear function f that has as input a

parameter con�guration x) for all possible combinations of parameter con�gurations S. This is a complex

task for several reasons. First, the black-box nature of neural networks in general makes it impossible to do

a manual or intuition-based search: the performance of a speci�c con�gurationx can only be determined

empirically. Second, training times for CNNs are relatively long even when using GPUs (especially when

using much data), making (semi-)exhaustive approaches like grid search even more obsolete. Third and last,

the search space for this task is very complex. The number of parameters to be set for con�guring CNNs can

be very big and heterogeneous, leading to high dimensionality and heterogeneity of the search space. Also,

we often have to deal with conditional variables that only make sense in combination with other variables.

1.2 Report outline

The remainder of this report is organized as follows. First, we introduce neural networks in section 2.1.

In particular, we discuss CNNs for text classi�cation in subsection 2.1.2. Next, we cover the principles of

Bayesian Optimization in section 2.2. We then look at related work in the �eld of automatic parameter

con�guration in section 2.3 and explain how MiP-EGO works in section 3. In section 4 we discuss how

we extended the original MiP-EGO algorithm. Next, in section 5 we introduce our dataset, present our

con�gurable CNN model for text classi�cation (TXT-CNN) and discuss the experimental setup. We then

present our results in section 6, followed by a discussion and conclusion in section 7.
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2 Background and Related Research

2.1 Background: Neural Networks

Neural networks (NNs) are machine learning methods that are inspired by the functioning and architecture

of biological nervous systems, such as the human brain [13]. They consist of many interconnected neurons,

usually distributed over multiple layers, that work together to solve complex tasks [14]. The distributed

arrangement of their neurons allows NNs to perform massively parallel computations when learning from

the input data. Furthermore, by applying nonlinear functions to their neurons, NNs are able to learn and

successfully classify non-linearly separable data without losing generalization ability of the model [15].

A brief history of NNs The birth of NNs dates back all the way to 1958, when Rosenblatt introduced

the perceptron [16]. After the publication of the backpropagation algorithm for training multilayer percep-

trons NNs gained much popularity [17], leading to the development of Convolutional and Recurrent Neural

Networks (CNNs and RNNs). However, the AI community lost faith in NNs in the mid 90s and was mainly

focused on the uprising Support Vector Machine (SVM). When Hinton et al showed that NNs could achieve

better results than SVMs on the MNIST benchmark dataset in 2006 [18], excitement for NNs reemerged and

ultimately led to the current machine learning revolution caused by deep learning [19]. The development of

Graphics Processing Units (GPUs) for speeding up the training process of NNs has also been a very important

factor for this reestablished interest.

Architecture of NNs Two examples offeed-forward NNs can be found in Figure 1: one network with 3

layers and another network consisting of 4 layers. This type of network is called feed-forward because the

neurons in each layer pass on output signals to the neurons in the following layer.

Figure 1: NNs with 3 (left) and 4 (right) layers (image retrieved from http://cs231n.github.io/convolutional-

networks/ ).

We can see how the neurons of a neural network function in Figure 2. The left side of this �gure shows a

biological neural network, while the right side represents its arti�cial counterpart. An arti�cial neuron (or

node) receives input signalsx from neurons in the previous layer. In this example, the neuron receives three

di�erent inputs, so x = f x0; x1; x2g. Furthermore, the weights w = f w0; w1; w2g and a biasb are associated

with the neuron. Its output y is calculated by multiplying each input x i with weight wi and optionally adding

a bias term b, before passing the result through an activation or transfer functionf :

y = f

 
2X

i =0

wi x i + b

!

(2)

Popular choices forf are e.g. the recti�ed linear unit ( f (x) = max(0; x)) or the sigmoid function ( � = 1
1+ e� x ).
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Figure 2: The output of an arti�cial neuron is computed by multiplying inputs x and weights w (and optionally

the addition of a trainable bias term b) and passing the result to an activation function f (image retrieved from

http://cs231n.github.io/convolutional-networks/ ).

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of feedforward networks that apply convolving �lters to

local features in the input data and are often used in the �eld of computer vision and object recognition [20].

As illustrated in Figure 3, the neurons in the convolutional layer of a CNN scan local regions of the input

data and have shared weights across the full input. Furthermore, multiple �lters of the same size can be used

to scan the same input regions but look for complementary features.

Figure 3: Schematic overview of how convolutional �lters are applied to input data. The convolutions are pro-

jected onto the convolutional layer (blue volume): multiple neurons can have the same receptive �eld for learning

complementary features (image retrieved from http://cs231n.github.io/convolutional-networks/ ).

2.1.2 CNNs for Text Classi�cation

CNNs are a natural �t for image classi�cation tasks because their aim is to learn features locally. As pixels in

images have a higher probability to originate from the same object when they are located in the same local

region, we can understand why CNNs are able to achieve excellent results in the �eld of computer vision and

object recognition. It might be less straightforward to apply the same approach for text classi�cation, but

it has been shown that CNNs can achieve excellent results on tasks like sentiment analysis as well [8, 9]. We

show which components are needed for applying CNNs to text and how they work in practice in the following

paragraphs, followed by an introduction to word embeddings for representing words as vectors.
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Sentence Matrix In order to apply convolutions to text in a similar way as they are applied to images, we

need to represent the input similarly as well [21]. This is achieved by creating a sentence matrix: a matrix

that represents a single sentence or document and where each row corresponds to a token or word. The row

vectors have a �xed length, namely the length of the embedding vectors that are used to represent words

(more on word vectors in Section 2.1.2).

Convolutions In images, convolutions are typically two-dimensional: the �lters scan the input data in

both the vertical and horizontal dimension, leading to a two-dimensional output. When we use a sentence

matrix for representing text, however, it does not make sense to use a �lter that scans the input horizontally:

as one row in the matrix represents a single word, �lters should be used that scan this word vector across its

full dimensionality. The convolutional �lters that are applied to the sentence matrix have di�erent heights.

As �lters are of the same width as the input data, convolutions will lead to one-dimensional feature maps as

output. It is common to use multiple �lters of the same size for learning complementary features from the

same local input.

Pooling As di�erent convolutional �lter sizes lead to feature maps of di�erent lengths, pooling is applied to

each feature map for extracting only the highest activation in that map. After concatenation of the resulting

values the �nal set of high-level features is obtained.

Regularization In order for the network to generalize well on unseen data, regularization for preventing

over�tting is important. One way for achieving this is by using dropout layers, where neurons are randomly set

to zero (\dropped out") with dropout probability p. Another method for regularization is L2-norm constraint

regularization: at each step in the training process, each node is re-scaled such thatjjw jj2 = L2max whenever

jjw jj2 > L 2max [22].

Output The feature vector that was obtained after performing the convolutions is connected to a single

output neuron via a hidden layer. The output is computed by applying a sigmoid function to the linear

combination of the weights and incoming activations, such that the �nal output is in the range [0, 1]. The

�nal binary classi�cation is made by using a cut-o� value at 0.5.

Word embeddings

In traditional document representation, the Bag-of-Words model is used for representing documents as

vocabulary-sized feature vectors using term weights liketf-idf . Such huge and sparse vectors would obviously

not be a good choice to use as input for a neural network, as we apply �lters with the same dimensionality

as the size of the word representation (leading to a huge number of weights). A better idea is to use word

embeddings: these are vector representations of words with an arbitrary number of dimensions that can be

learned in an unsupervised manner, for example using word2vec.

Word2vec Word2vec is a set of unsupervised machine learning techniques for creating word embeddings

of high quality [23, 24]. This can be achieved by using either the Skip-gram model or the Continuous Bag-

of-Words (CBOW) model. These models are neural networks with a single hidden layer that predict the

probability of context words given a single input word, and the probability of a word given some input words,

respectively. The context can take on an arbitrary sizen. The true probabilities are easily computed by
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simply counting the frequencies of words that are in the same context window of any other word among all

documents in the training corpus. Figure 4 shows an example network of context size 1 (and can therefore

be interpreted as both CBOW and skip-gram).

Figure 4: Network architecture in word2vec for a context of size one (�gure from Rong [25]).

After training these networks on some text corpus, the matricesW and W' contain vectors (of arbitrary

length N, i.e. the size of the hidden layer) for every word in vocabularyV : each word is thus represented

twice (once as context word and once as middle word). Combining these vectors (e.g. averaging them), we

end up with the �nal word embeddings.

The �nal word vectors generated with word2vec carry lots of semantic information and are therefor very

suited for NLP tasks. Like any neural network, word2vec-networks are black boxes that don't explicitly clar-

ify why they work well. One intuitive explanation is that in most texts, similar words have similar context.

When looking, for example, at the sentence \We pointed the door ", we expect the missing word to be

f red, green, blue,...g. However, words likeyesterdaywould obviously �t the sentence as well, without sharing

the desired similarity of the other words.

The authors of the original papers additionally published a set of pre-trained word embeddings. These vectors

were trained with word2vec on a Google News dataset of roughly 100 billion words, which resulted in very

high quality word embeddings in terms of capturing semantic relationships between words, as shown in Figure

5.

Figure 5: Because the word vectors for man and woman is are equally distant from resp. king and queen, very

intuitive vector calculations can be made, e.g. v (king) - v (man) + v (woman) � v (queen) (image retrieved from

https://www.tensorow.org/images/linear-relationships.png ).
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2.2 Background: Bayesian Optimization

Bayesian Optimization is a probabilistic method for global optimization of an objective function f. The key

element of Bayesian Optimization is the assumption of a prior distribution of the objective function, from

which a posterior distribution is obtained and iteratively updated using Bayes' Rule as new observations of

the objective function are accumulated (i.e. Bayesian inference). As opposed to local search methods, e.g.

gradient descent, Bayesian Optimization methods use all observations off accumulated so far to determine

the next evaluation point.

When considering machine learning models (neural networks in our work), the �tness functionf is typically

de�ned as the model performance in terms of e.g. accuracy or loss. Assuming a priorP(f ) of this �tness

function and letting x i represent the i'th parameter con�guration of the model and f (x i ) the true �tness

function, we obtain the accumulated set of observationsD = f x; f (x)g. The posterior distribution can then

be found via Bayesian inference as in Eq. 3.

P(f jD ) / P(D)P(f ) (3)

The meta-model P(f ) is known as asurrogate model, and for determining which point should be evaluated

next (with the true �tness function), acquisition functions are used. These components are discussed in the

next sections. An overview of a generic Bayesian Optimization algorithm can be found in Algorithm 1.

Algorithm 1 Bayesian Optimization

1: Initialize Dt = f x1:t ; f (x)1:t g

2: Construct surrogate model with Dt

3: while not stopping criterion do

4: Selectx t +1 by maximizing an acquisition function M :

x t +1 = arg max
x

M (x; Dt )

5: Evaluate x t +1 on the true objective function to obtain f (x)t +1

6: Augment data Dt +1 = fD t ; (x t +1 ; f (x)t +1 )g

7: Update surrogate model with Dt +1

8: t  t + 1

9: end while

2.2.1 Surrogate models

The estimate of f is thus constructed by using a �nite number of samples of the true �tness function, and is

known as asurrogate model. Intuitively, the surrogate model will have high uncertainty in regions that are

not explored yet and vice versa.

Gaussian Processes (GPs) are a very common choice to use as surrogate models for Bayesian Optimization.

A GP is a stochastic process that de�nes distributions over functions and is completely speci�ed by a mean

function m(x) and a covariance function (or kernel function) k(x; x0) (see Figure 6).

f � GP (m(x); k(x; x0))) (4)
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Furthermore, the prior mean m(x) is often assumed to be 0 for convenience. A popular choice for the

covariance function k(x; x0) is

k(x; x0) = exp
�

�
1
2

jjx � x0jj2
�

(5)

This function gets closer to 1 as points lie closer together, and approaches 0 when points get further apart.

Because all variables are weighted equally in Eq. (5), an additional parameter vector� is commonly in-

troduced, where each� i measures the importance and e�ectively regulates the activity of variablex i , as

suggested by e.g. Jones1 in the original EGO algorithm [11].

By the properties of a centered Gaussian Process, we know that any �nite collection of its random variables

are jointly Gaussian. Given a set of observationsD = f x1:t ; f (x)1:t g, we can thus model an arbitrary point

x t +1 that we may want to evaluate next with the joint distribution

"
f1:t

f t +1

#

� N

 

0;

"
K k

kT k(x t +1 ; x t +1 )

#!

(6)

wherek is a vector of covariance terms betweenx t +1 and x1:t . The posterior distribution can then be written

as

P(f t +1 jD1:t ; x t +1 ) = N (� (x t + 1) ; � 2(x t +1 )) (7)

where

� (x t + 1) = kT K � 1f1:t (8)

� 2(x t +1 ) = k(x t +1 ; x t +1 ) � kT K � 1k: (9)

2.2.2 Acquisition functions

Having de�ned a statistical model for representing the posterior distribution of the (unknown) function f as

a combination of a mean function and an uncertainty term, we now focus on methods for selecting promising

candidate points that we might want to evaluate next. In Bayesian Optimization, this is typically done by

using an acquisition function, or in�ll-criterion . In order for the algorithm to converge to a global optimum,

it is important that the acquisition function carefully balances exploration of new areas with high uncertainty

and exploitation of regions with high estimated function values. Here we discussprobability of improvement,

expected improvementand the moment-generating function for �nding the global minimum of f.

Probability of Improvement The �rst acquisition function we discuss is the Probability of Improvement

(PI). The function rewards solutions that may have an improved �tness value over the best observation found

so far (i.e., the incumbent) f (x+ ):

PI( x) = P(f (x) < f (x+ )) (10)

= �
�

f (x+ ) � � (x)
� (x)

�
(11)

1Actually, Jones de�nes a correlation function for expressing variable distances, which is obviously very similar to using a

covariance function
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Figure 6: Toy example of a one-dimensional Gaussian Process prior on a �tness function f (solid black line). Four

points have already been evaluated with the true �tness function and have zero variance (although not perfectly visible

in the �gure). Every other point x i is modeled as a Gaussian distribution with mean � (x i ) and standard deviation

� (x i ) (�gure from Brochu et al [26]).

Here, �( �) is the normal cumulative distribution function. Because the PI-function chooses to draw points

that are in�nitesimally smaller than the incumbent over points that may o�er greater gains but with high

uncertainty, this acquisition function has a highly exploitative nature.

Expected Improvement The Expected Improvement (EI) extends PI by including the magnitude of the

improvement a solution can potentially yield. The improvement is de�ned as

I( x) = max
�

0; f (x+ ) � f (x)
	

: (12)

The expected improvement is the expected value of (12) and can be expressed in closed form as

EI( x) = ( f (x+ ) � � (x))�
�

f (x+ ) � � (x)
� (x)

�
+ � (x)�

�
f (x+ ) � � (x)

� (x)

�
(13)

where � is the normal probability density function and � the normal cumulative distribution function.

MGFI-acquisition The third and last acquisition function we discuss was proposed by Wanget al [27] and

is based on the moment-generating function of the improvement (MGFI). The function takes all the higher

moments into account and introduces a parameter (t ) for explicitly balancing exploration and exploitation.

MGFI( x; t) = �
�

f (x � ) � � 0(x)
� (x)

�
exp

�
(f (x � ) � � (x) � 1)t +

� 2(x)
2

t2
�

(14)

Lower values oft assign more weight to the lower moments, leading to a more exploitative search behaviour.

Conversely, higher values oft lead to a more explorative search behaviour.
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2.3 Related Research

The idea of automatic algorithm con�guration is not new. As mentioned before, performing a grid search can

be less e�cient than a random search [10], underlining the need for more sophisticated methods for hyper-

parameter optimization. Especially model-free algorithm con�guration methods have been widely studied.

Examples are evolutionary algorithms,F-RACE [28] (based on theracing algorithm [29]) and ParamILS [30]

(based on iterated local search). A major disadvantage of these methods is that the search is guided locally,

leading to a high probability of getting stuck in a local optimum.

Model-basedalgorithm con�guration methods, on the other hand, use meta-models and iterate between �t-

ting them and using them to select new points for evaluation (i.e. Bayesian Optimization). This approach

is also referred to as Sequential Model-Based Optimization (SMBO) by Hutteret al [31]. The roots of these

methods are all based on the work of Jones and the introduction of theEGO-algorithm [11]. Examples are

ROAR (Random Online Adaptive Racing) and SMAC (Sequential Model-based Algorithm Con�guration)

by Hutter et al [31]. These methods have been successful in autoML tools like Auto-WEKA [32] and auto-

sklearn [33].

More recently, an extension ofEGO known as MiP-EGO (Mixed-integer Parallel-EGO) was introduced by

Van Stein et al and applied to parameter optimization of CNNs for image classi�cation tasks [12]. The

method can handle mixed-integer data by using Random Forests as surrogate models, instead of Gaussian

Processes as in traditionalEGO. Furthermore, multiple candidate points can be selected and evaluated in

parallel, which is extremely useful when optimizing CNNs and multiple GPUs are available for evaluating

network con�gurations.
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3 MiP-EGO

MiP-EGO follows the generic Baysian Optimization framework as described in Algorithm 1. The initial set

of candidate points f x1:t g is created using latin hypercube sampling (LHS). After evaluation of these points

on the available GPUs and obtaining �tness values f f (x)1:t g, the initial dataset is used to �t a Random

Forest as a surrogate model for optimization (allowing mixed-integer data). An acquisition function is then

maximized for selecting the next point for evaluation (section 3.1). Currently MiP-EGO has PI , EI and

MGFI (section 2.2.2) implemented. After evaluation, the set of known con�gurations and corresponding

�tness scores is augmented, the surrogate model is re-�tted and the process restarts.

MiP-EGO allows for multiple candidate points to be selected and evaluated in parallel, which is an extremely

useful feature that was not supported in the traditional EGO-algorithm. Selecting multiple candidate points

simultaneously can be done by constructing multiple instances of theMGFI -acquisition function using di�er-

ent values for t to ensure that the acquisition functions that are optimized are unique. This is implemented

in MiP-EGO by using a log-normal distribution from which di�erent values for t are sampled. The idea is

that by using this long-tailed distribution, most values for t are small and thus well suited for exploitation,

whereas few values will be large and guide the algorithm's explorative behaviour [12].

3.1 Optimization

Optimization of the acquisition function is done using evolutionary algorithms. In particular, Mixed-Integer

Evolution Strategies (MIES) are applied to the problem [34]: a natural extension of CMA-ES [35] for mixed-

integer optimization problems. An outline of this algorithm can be found in Algorithm 2. Since we use a

(�; � )-selection scheme, the� best individuals in each generational cycle are only selected from the o�spring

population � , ignoring the parent population P( t ).

Algorithm 2 (�; � )-Evolution strategy

1: t  0

2: initialize population P( t ) 2 I �

3: evaluate the � initial individuals with �tness function f

4: while not stopping criterion do

5: for i 2 f 1; :::; � g do

6: randomly select parentspi 1 and pi 2 from P(t )

7: x i  mutate(recombine(pi 1 ; pi 2 ))

8: Q(t)  Q(t) [ f x i g

9: P(t)  � individuals with best �tness value from Q(t)

10: t  t + 1
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4 Contribution

In this work, MiP-EGO is adopted and used for optimizing CNNs for text classi�cation. Recall from section

2.1 that GPUs lead to a typical 100- to 1000-fold speedup of the training process and are therefore extremely

useful for training and evaluating neural network con�gurations. In the original MiP-EGO software, multiple

candidate points can be selected and evaluated in parallel if multiple GPUs are available (see section 3),

which is an extremely useful extension to the originalEGO-algorithm. The implementation of this feature

in MiP-EGO was originally such that the evaluations of all candidate points in a single MiP-EGO itera-

tion would run synchronously on the available GPUs. Thus, before the selection of a new set of candidate

points for evaluation, all evaluations of the previous set would have to �nish �rst (such that at the end of the

optimization each GPU would have done the same number of function evaluations, see lower part of Figure 7).

Upon completion of an evaluation in the synchronous parallelization, a GPU thus has to wait on all other

evaluations running in parallel to �nish before getting assigned a new task. This is obviously very ine�cient

in terms of algorithm running time, even more so because training times of CNNs can vary substantially for

di�erent con�gurations (depending e.g. on the number and sizes of convolutional �lters). One slow evaluation

among all candidate points might therefore cause all other GPUs to be idle for hours, which is simply wasted

time.

To overcome this problem, we extended the original software by implementing a more e�cient parallelization

of the GPUs: candidate points are evaluated asynchronously by using multithreading, allowing the GPU

to evaluate a new candidate point as soon as the previous evaluation is �nished. This way, all GPUs are

constantly working instead of having to wait for all other GPUs to �nish their task �rst (see upper part

of Figure 7). To achieve this, we launch one thread per available GPU and use oneevaluation queuethat

is shared across these threads. Now every time a GPU �nishes an evaluation, its thread computes a new

candidate point by re-�tting the surrogate model and maximizing the acquisition function on that model,

adds this point to the evaluation queue and starts evaluating the �rst next point in the queue. Furthermore,

the surrogate model is not shared across the di�erent threads, as this may cause errors when di�erent threads

try to �t the surrogate model at the same time. We therefore make sure that each thread has its own unique

copy of the surrogate model.

Figure 7: Synchronous (lower part) and asynchronous (upper part) execution of evaluations using multiple GPUs.

In the asynchronous implementation, all GPUs are constantly working, while in the synchronous parallelization GPUs

have to wait until all evaluations are �nished before getting assigned a new job.
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5 Dataset and experimental setup

5.1 Dataset

Experiments are conducted on theMR dataset: this dataset contains movie reviews from theRotten Toma-

toes website2. The reviews are approximately one sentence long and were automatically labeled positive or

negative, based on the review being markedfresh or rotten, respectively.

The MR dataset consists of 10662 reviews, equally balanced among the positive and negative classes. The

review lengths (after preprocessing) are in the range [1, 56], with an average review length of 20. The total

vocabulary size is 18590, of which 16461 terms are available from the pre-trained word vectors (Google News

data).

For the preprocessing steps, �rst all HTML tags like < br/ > were removed and all text was lowercased. Then

the text was tokenized, treating commas, parentheses, exclamation marks and question marks as separate

tokens and ignoring periods. Also, the expressions's, 've, 're , n't , 'd and 'll are treated as separate tokens.

5.2 TXT-CNN model and con�guration

Our main model for text classi�cation is TXT-CNN, which is a con�gurable, shallow CNN with at most one

hidden layer (Figure 8 represents the multichannel variant of this network, as described below). The network

is based on the work of Kim [8] (the main di�erence being the possibility of an additional hidden layer in

our model). Arguing that the vectors that are used for input representation (i.e. word2vec) already carry

word information on multiple levels of abstraction (semantically and syntactically), we did not con�gure

MiP-EGO to search for networks with multiple hidden layers. Furthermore, we adopt 3 variants for input

representation:

� Static : input word vectors from word2vec's pre-trained Google News vectors that are not updated

during training;

� Non-static : the input word vectors (same as above) are �ne-tuned (updated) during training;

� Multichannel : a combination of static and non-static, where one set of inputs is kept static and the

other is �ne-tuned using SGD at training time.

The network receives as input a sentence matrix (two for the multichannel architecture), followed by a dropout

layer d0. Initially, the network was designed to apply convolutional �lters of 3 sizes ki to the input, with f i

di�erent �lters per �lter size ( i 2 f 1; 2; 3g). In later experiments, we treated the number of di�erent �lter

sizes (s) as a tuneable hyperparameter of the model. The convolutions are calculated using an activation

function a, and with or without an additional trainable bias term b. After global-maxpooling of the resulting

feature maps, the concatenated neurons are, via a dropout layerd1, connected to a hidden layer of sizeh,

using relu activation and a bias term. Finally, the output is calculated as a linear combination of the hidden

neurons and a bias term using sigmoid activation, again via a dropout layerd2. In the case that h = 0 (no

hidden layer), the concatenated features are connected to the output via only a single dropout layer.

2https://www.cs.cornell.edu/people/pabo/movie-review-data/
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Figure 8: Multichannel architecture of our main model. The con�gurable hyperparameters we want MiP-EGO to

learn are listed in Table 1, along with their corresponding ranges.

For all networks, the training objective is to mini-

mize the binary cross-entropy loss function. Opti-

mization is done using eitherAdam [36] or Adadelta

[37], which both are widely used methods for SGD

optimization. We perform early stopping whenever

the loss on the test set does not improve in 15 con-

secutive epochs. Furthermore, we set the maximum

number of epochs at 150 and we make sure to save

the (up to that point) best performing model after

every epoch, such that it can be loaded later for eval-

uation on the test set. We use 300 embedding dimen-

sions for word2vec training of words that are not in

the set of pre-trained word vectors (Google News

dataset, section 2.1.2).

variable range

a [elu, relu, tanh, sigmoid, selu]

f [1,100]

k [1,15]

h [0,100]

s [1, 10]

d [0,0.95]

b [True, False]

balance [True, False]

model [static, nonstatic, multi]

optimizer [Adam, Adadelta]

Table 1: Tuneable hyperparameters and ranges for

MiP-EGO to optimize

Variable size inputs Because all input data must have the same dimensionality, all sentence matrices

were padded with zeros up to the maximum review length in the dataset (56). Because convolutions on these

padding vectors take dot products of zeros they are e�ectively ignored.
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5.3 MiP-EGO con�guration

Search space With the variables and corresponding ranges from Table 1 we can de�ne the search space

for MiP-EGO as the Cartesian product of the heterogeneous search spaces induced by the continuous (d),

ordinal ( f , k, h and a) and nominal (all remaining) variables.

Loss function Given a con�guration � , MIP-EGO calculates a loss value based on the classi�cation accu-

racy of the network on the test set. The loss function is de�ned as

loss(� ) = log(1 � test accuracy) (15)

Thus, the loss is at most 0 when the accuracy on the test set is 0.0 and decreases exponentially as the test

accuracy increases.

Initialization Initialization of the algorithm is done by drawing 5 points using Latin Hypercube Sampling

(LHS). We set the evaluation budget for evaluating parameter con�gurations at 1000.

In�ll-criterion The in�ll-criterion (acquisition function) that we use in our experiments is either Expected

Improvement (EI), Moment-Generation Function-based In�ll (MGFI) or Probability of Improvement (PI).

MIES parameters Candidate points (con�gurations) are selected by maximizing the in�ll-criterion using

MIES. We used � = 4 for the parent population and � = 10 for the o�spring population, and used an

evaluation budget of 500 generational cycles.

Surrogate model We use Random Forest as our surrogate model for optimization. The number of trees

is determined experimentally, as discussed in the next subsection.

5.4 Baseline Models and Experimental Setup

In order to compare the quality of MiP-EGO to alternative tuning methods (i.e. grid search), we �rst estab-

lish two baselines. The �rst is the network con�guration that Kim found via grid search and tested on the

same dataset [8]. We re-implemented this model and report the accuracy we found, i.e. 80.94 as opposed to

the 81.5 as reported by Kim. This di�erence is most likely due to the fact that di�erent folds were used for

the cross-validation. The second baseline model is an extension of the �rst where a hidden layer was added

and di�erent regularization parameters were used that led to better results (this model was found after a

new grid search that we performed on top of the �rst baseline). The performances of these networks were

measured by 10-fold cross-validation of the test accuracy. That is, 10% of the data was randomly selected as

test data and the remaining 90% as training data. The folds are chosen such that all data serve exactly once

as test data and are used for training in all other folds. The exact baseline network con�gurations and their

performance can be found in Table 2.

An important part of MiP-EGO is constructing the surrogate model (Random Forest) that is used for se-

lecting candidate points to evaluate. We therefore �rst investigate the e�ect of the number of trees in our

Random Forest on the search performance of our algorithm on a single fold of the data. Also, after search is

completed, we use the complete dataset of sampled points for �tting the Random Forest and calculate the
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Parameter Baseline 1 Baseline 2

Number of hidden neurons (0 in absence of hidden layer) 0 10

Sizes of the conv. �lters 3, 4, 5 3, 4, 5

Dropout probabilities for the dropout layers as shown in

Figure 8 (0 when the dropout layer is absent)
0, 0.5, 0 0.5, 0.5, 0.8

The number of convolutional �lters that are used per �lter size 100 100

Batch size during SGD optimization 50 50

Boolean variable for adding an additional trainable bias

term to the computed convolutions or not
yes yes

L 2max constraint on weights when working with L2-norm

constraint regularization
3 -

Boolean variable for weighting classes inversely proportional

to their underlying class frequencies during training or not
no no

Boolean variable for generating vectors that are not in the

set of pre-trained w2v-vectors with word2vec on the training

data (no means random vectors)

no yes

Context window size for w2v training - 10

Performance : test accuracy on 10-fold cross-validation 80.94 81.52

Table 2: Parameter con�gurations for our baseline models.

R2-score for determining the quality of the �t.

In our experiments, when searching optimal network con�gurations with MiP-EGO, we only evaluate network

performance on one fold of the data. After completion of an optimization run using a speci�c setup (number

of trees in the Random Forest, acquisition function etc.), we use the 5 highest scoring con�gurations that

were found along the full optimization run and perform the complete 10-fold cross-validation with these

con�gurations (on the exact same train/test-splits as our baseline models to make comparison between

di�erent con�gurations on the same data possible).
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6 Results

6.1 EI-based optimization

Figure 9 shows the test accuracy of the incumbent during optimization using Expected Improvement as

acquisition function on a single fold of the data, for di�erent sizes of the Random Forest. Additionally,

in Table 3, the R2-scores are given for Random Forests of di�erent sizes after �tting them on their corre-

sponding accumulated data set after optimization (i.e. 1000 samples), as well as the �nal incumbent accuracy.

Figure 9: Test accuracies of the incumbent during EI-optimization of the surro-

gate model for di�erent sizes of the RF (on a single data fold).

RF Acc.(%) R2

10 83.64 0.862

50 84.02 0.879

80 84.02 0.879

90 84.30 0.874

100 84.02 0.882

110 84.21 0.885

150 84.49 0.879

Table 3: Test accuracies and

R2-scores of theRF for di�er-

ent sizes.

Highest test accuracy is achieved with 150 trees in theRF, while the best model in terms of R2-score is the

RF with 110 trees. Figure 10 shows the average, 10-fold cross-validated test accuracies after EI-optimization

using di�erent RF sizes. The �gure shows the 5 highest scoring con�gurations that were found in a single

optimization run. Table 4 summarizes the average 10-fold cross-validated accuracies. Highest cross-validation

accuracies are achieved here by the surrogate model (RF ) with 110 trees.

Number of trees in the Random Forest

10 50 80 90 100 110 150

cv 1 75.09 81.36 81.45 63.73 81.73 81.80 75.10

cv 2 81.37 69.49 81.49 81.49 81.58 81.74 70.93

cv 3 81.42 81.46 75.10 75.64 73.75 81.89 72.15

cv 4 81.67 75.54 72.18 68.08 61.32 81.66 60.20

cv 5 81.11 69.34 75.92 78.37 72.24 81.43 77.86

Table 4: Average accuracies for 10-fold cross-validation of the 5 best con�gurations after EI-optimization for di�erent

sizes of the surrogate model (RF sizes), with accuracies that exceed our baseline in bold.
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Figure 10: Cross-validated test accuracies of the 5 best con�gurations after EI-optimization of the surrogate model

for di�erent sizes (number of estimators/trees) of the RF. The red line corresponds to our main baseline (81.52).

6.2 MGFI-based optimization

Figure 11 summarizes the results for optimization using theMGFI -acquisition function on a single fold of the

data. Figure 11a �rst shows how the test accuracy of the incumbent changes during optimization as di�erent

RF sizes are used, while keeping thet parameter at its default value (t=2). The corresponding R2-scores are

listed in Table 5. The results for di�erent values of t (t0 in the �gures) when using a forest with 110 trees

are shown in Figure 11b. Finally, Figure 11c shows the e�ect of using a cooling scheme for thet parameter,

cooling down from t = 2 to t = 0 :1 and again using a forest of size 110. The �nal incumbent accuracies are

listed under Table 6.

For the very small set of Random Forest sizes that were tested here, a forest with 110 trees achieves the

highest R2-score (Table 5). Furthermore, we see thatt = 2 performs best here, and that the use of a cooling

schedule does not lead to better results on this single data fold. However, the di�erences in performance of

the optimal con�gurations are very small for the di�erent setups that were tested.

From Figure 11b we can partly see the inuence of thet -parameter on the convergence rate. Witht = 2 the

algorithm converges the fastest whilet = 5 has the slowest convergence. The convergence rates for values

of 3 and 4 for t are in between these two boundaries. Furthermore, from Figure 11c we can see that an

exponential schedule leads to quicker convergence than a linear schedule.
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Figure 11: Test accuracies of the incumbent for MGFI-based optimization on one fold of the data.

RF R2

80 0.877

100 0.878

110 0.886

Table 5: R2 scores for surrogate models

with di�erent number of trees

RF Acq. t0 Schedule Accuracy

80 MGFI 2 - 84.02

100 MGFI 2 - 84.30

110 MGFI 2 - 84.58

110 MGFI 3 - 84.02

110 MGFI 4 - 84.02

110 MGFI 5 - 84.30

110 MGFI 2 lin 84.21

110 MGFI 2 expo 83.93

Table 6: Final incumbent accuracies for one fold of the data

with the optimization setups from Figure 11

The average 10-fold cross-validated results are also listed under Table 7, again for the 5 highest scoring con�g-

urations that were found in a single optimization run. For the cross-validation results of the incumbents from

Table 6 (�rst line in Table 7), we see that the setup with an exponential cooling schedule (t0=2) performs

best (81.83), closely followed by the setup with a �xed t of 2 (81.81).
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trees t0 sched.

80 100 110 3 4 5 lin. exp.

cv 1 78.64 78.51 81.81 81.74 78.52 81.42 81.36 81.83

cv 2 81.48 81.45 81.51 81.15 75.5581.54 81.21 81.36

cv 3 75.24 81.76 81.68 78.29 81.43 81.95 81.11 71.97

cv 4 75.92 72.56 81.22 81.3681.87 81.58 81.47 72.88

cv 5 81.51 81.41 81.79 81.85 82.01 81.41 81.57 81.35

Table 7: Average cross-validated accuracies (baseline-exceeding scores in bold)

6.3 PI and variable s

The remaining results are for PI-based optimization using a Random Forest with 110 trees, and optimization

of a slightly modi�ed version of the TXT-CNN model where the number of �lter sizes s is a tuneable

hyperparameter as well (as explained in section 5.2). The latter was optimized using the EI acquisition

function and again using a Random Forest with 110 trees. Figure 12 shows the test accuracies of the

incumbent during optimization of these two methods for a single fold of the data. The �nal incumbent

accuracy is given in Table 8, as well as the average 10-fold cross-validated accuracies of the 5 highest scoring

con�gurations in Figure 12.

Figure 12: Test accuracies of the incumbent during PI-

optimization (blue line) and EI-optimization with tuneable s on

one fold (both with 110 trees)

PI var s

fold 84.30 83.55

cv 1 81.66 81.54

cv 2 81.70 78.34

cv 3 81.36 81.45

cv 4 78.35 81.50

cv 5 81.26 81.36

Table 8: Final incumbent test accuracies from

Fig. 12 (�rst line) and cross-validated accura-

cies of the 5 best con�gurations
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6.4 Best con�gurations
Table 9 summarizes which settings for MiP-EGO

achieved the highest cross-validated test accuracies

among all results that were previously discussed. The

size of the Random Forest was 110 for all these setups.

Furthermore, the outer right column speci�es the rank

of the con�guration in the initial single-fold optimiza-

tion (among the top 5 best scoring con�gurations) that

led to this �nal cross-validated test accuracy. Table

10 shows the corresponding con�gurations that were

found using the settings from Table 9.

# Acq. t0 sched. Fold rank

1 MGFI 5 - 3

2 EI - - 3

3 MGFI 4 - 4

4 MGFI 3 - 5

5 MGFI 2 exp 1

Table 9: MiP-EGO settings that led to the

highest cross-validated test accuracies.

# model balance a b d 0 d1 d2 k0 k1 k2 h f 0 f1 f2 opt. iter cv

0 multi False relu True 0.500 0.500 0.800 3 4 5 10 100 100 100 Adadelta - 81.52

1 multi True relu True 0.000 0.915 0.416 4 1 2 66 41 100 6 Adadelta 640 81.95

2 multi True elu True 0.374 0.811 0.002 1 2 6 2 89 5 15 Adadelta 262 81.89

3 multi True relu False 0.333 0.753 0.091 5 2 1 2 2 84 56 Adadelta 71 81.87

4 multi False relu False 0.358 0.602 0.024 1 2 1 78 73 51 64 Adadelta 161 81.85

5 multi False relu False 0.391 0.647 0.193 4 1 2 43 11 73 69 Adadelta 446 81.83

Table 10: The con�gurations that achieved the highest cross-validated test accuracies (outer right column), along with the

number of iterations MiP-EGO needed to �nd them. Con�guration corresponds to our baseline model.
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7 Discussion and conclusions

Using CNNs for text classi�cation is a very promising approach that is completely di�erent from traditional

techniques for performing this task. The combination of input representation using high quality word em-

beddings and a network that is able to automatically extract useful features from these is a fundamentally

di�erent approach than using e.g. SVMs for NLP tasks, which are typically based on the Bag-of-Words

model. The major shortcoming of neural networks in general, however, is that their black-box nature makes

it impossible to optimize the model by hand and without expert knowledge. Even for a relatively simple

network like TXT-CNN, it is extremely di�cult to determine good ranges for e.g. continuous variables (i.e.

dropout layers), which increase the search space dramatically, as very small changes can already lead to very

di�erent performances.

We have seen that automatic con�guration of our TXT-CNN model using MiP-EGO is able to achieve

state-of-the-art performance on our movie review dataset without using much prior knowledge. The dropout

probabilities, for example, were allowed to take on values ranging from 0 up to 0.95: a range that would

be impractical for a grid search (in combination with all other variables). Not only is our algorithm able

to �nd good solutions, it also takes away the tedious process of deciding which con�gurations to prioritize

when performing a grid search: after initialization, no more user input or comparison is required and we can

simply work with the highest scoring con�gurations that are found after optimization is completed.

Although we have only performed experiments on a single dataset where we applied a speci�c (con�gurable)

model to a speci�c problem, MiP-EGO is also a very promising method for optimizing other problems like

image classi�cation [12]. This makes it a very useful technique for increasing autonomy of machine learning

models in general and black-box models in particular.

Limitations and future work One limitation of our approach for optimizing CNNs is that we de�ne

a �xed search space before running the algorithm that is not able to grow dynamically. Because of this,

interdependencies between conditional variables need to be taken care of manually. This is the case in our

model, where we decided to use 3 di�erent �lter sizes, each with a di�erent number of �lters. We experi-

mented with an additional masking variable s (ranging from 1 to 10) to control the number of active �lter

sizes in the network. In this approach, however, the initial search space is still �xed, but some dimensions

are simply ignored by the network during optimization (and not by MiP-EGO). Furthermore, our approach

for optimizing the model on a single fold of the data and looking at cross-validation results of the highest

scoring con�gurations afterwards is very unlikely to �nd optimal con�gurations for the full cross-validation.

The algorithm is prone to over�tting the network in this manner. This is clearly reected by the fact that

the best con�gurations that we found (Tables 9 and 10) were in 4 of the 5 casesnot the highest scoring

con�guration in the corresponding single fold experiments. An experimental setup that performs a full

cross-validation at each MiP-EGO iteration is thus a better approach for exceeding the baseline as much as

possible. The downside of this is obviously that the evaluation time of a speci�c con�guration will increase

with a factor 10, but most likely fewer iterations will be needed for achieving similar (cross-validation) results.

All in all, we have seen that Bayesian Optimization (MiP-EGO) is a very e�ective way for optimizing CNN

architecture for text classi�cation and takes away much of the work and time that users would have to spend

when designing these networks manually.
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