£Y3. Universiteit Opleiding Informatica
W) Leiden b 8
The Netherlands

3D Hand Pose Estimation

on a Robotic Platform

Alec Flesher-Clark

Supervisors:
Dr. E.M. Bakker
Dr. M.S. Lew

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 26/07/2019

www.liacs.leidenuniv.nl

Abstract

Hand tracking and hand pose estimation are crucial components of Human-Robot Interaction
(HRI). Recently, scientists have been solving HRI problems by applying Machine Learning and
Deep Learning techniques. This thesis contributes to this field of research by implementing
an existing Deep Learning method onto a robotic platform. This method consists of a deep
network which learns to estimate 3D hand poses from single RGB images.

The implemented deep network consists of three smaller neural networks. The first of these
networks aims to segment a hand in a 2D RGB image. The second network receives the
cropped output of the first network and then determines a set of 2D hand keypoints. It does
this by producing score maps to indicate the likelihood of a certain 2D hand keypoint at a
certain location. The third network takes these score maps to estimate the 3D coordinates of
the hand in a canonical frame. The three networks together form a larger deep network which
is able to predict 3D hand poses from 2D images in a single pass.

Before implementing this network on a robotic platform, the network’s accuracy in predicting
3D hand poses is analysed and validated. Slight improvements to the network configuration
are proposed which are shown to yield a better accuracy. Finally, a real-time implementation
of the model on a robotic platform using a servo actuated camera to simulate a robot’s vision
is presented. Experiments are conducted using this implementation in order to qualitatively
evaluate the real-time performance of the model.

Contents

1 Introduction
1.1 Hand Pose Estimation

2 Related Work

2.1 Depth-Based 3D Hand Pose Estimation
2.2 Image-Based 3D Hand Pose Estimation

3 Zimmerman and Brox’s Network
3.1 The Rendered Handpose Dataset
3.2 HandSegNet
3.3 PoseNet
3.4 PosePrior

3.4.1 Estimating Canonical Coordinates and Calculating the Rotation Matrix . . .

4 Experiments
4.1 Experiment Setup
4.2 FEvaluating Accuracy

4.2.1 Evaluation of 2D Keypoint Detection
4.2.2 Evaluation of 3D Lifting Techniques.

4.3 Evaluating Real-Time Performance
5 Conclusions and Further Research

References

i

10
11
11

13
13
14
14
16
19

22

24

1 Introduction

1.1 Hand Pose Estimation

Computer vision is a crucial research field for Robotics as it allows robots to have a higher level
of understanding the contents of images. As the dependency on large amounts of image data
increases every day, the need for robots to interpret images as humans do increases proportionally.
Human-robot interaction uses elements of computer vision to enable robots to recognize parts
of the human body and interact with them accordingly. Hand movements are an important part
in a person’s every day interactions with other people and objects. A large number of computer
scientists studying human-robot interaction have therefore recently studied the subjects of hand
tracking, hand pose estimation and hand gesture recognition.

Within the field of HRI, 3D Hand Pose Estimation is seen as the simulation of the position of
parts of the hand in 3D space. In most cases, 3D hand pose estimation is accomplished through
estimating the positions of around 14 to 21 unique hand joints in 3D space. Approaches range
from using using neural networks for the prediction of the locations of these hand joints to using
other Machine Learning statistical models for hand joint prediction. Before the current trend of
applying Deep Learning to problems like 3D hand pose estimation, researchers relied on using
other Machine Learning techniques such as random forest regression [I] and nearest neighbour
search [2]. The nearest neighbour search approach is accurate but requires the subject to wear
a colour glove in order to recognize the 3D hand pose. The random forest regression is fast and
accurate in hand classification, but its hand pose estimation is outperformed by more recent Deep
Learning approaches. Deep Learning’s success in research fields such as object segmentation and
image localization brought with it a surge in 3D hand pose estimation research, such as the use
Voxel-to-Voxel prediction network or a General Adversarial Network (discussed in Section 2). All
these different Deep Learning approaches use a neural network which is trained using a large dataset
of hands in different poses. Along with these images, the dataset also contains labels for each image
containing the image coordinates of the different hand joints. After training the network is able to
predict the 3D coordinates of a hand in an image.

In recent years hand pose estimation is implemented using a Deep Learning model where the model
consists of several convolutional layers. These models, also referred to as convolutional models, are
trained on supervised (labelled) test data containing thousands of images of hands. For models
tackling the problem of hand detection an image containing a hand is required. If the model is
properly trained it will output the same image but with an indication of the location of the hand in
the image, usually by generating a Bounding Box around the hand. These hand detection models
are necessary in most hand related HRI problems, as the hand must first be recognized by a robot
before it can be further interpreted. For hand pose estimation many researchers such as Wu and
Nagahashi [3] use a 2D detection and tracking of the hand and implement a classification model on
top to determine the hand’s pose.

Although this field has seen many different approaches, all approaches still encounter difficul-
ties due to the fact that hand movements are of a complicated nature and pose major challenges to
hand pose estimation methods in real-time. One of these challenges is the problem of self-occlusion

of the hand, when certain fingers or a certain rotation of the hand ensures that a part of the
hand is not visible. Another difficulty in hand pose estimation is the difference in speed between
a robots pose estimation and the speed of the movement of certain hand gestures. For example,
in order to have a robot interpret the complex and quick hand gestures of a sign language, the
underlying interpretative model must be fast enough to determine the hand’s many poses in real-time.

While implementations like these perform well in a 2D space, they do not properly represent
the hand pose in a 3D space. In many cases the problem of 3D hand pose estimation and hand
tracking is the requirement of expensive depth-based camera’s to capture the input images for
the Deep Learning model. These depth-based camera’s are able to capture images in which each
pixel relates to the distance between the image plane and a corresponding object. While some
researchers like Oikonomidis et al. [1] have circumvented this problem by using less expensive, and
less precise, image and depth capturing setups like Microsoft Kinect’s camera; the research done by
Zimmerman and Brox [5] makes 3D hand pose estimation possible on regular RGB images, while
only requiring the training dataset to contain depth-based images. Once trained, this approach
not only has the benefit of being able to work without any special camera equipment, but can
also be used outdoors whereas methods relying on depth camera’s are not well-suited for outdoor use.

This thesis focuses on the implementation of 3D hand pose estimation on a robotic platform
where monocular RGB images are captured frame-by-frame. The main focus of this thesis is
therefore to study the model proposed by Zimmerman and Brox and to implement it on a robotic
platform. Before implementing the model on a robotic platform, the model will be retrained to
validate the accuracy presented in the original paper. After validation, experiments in the model’s
configuration will be conducted in order to try and improve the accuracy. Finally, a real-time
implementation of the model will be proposed and tested in different scenario’s. This real-time
implementation will be running on a servo actuated camera, which will serve as a robotic platform.
The next paragraph serves to outline this thesis’ structure.

In Section 2 a more in depth analysis of the related work concerning 3D hand pose estima-
tion will be offered in order to compare other publications to Zimmerman and Brox’s method.
Section 3 will describe Zimmerman and Brox’s model architecture as well as how the accompanying
dataset is used by the model for training and evaluating. In Section 4.2 Zimmerman and Brox’s
model’s accuracy is validated. This Section also aims to improve the models accuracy. Therefore,
Section 4.2 will include experiments in which the model will be retrained multiple times with
adjusted hyperparameters and will be evaluated on multiple datasets. In Section 4.3 Zimmerman and
Brox’s model will be implemented on a robotic platform. This Section provides an implementation
of the model so that 3D hand poses can be estimated in real-time. To test the real-time performance
of this implementation, Section 4.3 will contain experiments on the model’s performance in different
real-time scenario’s. Finally, in Section 5, a conclusion of this thesis is given as well as a proposal
for possible further research on the subject.

2 Related Work

Before delving into Zimmerman and Brox’s method for 3D hand pose estimation, an overview of
the previous research on hand pose estimation is provided. Through the years, the field has seen a
myriad of different implementations. This section will focus on approaches using neural networks,
as the model proposed by Zimmerman and Brox also consists of neural networks. This section is
divided into two subsections in order to distinguish between implementations based on depth map
images and implementations based on normal RGB images. Both these subsections will consist of
important contributions to their respective fields.

2.1 Depth-Based 3D Hand Pose Estimation

One of the first important implementations of Deep Learning networks for 3D Hand Pose Estimation
is the DeepPrior [0] network, published by Oberweger et al. in 2015. The network consists of two
parts. The first part estimates a 3D bounding box around the hand in a depth image. Once the
hand is localized through the bounding box, the second part of the network uses this as an input
and estimates the 3D joint locations of the hand. DeepPrior stands out from other contemporary
methods by the inclusion of a bottleneck layer at the end of the joint estimation network. This layer
forces the network to learn a lower dimensional representation of the training data, which enforces
the physical constraints of hands on the estimated 3D joint locations. Because of this so called pose
prior, the result of the network is a more reliable prediction of a 3D hand pose. Zimmerman and
Brox have incorporated a similar pose prior at the end of their network.

Although the original DeepPrior network was quickly outperformed by other Deep Learning based
methods, the model saw a resurgence when Oberweger introduced DeepPrior++ [7] in 2017. The
addition of ResNet [3] layers, data augmentation and improvements to hand localization resulted
in a network that could compete with and even outperform many other networks within the field
of 3D hand pose estimation.

Paired set P \
| 4 I .
yByvgy-y YBYAY-Y

¥
y Viewpolint
augmentation

X —
¥
Shape and viewpoint W m \‘}/
augmentation
Unpaired set L/ ﬁ g/ —3% Augmentation
bl . \Qf ‘* % v N \@/ —4 HPD Lossfor F, [J
1
Qf‘l I- y or z Vorz % =p HPD Loss for P
II II x ‘ = HPD Loss for [T
'|
N — [# m = Liossfor P, U/
'h,:# \al w ‘\9 . = L2Llossfor PP
== |2 Lossfor [
z X VOr® — U
(a) Skeleton augmentation (b) Training stage (€] Testing stage

Figure 1: Overview of the model created by Baek et al. [9]

Back et al. [9] made use of a Generated Adversarial Network or GAN network [10] to translate a
depth map of a hand to a 3D representation of hand joints. The two main components of GAN
networks are a discriminator and a generator, both two convolutional neural networks, which
compete with each other. The discriminator is trained to classify images as fake or real whereas the
generator is a network which generates fake images using a random initialization. The end goal of a
GAN network is for the generator to generate images which cannot be distinguished as fake by the
discriminator. Baek et al. made use of a specific GAN network called CyclicGAN [11], consisting of
a Hand Pose Generator (HPG), a Hand Pose Estimator (HPE) and a Hand Pose Discriminator
(HPD). The HPE would generate the 3D hand pose based on an input depth map. Based on this
hand pose, the HPG would then generate a hand and the HPD would serve as a loss function for
optimizing the consistency of both the HPG and HPE. The entire process of the CyclicGAN is
depicted in Figure 1 and originates from the paper by Baek et al.

L yp#

3D heatmap (H)
3D voxelized
depth map (V " " Violumetnic
pth map (V) houmarc Q) YAPRE | oy (@ S () Vo wee
Block Block Biock

Figure 2: The Architecture of the V2V-PoseNet made by Moon et al., diagram originally found in
the paper [12]

A problem of the methods developed by Oberweger et al. and Baek et al. is that their models
require a 2D depth image as input. The pixel values in a 2D depth map indicate the physical
distances of certain object points from the depth camera. Due to this fact the depth map essentially
consists of 3D data. Most depth-based approaches only use the depth maps as a 2D image for input,
which can result in a distortion of the shape of the hand in 3D space by projecting it to 2D image
space. Another problem of these approaches is ”the highly non-linear mapping between the depth
map and the 3D coordinates” [12]. This mapping makes the learning procedure more difficult while
it also prohibits the network from making a precise estimation of the coordinates of keypoints.
Moon et al. [12] offer a solution to these problems with their Voxel-to-Voxel prediction network.
Voxels are volumetric pixels or the 3D equivalent of pixels. This network takes a voxelized grid
and estimates the likelihood of each hand keypoint per voxel. In order to achieve this they used a
3D convolutional network instead of the usual 2D convolutional networks used by other publica-
tions within the field of 3D hand pose estimation [5][6] [11] [12]. The general architecture of the
V2V-PoseNet can be seen below. Moon et al. compare V2V-PoseNet compared with many other
depth-based 3D hand pose estimation models which were considered state-of-the-art at that time,
including DeepPrior and DeepPrior++4. Moon et al. report that V2V-PoseNet achieves a Mean
error (in mm) of 6.28 when evaluated on the ICVL Hand Posture Dataset, whereas DeepPrior
achieves a Mean error of 10.4 and DeepPrior++ a Mean error of 8.1. From the results it is clear to
see that the Deep Learning network proposed by Moon et al. is considered to be one of the most
accurate implementations when it comes to 3D hand pose estimation on depth-based images.

2.2 Image-Based 3D Hand Pose Estimation

Svmh synth

silhouette cycle-consistency cycle-consistency) silhouette
0 -

$ —_— E
il

m

H

re. |I25\r| th synth2real real2synth synth2real

real

Figure 3: GeoConGAN architecture, diagram originating in [13]. Blue boxes indicate images
generated by the network and images from the dataset are indicated by green boxes

The field of Image-Based 3D Hand Pose Estimation is still in its infancy. The method proposed
by Zimmerman and Brox [5] was the first in this field. However, during the two years prior to the
publication of this thesis there have been slight improvements on Zimmerman and Brox’s method.
In 2018, Mueller et al. built on top of Zimmerman and Brox’s method by introducing a large
synthetically generated dataset with automatically generated labels [13]. To translate these synthetic
images to real images, Mueller et al. use a conditioned GAN [11] called GeoConGAN. The GeoCon-
GAN consists two smaller GAN’s called synth2real and real2synth. Here, synth2real is trained to
learn the mappings from synthetically generated images to real images and real2synth the other
way around. The advantage of this structure is that it is not required to have a real counterpart for
a synthetically generated image or vice versa. The SilNet is a small binary classification network
which serves to extract the silhouette from the images generated by real2synth and synth2real. Once
the GeoConGAN is trained, all synthetically generated images from the dataset are fed through it
to obtain their "real” counterparts as well as their associated ground truth 3D joint locations.

For the 3D hand pose estimation Mueller et al. use a convolutional neural network based on
ResNet [8] called the RegNet, which estimates the 2D and 3D positions of 21 hand joints. This
network, unlike Zimmerman and Brox’s network, expects a cropped image of a hand and produces
a heatmap for the 2D joint positions in image space. For the 3D positions of the hand joints, these
are represented as the 3D coordinates relative to the root joint in the palm of the hand. After both
the 2D and 3D positions are found by the RegNet, a kinematic skeleton containing these positions
is fit onto the hand in the image.

This approach generalizes better than Zimmerman and Brox’s approach due to the large syntheti-
cally generated dataset. It is also more accurate, as seen in the experiments provided in the paper
[13]. However, this paper focuses on Zimmerman and Brox’s approach as it translates better to
a robotic platform due to its built-in hand segmentation model, which is absent in methods like
that of Mueller et al. Whereas the hand pose estimation model proposed by Mueller et al. requires
an already cropped image of a hand as an input, Zimmerman and Brox’s uses a segmentation
model to localize hands in images. It would be possible to implement hand segmentation in the

model proposed by Mueller et al. and would be an interesting topic for further research. After
successfully combining hand segmentation with Mueller et al.’s model, the combined models could
be implemented on a robotic platform. Unfortunately, Mueller et al. have given limited access to
their model’s code and therefore this thesis has focused solely on implementing Zimmerman and
Brox’s approach on a robotic platform.

3 Zimmerman and Brox’s Network

left/righ
@ ” I_,. PosePrior

Crop

1 |
- g - - "._'“'ld " - * * - - —_ . - I
Resize RlpN- N N J r

HandSegNet PoseNet Viewpoint

Figure 4: Architecture of model proposed by Zimmerman and Brox [7]

Zimmerman and Brox’s network is split into three smaller networks which are connected to each
other. A single pass through the entire network enables a hand to be localized and segmented
through HandSegNet (see Section 3.2). Afterwards the hand keypoints are determined as score
maps through PoseNet (see Section 3.3) and finally, the 3D structure of the hand is translated from
these score maps by the PosePrior network (see Section 3.4). Before offering a detailed description
of each smaller network, an elaboration will be given on the dataset used for training and evaluating
each network.

3.1 The Rendered Handpose Dataset

Zimmerman and Brox introduce a new dataset specifically intended for training models to estimate
3D hand poses on RGB images: the Rendered Handpose Dataset. This dataset contains 41258
training and 2728 testing samples. All images in the dataset are synthetically generated because
manually labelling 3D data often results in inaccurate labels. Each sample in the dataset contains
the following:

e An RGB image: a monocular, synthetically generated image of 320x320 pixels

e A depth map corresponding to the RGB image. For training models that require depth-images
as input, the depth map would be used. Since Zimmerman and Brox’s model uses RGB
images, the depth maps in the dataset are not used.

e Segmentation masks for the following classes: background, person and three classes for each
finger and one class for each palm. See the following section 3.2 for the implementation of the
segmentation masks

e A 3D kinematic model of the hand containing the 21 keypoints per hand. Here, each finger
contains 4 keypoints for the joints of the finger. Finally, the keypoint close to the wrist acts as
a rotation point. Each keypoint is indicated through texture coordinates for the RGB image,

xyz coordinates in the world frame along with an indicator to tell if the keypoint is visible in
the image or if it is occluded. For more information on how these coordinates are used, see
Section 3.3

e An intrinsic camera matrix K which includes the focal length, optical centre and skew coefficient
of the image. Like the depth map, this matrix is not used for the training of the models.

In order to validate the model’s accuracy, the dataset must be split in the same way as in the
original paper. Therefore, the dataset is split into a validation set and a training set. The training
set contains images of 16 different characters performing 31 actions, whereas the validation set
contains 4 characters performing 8 different actions.

3.2 HandSegNet

Before determining the 3D coordinates of the hand in an image, the hand must be localized and
cropped before being fed through the PoseNet. The localization network Zimmerman and Brox use
is called HandSegNet. This convolutional network is based on a paper on person detection written
by Wei et al. [11]. HandSegNet is trained to estimate a 256x256 hand mask, as depicted in Figure
5b.

(a) (b)

Figure 5: Comparison of a Bounding Box Hand Detection approach (originally created by Victor
Dibia [15]) with Zimmerman and Brox’s hand detection using HandSegNet.

(a) Hand Segmentation using a Single Shot Multibox Detector [16].

(b) Hand Segmentation using Zimmerman and Brox’s HandSegNet

As images provided by the Rendered Handpose Dataset are 320x320 pixels, every image is cropped
randomly to provide a 256x256 image as input to the network. The network consists of convolutional
layers with ReLu activation functions interspersed with max pooling layers to down sample the 3D
image tensors. After passing through all the convolutional and max pooling layers, the 32x32x2
image tensor is transformed to a 256x256x2 tensor through a bilinear upsampling layer. The last
layer, the Argmax layer, highlights the hand and produces the hand mask as a 256x256x1 tensor.
The network is initialized with the same weights as the person detector made by Wei et al. [11] and

9

is trained using softmax cross-entropy loss. The weights are updated using the Adam optimization
algorithm [17].

3.3 PoseNet

The hand can be interpreted as J = 21 joints, or keypoints, connected together. PoseNet requires
the input image to have all the keypoints of a single hand in the image, so careful attention must
be given to the cropping procedure before the cropped image is fed through PoseNet. The original
image is cropped by estimating the centre of a bounding box using the hand mask produced by
HandSegNet. Afterwards, noise is added to the centre of the bounding box by sampling a zero mean
distribution with a variance of 10 pixels. Once the original input image is cropped accordingly,
the resulting image is given as input to PoseNet. Posenet is a convolutional neural network that
estimates J = 21 2D score maps ¢ = {c;(u,v), ..., c;(u,v)}. Each score map ¢; € R¥M shows the
likelihood for a single keypoint being present in a certain spatial location. Figure 6 shows a sketch
of the keypoints of the hand and the score maps (in the figure called confidence maps) being output
by a 2D pose estimation network.

2]
Lk
=
|

(a) Detections (b) Confidence Maps ’

Figure 6: Figure showing keypoint detection as confidence (score) maps. Figure originally from
paper by Simon et al[l3].

The structure of PoseNet is based on an encoder-decoder structure found in the paper by Wei et al
[141]. The encoder serves to output a feature representation of the cropped image which the decoder
interprets to find the score maps. The encoder component consists of multiple convolutional layers
with 3 x 3 filters and a couple of max pooling layers for down sampling. The decoder consists of
and convolutional layers with 3 x 3 and 7 x 7 layers. In three interspersed convolutional layers, the
network outputs 21 32 x 32 score maps, one for each keypoint.

Zimmerman and Brox trained the network using a batch size of 8 and an L, loss and is initialized
by the weights originally from the Wei et al paper. These weights are updated per iteration using
the Adam optimizer.

10

3.4 PosePrior

10

15

20
0l

Figure 7: Original image of hand compared to visualization of 2D scoremaps (left) and visualization
of 3D coordinates (bottom right)

Using the score maps ¢(u,v) generated by PoseNet, a 3D configuration is estimated by PosePrior.
The 3D hand pose is determined in terms of 3D coordinates w; = (z;, y;, ;) which represent each
of the 21 keypoints in 3D space. This network does not predict the absolute 3D coordinates of the
keypoints, but rather predicts a translation invariant representation of hand poses, denoted as w"®.
Here, w™ represent the relative normalized 3D coordinates. To calculate w"®, PosePrior needs to
predict the 3D coordinates in the canonical frame, w®, as well as a rotation matrix R(w™) € R3*3.
This rotation matrix serves to transform coordinates from the original frame to the canonical frame.
All formulae in this section are from the original paper by Zimmerman and Brox [5]. The relation
between w™!, R(w"!) and we is shown in the following formula. Here, w® represents a certain
keypoint in the canonical frame:

wc* — R(,wrel) . wrel (1>
This formula can be rewritten to calculate w"®:
,wrel = wt- RT (2>

Because the right and left hand share a symmetric relation, right hands are flipped along the z-axis.
Therefore, the canonical coordinate system w{ can be represented in the following manner:

[C—

(x;?*,yf*, zf*)T if it is a left hand
(2§, ys", —2¢)T if it is a right hand

1

3.4.1 Estimating Canonical Coordinates and Calculating the Rotation Matrix

Estimating both the canonical coordinates and the rotation matrix requires the PosePrior network
to be split into two symmetric streams. Both of the streams contain a similar structure of six
convolutional layers with 3 x 3 filters. Afterwards, a concat layer is added to indicate to the stream

11

if it is processing images of left hands or right hands. After concatenation, both streams contain
two fully connected-layers to process the image further. The final layer of the two streams is also
a fully-connected layer, which outputs the canonical coordinates w® for the first stream and the
rotation matrix R for the second stream. The rotation matrix is called the viewpoint, where said
viewpoint is associated with ”a certain sample with respect to the canonical frame” (Zimmerman
and Brox, page 4 [0]).

To calculate the rotation matrix precisely, the viewpoint stream finds the rotations R,, and R, for
a certain keypoint w¢ . The rotation R,. aligns wS with the y-axis of the canonical frame via the
following formula:

RIZ ’ wg* =A- (07]-a O)T (3>

Here, A > 0 for a certain keypoint with index a. After calculating R,, using the formula above, R,
is determined using the following equation:

Ry : sz : wg* - (n7 Ca 0) (4)
n, like A before, is greater than or equal to 0 for a keypoint with index o. { represents the

alignment with the y-axis done in Equation 3. Now that both R,. and R, are calculated, the total
transformation between the canonical and original frame can be represented by:

R(w™) = R, - Ry, (5)

The two streams require two different loss functions for training. The stream that predicts the
canonical coordinates w® uses a squared Lo loss function. This loss function uses the predicted

canonical coordinates wy,. ., and the ground truth canonical coordinates wy,;:

Le =|l wg, — wpyeq II2 (6)

The stream that predicts the rotation matrix uses a similar Ly loss function with predicted and
ground truth rotation matrices:
Ly =|| Ryt — Rprea II3 (7)

Like the other components of Zimmerman and Brox’s model, the PosePrior network uses an Adam
solver for optimizing the weights during training.

12

4 Experiments

In this section, Zimmerman and Brox’s model will be evaluated on two fronts: accuracy and
real-time performance. For evaluating accuracy, all models discussed in the previous section (3)
will be retrained and evaluated to see if the results of the paper can be reproduced. Afterwards,
the models will be retrained using different hyperparameters to see if an improvement of accuracy
can be achieved. Because Zimmerman and Brox’s model is implemented onto a robotic platform,
the second part of the experiments uses an implementation of the model on robotic platforms and
is focused on the qualitative evaluation of the model’s performance in real-time scenario’s.

4.1 Experiment Setup

’ Component Machine Specification
Processor Intel Core i7-5820K 3.3 GHz 12 cores
Storage 64Gb RAM, 1Tb Storage
Graphics Card Nvidia Geforce Titan X 12 GByte
Operating System Ubuntu 16.04 LTS 64-bit

Table 1: Machine Specifications of the machine used for training and evaluation in the experiments
of Section 4.2

In Table 1, the specifications of the machine used for training and evaluation is given. This machine
is used exclusively for evaluating the accuracy of Zimmerman and Brox’s model. The models are
implemented using Tensorflow-GPU [19].

Component ‘ Machine Specification
Processor Intel Core i7-7700HQ CPU 2.8 GHz
Storage 16Gb RAM, 500Gb Storage
Graphics Card Nvidia GTX 1050 X 4 GByte
Operating System Windows 10 64-bit

Table 2: Machine Specifications of the machine used for the experiments described in Section 4.3

The machine specified in Table 2 was used to determine the real-time performance of Zimmerman
and Brox’s model. This machine was used together with the Pololu Maestro camera to simulate a
robot’s vision and to detect 3D hand poses in real-time by feeding video frames through Zimmerman
and Brox’s model.

13

4.2 Evaluating Accuracy

As seen in Section 3, Zimmerman and Brox’s model is split into three sub-models. In order to
reproduce the accuracy of the original paper, all three sub-models must be retrained and evaluated.
This section will start by validating the accuracy of HandSegNet and PoseNet when detecting 2D
keypoints in RGB images. After obtaining results similar to the ones reported in the original paper,
experiments with HandSegNet and PoseNet will be conducted in order to improve the accuracy of
the models. Afterwards, different methods for translating 2D keypoints to 3D coordinates will be
compared. Among these methods are the bottleneck method by Oberweger et al. [6] and PoseNet
(3.4) by Zimmerman and Brox. Finally, the versions of HandSegNet, PoseNet and 3D lifting network
that yield the best accuracy will be combined and evaluated on both the Rendered Handpose
Dataset and the Stereo Tracking Benchmark Dataset [20]. This combination of the three models
will yield the best found accuracy for 3D hand pose estimation.

The accuracy of the models of Zimmerman and Brox’s network as well as that of the differ-
ent 3D lifting techniques is described through three values (also used in [5]). The average mean
endpoint error (EPE Mean) as well as the average median endpoint error (EPE Median) represent
the Fuclidian distance in pixels between a predicted keypoint location and the ground truth location.
The last evaluation value is the Area Under the Curve (AUC) on the percentage of correct keypoints
(PCK) over certain error thresholds (thresholds described in pixels). The lower the EPE Median
and EPE Mean are and the higher the AUC is, the better.

4.2.1 Evaluation of 2D Keypoint Detection

Table 3 shows accuracy of different configurations of HandSegNet and PoseNet when evaluated on
the RHD Dataset. The same accuracy as in the original paper has been achieved, shown in the
table in the top row. In order to properly understand the results, the training configurations for
HandSegNet and PoseNet from the original paper must be elaborated. HandSegNet was trained
for 40000 iterations with a batch size of 8. The learning rate of HandSegNet was le — 5 for the
first 20000 iterations, le — 6 for the next 10000 iterations and le — 7 for the last 10000 iterations.
PoseNet was trained for 30000 iterations, also with a batch size of 8. PoseNet’s learning rate was
le — 4 for the first 10000 iterations, le — 5 for the next 10000 iterations and le — 6 for the final
10000 iterations. The accuracy of the original configuration (used in Zimmerman and Brox’s paper)
of HandSegNet and PoseNet is shown in the top row of Table 3, here called Paper Configuration.
To try to improve the accuracy of HandSegNet and PoseNet, changes have been made to the batch
size and learning rate of the two models. Both HandSegNet and PoseNet have been retrained
and evaluated using a batch size of 16. Because a higher batch size than 16 results in memory
leaks of the GPU, the batch size hasn’t been incremented further. Afterwards, the learning rate of
HandSegNet has been updated to le — 6, 1e — 7 and le — 8. Like in the original paper, the learning
rate updates after the same amount of iterations (after 20000, then after another 10000 iterations).
The learning rate of PoseNet has been updated to 1e — 5, 1e — 6 and 1le — 7 per 10000 iterations.

14

In Table 3, the row indicated by Paper Configuration shows the results of evaluating the configuration
used in the original paper. The following rows show the results for different combinations of retrained
versions of HandSegNet and PoseNet. Below is a short summary of the different model configurations:

HandSegNet: Original and PoseNet: Original indicate that the original training configuration
of that model was used. The Paper Configuration can be seen as a combination of HandSegNet:
Original and PoseNet: Original.

HandSegNet: Batch 16 and PoseNet: Batch 16 indicate that the model was retrained using a batch
size of 16.

HandSegNet: Learning Rate - 1 indicates that a configuration of HandSegNet was used with the
learning rate updated to le — 6 for the first 20000 iterations, 1le — 7 for 10000 iterations and le — 8
for the last 10000 iterations.

PoseNet: Learning Rate - 1 implies a configuration of PoseNet with an updated learning rate of
le — 5, le — 6 and 1le — 7 per 10000 iterations.

Model Configuration EPE Mean | EPE Median ‘ AUC ‘
Paper Configuration 15.478 4.341 0.720
Handsssgxetg:%‘fgn?fe 16 15.814 4.345 0.721
PoneNet: Boteh e 16 15297 | 4196 | 0.726
Hands‘?igﬁe%fgigia?ate "L 1770 4769 | 0.695
POiﬁi?ﬁii}ggﬁj 1 18.249 6.632 0.640
et Loamming Hate-1 | 0845 | 735 | 0613

Table 3: Results for evaluating HandSegNet and PoseNet on 2728 shuffled images of the Rendered
Handpose Dataset.

From the table it is clear to see that models retrained with different learning rates performed poorer
than the original configuration and models with higher batch sizes performed better. In particular,
having a batch size of 16 when training PoseNet yielded the best results in accuracy. PoseNet
being the most important component of 2D keypoint detection explains why changes to this model
significantly influences the end accuracy of HandSegNet and PoseNet combined together.

15

4.2.2 Evaluation of 3D Lifting Techniques

First, the different methods which lift 2D keypoints to the relative 3D coordinates w™ are validated
in order to prove that PosePrior has the overall highest accuracy. A more detailed explanation of
these methods is found in Zimmerman and Brox’s paper [5], but a short summary will be provided
along with the results of the evaluation:

The direct approach attempts to lift 2D hand keypoints to w" directly without using a canonical
frame. Because the network now has to learn the rotation of the hand separately, as the network
does not include a rotation matrix R(w"), the network performs poorly.

The Bottleneck approach adds a fully-connected layer at the end of the network, which is
parametrized as in Oberweger et al’s paper on DeepPrior [0]. As seen in the table above, this
method performs poorer than the direct approach.

Both the local approach and local approach with xyz loss incorporate the kinematic model of the
hand in it’s network. The network estimates articulation parameters of the kinematic model such
as the angles between finger joints and bone length.

The results of the previous evaluation on HandSegNet + PoseNet indicate that making the
learning rate smaller negatively impacted the accuracy of the model. Therefore, only the batch size
was experimented with while retraining the different lifting methods. All methods were trained
twice, once with a batch size of 8 and once with a batch size of 16. The models were trained for
10000 iterations with a learning rate of 1le — 5, as the difference in accuracy between PosePrior and
other techniques is quickly visible.

Lifting Method with Batch Size | EPE Mean in mm | EPE Median in mm ‘ AUC ‘

PosePrior: Batch Size 8 23.761 20.213 0.563
PosePrior: Batch Size 16 24.367 20.460 0.558
Direct: Batch Size 8 33.290 31.761 0.393
Direct: Batch Size 16 32.444 30.603 0.412
Bottleneck: Batch Size 8 36.863 35.642 0.344
Bottleneck: Batch Size 16 35.409 33.745 0.361
Local: Batch Size 8 65.327 58.795 0.230
Local: Batch Size 16 61.262 53.917 0.250
Local xyz: Batch Size 8 33.808 31.804 0.388
Local xyz: Batch Size 16 33.142 31.163 0.398

Table 4: Evaluation of the different 2D to 3D lifting methods. Here, the EPE Mean and EPE
Median are shown in mm instead of pixels.

Because PosePrior performs the best out of all lifting methods, this model was retrained for 80000
iterations as this was the amount of training iterations in the original paper. The learning rate
while training was le — 5 for the first 60000 iterations and le — 6 for the next 20000 iterations. The
results of different batch sizes on this configuration is visible in the Table 5.

16

Batch Size EPE Mean in mm

EPE Median in mm | AUC

PosePrior: Batch Size 8 22.308

18.928 0.585

PosePrior: Batch Size 16 23.340

19.875 0.568

Table 5: Evaluation of different batch sizes on the PosePrior network.

From the results in the table it is clear that PosePrior with batch size 8 is the best configuration for
lifting 2D keypoints to w™. As seen in Table 6, the retrained PosePrior with batch size 8 achieves

an accuracy similar to that reported in the

original paper.

From all experiments, a configuration of HandSegNet, PoseNet and PosePrior which yields the
highest accuracy is presented. The most accurate configuration for HandSegNet and PoseNet (found
in Section 4.2.1) is compared to the results reported in the original paper by Zimmerman and
Brox [5] in Table 6. The most accurate configuration of PosePrior is compared to the results of the
original paper in Table 7. Both results are based on solely evaluating the models on the Rendered

Handpose Dataset.

HandSegNet and PoseNet Configuration | EPE Mean in pixels | EPE Median in pixels | AUC
Original Paper Results for
HandSegNet + PoseNet 18.741 6745 0.635
HandSegNet: Original
PoseNet: Batch Size 16 15.297 4.196 0.726

Table 6: Comparison of most accurate HandSegNet and PoseNet configuration found with the

results reported in the original paper.

HandSegNet and PoseNet Configuration | EPE Mean in mm | EPE Median in mm | AUC
Original Paper Results for PosePrior 22.433 18.841 0.585
PosePrior: Batch Size 8 22.308 18.928 0.585

Table 7: Comparison of most accurate PosePrior configuration found with the results reported in

the original paper.

17

The results of fully evaluating the configuration with the highest accuracy on both Rendered
Handpose Dataset and the Stereo Tracking Benchmark Dataset is shown in the graph below:

0.80

0.75

Q.70

0.65

PCK

0.60 1

0.55

0.50 +

0.45 +

T
20 25 30 35 40 45 50
threshold in mm

Figure 8: Evaluation of the entire configuration on the Rendered Handpose Dataset (blue line) and
the Stereo Tracking Benchmark Dataset (red line).

Figure 8 shows an evaluation of the configuration proposed in Tables 6 and 7 on the Rendered
Handpose Dataset with an AUC of 0.647 and on the Stereo Tracking Benchmark Dataset with
an AUC of 0.287. In Zimmerman and Brox’s paper, the poor accuracy on the Stereo Tracking
Benchmark Dataset is resolved through partly training the model on the benchmark dataset before
evaluating. Because the real-time implementation of the model does yield accurate hand pose
predictions (as seen in Section 4.3), the proposed configuration trained solely on the Rendered Hand
Pose Dataset is sufficient on a robotic platform. In further research on the accuracy of this model it
would be interesting to see how training the model on different datasets affects the accuracy.

18

4.3 Evaluating Real-Time Performance

To test what the real-time performance of this configuration would be when it is implemented on a
robotic platform, the model was implemented to detect 3D hand poses through the camera of a servo
actuated camera. Before discussing the real-time implementation of Zimmerman and Brox’s model,
a definition of real-time must be given. Real-time is seen as a level of a program’s responsiveness
that the user of the program senses as sufficiently immediate. In the case of Zimmerman and Brox’s
model, 3D hand pose estimation is performed in real-time if the model is able to keep up with the
user’s hand movements and other moving objects in the camera frame. In this section, the overall
speed of this implementation will be discussed. This section will also analyse the results of running
the model in different real-time environments.

Both the original implementation and the multithreading variant use OpenCV [21] to capture
the servo actuated camera’s video input frame by frame. Running original implementation results
in the model estimating 3D hand poses with a speed of around 2 frames per second while the
multithreading variant would achieve around 5 frames per second. The detection speed of the
model could be increased when running the programme on a machine with a better GPU than the
machine used for this paper 2.

The multithreading implementation along with the configurations shown in Tables 6 and 7 were
used in three different environments. In all environments the Pololu Maestro camera would pan
from left to right while person in view would make three hand gestures with his left hand. The
person would make an open hand with the palm towards the camera, then a fist with his left thumb
covering his index and middle finger and finally a circle with his index finger and thumb. In all
scenario’s, the subject was at a distance of 1.5 meters from the camera. Distances farther than 1.5
meters would seriously impair the real-time accuracy of the model. Before showing the results, a
description of each scenario is given:

- Scenario (a): The subject is standing before a blue background, with the servo actuated camera
standing on a couple of books on a table. This way the camera could capture the subject’s entire
body. This setup intends to show the model’s performance in a scenario where the subject is clearly
visible and the subject’s hand is distinguishable from the background. This setup should results in
the best performance of the model.

- Scenario (b): The subject is standing in a classroom with a yellow wall as a background. Again the
camera is elevated on books on a table. This setup is chosen to measure the model’s performance
in situations where the frames captured by the camera contain a lot of objects. Also a yellow
background is chosen as now the hand in each frame is less distinguishable compared to the blue
background in scenario (a).

- Scenario (c): The subject is standing outside in a garden in front of a tree. The camera is positioned
in the same way as scenario’s (a) and (b) to capture the full body of the subject. This scenario will
measure the model’s performance in situations where there are many moving objects in the frame,
as in this scenario the wind causes the tree in the background to move. This scenario also intends to
measure the model’s performance it is implemented on a robotic platform that operates outdoors.
Scenario’s (a), (b) and (c) are visible in the rows of Figure 9.

19

B
-

S w5 omom oo
x.
| S a———
i "
w0
&
B
R

Figure 9: Evaluation of the real-time performance in three different scenario’s. The performance of
the model was tested in a computer room with blue walls (first row), a yellow classroom (second
row) and outside with the subject in front of trees and bushes (third row).

Every cell in the figure above contains four different results of the 3D hand pose estimation model.
Below is a short description of each cell’s contents:

- The top right of every cell shows the result of HandSegNet and PoseNet: a cropped image
of the hand with the kinematic skeleton visualizing the 21 keypoints.

- The top left shows the original image captured by the camera with the 2D kinematic skeleton
fixed on top of the hand.

- The bottom left shows the result of HandSegNet: the segmenation of the hand, here indicated by
a yellow colour compared to a purple background.

- Finally, the bottom right shows the estimated 3D model of the hand after lifting the 2D keypoints
to relative 3D coordinates using PosePrior.

From the images above certain conclusions can be drawn on what conditions have a negative
effect on the models accuracy for 3D hand pose detection. The model performed best in the blue

20

room, because there was a clearer contrast between background and foreground due to the blue wall
behind the hand. The model performed the poorest in the yellow class room, as this room was very
light and cluttered with chairs and desks. When lifting the hand up higher, the model performed
better in the yellow room. This is because the hand contrasts better with the ceiling than with the
yellow wall. Below, the results of HandSegNet and PoseNet can be seen when detecting keypoints
of the hand in front of the ceiling:

Figure 10: Improving the model’s accuracy in the yellow room by having the ceiling as a background

Moving the servo actuated camera outside resulted in a poorer performance than in scenario (a).
Specifically, the model would find the location of the hand, as HandSegNet was able to distinguish
the hand from the background, but the 2D kinematic model would not align well with the hand’s
joints. In around 10% of the frames captured outside, the kinematic model would align with the
hand, yet the alignment in most frames of scenario (a) would still be more precise. Due to the
fact that the model was inaccurate in predicting the 2D keypoints in scenario’s (b) and (c), the
resulting 3D model did not relate to the actual hand pose in the frame. The model was inaccurate
in scenario (c), not only due to the higher temperature that hampered the machine’s performance,
but also due to the amount of moving objects in the background. Overall, darker, less cluttered
rooms ensure for the best real-time performance of the model. The video captures from the servo
actuated camera, the real-time implementation of the model, and the results of running the video
frames through the model are available such that the qualitative experiments can be recreated and
validated.

21

5 Conclusions and Further Research

The model by Zimmerman and Brox’s has been implemented onto a robotic platform. In order to
do this first an overview of other publications in the field of 3D hand pose estimation has been
given. The accuracy of the model was validated and through experimenting a more accurate 2D
keypoint estimation model was found. This was realized by retraining PoseNet with a batch size of
16 and retraining HandSegNet with the same configuration as in the original paper. Combining
these retrained configurations of HandSegNet and PoseNet resulted in a higher accuracy of 2D
keypoint detection when the model was evaluated on the Rendered Handpose Dataset, with an
Area Under Curve score of 0.726 compared to the original paper’s score of 0.635. However, the
model proposed in the original paper generalized better when evaluated on the Stereo Tracking
Benchmark Dataset, as seen in Figure 8. Therefore, the proposed improvements to the 2D keypoint
detection must be retrained on other datasets in order to improve its generalization before the
proposed improvements can be considered to be significant.

Using the configuration with a higher accuracy on the Rendered Handpose Dataset, this the-
sis presents an implementation of the model which detects 3D hand poses through video captured
input. The implementation of the model causes the frames per second of the video capture to drop
significantly. This decrease in speed of the video capture is due to the model estimating the 3D hand
pose frame-by-frame, where processing each frame is an intense process for the GPU. Although the
speed of the video capture decreases by running the multithreaded approach, the approach does
provide 2D keypoint predictions which align with the actual hand joints in the frame, especially
in indoor environments where the hand is clearly distinguishable from the background. These
keypoints translated to 3D coordinates result in an estimation of the 3D hand pose which is close
to the actual hand pose. Improvements can still be made to the multithreaded detection approach.
For example, there is room for improvement in the detection accuracy of the 2D keypoints of the
hand in scenarios where model has more difficulty distinguishing the hand from the background.
Future research to increasing the speed of the multithreaded detection approach in frames per
second could also be conducted. One of the updates to the multithreaded approach which would
increase the model’s detection speed is updating the input stream of the model to a newer version
of Tensorflow. This would put more priority on the GPU, which would result in a program with a
higher frames per second.

The lack of a large dataset for training this model hampered the accuracy of the model. Therefore,
looking at the performance of Mueller et al’s [13] model on a robotic platform would be an inter-
esting future endeavour, seeing as the model requires a larger GANerated dataset to train. In the
future it would also be interesting to see how this model would perform when incorporated in a
robot capable of basic human interactions. Zimmerman and Brox show that a gesture recognition
model is easily built on top of the hand pose estimation model. The model could then be combined
with a gesture recognition model to teach sign language to a robot.

22

References

1]

Cem Keskin, Furkan Kirag, Yunus Emre Kara, and Lale Akarun. Hand pose estimation
and hand shape classification using multi-layered randomized decision forests. In Andrew
Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors,
Computer Vision — ECCV 2012, pages 852-863, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

Robert Y. Wang and Jovan Popovi¢. Real-time hand-tracking with a color glove. In ACM
SIGGRAPH 2009 Papers, SIGGRAPH ’09, pages 63:1-63:8, New York, NY, USA, 2009. ACM.

S. Wu and H. Nagahashi. Real-time 2d hands detection and tracking for sign language
recognition. In 2013 8th International Conference on System of Systems Engineering, pages
40-45, June 2013.

lason Oikonomidis, Nikolaos Kyriazis, and Antonis Argyros. Efficient model-based 3d tracking
of hand articulations using kinect. volume 1, January 2011.

Christian Zimmermann and Thomas Brox. Learning to estimate 3d hand pose from single
RGB images. CoRR, abs/1705.01389, 2017.

Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Hands deep in deep learning for
hand pose estimation. CoRR, abs/1502.06807, 2015.

Markus Oberweger and Vincent Lepetit. Deepprior++: Improving fast and accurate 3d hand
pose estimation. CoRR, abs/1708.08325, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Augmented skeleton space transfer for
depth-based hand pose estimation. CoRR, abs/1805.04497, 2018.

[an Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 2672-2680. Curran Associates, Inc., 2014.

J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2242-2251, Oct 2017.

Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. V2v-posenet: Voxel-to-voxel prediction
network for accurate 3d hand and human pose estimation from a single depth map. CoRR,

abs/1711.07399, 2017.

Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Srinath Sridhar,
Dan Casas, and Christian Theobalt. Ganerated hands for real-time 3d hand tracking from
monocular rgh. In Proceedings of Computer Vision and Pattern Recognition (CVPR), June
2018.

23

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional pose
machines. CoRR, abs/1602.00134, 2016.

Dibia Victor. Handtrack: A library for prototyping real-time hand trackinginterfaces using
convolutional neural networks. GitHub repository, 2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang
Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. cite
arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference
for Learning Representations, San Diego, 2015.

Tomas Simon, Hanbyul Joo, lain A. Matthews, and Yaser Sheikh. Hand keypoint detection in
single images using multiview bootstrapping. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4645-4653, 2017.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J.
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jézefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B.
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang
Zheng. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016.

Jiawei Zhang, Jianbo Jiao, Mingliang Chen, Liangqiong Qu, Xiaobin Xu, and Qingxiong Yang.
3d hand pose tracking and estimation using stereo matching. CoRR, abs/1610.07214, 2016.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

24

	Introduction
	Hand Pose Estimation

	Related Work
	Depth-Based 3D Hand Pose Estimation
	Image-Based 3D Hand Pose Estimation

	Zimmerman and Brox's Network
	The Rendered Handpose Dataset
	HandSegNet
	PoseNet
	PosePrior
	Estimating Canonical Coordinates and Calculating the Rotation Matrix

	Experiments
	Experiment Setup
	Evaluating Accuracy
	Evaluation of 2D Keypoint Detection
	Evaluation of 3D Lifting Techniques

	Evaluating Real-Time Performance

	Conclusions and Further Research
	References

