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Abstract

Semi-supervised learning is a branch of machine learning that combines concepts from
supervised learning and unsupervised learning to construct better learners. As is the
case in supervised learning, most research in this area is focused on the classification
task. The spectrum of semi-supervised classification methods is extensive, and a mul-
titude of algorithms exists. We provide an extensive literature review of the field of
semi-supervised learning, analyzing the assumptions that form the foundation of semi-
supervised learning. Additionally, we propose a new taxonomy of semi-supervised clas-
sification methods.

In recent years, significant advances have been made in semi-supervised ensem-
ble methods, combining multiple learners to form better predictions. However, like
many supervised methods, their performance is highly dependent on the base classifiers
used and on the classification problem at hand. To mitigate this problem, we propose
using semi-supervised learning in conjunction with automated machine learning (Au-
toML): we construct a strong classifier ensemble using an AutoML system, and we
improve it using a novel semi-supervised ensembling method. Our method, single-step
co-ensembling, consistently improves the performance of state-of-the-art ensembles in
multiclass problems, while maintaining the computational complexity of the supervised
ensemble.

Furthermore, we evaluate the performance of co-forest, a popular extension of ran-
dom forests to the semi-supervised setting. We provide confirmatory evidence that this
method outperforms random forests when the number of trees is limited, as reported
in previous research. However, as the number of trees grows, co-forest is consistently
outperformed by its supervised counterpart. Moreover, we show that supervised ran-
dom forests with more trees almost always outperform co-forest with fewer trees while
being computationally less expensive.
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Preface

The research that forms the foundation of this thesis was conducted while I was a stu-
dent member of the ADA Research Group of the Leiden Institute of Advanced Com-
puter Science at Leiden University, under the supervision of Holger H. Hoos. The
research project was originally aimed at applying automated machine learning to semi-
supervised learning, but over the course of the work, its focus has slightly shifted towards
general semi-supervised learning and semi-supervised ensemble learning.

Chapters 2 and 3, which form the core of this thesis, are based on yet unpublished
work co-authored with Holger H. Hoos. I took primary responsibility for the research
conducted for these articles, as well as for preparing the manuscripts.

One piece of research conducted while I was at the ADA Research Group, regarding
a collaborative project with the Leiden Academic Centre for Drug Research, is not part
of this thesis. My contribution to the project was the application of automated machine
learning methods to drug discovery.
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Chapter 1

Introduction and Background

In this chapter, we introduce the field of semi-supervised learning and cover the back-
ground knowledge that forms the basis for the rest of this thesis. We elaborate on the
so-called semi-supervised learning assumptions, which are fundamental to the semi-
supervised learning methods that exist today. Lastly, we outline our contributions and
the structure of the rest of this thesis.

1.1 Machine learning
Humans and other animals are capable of learning from observations of their envi-
ronment. This ability is an essential ingredient for intelligence, which encompasses a
broader collection of capacities such as reasoning and understanding. Crucially, it al-
lows us to adapt our actions to our environment. Since the advent of computers and
computer programming languages in the early 1950s, the idea of emulating this ability
in computers has received considerable interest. In particular, it has given rise to the
question of teaching a computer to perform certain actions or gain certain knowledge
without explicitly programming it to do so, which forms the basis of the field of machine
learning.

Machine learning techniques aim to enable a computer to learn from examples.
In other words, the computer uses observations to learn how to attain a certain goal.
Such techniques are already broadly applied in society, including in medicine, retail,
logistics, robotics, and many other areas [106]. Over time, a variety of machine learning
techniques has been developed to tackle complex problems, such as natural language
processing [92], recommender systems [145], and computer vision [168]. Machine
learning techniques use observations to infer some underlying structure of the data,
which they then use to extrapolate to new data or to otherwise determine the best course
of action. Consequently, all machine learning methods require training data, which can
be explicitly provided to the computer or can be observed by the computer itself.

In machine learning, a distinction has traditionally been made between two major
tasks: supervised learning and unsupervised learning [20]. In supervised learning, one
is presented with a set of data points, each of which consists of some input object x

1



1.2. SEMI-SUPERVISED LEARNING 2

and a corresponding output object y. The goal is, then, to construct a classifier or
regressor that can estimate the output value for previously unseen input objects. In
unsupervised learning, on the other hand, no specific output value is provided. Instead,
one tries to infer some underlying structure from the input objects. For instance, in
the unsupervised clustering task, the goal is to infer a mapping from the input objects
to groups such that similar objects are mapped to the same group. Traditionally, the
fields of supervised and unsupervised learning have been studied rather independently.
In many cases, however, substantial benefit can be gained by combining principles from
both fields.

1.2 Semi-supervised learning
Semi-supervised learning is a branch of machine learning concerned with combining
concepts and methods from supervised and unsupervised learning [33, 216]. Typically,
semi-supervised learning algorithms attempt to improve performance in one of these
two tasks by utilizing information generally associated with the other task. For instance,
when tackling a classification problem, available data points for which the label is un-
known could be of use in the classification process. For clustering methods, on the other
hand, the learner might benefit from the knowledge that certain data points belong to
the same class.

As is the case in general machine learning research, a large majority of the research
conducted in semi-supervised learning is focused on classification: the task of assigning
labels to data points based on training data. In supervised classification, this training
data consists of pairs of data points and labels; in semi-supervised classification, data
points whose labels are unknown are available as well. The set of possible labels is
known beforehand. A plethora of methods exist, each with their own characteristics,
advantages, and disadvantages. It has been shown empirically that semi-supervised
learning can greatly enhance classification performance in the presence of unlabeled
data [216].

In traditional supervised learning problems, we are presented with a set of l la-
beled data points DL = ((xi, yi))

l
i=1. Each data point (xi, yi) consists of an input

object xi ∈ X from some input space X , and has an associated label yi, where yi is
real-valued in regression problems and categorical in classification problems. Based on
these samples, usually called the training data, supervised learning methods attempt to
infer a function that can successfully determine the label y∗ of some previously unseen
sample x∗.

In many real-world classification problems, however, we also have access to a set of
u data pointsDU = (xi)

l+u
i=l+1 whose labels are unknown. For instance, the data points

for which we want to make predictions, usually called the test data, are unlabeled by def-
inition. Semi-supervised classification methods attempt to utilize unlabeled data points
to construct a learner whose performance exceeds the performance of learners obtained
when using only the labeled data. In the remainder of this thesis, we denote with XL

and XU the set of input objects for the labeled and unlabeled samples, respectively.
There are many cases where unlabeled data can help in constructing a classifier.

Consider, for example, the problem of document classification, where we wish to as-
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sign topics to a set of text documents (such as news articles). Assuming our documents
are represented by the set of words that appear in it, one could train a simple super-
vised classifier that, for example, learns to recognize that documents containing the
word “neutron” are usually about physics. This classifier might work well on documents
containing terms that it has seen in the training data, but will inherently fail when
a document does not contain predictive words that also occurred in the training set.
For example, if we encounter a physics document about particle accelerators that does
not contain the word “neutron”, the classifier is unable to recognize it as a document
concerning physics. This is where semi-supervised learning comes in. If we consider
the unlabeled data, there might be documents that connect the word “neutron” to the
phrase “particle accelerator”. For instance, the word “neutron” would often occur in
a document that also contains the word “quark”. In its turn, the word “quark” would
regularly co-occur with the phrase “particle accelerator”, which guides the classifiers
towards classifying these documents as revolving around physics as well, despite having
never seen the phrase “particle accelerator” in the labeled data.

Figure 1.1 provides some further intuition towards the use of unlabeled data for
classification. We consider an artificial classification problem with two classes. For
both classes, 100 samples are drawn from a 2-dimensional Gaussian distribution with
identical covariance matrices. The labeled data set is then constructed by taking one
sample from each class. Any supervised learning algorithm will most likely obtain as the
decision boundary the solid line, which is perpendicular to the line segment connecting
the two labeled data points and intersects it in the middle. However, this is clearly
quite far from the optimal decision boundary, which corresponds to the dashed line.
As is clear from this figure, the clusters we can infer from the unlabeled data can help
us considerably in placing our decision boundary: assuming that the data stems from
two Gaussian distributions, a simple semi-supervised learning algorithm can infer a
decision boundary rather close to the optimal decision boundary.

Although semi-supervised learning methods have shown promising performance in
a broad variety of classification problems, they are not foolproof. When the assumptions
made by the learning algorithm regarding the underlying data distribution do not hold,
the introduction of unlabeled data can deteriorate performance. Such behaviour has
been discussed in the literature [113, 160], and is likely underreported due to publication
bias [216].

1.3 Assumptions of semi-supervised learning
A necessary condition of semi-supervised learning is that the underlying, marginal data
distribution p(x) over the input space contains information about the posterior dis-
tribution p(y|x). If this is the case, one might be able to use unlabeled data to gain
information about p(x) and thereby about p(y|x). If p(x) contains no information
about p(y|x), however, the additional unlabeled data is inherently unable to improve
the predictive performance of the classifier [216].

Fortunately, the aforementioned condition appears to be satisfied in most learning
problems encountered in the real world, as is suggested by the successful application of
semi-supervised learning methods in practice. However, the way p(x) and p(y|x) inter-
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Supervised algorithm decision boundary
Optimal decision boundary

Figure 1.1: A basic example of binary classification in the presence of unlabeled data.
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act is not always the same. This has given rise to the semi-supervised learning assumptions,
which formalize the types of expected interaction [33]. The most widely recognized as-
sumptions are the smoothness assumption (if two samples x and x′ are close in input
space, their labels y and y′ should be the same), the manifold assumption (data points on
the same low-dimensional manifold should have the same label), and the low-density
assumption (the decision boundary should not pass through high-density areas in the
input space). These assumptions are the foundation of most, if not all, semi-supervised
learning algorithms, which generally depend on one or more of the assumptions either
explicitly or implicitly. Throughout this thesis, we will elaborate on the underlying as-
sumptions utilized by each specific learning algorithm. The assumptions are explained
in more detail below.

Smoothness assumption
The smoothness assumption states that, for two input points x, x′ ∈ X that are close by
in the input space, the corresponding labels y, y′ should be the same. This assumption
is also commonly used in supervised learning, but has an extended benefit in the semi-
supervised context: the smoothness assumption can be applied transitively to unlabeled
data. For example, assume that a labeled data point x1 ∈ XL and two unlabeled data
points x2, x3 ∈ XU exist such that x1 is close to x2 and x2 is close to x3, but x1 is not
close to x3. Then, through the smoothness assumption, we can still expect x3 to have
the same label as x1, since the smoothness is transitively propagated through x2.

Low-density assumption
The low-density assumption implies that the decision boundary of a classifier should
preferably pass through low-density regions in the input space. In other words, the
decision boundary should not pass through high-density regions. Clearly, the low-
density assumption is closely related to the smoothness assumption when a finite set of
data points is available. Suppose a low-density area exists, i.e., an area R ⊂ X where
p(x) is low. Then very few observations are expected to be contained in R, and it is
thus unlikely that any pair of similar data points in R is observed. Thus, in placing the
decision boundary in the low-density area, the smoothness assumption is not violated:
it only concerns pairs of similar data points. For high-density areas, on the other hand,
many samples can be expected, and the assumption implies that the decision boundary
cannot pass through the region, since the predicted labels would then be dissimilar for
similar samples.

Manifold assumption
In machine learning problems where the data can be represented in Euclidean space,
the observed data points in the high-dimensional input space Rd are usually concen-
trated along lower-dimensional substructures. These substructures are known as man-
ifolds: topological spaces that are locally Euclidean. For instance, when we consider a
3-dimensional input space where all points lie on the surface of a sphere, the data can be
said to lie on a 2-dimensional manifold. The manifold assumption in semi-supervised
learning states that (a) data points lie on a lower-dimensional manifold and (b) data
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points lying on the same lower-dimensional manifold have the same label. Conse-
quently, if we are able to determine on which manifold data points lie, we can infer
their class assignments by simply considering which class the labeled data points on the
same manifold have.

A connection to clustering

In semi-supervised learning research, an additional assumption that is often included is
the cluster assumption, which states that data points belonging to the same cluster belong
to the same class [33]. We argue, however, that the previously mentioned assumptions
and the cluster assumption are not coordinate but, rather, that the cluster assumption
is a generalization of the other assumptions.

Consider an input space X with some observations X ⊂ X , drawn from the dis-
tribution p(x). A cluster, then, is a set of data points C ⊆ X that are more similar
to each other than to other data points in X , according to some concept of similarity
[2]. Finding clusters corresponds to finding some mapping X 7→ Y , where Y is the
set of possible cluster assignments. Each element in Y corresponds to a single cluster.
Since we do not have direct access to p(x) to determine a suitable clustering, we need
to rely on some concept of similarity between data points in X , according to which we
can assign clusters to similar data points.

The concept of similarity we choose, often implicitly, is the only important decision
in clustering methods. It uniquely defines the interaction between p(x) and p(y|x).
Therefore, whether two points belong to the same cluster can be derived from their
similarity to each other and to other points. From our perspective, the smoothness,
low-density, and manifold assumptions boil down to different definitions of the simi-
larity between points: the smoothness assumption states that points that are close by in
the input space are similar; the low-density assumption states that points in the same
high-density area are similar; and the manifold assumption states that points that lie on
the same low-dimensional manifold are similar. As such, the semi-supervised learn-
ing assumptions can be seen as more specific instances of the cluster assumption: that
similar points tend to belong to the same group.

One could even argue that the cluster assumption corresponds to the necessary con-
dition for semi-supervised learning: that p(x) carries information on p(y|x). In fact,
assuming the output space Y consists of all possible clusters, the necessary condition
for semi-supervised learning to succeed can be seen to be the necessary condition for
clustering to succeed. In other words: if the data points (both unlabeled and labeled)
cannot be meaningfully clustered, it is impossible for a semi-supervised learning method
to improve on a supervised learning method.

In Chapter 2, we will see how the semi-supervised learning assumptions relate to
different semi-supervised learning methods. In particular, the class of intrinstically
semi-supervised learning methods, which learn a model by directly incorporating un-
labeled data into an objective function, mainly consists of methods that directly act on
one of the assumptions.
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1.4 Contributions and thesis outline
Like in supervised classification, there are very few generic classification algorithms
that exhibit good performance on diverse data sets. In many cases, semi-supervised
classification algorithms do not outperform their supervised counterparts [113, 160]. In
this thesis, we study solutions to this problem and consider the generally relatively robust
class of ensemble methods, which rely on multiple base learners to improve and stabilize
performance [212]. In particular, we focus on semi-supervised wrapper methods, which
iteratively introduce unlabeled data to an ensemble of supervised classifiers by labeling
unlabeled data points with the predictions of the classifiers. Such methods have been
extensively studied in the literature [179], but they are usually applied to weak ensembles
of supervised classifiers (i.e., ensembles with relatively poor performance). Improving
performance over weaker ensembles is both a less challenging and a less interesting task
than improving performance over stronger ensembles: there is rarely a reason to use a
semi-supervised extension of a weak ensemble when a strong supervised ensemble is
also available.

Our contribution to the field of semi-supervised learning is threefold. Firstly, in
Chapter 2, we present a comprehensive survey of the field of semi-supervised learning,
and semi-supervised classification in particular. The survey constitutes an up-to-date re-
view of the literature, and includes the proposal of a new taxonomy for semi-supervised
classification methods.

Secondly, we study semi-supervised extensions to automated machine learning (Au-
toML) in Chapter 3. This branch of machine learning is concerned with automatically
selecting and configuring classifiers or ensembles of classifiers for any particular ma-
chine learning problem [62, 100, 178]. We propose a semi-supervised wrapper method
that can be applied to strong ensembles of diverse classifiers constructed by the AutoML
system auto-sklearn [62]. Our method consists of a single additional training step,
where unlabeled data is introduced to the ensemble of supervised base learners. We
evaluate this method, which we call single-step co-ensembling, on a prominent bench-
marking suite of diverse data sets. We achieve an average reduction in error rate of 7%,
and performance is improved over the supervised ensemble in over 75% of the multiclass
data sets we evaluate.

Thirdly, in Chapter 4, we evaluate the popular semi-supervised ensembling method
co-forest [110], which extends random forests to the semi-supervised setting. We show
that it works well when applied to a weak ensemble of base learners (a forest with few
trees), but that it is outperformed by its supervised counterpart when using more base
learners. Additionally, we propose a semi-supervised node splitting criterion for deci-
sion trees; we show that it improves performance of individual decision trees, but not
of random forests.

Finally, in Chapter 5, we present our conclusions. We reflect on the research con-
ducted for this thesis, and discuss our perspective on the field of semi-supervised learn-
ing in general.



Chapter 2

A Survey on Semi-supervised
Learning

Before continuing to the proposal of a new semi-supervised ensemble learning method
and the evaluation of a semi-supervised extension to random forests, we review the
field of semi-supervised learning. We consider both earlier methods and more recent
advances, and provide an in-depth explanation of a broad variety of learning methods.
Furthermore, we introduce a new taxonomy for semi-supervised classification methods,
shedding light on the goals, characteristics, and assumptions of different methods.

2.1 Introduction
The field of semi-supervised learning encompasses a broad spectrum of machine learn-
ing problems, including semi-supervised clustering, classification, and regression. A
particularly large body of research exists in the field of semi-supervised classification,
where a plethora of different methods has been proposed over the past few decades.
This survey constitutes an up-to-date review and analysis of the field of semi-supervised
learning, with a strong emphasis on semi-supervised classification. The most recent
complete survey of the field was published by Zhu in 2005; it was most recently updated
in 2008 [216]. The semi-supervised learning book by Chapelle et al. from 2006 [33]
and Zhu and Goldberg’s introductory semi-supervised learning book from 2009 [221]
also provide good bases for studying earlier semi-supervised learning work. More re-
cently, in 2014, Subramanya and Talukdar provided an overview of several graph-based
techniques [167]; in 2015, Triguero et al. reviewed and analyzed pseudo-labeling tech-
niques, a class of semi-supervised learning methods [179].

In this survey, we aim to provide the reader with a comprehensive overview of the
current state of the field of semi-supervised learning. We present and thoroughly ex-
plain both early work in the field and recent advances. We present a new taxonomy for
semi-supervised classification methods that captures both the underlying assumptions
of each group of methods as well as the way they relate to existing supervised methods.

This chapter is based on a survey article co-authored with H.H. Hoos. I took primary responsibility for the research
conducted for this survey, as well as for writing the manuscript.
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In this, we provide a perspective on semi-supervised learning that allows for a more
thorough understanding of different approaches and the connections between them.

Although we aim to provide a comprehensive overview of the field of semi-supervised
classification, we cannot possibly cover every method in existence. Due to the expan-
siveness of the field, this would take away from the key insights which we wish to provide
to the reader. Instead, we aim to cover the major developments in the field over the past
twenty years.

The rest of this chapter is structured as follows. In Section 2.2, we present our
semi-supervised learning taxonomy, which is used as the basis for the following sec-
tions. Inductive methods are covered in Sections 2.3 through Section 2.5. We first
consider wrapper methods (Section 2.3), followed by unsupervised preprocessing (Sec-
tion 2.4), and finally, we cover intrinsically semi-supervised methods (Section 2.5).
The second part of the taxonomy, consisting of the transductive methods, is presented
in Section 2.6. Semi-supervised regression and clustering are discussed in Section 2.7.
Finally, in Section 2.8, we provide some prospects for the future of semi-supervised
learning.

2.2 Taxonomy of semi-supervised classification methods
Over the past two decades, a broad variety of semi-supervised classification algorithms
has been proposed. These methods differ in the semi-supervised learning assumptions
they use, in the way they incorporate unlabeled data, and in the way they relate to
supervised algorithms. In existing categorizations of semi-supervised learning methods,
algorithms are usually grouped based on the assumptions on which they are premised.
This provides insight into the similarities of learners on similar types of data, but it
pushes several other important properties (e.g., whether the learner yields only label
predictions or a classification model over the entire input space) to the background.

In this survey, we propose a new way to represent the spectrum of semi-supervised
classification methods. Our taxonomy incorporates two crucial characteristics of semi-
supervised learning methods. At the highest level, it distinguishes between inductive
and transductive methods, which give rise to distinct optimization procedures: the for-
mer attempts to find a classification model, whereas the latter is only concerned with
obtaining label predictions for the unlabeled data points at hand. At the second level,
it considers the way the semi-supervised learning methods incorporate unlabeled data.
This distinction gives rise to three difference classes of inductive methods, each of which
is related to supervised classifiers in a different way.

The first distinction we make in our taxonomy, between inductive and transductive
methods, is common in semi-supervised learning literature [33, 216, 221]. The former,
like supervised learning methods, yield a classification model that can be used to pre-
dict the label of previously unseen data points. The latter do not yield such a model,
but instead provide predictions directly. In other words, given a data set consisting of
labeled and unlabeled data XL, XU ⊆ X with labels yL ∈ Y l for the l labeled data
points, inductive methods yield a model f : X 7→ Y , whereas transductive methods
yield a set of predicted labels ŷU for the unlabeled data points XU . Accordingly, the
optimization problems posed in inductive methods optimize over prediction models,
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Figure 2.1: Visualization of the semi-supervised classification taxonomy. Each leaf
in the taxonomy corresponds to a specific type of approach to incorporating unlabeled
data into classification methods. In the leaf corresponding to transductive, graph-based
methods, the dashed subitems correspond to distinct phases of the graph-based classi-
fication process, each of which has a multitude of variations.
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whereas the optimization problems posed in transductive methods optimize directly
over the predictions ŷU .

Inductive methods, which generally extend supervised algorithms to include unla-
beled data, are further split in our taxonomy based on the way they incorporate unla-
beled data: either in a preprocessing step, directly inside the objective function, or via a
pseudo-labeling step. The transductive methods are in all cases graph-based; we group
these based on the choices made in separate stages of the learning process. The taxon-
omy is visualized in Figure 2.1. In the remainder of this section, we will elaborate on
the grouping of semi-supervised learning methods represented in the taxonomy. Fur-
thermore, the taxonomy forms the basis for our discussion of semi-supervised learning
methods in the remaining sections of this chapter.

2.2.1 Inductive methods

Inductive methods aim to construct a classification model that can generate predictions
for any sample in the input space. The design of the model can depend on unlabeled
data, but the predictions for multiple new, previously unseen examples are independent
of each other once the classifier has been trained. This corresponds to the objective in
supervised learning methods: a model is built in the training phase and can then be
used for predicting the labels of new data points.

Wrapper methods

A simple approach to extending existing, supervised algorithms to the semi-supervised
setting is to first train classifiers on labeled data, and to then use the predictions of the
resulting classifiers to generate additional labeled data. The classifiers can then be re-
trained on this pseudo-labeled data in addition to the existing labeled data. Such methods
are known as wrapper methods: the unlabeled data is pseudo-labeled by a wrapper com-
ponent, and a purely supervised learning algorithm, unaware of the distinction between
originally labeled and pseudo-labeled data, constructs the final inductive classifier. This
reveals a key property of wrapper methods: most of them can be applied to any given
supervised base learner, allowing unlabeled data to be introduced in a straightforward
manner. They form the first part of the inductive side of the taxonomy, and are covered
in Section 2.3.

Unsupervised preprocessing

Secondly, we consider unsupervised preprocessing methods, which either extract useful
features from the unlabeled data, pre-cluster the data, or determine the initial parame-
ters of a supervised learning model in an unsupervised manner. Like wrapper methods,
they can be used with any supervised classifier. However, contrary to wrapper meth-
ods, the supervised classifier is only provided with originally labeled data points. These
methods are covered in Section 2.4.
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Intrinsically semi-supervised methods

The last class of inductive methods we consider directly incorporate unlabeled data into
the objective function or optimization procedure of the learning method. Many of these
methods are direct extensions of supervised learning methods to the semi-supervised
setting: they extend the objective function of the supervised classifier to include unla-
beled data. Semi-supervised support vector machines (S3VMs), for example, extend
supervised SVMs by maximizing the margin on the unlabeled data in addition to the
labeled data. There are semi-supervised analogies for, among others, SVMs, Gaussian
processes, and neural networks, and we describe these in Section 2.5.

2.2.2 Transductive methods
Unlike inductive methods, transductive methods do not construct a classification model
over the entire input space. Instead, their predictive power is limited to exactly those
samples that it encounters during the training phase. Therefore, no independent train-
ing and prediction phases exist in transductive methods. Since supervised learning
methods are by definition not supplied with unlabeled data until the testing phase, no
clear analogies of transductive algorithms exist in supervised learning.

Since no model of the input space exists in transductive learners, information has
to be propagated via direct connections between data points. This observation natu-
rally gives rise to a graph-based approach to transductive methods: if a graph can be
defined that connects similar data points, information can then be propagated along
the edges of the graph. In practice, all transductive methods we discuss are either ex-
plicitly graph-based or can implicitly be understood as such. Although graph-based
methods occupy the entire space of transductive methods in our taxonomy, inductive
graph-based methods exist as well. Such approaches generally find their motivation in
the manifold assumption; we cover them in Section 2.5.3.

Transductive graph-based methods generally consist of three steps: graph construc-
tion, graph weighting, and inference. In the first step, the samples X are used to con-
struct a graph where each node represents a data point and pairwise similar data points
are connected by an edge. In the second step, these edges are weighted to represent
the extent of the pairwise similarity between data points. In the third step, the graph is
used to assign labels to the unlabeled data points. Different methods for carrying out
these three steps are discussed in detail in Section 2.6.

2.3 Wrapper methods
Wrapper methods are some of the oldest and most well-known forms of semi-supervised
learning [216]. They utilize one or more supervised base learners and iteratively train
them with data consisting of the original labeled data and previously unlabeled data
with predictions from earlier iterations of the learners. The latter is commonly referred
to as pseudo-labeled data. The procedure usually consists of two alternating steps of
training and pseudo-labeling. In the training step, one or more supervised classifiers are
trained on the labeled data and, possibly, pseudo-labeled data. In the pseudo-labeling
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step, the resulting classifiers are used to attach labels to the previously unlabeled sam-
ples, pseudo-labeling the samples for which the learners were most confident of their
predictions.

A significant advantage of wrapper methods is that they can be used with virtually
any supervised base learner. The supervised base learner can be entirely unaware of the
wrapper method, which simply passes pseudo-labeled samples to the base learner as if
they were regular labeled samples. Although some wrapper methods require the base
learner to provide probabilistic predictions, many wrapper methods relying on multiple
base learners do not.

A comprehensive survey of wrapper methods was published recently by Triguero
et al. [179]. In addition to providing an overview of such methods, they also propose
a categorization and taxonomy of wrapper methods. Their taxonomy is based on (1)
how many classifiers are used, (2) whether different types of classifiers are used, and (3)
whether they use single-view or multi-view data (i.e., whether the data is split into mul-
tiple feature subets). The taxonomy provides valuable insight into the space of wrapper
methods.

We present a less complex taxonomy, focused on the three relatively independent
types of wrapper methods that have been studied in the literature. Firstly, we con-
sider self-training, which uses one supervised classifier that is iteratively re-trained on
its own most confident predictions. Secondly, we consider co-training, an extension of
self-training to multiple classifiers which are iteratively re-trained on each other’s most
confident predictions. The classifiers are supposed to be sufficiently diverse, which is
usually achieved by operating on different subsets of the samples or features. Lastly, we
consider pseudo-labeled boosting methods. Like traditional boosting methods, they build
a classifier ensemble by constructing individual classifiers sequentially. Each individ-
ual classifier is trained on both labeled data and the most confident predictions of the
previous classifiers on unlabeled data.

2.3.1 Self-training
Self-training methods (sometimes also called “self-learning” methods) are the most ba-
sic of pseudo-labeling approaches [179]. They consist of a single supervised classifier
that is iteratively trained on both labeled data and pseudo-labeled data (generated in
previous iterations of the algorithm). Let D̃L denote the pseudo-labeled data, and let
X̃U denote the samples that have not been assigned pseudo-labels yet. We initialize
D̃L = ∅ and X̃U = XU . In each iteration of the self-training algorithm, a supervised
classifier is trained on DL ∪ D̃L. The trained classifier is then used to form predic-
tions for all remaining unlabeled samples X̃U . The samples on which the classifier
is most confident are then removed from X̃U and, along with their predicted labels,
added to D̃L. The algorithm is usually iterated until no more unlabeled samples re-
main to be pseudo-labeled, but other stopping criteria have also been proposed (see,
e.g., [149, 179]). A schematic representation of the self-training algorithm is provided
in Figure 2.2.

The self-training method was first proposed by Yarowsky as an approach to word
sense disambiguation in text documents, predicting the meaning of words based on
their context [205]. Rosenberg et al. apply self-training to object detection problems,
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Figure 2.2: Schematic visualization of self-training methods.

and show improved performance over a state-of-the-art (at that time) object detection
model [149]. Dópido et al. develop a self-training approach for hyperspectral image
classification [58]. They use domain knowledge to select a set of candidate unlabeled
samples, and pseudo-label the most informative of these samples with the predictions of
the trained classifier. The latter procedure is inspired by active learning [154]: one wants
to obtain the labels of the samples that are expected to contribute most to a change in
the decision boundary.

Because it selects samples to pseudo-label based on the prediction confidence, self-
training is highly dependent on the quality of the probabilistic predictions. In particular,
the ranking of prediction probabilities for the unlabeled samples should reflect the true
confidence ranking. This means some base learners are inherently better-suited for self-
training than others.

Decision trees are a prime example of learning algorithms that, without any mod-
ifications or pruning, yield poor prediction probability estimates. This can be largely
attributed to two causes: (1) decision trees assign equal probabilities to all instances in
a leaf, and (2) leaves in decision tree tend to have few instances. Tanha et al. attempt
to improve these probability estimates in a self-training approach to decision trees and
ensembles of decision trees [176] in two distinct ways: firstly, they apply several ex-
isting methods, such as grafting and Laplace correction, to directly improve prediction
probability estimates. Secondly, they use a local distance-based measure to determine
the confidence ranking between instances: the prediction confidence of an unlabeled
sample is based on the absolute difference in the Mahalanobis distances between the
point and the labeled data from each class. They show significant improvements in per-
formance of both decision trees and ensembles of decision trees (random forests) using
this method [176].

Leistner et al. also utilize self-training to improve random forests [108]. Instead
of labeling the unlabeled samples x ∈ XU with the label predicted to be most likely,
they pseudo-label each unlabeled sample independently for each tree according to the
estimated posterior distribution p(y|x). Furthermore, they propose a stopping crite-
rion based on the out-of-bag-error: when the out-of-bag-error (which is an unbiased
estimate of the generalization error) increases, training is stopped.
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If proper probabilistic predictions are available, one can also consider using the prob-
abilities directly. In this case, the self-training approach is iterative and not incremen-
tal, as label probabilities for unlabeled data points are re-estimated in each step. In
that case, the approach becomes similar to expectation-maximization (EM, [53]). It has
been particularly studied in the context of naïve Bayes classifiers, which are inherently
probabilistic [129, 130, 131]. Wu et al. recently applied semi-supervised EM with a
naïve Bayes classifier to the problem of detecting fake product reviews on e-commerce
websites [199].

Limited studies regarding the theoretical analysis on self-training algorithms exist.
Haffari and Sarkar perform theoretical analysis on several variants of self-training, and
show a connection between self-training methods and graph-based methods [78]. Culp
and Michailidis analyze the convergence properties of a variant of self-training with
several base learners, and consider the connection to graph-based methods as well [45].

When a classifier is trained iteratively, optimizing the objective function over indi-
vidual samples or subsets of samples, an iterative pseudo-labeling approach similar to
self-training can be applied. Instead of training the entire classifier, forming predictions
on the unlabeled data, and then re-training the classifier, one can also pseudo-label data
points throughout the training process. This approach is applied to neural networks by
Lee, who proposes the pseudo-label approach [107]. Since the pseudo-labels predicted
in the earlier training stages are generally less reliable, the weight of the pseudo-labeled
samples is increased over time. The pseudo-label approach exhibits clear similarities
to self-training, but differs in the sense that the classifier is not re-trained after each
pseudo-labeling step: instead, it is finetuned with new pseudo-labeled data, and there-
fore technically deviates from the wrapper method paradigm.

2.3.2 Co-training
Co-training is an extension of self-training to multiple supervised classifiers. In co-
training, two or more supervised classifiers are iteratively trained on the labeled data,
adding their most confident predictions to the labeled data set of the other supervised
classifiers in each iteration. For co-training to succeed, it is important that the base
learners make uncorrelated errors on the unlabeled data. If they do not, their potential
to provide each other with useful information is limited. In the literature, this condition
is usually referred to as the diversity criterion [215].

Zhou and Li provide a survey of semi-supervised learning methods relying on mul-
tiple base learners, which they jointly name disagreement-based methods [215]. The name
stems from the observation that co-training approaches exploit disagreements between
multiple learners: they exchange information through unlabeled samples for which dif-
ferent learners predict different labels.

To promote classifier diversity, earlier co-training approaches mainly relied on the
existence of multiple different views of the data, which generally correspond to distinct
subsets of the feature set. For instance, when handling video data, the data can be nat-
urally decomposed into visual data and audio data. Such co-training methods belong
to the space of multi-view learning methods, which include a large body of supervised
learning algorithms as well. Xu et al. provide a comprehensive survey of such methods
[200]. We cover multi-view co-training methods in Section 2.3.2. In many real-world
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problem scenarios, no distinct views of the data are known a priori. Single-view co-
training methods address this problem either by splitting the data into different views
automatically, or by promoting diversity among classifiers using different learning algo-
rithms. We cover these methods in Section 2.3.2. We shortly discuss co-regularization
methods, in which multiple classifiers are combined into a single objective function, in
Section 2.3.2.

Multi-view co-training

The basic form of co-training was proposed by Blum and Mitchell [23]. In their seminal
paper, they propose to construct two classifiers which are trained on two distinct views.
After each training step, the most confident predictions of each view are added to the set
of labeled samples of the other view. Blum and Mitchell apply the co-training algorithm
to web page classification for university web pages, where the two views of the data are
the web page text and the anchor text in links to the web page from external sources.
This algorithm and variants thereof have been successfully applied in several fields, most
notably natural language processing [97, 125, 186].

The original co-training algorithm by Blum and Mitchell relies on two main as-
sumptions to succeed: (1) each individual subset of features should be sufficient to form
good predictions on the data set, and (2) the subsets of features should be conditionally
independent given the class label. The first assumption can be understood trivially: if
one of the two feature subsets is insufficient to form good predictions, the correspond-
ing learner can never contribute positively to the combined classifier’s performance. The
second assumption states that knowledge of a sample’s features from either subset does
not provide knowledge about the sample’s features from the other subset, given the sam-
ple’s label. This assumption is related to the diversity criterion: if the feature subsets are
conditionally independent given the class label, the predictions of the individual clas-
sifiers are unlikely to be strongly correlated. Formally, for any sample xi = x(1)i × x(2)i ,
decomposed into x(1)i and x(2)i for the first and second feature subset, respectively, the
conditional independence assumption amounts to p(x(1)i |x

(2)
i , yi) = p(x(1)i |yi). Das-

gupta et al. show that, under the aforementioned assumptions, the individual learners
have low generalization error if they agree on their predictions for unlabeled data [48].

In practice, the second assumption is generally not satisfied: even if a natural split
of features exists, such as in the experimental setup used by Blum and Mitchell, it is
unlikely that information contained in one view provides no information about the other
view when conditioned on the class label [59]. Considering the university web page
classification example, the anchor text of a link to a web page can indeed be expected
to contain clues towards the content of the web page, even if it is known that the web
page is classified as a faculty member’s home page. For example, if the link’s anchor text
is “Dean of the Engineering Faculty”, one is more likely to find information about the
dean of the engineering faculty than about any other person in the web page text. Thus,
several alternatives to this assumption have been considered.

Abney shows that a weak independence assumption is sufficient for successful co-
training [1]. Balcan et al. further relax the conditional independence assumption,
showing that a much weaker assumption, which they name the “expansion” assump-
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tion, is sufficient and to some extent necessary [7]. The expansion assumption does
not assume conditional independence between the feature sets, but rather assumes that
the two views are not highly correlated, and that individual classifiers never confidently
make wrong predictions.

Du et al. study empirical methods to determine to what degree the sufficiency and
independence assumptions hold [59]. They propose several methods for automatically
splitting the feature set into two views, and show that the resulting empirical indepen-
dence and sufficiency is positively correlated with the performance of the co-trained
algorithm, indicating that feature splits optimizing sufficiency and independence lead
to good learning algorithms.

Single-view co-training

As Du et al. show, co-training can be successful even when no natural split in the
features is known a priori [59]. This observation is echoed throughout the literature on
co-training, and many different approaches to applying co-training in the single-view
setting exist.

Chen et al. attempt to alleviate the need for pre-defined disjoint feature sets by au-
tomatically splitting the feature set in each co-training iteration [37]. They formulate
a single optimization problem closely related to co-training, incorporating both the re-
quirement that the feature sets should be disjoint and the expansion property from Bal-
can et al. [7]. They show promising results of this approach on a partially synthetic data
set, where multiple views of each sample are automatically generated. Wang and Zhou
reason about sufficient and necessary conditions for co-training to succeed, approach-
ing co-training from a graph-based perspective, where label propagation is alternately
applied to each learner [193]. A downside of this approach is that, although inspired by
co-training, it cannot be applied to any unmodified supervised learning algorithm: the
co-training style operations are embedded in the objective function, which is directly
optimized.

Several suggestions have been made to split single-view data sets into multiple views.
For instance, Wang et al. suggest to generate k random projections of the data, and
use these as the views for k different classifiers [191]. Zhang and Zheng propose to
project the data onto a lower-dimensional subspace using principal component analysis.
They then construct the pseudo-views by greedily selecting the transformed features
corresponding to the maximal variance [209]. Yaslan and Cataltepe do not transform
the data to a different basis, but select the features for each view iteratively, preferring
features with high mutual information with respect to the sample labels [206].

Further approaches to apply co-training style algorithms on data sets where no ex-
plicit views are available focus on other ways of introducing diversity among the classi-
fiers. For example, one can use different hyperparameters for the supervised algorithms
[192, 213], or use different supervised algorithms altogether [67, 201, 211]. Wang and
Zhou provide both theoretical and empirical analysis on why co-training can work in
single-view settings [192]. They show that the diversity between the learners is posi-
tively correlated with their joint performance. Zhou and Li propose tri-training, where
three classifiers are alternately trained [214]. When two of the three classifiers agree
on their prediction of a sample, the sample is passed to the other classifier as a labeled
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sample. Crucially, tri-training does not rely on probabilistic predictions of individual
classifiers, and can thus be applied to a much broader range of supervised learning al-
gorithms.

The authors of the tri-training approach propose to extend it to more than three
learners, applying the paradigm to ensembles of decision trees (random forests) [110].
The approach, known as co-forest, starts by training the decision trees independently
on all labeled data. Then, in each iteration, each classifier receives pseudo-labeled data
based on the joint prediction of all other classifiers on the unlabeled data: if the fraction
of classifiers predicting a class ŷi for an unlabeled sample xi exceeds a certain threshold,
the pseudo-labeled sample (xi, yi) is passed to the classifier. The decision trees are then
all re-trained on their labeled and pseudo-labeled data. In the next iteration, all previ-
ously pseudo-labeled data is treated as unlabeled again. We note that, as the number of
trees tends to infinity, the algorithm transforms into a form of self-training.

Co-forest includes a mechanism for reducing the influence of possibly mislabeled
samples in the pseudo-labeling step by weighting the newly labeled samples based on the
prediction confidence. Furthermore, it employs a PAC-based approach to determine
whether data should be pseudo-labeled at all for a tree in a particular iteration. Deng
and Guo attempt to further prevent the influence of possibly mislabeled samples by
removing “suspicious” pseudo-labelings [55]. After the each pseudo-labeling step, the
prediction for each pseudo-labeled sample xi is compared to the (pseudo-)labels of its
k nearest neighbors (both labeled and pseudo-labeled). If they are not the same, the
pseudo-label is removed from the sample.

In existing literature concerning co-forest, the size of the forest has always limited
to six trees. It has been empirically shown that, in supervised random forests, perfor-
mance can substantially improve as the number of trees grows [134]. In Chapter 4, we
investigate the effects of varying the number of trees in the co-forest method.

Co-regularization

By passing information in the form of pseudo-labeled data between classifiers, co-
training methods decrease disagreement between classifiers. Furthermore, the implicit
objective of co-training is to minimize the error rate of the ensemble of classifiers. Sind-
hwani et al. propose to make these properties explicit in a single objective function
[158, 159]. They propose co-regularization, a regularization framework in which both
the ensemble quality and the disagreement between base learners are simultaneously
optimized. In the framework, the objective function consists of both a loss term that
penalizes incorrect predictions of the ensemble, and a loss term that directly penal-
izes different predictions of the base classifiers. In this framework, Yu et al. propose
Bayesian co-training, which can handle per-view noise [207]. They propose a graphical
model for combining data from multiple views, and develop a kernel-based method for
co-regularization. This model is extended to handle different noise levels per sample by
Christoudias et al. [39].

Co-training can be regarded as a greedy optimization strategy for the co-regularization
objective. The ensemble accuracy is maximized by minimizing the loss functions on
both hypotheses alternately; the disagreement between classifiers is minimized by prop-
agating predictions from either classifier to the other classifiers as if they were the
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ground truth. We do note, however, that the general co-regularization objective does
not necessitate a solution via a wrapper method; many co-regularization approaches do
not utilize wrapper methods at all (see, e.g., [159, 207]).

2.3.3 Boosting
Ensemble models are classifiers consisting of multiple base classifiers, which are trained
and then used to form combined predictions (see, e.g., [212]). The simplest form of
ensemble learning trains k classifiers independently; predictions can then be obtained
by aggregating the predictions of these base learners. Besides this trivial approach, two
main branches of supervised ensemble learning exist: bagging and boosting (see, e.g.,
[212]). In bagging methods, each base learner is provided with a data set consisting of n
samples, which are sampled with replacement from the original data set (bootstrapping).
The base learners are trained independently. When training is completed, their outputs
are aggregated to form the prediction of the combined classifier. In boosting methods,
on the other hand, each base learner is dependent on the previous base learners: it is
provided with the full data set, but with weights applied to the samples. The weight of a
sample is based on the performance of the previous base learners on the sample: samples
that were incorrectly classified get assigned larger weights. For the final prediction, the
predictions of the classifiers are combined linearly.

Base learners in bagging methods are trained independently by definition. There-
fore, the only truly semi-supervised bagging method would apply self-training to indi-
vidual base learners. Co-training, however, can be seen to be closely related to bagging
methods: the only way classifiers interact is by the exchange of pseudo-labeled data;
other than that, the classifiers can be trained independently and simultaneously. How-
ever, most co-training methods do not use bootstrapping, a defining characteristic of
bagging methods.

In boosting methods, on the other hand, there is an inherent dependency between
base learners: the classifiers are trained sequentially, and previous base learners influence
the construction of later base learners. Such methods can be readily extended to the
semi-supervised setting by introducing pseudo-labeled data after each learning step.
This gives rise to the class of semi-supervised boosting methods.

Semi-supervised boosting methods have been studied intensively over the past two
decades. The success achieved by supervised boosting methods such as AdaBoost [63],
gradient boosting, and XGBoost [38], provides ample motivation to bring boosting
to the semi-supervised setting. Furthermore, the pseudo-labeling approach of self-
training and co-training can trivially be extended to boosting methods. We outline
several semi-supervised boosting methods. Most of these methods are indeed wrapper
methods, using fully supervised base learners. The first algorithm we discuss below,
SSMBoost [73], forms the only exception to this rule: it requires semi-supervised base
learners. We consider it for its important contribution as the foundation for semi-
supervised boosting methods.

Boosting methods construct a weighted ensemble of classifiers ht in a greedy fash-
ion. Let FT−1(x) =

∑T−1
t=1 αt ·ht(x) denote the ensemble of classifiers ht with weight

αt. Furthermore, let ℓ(ŷ, y) denote the loss function for predicting label ŷ for a sample
with true label y. At each iteration of the algorithm, an additional classifier hT is added
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to the ensemble with a certain weight αT such that the cost function

L(FT ) =

n∑
i=1

ℓ(FT (xi), yi) (2.1)

=

n∑
i=1

ℓ(FT−1(xi) + αT · hT (xi), yi) (2.2)

is minimized. Note that, at time T , the ensembleFT−1 is fixed. With particular choices
of loss functions, such as ℓ(ŷ, y) = exp(−ŷ · y), the optimization problem yields a
weighted classification problem for determining hT , and allows us to express the opti-
mal αT in terms of the loss of hT on the training data.

SSMBoost
The first effort towards semi-supervised boosting methods was made by Grandvalet et
al., who extend AdaBoost to the semi-supervised setting. The initial concept of the
semi-supervised boosting algorithm is proposed in [73], and it is extended and moti-
vated from the perspective of gradient boosting in [46]. To achieve this, a loss function
is defined for unlabeled data based on the predictions of the current ensemble and on
the predictions of the base learner under construction. Experiments are conducted with
multiple loss functions; the authors report the strongest results using the expected loss
of the new, combined classifier. The weighted error ϵt for base classifier ht is thus
adapted to include the unlabeled data points, causing the weight term αt to depend on
the unlabeled data as well.

Crucially, SSMBoost does not assign pseudo-labels to the unlabeled data points. As
a result, it requires semi-supervised base learners to make use of the unlabeled data. This
distinguishes the algorithm from other semi-supervised boosting algorithms: SSM-
Boost is not a wrapper method, but is intrinsically semi-supervised. It is included here
because it forms the foundation for all other forms of semi-supervised boosting algo-
rithms, which require no semi-supervised base learners.

ASSEMBLE
The ASSEMBLE algorithm, short for Adaptive Supervised Ensemble, alleviates the need
for semi-supervised base learners [17]. Instead, it pseudo-labels the unlabeled data
points after each iteration, and uses these pseudo-labeled data points in the construction
of the next classifier. The authors show that this procedure corresponds to maximizing
the classification margin in function space.

Since pseudo-labels are used in ASSEMBLE, it is not trivial to decide which unla-
beled data points to pass to the next base learner. Bennet et al. propose to use bootstrap-
ping, sampling, with replacement, l data points from the l + u labeled and unlabeled
data points.

SemiBoost
The latest iteration of semi-supervised boosting algorithms is SemiBoost, proposed by
Mallapragada et al. [123]. It solves the problem of selecting samples to use in the base
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learners by relying on the manifold assumption. In a method similar to label propa-
gation, each unlabeled sample is assigned a pseudo-label, and the corresponding pre-
diction confidence is calculated. Then, a weighted sample, based on the prediction
confidences, is taken from the pseudo-labeled samples, and added to the set of labeled
samples for training the next base learner. SemiBoost is successfully applied to object
tracking in videos by Grabner et al. [71].

SemiBoost uses the normal boosting classification model, expressing the final la-
bel prediction as a linear combination of the predictions of the individual learners. Its
loss function, however, is highly dissimilar from previously described semi-supervised
boosting methods. Mallapragada et al. argue that a successful labeling of the test data
should conform to the following three requirements. Firstly, the predicted labels of the
unlabeled data should be consistent for unlabeled samples that are close together. Sec-
ondly, the predicted labels of the unlabeled data should be consistent with the labels of
closeby labeled data points. And, thirdly, the predicted labels for the labeled samples
should correspond to their true labels. This is posed as a constrained optimization prob-
lem, where the first two requirements are captured by the objective function, and the
latter requirement is imposed as a constraint. In other words, the SemiBoost algorithm
uses boosting to solve the optimization problem

minimize
FT

LL(ŷ, A) + λ · LU (ŷ, A)

subject to ŷi = yi, i = 1, . . . , l,
(2.3)

where LU and LL are the loss functions expressing the inconsistency across the un-
labeled and the combined labeled and unlabeled data, respectively, and λ ∈ R is a
constant defining the weight of the inconsistencies. A is an n × n symmetric matrix
defining the pairwise similarities between samples.

The formulation in Equation 2.3 is very similar to the cost functions encountered
in graph-based methods (see Section 2.5.3 and Section 2.6). The objective function pro-
motes samples on the same manifold to receive the same label prediction. In graph-
based methods, however, one usually does not distinguish between labeled-unlabeled
and unlabeled-unlabeled pairs.

Other semi-supervised boosting methods
The three methods discussed so far form the core of semi-supervised boosting research.
Aside from these methods, some further research has been conducted on semi-supervised
boosting. Chen and Wang propose RegBoost, which, like SemiBoost, includes local
label consistency in its objective function [36]. In RegBoost, this term is also depen-
dent on the estimated local density of the marginal distribution p(x). Several attempts
have been made to extend the label consistency regularization to the multiclass setting
[175, 181].

2.4 Unsupervised preprocessing
The second category of inductive methods we discuss is unsupervised preprocessing meth-
ods, which, unlike wrapper methods and intrinsically semi-supervised methods, use the
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unlabeled data and labeled data in two separate stages. Typically, the unsupervised stage
comprises either the automated extraction or transformation of sample features from the
unlabeled data (feature extraction), the unsupervised clustering of the data (label-then-
cluster), or the initialization of the parameters of the learning model (pre-training).

2.4.1 Feature extraction
Since the early days of machine learning, feature extraction has played an important role
in classifier construction. Feature extraction methods attempt to find a transformation
of the input samples such that the performance of the classifier improves or such that
the construction is computationally more efficient. Feature extraction is an expansive
research topic by itself; several books and surveys exist regarding the topic. We focus on
a small number of particularly important techniques, and refer the reader to the existing
literature on feature extraction methods for more information (see, e.g., [77, 156]).

Many feature extraction methods operate without supervision, i.e., without taking
into account sample labels. Principal component analysis, for example, transforms the
input samples to a different basis such that they are linearly uncorrelated and orders the
principal components based on their variance [196]. Other traditional feature extraction
algorithms operate on the labeled data, and try to extract features with high predictive
power (see, e.g., [77]).

Recent semi-supervised feature extraction methods have mainly been focused on
finding latent representations of input samples using deep neural networks (in Section
2.5.2, we provide a basic explanation of neural networks). The most prominent example
of this is the autoencoder: a neural network with one or more hidden layers that has the
objective to reconstruct the provided input. By including a hidden layer with relatively
few nodes, usually called the representation layer, the network is encouraged to find a
way to compactly represent input samples. Once the network is trained, the compact
representation of each sample constitutes its extracted features.

The network can be considered to consist of two parts: the encoder h, which maps
the sample x to its latent representation h(x), and the decoder g, which attempts to
map the latent representation back to the original sample vector x. The network is
trained by optimizing a loss function penalizing the reconstruction error: a measure of
inconsistency between the input sample x, and the reconstructed input sample g(h(x)).
Once the network is trained, the latent representation of any sample x can be found by
simply propagating it through the first part of the network to obtain h(x). A popular
type of autoencoders is the denoising autoencoder, which is trained on noisy versions of
samples, penalizing the reconstruction error of the reconstructions against the noiseless
originals [184]. Another variant, the contractive autoencoder, directly penalizes the
sensitivity of the autoencoder to perturbations in the input [147].

Autoencoders attempt to find a lower-dimensional representation of the input space
without sacrificing substantial amounts of information. Thus, they inherently act on the
assumption that the input space contains lower-dimensional substructures on which
the data lie. Furthermore, when applied as a preprocessing step to classification, they
assume that two samples on the same lower-dimensional substructure have the same
label. These obervations indicate that the assumptions relied on by autoencoders are
closely related to the semi-supervised manifold assumption.
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In some domains, data is not inherently represented as a meaningful feature vec-
tor. Since many common classification methods require such a representation, feature
extraction is a necessity in those cases. The feature extraction step, then, consists of
finding an embedding of the entity in a vector space by taking into account the rela-
tions between different inputs. Examples of such approaches can be found in natural
language processing [41, 126] and network science [75, 137, 187].

2.4.2 Cluster-then-label
Clustering and classification have traditionally been regarded as relatively disjoint re-
search areas. However, many semi-supervised learning algorithms use principles from
clustering approaches to guide the classification process. Cluster-then-label approaches
form a group of methods that explicitly join the clustering and classification processes:
they first apply an unsupervised or semi-supervised clustering algorithm to all available
data, and use the resulting clusters to guide the classification process.

Goldberg et al. first cluster the labeled data and a subset of the unlabeled data [66].
Then, they independently train a classifier for each cluster on the labeled data in the
cluster. Finally, the unlabeled data points are classified using the classifier of their re-
spective cluster. In the clustering step, they construct a graph over the data points using
the Hellinger distance; size-constrained spectral clustering is then applied to the result-
ing graph. Since the clustering is only used to segment the data, after which individual
learners are applied to each cluster, the approach supports any supervised base learner.

Demiriz et al. first cluster the data in a semi-supervised manner, favoring clusters
with limited label impurity, and use the resulting clusters in classification [52]. Dara
et al. propose a more elaborate preprocessing step, applying self-organizing maps [98]
to the labeled data in an iterative fashion [47]. The unlabeled data points are then
mapped, yielding a cluster assignment for each of them. If the cluster to which an
unlabeled sample is mapped contains only samples of the same label, the unlabeled
sample is pseudo-labeled with that label. This process can be iterated, after which the
resulting label assignments can be used to train an inductive classifier (Dara et al. train a
multilayer perceptron). As such, the approach can also be regarded as a form of wrapper
method (see Section 2.3).

2.4.3 Pre-training
In pre-training methods, unlabeled data is used to guide the decision boundary towards
potentially interesting regions before applying supervised training to the model param-
eters.

This approach naturally applies to deep learning methods, where each layer of the
hierarchical model can be considered a latent representation of the input data. The most
commonly known algorithms corresponding to this paradigm are deep belief networks
and stacked autoencoders. Both methods are based on artificial neural networks, and aim
to guide the parameters (weights) of a network towards interesting regions in model
space using the unlabeled data, before finetuning the parameters with the labeled data.

Pre-training approaches have deep roots in the field of deep learning. Since the
early 2000’s, neural networks with multiple hidden layers (deep neural networks) have
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been gaining an increasing amount of attention. However, due to their high number of
tunable parameters, training these networks was often difficult: convergence tended to
be slow, and the optimization procedures tended to generalize poorly [61]. Before solu-
tions to this problem were found in the form of weight sharing, regularization methods,
and different activation functions, unsupervised preprocessing methods were a popular
approach to mitigate this problem. Consequently, the associated research we present
in this section mainly stems from the first decade of the 2000s; the approaches have
since been generally superseded by the aforementioned other solutions to training deep
neural networks. However, the principles of these methods still apply, and are still to
some extent used in other methods (such as ladder networks, see Section 2.5.2).

Deep belief networks consist of multiple stacked restricted Boltzmann machines (RBM),
which are trained layer-by-layer with unlabeled data in a greedy fashion [85]. The re-
sulting weights are then used as the initialization for a deep neural network with the
same architecture but with an additional output layer, enabling the model to be trained
in a supervised manner on the labeled data.

Stacked autoencoders are very similar to deep belief networks, but they use au-
toencoders as their base models instead of RBMs. The autoencoders are trained layer-
by-layer, where the encoding h(x) of each autoencoder is passed as the input to the
next autoencoder. The next autoencoder is then trained to reconstruct the output of
the previous autoencoder. Finally, the trained autoencoders are combined, an output
layer is added as is done in deep belief networks, and the resulting network is trained
on the labeled data in a supervised manner. The paradigm works with multiples types
of autoencoders, including denoising autoencoders [184] and contractive autoencoders
[147].

Erhan et al. provide an empirical analysis of deep belief networks and stacked au-
toencoders, and suggest that unsupervised pre-training guides the model towards re-
gions in model space that provide better generalization [61].

Deep neural networks are often motivated from the perspective that they learn a
more high-level representation of the data at each layer. Thus, each layer of the net-
work can be considered to contain a different representation of the input data. Both
deep belief networks and stacked autoencoders attempt to guide the model in the extrac-
tion of these hierarchical representations, pushing the model towards the extraction of
representations that are deemed informative. As such, pre-training methods are closely
related to the unsupervised feature extraction methods described earlier. The crucial
difference between the two methods, however, is that unsupervised pre-training meth-
ods allow the pre-trained parameters to be changed in the supervised finetuning phase,
whereas these parameters are fixed in unsupervised feature extraction methods. We
emphasize that, should the parameters determined in the pre-training phase be fixed in
the finetuning phase, pre-training and unsupervised feature extraction are conceptually
identical.
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2.5 Intrinsically semi-supervised
methods

In this section, we consider inductive machine learning algorithms that directly opti-
mize an objective function with components for labeled and unlabeled samples. These
methods, which we refer to as intrinsically semi-supervised methods, do not rely on any
intermediate steps or supervised base learners. Usually, they are extensions of existing
supervised methods to include unlabeled samples in the objective function.

Generally, these methods either explicitly or implicitly rely on one of the semi-
supervised learning assumptions (see Section 1.3). For instance, maximum-margin
methods rely on the low-density assumption, and most semi-supervised neural net-
works rely on the smoothness assumption. We start this section with an overview of the
earliest intrinsically semi-supervised classification methods, namely maximum-margin
methods. We proceed with perturbation-based methods, which directly incorporate
the smoothness assumptio. These encompass most semi-supervised neural networks.
Next, we consider manifold-based techniques, which either explicitly or implicitly ap-
proximate the manifolds on which the data lie. Lastly, we consider generative models.

2.5.1 Maximum-margin methods
Maximum-margin classifiers attempt to maximize the distance between the samples
and the decision boundary. This approach corresponds to the semi-supervised low-
density assumption: when the margin between all samples and the decision boundary
is large (save for some outliers), the decision boundary must be in a low-density area
[14]. This gives rise to an obvious extension of maximum-margin methods to the semi-
supervised setting: one can incorporate knowledge from the unlabeled data to deter-
mine where the density is low, and, thus, where the margin is large.

Support vector machines

The most prominent example of supervised maximum-margin classifiers is the support
vector machine (SVM): a classification method that attempts to maximize the distance
from the decision boundary to the points closest to it, while encouraging samples to be
correctly classified. It was one of the first maximum-margin approaches to be studied
in the semi-supervised setting, and it has been studied extensively since.

We briefly introduce supervised SVMs, but refrain from providing an extensive in-
troduction. For more information on SVMs, we refer the reader to [20]. The objective
of SVMs is to find a decision boundary that maximizes the margin, which is defined
as the distance between the decision boundary and the sample or samples closest to it.
Samples are allowed to violate the margin (i.e., lie between the margin and the decision
boundary or even past the margin on the wrong side of the decision boundary) at a cer-
tain cost. SVMs supports implicit mapping of samples to higher-dimensional feature
spaces using the so-called kernel trick.

Formally, the objective of SVMs is to find a weight vector w ∈ Rd with minimal
magnitude and a bias variable b ∈ R such that yi · (w⊺ · xi + b) ≥ 1− ξi for all samples
xi ∈ XL. Here, ξi ≥ 0 is called the “slack variable” for sample i, which allows the
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sample to violate the margin at some cost. This cost is incorporated into the objective
function. The corresponding optimization problem can be formulated as follows,

minimize
w,b,ξ

1

2
||w||2 + C ·

l∑
i=1

ξi

subject to yi · (w⊺ · xi + b) ≥ 1− ξi, i = 1, . . . , l,

ξ ≥ 0, i = 1, . . . , l,

(2.4)

where C ∈ R is some constant scaling factor for the penalization of samples vio-
lating the margin. If C is large, the optimal margin will generally be narrow, and if
C is small, the optimal margin will generally be wide. Thus, C acts as a regularization
parameter, governing the trade-off between the complexity of the decision boundary
and the predictive accuracy on the training set.

The concept of semi-supervised SVMs, or S3VMs, is similar: we want to maxi-
mize the margin, and we want to correctly classify the labeled data (implicitly incorpo-
rated into the objective function via the margin violation cost). However, in the semi-
supervised setting, an additional objective becomes apparent: we also want to minimize
the number of unlabeled samples violating the margin. Since the labels of the unlabeled
data are unknown, unlabeled samples violating the margin are penalized based on their
distance to the closest margin.

The intuitive extension of the optimization problem for S3VMs thus becomes

minimize
w,b,ξ

1

2
||w||2 + C ·

l∑
i=1

ξi + C ′ ·
n∑

i=l+1

ξi

subject to yi · (w⊺ · xi + b) ≥ 1− ξi, i = 1, . . . , l,

|w⊺ · xi + b| ≥ 1− ξi, i = l + 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n,

(2.5)

where C ′ ∈ R is the margin violation cost associated with unlabeled samples.
S3VMs were proposed by Vapnik [183], who motivated the problem from a more

transductive viewpoint: instead of optimizing only over the weight vector, bias and slack
variables, they proposed to also optimize over the label predictions ŷU . The constraint
for the unlabeled data was formulated similarly to the constraint for the labeled data,
but with the predicted labels ŷU . Though different at first sight, this formulation is
equivalent to the optimization problem we describe in Equation 2.5, since any labeling
ŷU can only be optimal if, for each ŷi ∈ ŷU , the sample xi is on the correct side of the
decision boundary (i.e., ŷi · (w⊺ · xi + b) ≥ 0). Otherwise, a better solution could be
obtained by simply inverting the labeling of the sample.

The extension of SVMs to the semi-supervised setting carries one significant dis-
advantage: the optimization problem becomes non-convex. Training S3VMs thus be-
comes an NP-hard problem. Most efforts in the study of S3VMs have been focused on
efficiently training them.

Initial efforts showed promising results in applying S3VMs, but only to small data
sets. For instance, Bennett and Demiriz proposed to use the L1-norm instead of the
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L2-norm in the objective function and pose the problem as a mixed integer program-
ming problem [16]. The earliest widely used optimization approach was introduced
by Joachims [90], who proposed to solve the optimization problem by starting with a
random assignment of ŷU and a low value for C ′. Each iteration of the algorithm then
consists of three steps. Firstly, the supervised SVM optimization problem correspond-
ing to the current label assignment ŷU is solved. Secondly, the algorithm inverts the
labels of each pair of samples where inverting the labels would improve the objective
function until no more such pairs exist. Lastly, C ′ is increased. The algorithm termi-
nates when C ′ reaches a predefined required parameter value for C ′ specified by the
user.

Other approaches to solving S3VMs have been proposed. For instance, several stud-
ies have proposed convex relaxations of the minimization function, which can be solved
using semidefinite programming methods. The earliest such approach was proposed
by De Bie and Cristianini [49, 50]; later, this approach was extended to the multiclass
setting by Xu and Schuurmans [202]. These approaches, however, do not scale to large
amounts of data due to their time complexity.

Chapelle et al. provide an overview of optimization procedures for S3VMs up until
2008 [34], and broadly categorize S3VM optimization methods into two categories:
combinatoral methods, finding the label assignment ŷU that can minimize the objective
function, and continuous methods, directly solving the optimization problem using label
assignments ŷi = sign(w⊺ · xi + b). The approaches we have thus far described are
all combinatoral approaches. However, the formulation we provide in Equation 2.5
corresponds to the continuous approach. Such an approach is taken, for example, with
the Concave-Convex Procedure (CCCP), which decomposes the non-convex objective
function into a convex and a concave component, and iteratively solves the optimization
problem by replacing the concave component with a linear approximation at the current
solution [34, 40].

Other continuation methods make use of the fact that the optimization problem
in Equation 2.5 can be reformulated as an optimization problem without constraints.
This stems from the fact that, if a labeled point xi ∈ XL does not violate the margin,
ξi = 0 in the optimal solution. If it does violate the margin, ξi = 1− yi · (w⊺ · xi + b).
For unlabeled data points xi ∈ XU , ξi = 0 if it does not violate the margin, and
ξi = 1− |w⊺ · xi + b| if it does violate the margin. Thus, the optimization problem can
be reformulated as

minimize
w,b

1

2
||w||2 + C ·

l∑
i=1

max (0, 1− yi · f(xi))

+ C ′ ·
n∑

i=l+1

max (0, 1− |f(xi)|) ,
(2.6)

where f(xi) = w⊺ · xi + b.
Such approaches include∇TSVM by Chapelle and Zien [35], who create a smooth

approximation of Equation 2.6 by squaring the loss for the labeled data points, and by
approximating the loss for the unlabeled data points with a Gaussian. This optimization
problem is then solved by gradient descent, where C ′ is gradually increased from some
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value close to 0 to its intended value. Chapelle et al. take a similar approach in [32],
where they keep C ′ fixed and use a continuation approach to transform the objective
function from using only the labeled data to the final objective function.

As is the case for most semi-supervised learning methods [160], S3VMs are not
guaranteed to perform better than their supervised counterparts. Specifically, if one of
the underlying assumptions of the semi-supervised learning method is violated, there is
a large risk of degrading performance when introducing the semi-supervised objective.
In the case of S3VMs, many highly diverse decision boundaries may exist that pass
through a low-density area and achieve reasonable classification performance on the
labeled data. Consequently, one can expect the generalization performance of such
classifiers to exhibit significant variance.

Li and Zhou propose to mitigate this problem by considering a diverse set of low-
density separators and choosing the separator that performs best under the worst pos-
sible ground truth [113]. Like all S3VM implementations, their method is premised
on the assumption that the optimal decision boundary lies in a low-density area. Their
algorithm, called S4VM (safe S3VM), consists of two stages. Firstly, a diverse set of
low-density decision boundaries is constructed. Secondly, the decision boundary with
maximal worst-case performance gain over the supervised decision boundary is cho-
sen as the S4VM’s decision boundary. This problem formulation limits the probability
that the solution found by S4VMs exhibits performance worse than the corresponding
supervised SVM.

The performance gain is formulated as the resulting increase in the number of cor-
rectly labeled samples, minus the increase in the number of incorrectly labeled samples.
The latter term is multiplied with a factor λ ∈ R, governing the amount of risk of
degradation in performance one wishes to take. Formally, they define the score func-
tion J(ŷ, y, ysvm) for a set of predicted labels ŷ, ground truth y, and supervised SVM
predictions ysvm as

J(ŷ, y, ysvm) = earn(ŷ, y, ysvm)− λ · lose(ŷ, y, ysvm), (2.7)
where earn and lose denote the increases in correctly labeled samples and incorrectly
labeled samples, respectively. The optimal label assignment ȳ in the worst-case true
labeling of samples can then be found as

ȳ ∈ arg max
y∈{±1}u

[
min
ŷ∈M

J(y, ŷ, ysvm)

]
, (2.8)

whereM is the set of all candidate label assignments such that the corresponding de-
cision boundary cuts through a low-density area. Due to the optimization over the
possible label assignments, this optimization problem is NP-complete. The authors
propose a convex relaxation of the problem to find a candidate solution. Premised on
the assumption that the true label assignment is indeed in this set, the authors prove
that, if λ ≥ 1, the performance of S4VM is never lower than the performance of the
corresponding SVM. They validate this finding empirically, and show that their imple-
mentation achieves performance improvements over SVM that are similar to S3VM
implementations, but that, contrary to the other implementations, performance never
significantly degrades relative to supervised SVMs.
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Clearly, the formulation of the second stage of the optimization is not limited to
support vector machines. Indeed, it could theoretically be applied to any other semi-
supervised learning algorithm. Li and Zhou additionally propose to perform both stages
simultaneously in a deterministic annealing approach [113].

Gaussian processes

The notion of margin maximization is directly incorporated into support vector ma-
chines, and it should thus not come as a surprise that they are easily extended to the
semi-supervised setting. However, similar efforts have been made with other super-
vised methods as well. One such extension is proposed by Lawrence and Jordan, who
consider an extension of Gaussian processes to handle unlabeled data [105].

Gaussian processes are a family of non-parametric models that estimate the poste-
rior probability over the function f mapping points in the input space to a continuous
output space. When used for classification purposes, this output is in turn mapped to
the label space Y = {−1, 1}. In the learning phase, f is learned as the function that
maximizes the likelihood of observing the data points ((xi, yi))li=1 given f . The re-
sulting model can be considered an l-dimensional Gaussian distribution over the label
vector y of the input data points, where l is the number of labeled data points. Predic-
tions for previously unseen data points x∗ can then be made by the model by evaluating
the posterior probability of the data point’s class label, conditioned on the observed
data points X , their associated labels y, and the observed data point x∗. The associated
covariance matrix is the Gram matrix obtained from all l + 1 data points using some
kernel function k.

Lawrence and Jordan extend Gaussian processes to the semi-supervised case by in-
corporating the unlabeled data points into the likelihood function [105]. Specifically,
the likelihood for an unlabeled data point x is low when it is close to the decision
boundary (i.e., when f(x) is close to 0), and high when it is far away from the deci-
sion boundary. The space of possible labels is expanded to include a null category; the
posterior probability of this null category is high around the decision boundary. By
imposing the constraint that unlabeled data points can never be mapped to the null
category, the model is explicitly discouraged from choosing a decision boundary that
passes through a high-density area of unlabeled data points. In other words, unlabeled
data points should be far away from the decision boundary.

This extension of Gaussian processes to the semi-supervised setting has an inter-
esting side effect: contrary to supervised Gaussian processes, introducing additional
(unlabeled) data can increase the posterior variance. In other words, additional data
can increase uncertainty. This effect stems from the observation that the likelihood
function for a single unlabeled data point x∗ can be bimodal if f(x∗) is close to 0.

Density regularization

Another way of encouraging the decision boundary to pass through a low-density area
is to explicitly incorporate the amount of overlap between the estimated posterior class
probabilities into the cost function. When there is a large amount of overlap, the deci-
sion boundary passes through a high-density area, and when there is a small amount of
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overlap, it passes through a low-density area. Several approaches have been proposed
to use this assumption to regularize the classification objective function.

Grandvalet et al. propose to formalize this in the maximum a posteriori (MAP)
framework by imposing a prior on the model parameters, favoring parameters inducing
small class overlap in the predictive model [33, 72]. In particular, they use Shannon’s
conditional entropy as a measure of class overlap. The prior is weighted by a constant
λ ∈ R. The resulting objective is generally non-convex. The authors propose solving
the optimization problem by means of deterministic annealing. The entropy regular-
ization method can be applied to any supervised learning method based on maximum-
likelihood; the authors report experiments using logistic regression.

Corduneanu and Jaakkola propose to directly incorporate p(x), estimated from the
unlabeled data, into the objective function [42]. They propose a regularizer that reflects
the belief that, in high-density areas, the posterior probability of y conditioned on x
should not vary too much. They cover the entire domain in multiple, small regions, and
regularize the objective function by the sum of the mutual information between labels
and inputs in each of these regions, weighted by the estimated density in the region.
Their work is an extension of the work by Szummer and Jaakkola [170].

Liu et al. propose to incorporate the prior density into the node splitting crite-
rion of decision trees [118, 119]. At each decision tree node, they attempt to find
a hyperplane to split the data, penalizing high-density areas. They approximate p(x)
by using Gaussian kernel density estimators. They conduct experiments with random
forests consisting of 100 of the resulting semi-supervised decision trees. They report
significant performance improvements over supervised random forests in several data
sets.

Pseudo-labeling as a form of margin maximization

Depending on the base learner used, the self-training approach described in Section
2.3 can also be regarded a margin-maximization method. For instance, when using
self-training with supervised SVMs, the decision boundary is iteratively pushed away
from the unlabeled samples. Even though the unlabeled data are not explicitly incorpo-
rated into the loss function, the underlying assumption which is exploited is, like with
S3VMs, the low-density assumption.

2.5.2 Perturbation-based methods
The smoothness assumption entails that a predictive model should be invariant to local
perturbations in its input. This means that, when we augment a data point x with noise
to produce the noisy sample x̃, the predictions for the noisy input and the clean input
should be similar. Since this expected similarity is not dependent on the true label for
the data points, we can make use of unlabeled data.

Many different methods exist to incorporate the smoothness assumption into a
given learning algorithm. For instance, one could apply noise to the input data points,
and incorporate the difference between the clean and the noisy predictions into the loss
function. Alternatively, one could implicitly apply noise to the data points by perturbing
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the model itself. These type of methods comprise what we refer to as perturbation-based
methods, which are based on perturbations of the input or the model.

Perturbation-based methods are often implemented with neural networks. Due
to their straightforward incorporation of additional (unsupervised) loss terms in their
objective function, they are extendable to the semi-supervised case with relative ease.
In recent years, neural networks have received renewed interest due their successful
application in various application areas (see, e.g., [41, 101, 106]). As a result, interest
in semi-supervised neural networks has risen as well. In particular, neural networks with
many layers, so-called deep neural networks, have shown interesting extensions to the
semi-supervised case. These intrinsically semi-supervised neural networks differ from
the neural networks used for feature extraction, which we discussed in Section 2.4.1:
the unlabeled data is incorporated directly into the optimization objective, rather than
in a separate preprocessing step. Before continuing our discussion of such methods, we
provide a short, general introduction to neural networks for the reader not too familiar
with them. For a more extensive introduction to (deep) neural networks, we refer the
reader to [69].

Neural networks

A neural network is a computing system that computes an output vector by propagating
an input vector through a network of simple processing elements with weighted connec-
tions between them. These simple processing elements are called nodes, which contain
an activation function that transforms their input. Nodes are usually grouped together
into layers, where nodes from each layer are only connected to nodes from adjacent lay-
ers. The output vector is calculated by propagating the input vector, which constitutes
the first layer, through the weighted connections of the network. The output of each
node is calculated by applying its activation function to the weighted sum of its inputs.

In supervised neural networks, the network weights are generally optimized to cal-
culate the desired output value for a given input vector. Considering the classification
task, let f : Rd 7→ R|Y| denote the vector-valued function modeled by a neural network,
mapping an input vector x ∈ Rd to a |Y|-dimensional output vector, where Y denotes
the set of possible classes. The function f is modeled by a neural network consisting
of one or multiple layers, and f(x) is the output obtained by propagating the input x
through the network and evaluating the activations of the final layer.

A loss function ℓ is then defined, calculating the cost associated with output layer
activations f(x) for a sample x with true label y. The complete loss function, then, is
defined as

L(W ) =

l∑
i=1

ℓ(f(xi;W ), yi), (2.9)

where W denotes the weight matrix of the matrix, where the element at position (i, j)
denotes the weight between node i and j. The explicit notion of the parametrization of
f by W is often omitted for conciseness.

The network’s weights are iteratively optimized by passing input samples through
the network and propagating the share of one or more samples in the cost L backwards
through the network. In this process, known as backpropagation, the network weights
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are updated using gradient descent or a similar method to minimize the loss [69]. To
converge, the network generally needs to pass over the entire training set multiple times.
One such pass over the entire training set is known as an epoch.

Semi-supervised neural networks

The simplicity and efficiency of the backpropagation algorithm for a great variety of
loss functions make it attractive to simply add an unsupervised component to L. This
approach, which can be considered a form of regularization over the unlabeled data,
is employed by virtually all semi-supervised deep learning methods. Furthermore, the
hierarchical nature of representations in deep neural networks make them a viable can-
didate for other semi-supervised approaches. If deeper layers in the network express
increasingly abstract representations of the input sample, one can argue that unlabeled
data could be used to guide the network towards more informative abstract representa-
tions. This argument can be readily implemented in deep neural networks through the
smoothness assumption, and gives rise to perturbation-based semi-supervised neural
networks.

Ladder networks

The first such approach is the semi-supervised ladder network, proposed by Rasmus et
al. [143]. It extends a feedforward network to incorporate unlabeled data by using the
feedforward part of the network as the encoder of a denoising autoencoder, adding a
decoder, and including a term in the loss function penalizing the reconstruction cost.
The underlying idea is that the network should be able to discover useful features for
the unlabeled data (i.e., ones that are predictive of the label).

Consider a feedforward network with K hidden layers. We denote the inputs of
a layer k (after normalization) as z(k), and the layer’s activations (i.e., after applying
the activation function) as h(k). The weights are stored in the weight matrix W . In a
regular feedforward network, the loss function of a sample is calculated by comparing
the activations of the final layer f(xi) = h(K) to the sample’s label yi with ℓ(f(xi), yi).
For the same reason, when referring to layer inputs and activiations, we do not ex-
plicitly mention the sample x, nor the parametrization W (e.g., we write h(k) for the
activation vector of the k-th layer in a neural network with weights W for an input
sample x). As is shown in Equation 2.9, the final loss function for the network is then
L =

∑l
i=1 ℓ(f(xi), yi).

Ladder networks add an additional term to L, penalizing the sensitivity of the net-
work to small perturbations of the input. This is achieved by treating the entire network
as the encoder part of a denoising autoencoder: isotropic Gaussian noise with mean 0
and fixed variance is added to the input samples, and the existing feedforward network
is treated as the encoder part. A decoder is then added alongside it, which is supposed
to take the final-layer representation h(K) of the noisy input sample x̃, and transform
it to reconstruct x. To achieve this latter goal, a reconstruction cost is added to the loss
function of the network (which also still includes the original term for labeled data),
allowing it to be trained with backpropagation. This reconstruction loss can, of course,
be applied to unlabeled data. Although the autoencoder component of ladder networks
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is highly similar to regular denoising autoencoders, it differs from them in two ways.
Firstly, the ladder network injects noise not only at the input layer, but at every layer.

We denote the noisy inputs of a layer k as z̃(k), and the resulting activations as h̃(k).
The supervised loss component for each sample then becomes ℓ(h̃(K), y): i.e., the loss
function is evaluated against the output for the noisy sample. Note that, in the testing
phase, the output is generated without adding any noise.

Secondly, ladder networks utilize a different reconstruction cost calculation. Where
regular denoising autoencoders only penalize the difference between the clean input x
and the reconstructed version x̂ of the noisy input x̃, the ladder network also penalizes
local reconstructions of the hidden representations of the data. To do so, they enforce
the decoder to have K layers, the same number of layers as the original network (the
encoder). Each of these layers is also required to have the same number of neurons
as the corresponding layer in the encoder. As a sample passes through the encoder,
noise is added to the layer inputs at each layer. Then, at each layer in the decoder, the
reconstructed representation ẑ(k) is compared to the hidden representation z(k) of the
clean sample x at layer k in the encoder. This, of course, requires each sample to pass
through the network twice: once without noise (to obtain z), and once with noise (to
obtain z̃ and and the reconstructed ẑ).

The final semi-supervised cost function of ladder networks then becomes

L(W ) =

l∑
i=1

ℓ(f(xi), yi) +
n∑

i=1

K∑
k=1

ReconsCost(z(k)i , ẑ(k)i ), (2.10)

where ReconsCost(·, ·) is defined as the norm of the difference between the two nor-
malized latent vectors.

Through their penalization of reconstruction errors, ladder networks effectively at-
tempt to push the network towards extracting interesting latent representations of the
data. The method is premised on the assumption that a latent representation h(K) that
is useful for reconstructing x, is also useful for predicting the sample label. Rasmus et
al. show that ladder networks achieve state-of-the-art results on image data sets with
partially labeled data, including MNIST [143]. Interestingly, they also show improve-
ments when using only labeled data.

Rasmus et al. also propose a simpler, computationally more efficient variant of lad-
der Networks. This method, generally referred to as the Γ-model in the literature, only
includes the reconstruction cost for the top-level layer. Therefore, no full decoder needs
to be constructed.

As outlined above, several modifications to regular neural networks are introduced
in ladder networks, and their individual contributions are not immediately distinguish-
able. An extensive empirical study of the different components of ladder networks and
their influence on performance was conducted by Pezeshki et al. [138]. They show
that the reconstruction cost at the first layer of the neural network, combined with the
introduction of noise at the first layer, is one of the key drivers of the success of ladder
networks.
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Pseudo-ensembles

Instead of explicitly perturbing the input data, one can also perturb the neural network
model itself. Robustness in the model can then be promoted by imposing a penalty
on the difference between the activations of the perturbed model and the activations
of the original model. Bachman et al. propose a general framework for this approach,
where an unperturbed parent model with parameters θ is perturbed to yield one or more
child models [5]. In this framework, which they call pseudo-ensembles, the perturbation is
obtained from a stochastic process p(ξ), from which model noise ξ can be drawn. The
perturbed model fθ(x; ξ) is then generated based on the unperturbed parent model
fθ(x) and the model noise. The semi-supervised loss function then consists of a super-
vised part and an unsupervised part. The supervised component optimizes the expected
loss of a perturbed model for labeled samples, and the unsupervised component opti-
mizes the consistency across perturbed models for the unlabeled samples.

Consider a neural network with K layers, and let fkθ (x) and fkθ (x; ξ) denote the
k-th layer activations of the unperturbed and the perturbed model, respectively. The
expectation of the joint loss function of the pseudo-ensemble for neural networks then
becomes

E
(x,y)∼p(x,y)

E
ξ∼p(ξ)

L(fθ(x; ξ), y) (2.11)

+ E
x∼p(x)

E
ξ∼p(ξ)

K∑
k=1

λk · Vk
(
fkθ (x), f

k
θ (x; ξ)

)
, (2.12)

where the consistency loss Vk penalizes differences between the activations of the un-
perturbed and perturbed models at the k-th layer for the same input sample; λk is the
relative weight of that particular cost term. The expectations can be approximated by
replacing the expectations over p(x) and p(x, y) with the true samples and by sampling
from the noise process. Bachman et al. propose to gradually increase λ over time, in
effect placing more weight on the supervised objective in early iterations.

One particularly popular noise process is dropout, which randomly sets weights to
0 (i.e., removes connections in the neural network) in each training iteration [164].
In its originally proposed form, it was only applied to the supervised loss component.
However, Wager et al. [185] and Bachman et al. [5] showed that it can be cast as
regularization and, as such, be applied to unlabeled data as well.

The framework proposed by Bachman et al. is not limited to semi-supervised set-
tings: the supervised term in the loss function can be applied to any supervised learning
problem. Furthermore, a similar approach could be applied to other learning algorithms
than neural networks, although the per-layer activation comparison would have to be
replaced by an alternative. Of course, since neural networks are entirely parametrized
by connection weights, they offer a relatively straightforward implementation of model
perturbation.
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Π-model

Instead of comparing the unperturbed parent model with the perturbed models in the
loss function, one can also compare the perturbed models directly. A simple variant of
this approach, where two perturbed models are trained, is suggested by Laine and Aila
[103]. They use dropout [164] as the perturbation process, and penalize the differences
in the final layer activations of the two models with the squared loss. The weight of the
unsupervised term in the loss function starts at 0, and is gradually increased. This model,
which they name the Π-model, can be seen as a simple variant of pseudo-ensembles.

Temporal ensembling

Since the noise process is a random process, the entire neural network model can be
considered a stochastic model. With the Π-model, this random process is regularized
by penalizing the difference in output of two runs of the sampled model on the same in-
put. This idea can be extended to more than two perturbed models. Such an approach is
taken by Sajjadi et al., who additionally perturb the input samples with random transfor-
mations [151]. Of course, that will increase the running time of each training iteration
quadratically in the number of perturbations. Pseudo-ensembles solve this problem by
comparing the perturbed model activations to the activations of the unperturbed model.

In the same paper in which they propose the Π-model, Laine and Aila propose a
different approach to combining multiple perturbations of the model: they compare
the activations of the neural network at each epoch to the activations of the network at
previous epochs [103]. In particular, after each epoch, they compare the output of the
model to the exponential moving average of the outputs of the model in previous epochs.
Since the model weights are changed in each iteration, this cannot be considered a form
pseudo-ensembling, but it does act on similar principles: the model output is smoothed
over model perturbations. Based on the procedure of penalizing the difference in the
model outputs at different points in the training process, Laine and Aila name this
model temporal ensembling.

Temporal ensembling can be considered an extension of the Π-model. However,
instead of comparing f(x; ξ) to f(x; ξ′) for ξ, ξ′ ∼ p(ξ), it is compared to the exponen-
tial moving average of final-layer activations in previous epochs. Since the loss function
for unlabeled data points depends on the model output in previous iterations, temporal
ensembling is closely related to pseudo-labeling methods such as the pseudo-label ap-
proach [107] and self-training. The crucial difference, however, is that the entire set of
final-layer activations is compared to the activations of the previous model, whereas self-
training approaches and pseudo-label convert these outputs to a single, hard prediction
(the pseudo-label).

Mean Teacher

When training a neural network using temporal ensembling, unlabeled data points are
incorporated into the learning process at large intervals. Since the activations of each
sample are only generated once per epoch, it takes a long time for the activations of
unlabeled samples to influence the inference process. Tarvainen and Valpola attempt to
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overcome this problem by considering moving averages over model weights, instead of
moving averages over model activations [177].

They suggest to calculate the exponential moving average of model weights at each
training iteration, and compare the resulting final-layer activations to the final-layer
activations when using the latest set of model weights. Furthermore, they impose noise
on the input samples to increase robustness. Formally, consider a neural network with
weights θt at iteration t, and a set of averaged weights θ′t. The loss function ℓ for an
unlabeled sample, then, is calculated as ℓ(x) = ||f(x̃, θ′t)− f(x̃′, θt)||2, where x̃ and x̃′
are two noise-augmented versions of x. After updating θ using backpropagation, θ′t+1

is calculated by θ′t+1 = α · θ′t + (1− α) · θt+1, where α is the decay rate.
Tarvainen and Valpola evaluate their method on two image data sets using different

amounts of labeled data. They compare their approach to several other methods, and
report performance comparable to the Π-model and temporal ensembling.

2.5.3 Manifolds
Perturbation-based methods make direct use of the smoothness assumption, penalizing
differences in a classifier’s behavior under slight changes in the input. However, one
can imagine that not all minor changes to the input should yield similar outputs. In
particular, if the data lie on lower-dimensional manifolds, one can expect the classifier to
be insensitive only to minor changes along the manifold. This observation corresponds
to the manifold assumption, which forms the basis of a significant body of intrinsically
semi-supervised learning algorithms.

An m-dimensional manifold is a subspace of our original input space that locally
resembles Euclidean space Rm. Reiterating the definition from Section 2.1, the mani-
fold assumption states that (a) data points lie on a lower-dimensional manifold and (b)
data points lying on the same lower-dimensional manifold have the same label. For-
mally, the first part of the manifold assumption states that each conditional probability
distribution p(x|y = k) for class k has a structure corresponding to the union of one
or more Riemannian manifoldsM. The second part, then, states that points on the
same Riemannian manifoldM should have the same label. When these assumptions
hold, one can expect that knowledge of the manifolds in our input space can aid in
classification.

In this section, we consider two general types of methods utilizing the manifold as-
sumption. Firstly, we consider manifold regularization techniques, which define a graph
over the samples and implicitly penalize differences in classifier predictions for samples
with small geodesic distance. Secondly, we consider manifold approximation techniques,
which explicitly estimate the manifoldsM on which the data lie and optimize an ob-
jective function accordingly.

Manifold regularization

Consider a labeled data point xi and an unlabeled data point xj , and assume xi lies on
some manifoldM. Then we expect xj to be assigned the same label as xi if it also lies
on manifoldM. If it does indeed lie on the same manifold, there is, by definition of
the manifold, a path along the manifold between xi and xj (a so-called geodesic). Since
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we assume that all data points on the same manifold have the same label, and that
the conditional probability distribution p(x|y = yi) corresponds to this manifold, we
expect there to be more samples x∗ located on the manifold.

If we have enough unlabeled samples, we can thus expect there to be some “path”
from xj to xi, passing through other labeled or unlabeled samples, such that each path
segment has a relatively small length. We can concretize this notion of a path by defin-
ing a graph over all data points, connecting samples that are close together in the original
input space with some possibly weighted edge. This is the underlying principle of graph-
based methods, which also form the basis of transductive semi-supervised learning (see
Section 2.6).

This approach is proposed by Belkin et al., who formulate a general manifold reg-
ularization framework [12, 13]. They consider a kernel K : X × X 7→ R with a
corresponding hypothesis space HK and an associated norm || · ||K . For supervised
problems, then, they formulate the following general optimization problem:

minimize
f∈HK

l∑
i=1

ℓ(f(xi), yi) + γ · ||f ||2K , (2.13)

for some loss function ℓ on labeled data. Here, γ denotes the relative influence of the
smoothing term. This objective function simultaneously penalizes misclassifications
and promotes smoothness of the predictive function. For semi-supervised problems,
they add an additional unsupervised regularization term, penalizing differences in label
assignments for pairs of samples that have a direct edge between them in the graph. Im-
plicitly, they thereby encourage samples on the same approximated manifold to receive
the same label prediction.

This unsupervised regularization term gives rise to the class of manifold regulariza-
tion methods. Consider a similarity graph with symmetric weighted adjacency matrix
W , where Wij denotes the similarity between samples xi and xj (Wij = 0 if the sam-
ples are not connected). Let D denote the degree matrix, which is a diagonal matrix
with Dii =

∑n
j=1Wij . The manifold regularization term ||f ||2I is then defined as

||f ||2I =
1

2

n∑
i=1

n∑
j=1

Wij(f(xi)− f(xj))2. (2.14)

The regularization term can be expressed as f⊺ · L · f, where L = D −W is the
graph Laplacian and f ∈ Rn is the vector of evaluations of f for each xi. The final
optimization problem, including the manifold regularization term, becomes

minimize
f∈HK

1

l

l∑
i=1

ℓ(f(xi), yi) + γ · ||f ||2K + γU · ||f ||2I , (2.15)

where γU determines the relative influence of the manifold regularization term.
This general framework leads to semi-supervised extensions of popular supervised

learning algorithms, such as Laplacian support vector machines (LapSVM), where the
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loss function ℓ is defined as the hinge loss, i.e., ℓ(ŷ, y) = max(1 − yŷ, 0). The super-
vised objective of LapSVM maximizes the margin, and the unsupervised objective max-
imizes consistency of predictions along the estimated manifolds. In the paper propos-
ing LapSVM, Belkin et al. [13] suggest to solve the optimization problem in the dual
form, similar to popular solving techniques for supervised SVMs; the resulting time
complexity is O(n3). Melacci and Belkin suggest solving the optimization problem in
its primal form [124]. They combine an early stopping criterion with a preconditioned
conjugate gradient, reducing the time complexity to O(c · n2) for some c which is em-
pirically shown to be significantly smaller than n. Qi et al. suggest to extend twin
SVMs, which optimize two SVM-like objective functions to yield two nonparallel de-
cision boundaries (one for each class) [88], to include the LapSVM regularization term
[141]. Sindhwani et al. extend manifold regularization to the co-regularization frame-
work [158, 159] (see Section 2.3.2). They propose to construct two classifiers using an
objective function similar to the objective function of LapSVM for two different views.
Niyogi provides some theoretical analysis on the manifold regularization framework,
and analyzes its usefulness in semi-supervised learning [132].

Zhu and Lafferty propose to incorporate a manifold regularization term in a gen-
erative model [222]. They express the data-generating distribution as a mixture model,
where the manifold is locally approximated by a mixture model component. The loss
function they optimize consists of a regularizer over the graph and a generative compo-
nent. Weston et al. incorporate a manifold regularization term in deep neural networks
[194]. They propose several methods to incorporate the manifold structure using an
auxiliary embedding task, which encourages the latent representations in the neural net-
work to be similar for similar samples. Furthermore, they suggest to include a regular-
ization term that explicitly pushes the latent representations of nonsimilar data points
(defined as not being neighbors in the underlying graph) further apart. This approach
is applied to hyperspectral image classification by Ratle et al. [144].

The graph construction process is nontrivial, and involves many hyperparameters.
For instance, one can use different ways of determining edge weights, but also dif-
ferent connectivity criteria (k-NN, for instance, is a popular choice). This makes the
performance of manifold regularization methods highly dependent on hyperparame-
ter settings. Geng et al. attempt to overcome this problem by first selecting a set
of candidate Laplacians using different hyperparameter settings. They then pose the
optimization problem as finding the linear combination of Laplacians that minimizes
the manifold regularization objective [64]. Formally, let there be m candidate Lapla-
cians L1, . . . , Lm. Assume that the optimal manifold L∗ lies in the convex hull of
L1, . . . , Lm, i.e., L∗ =

∑m
j=1 µj ·Lj with

∑m
j=1 µj = 1 and µj ≥ 0 for j = 1, . . . ,m.

Since eachLj is a valid graph Laplacian, their linear combination is a valid graph Lapla-
cian as well. Using exponential weights in the Laplacian, the manifold regularization



2.5. INTRINSICALLY SEMI-SUPERVISED METHODS 39

term ||f ||2I then becomes

||f ||2I = f⊺ · L · f (2.16)

= f⊺ · (
m∑
j=1

µjLj) · f (2.17)

=
m∑
j=1

µj · ||f ||2I(j), (2.18)

where ||f ||2I(j) is the manifold regularization term for candidate Laplacian Lj . This
final regularization term is then used in the original optimization problem from Equa-
tion 2.15, with the addition of a regularization term ||µ||2 to prevent the optimizer
from overfitting to one manifold, and the constraint that

∑m
j=1 µj = 1. The objective

function is then optimized with respect to µ and f , which Geng et al. propose to do
in an EM-like fashion (i.e., fixing one and optimizing the other alternatingly). Their
approach, which they call ensemble manifold regularization, is shown to be superior to
LapSVM when applied to the SVM objective function on both synthetic and real-world
data sets [64].

Aside from the method proposed by Geng et al. [64], graph construction methods
have mainly been studied in the context of transductive semi-supervised learning. We
cover these methods extensively in Section 2.6.

Manifold approximation

Manifold regularization techniques introduce a regularization term that directly uses
the fact that manifolds locally represent lower-dimensional Euclidean space. However,
one can also consider a two-stage approach, where the manifold is first explicitly ap-
proximated and then used in a classification task. This is the approach taken by manifold
approximation techniques, which construct an explicit representation of the manifold.
We note that such approaches have a close relation to, and can in some cases even be
considered as, semi-supervised preprocessing (see Section 2.4).

Rifai et al. propose such an approach, where the manifolds are first estimated us-
ing contractive autoencoders (CAE, [147]), after which a supervised training algorithm
is applied to use the extracted manifolds [146]. CAEs are a variant of autoencoders
that, in addition to the normal reconstruction cost term in autoencoders, penalize the
derivatives of the output activations with respect to the input values. By doing so, they
penalize the sensitivity of the learned features to small perturbations in the input with-
out relying on sampling these perturbations (like denoising autoencoders do). Rifai et
al. claim that CAEs do not merely penalize sensitivity to small perturbations in the
input, but that they in fact penalize small perturbations of the input data along the
manifold [147]. They argue that this effect occurs due to the balance of promoting
reconstruction and penalizing sensitivity to inputs. In other words, they claim to act
directly on the manifold assumption.

The loss function L utilized by contractive autoencoders with reconstruction cost
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ℓ(·, ·) is

L =

n∑
i=1

[ℓ(g(h(xi)), yi)] + λ · ||J ||2F , (2.19)

where ||J ||F is the Frobenius norm of the Jacobian matrix of the outputs with respect to
the inputs, i.e., the sum of the squared partial derivatives of each output activation with
respect to each input value. Rifai et al. additionally propose to penalize the Hessian
of the output values. Due to the computational complexity of its explicit calculation,
they propose to approximate it as the difference between the Jacobians corresponding
to small perturbations of the input.

Using singular value decomposition, they estimate the tangent plane at each input
point to approximate the actual manifolds. As a result, the distance between two data
points along the manifold can be estimated, and can be used in classification via, for
example, k-nearest neighbors. Additionally, they suggest to use a deep neural network
pre-trained with multiple, stacked contractive autoencoders, where an additional term
is added to the loss function, explicitly penalizing sensitivity of the outputs to pertur-
bations along the tangent plane.

A manifold can be described as a collection of overlapping charts, each having a
simple geometry, that jointly cover the entire manifold. Such a collection of charts
is known as an atlas. Pitelis et al. suggest to approximate these charts explicitly, as-
sociating each with an affine subspace [139, 140]. They alternate between assigning
data points to charts, and choosing the affine subspace best matching the data for each
chart. The charts are initialized by using principal component analysis on a set of ran-
dom subspaces. From this, they obtain both a set of charts and a soft assignment of
points to charts (since points can be associated with more than one chart). From these
charts and soft assignments, kernels are generated that are then used in SVM-based
supervised learning.

2.5.4 Generative models
The aforementioned methods are all discriminative: their only goal was to infer a func-
tion that can classify data points. In some cases, they yield probabilistic predictions;
in others, they only yield the most likely class to assign. In all cases, they approach
the classification problem without explicitly modelling any of the data-generating dis-
tributions. In contrast, the primary goal of methods based on generative models is to
model the process that generated the data: it explicitly constructs a model of the input
space. When the generative model is conditioned on the label y, it can also be used for
classification.

Mixture models

If prior knowledge about p(x, y) is available, generative models can be very powerful.
For instance, consider the case where we know that our data p(x, y) is comprised of a
mixture of k Gaussian distributions, each of which corresponds to a certain class. Most
discriminative methods would not be able to properly incorporate this prior informa-
tion. Instead, one would be best served by simply fixing the model as a mixture of k
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Gaussian components. Each component j = 1, . . . , k has 3 parameters: a weight πj
(where

∑k
j=1 πj = 1), mean vector µj , and covariance matrix Σj ; the most likely

parameters can then be inferred (e.g., via expectation-maximization (EM) [53]). This
model is generative: it models the distribution p(x, y), from which samples (x, y) can
be drawn. The model can then also be used for classification: since the inference pro-
cedure yields an estimate p̂(x|y) of each distribution p(x|y), one can simply assign the
class c to an unlabeled sample xi ∈ XU that maximizes p̂(xi|yi = c) · p(yi = c). Note
that, in the case of Gaussian mixture models described earlier, p(yi = c) = πc.

The application of mixture models to generative modelling comes with several caveats
[44, 216]. First of all, the mixture model should be identifiable: each distinct parameter
choice for the mixture model should determine a distinct joint distribution, up to a per-
mutation of the mixture components. Secondly, mixture models hinge on the critical
assumption that the assumed model is correct. If the model is not correct, i.e., the true
distribution p(x, y) cannot be modeled by the assumed model, unlabeled data may hurt
performance rather than improve it.

In real-world data, the model correctness assumption rarely holds. Therefore, using
mixture models for generative modelling can prove difficult. Some approaches exist to
mitigate these problems (e.g., by varying the influence of unlabeled data in EM [131]).
However, the rigidity of mixture models has caused attention to shift to more flexible
generative models.

Generative adversarial networks
In recent years, a new type of learning paradigm known as generative adversarial net-
works (GAN) has been proposed for simultaneous construction of generative and dis-
criminative learners [70]. Generally implemented using neural networks, they simul-
taneously train a generative model, tasked with generating samples that are difficult
to distinguish from samples stemming from the true distribution, and a discriminative
classifier, tasked with predicting whether samples are generated from the true distribu-
tion (“real” samples) or not (“fake” samples). The generator can then be used to produce
novel samples that closely resemble those obtained from the true distribution.

The discriminator D with parameters θ(D) and generator G with parameters θ(G)

are trained simultaneously to optimize a single objective function. Crucially, the dis-
criminator’s goal is to minimize the objective function, whereas the generator’s goal is
to maximize it. The discriminative function D expresses the probability that a sample
x is a true sample; the generative function G generates a sample x from a noise vector z
sampled from some distribution pz(z). The optimization problem then consists of two
terms. The first term expresses the discriminator’s ability to identify true samples as
such, and its optimization involves only the discriminator. The second term expresses
the discriminator’s ability to identify fake samples, and its optimization involves both
the discriminator and the generator. Formally, this optimization problem amounts to
determining

min
G

max
D

V (D,G) = Ex∼p(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))], (2.20)

where the parametrizations of D by θ(D) and G by θ(G) are omitted for conciseness.
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The generator and the discriminator are trained simultaneously. In each training
step, multiple true samples are taken from the training data, and multiple fake samples
are generated using G by sampling from pz(z). The discriminator’s and generator’s
respective parameters θ(D) and θ(R) are then adjusted to simultaneously optimize the
empirical objective function using gradient descent [68].

GANs are naturally unsupervised: they train a generative model on unlabeled data,
using a discriminative classifier to assess the quality of the generator. However, exten-
sions exist to support classification in GANs. Proposed but not implemented in the
original GAN paper [70], these methods also use a generator and a discriminator, but
train the discriminator to identify different classes instead of only distinguishing true
samples from fake samples. As such, GANs naturally extend to the semi-supervised
case: the purely discriminative component of the loss term (the first term in Equa-
tion 2.20) can easily be extended to incorporate the sample’s true label when it is known.

Starting from the perspective of clustering, Springenberg proposes CatGAN, a semi-
supervised extension of GANs [163]. They suggest extending the discriminator to in-
corporate label information for the available labeled samples. Instead of the two outputs
in the original formulation of GANs, they propose to useK outputs for the discrimina-
tor, corresponding to the K possible clusters/classes. The discriminator is then trained
to (1) be certain of class assignment for true samples and to (2) be uncertain of class as-
signments for fake samples. The generator is trained to (1) generate samples that obtain
highly certain class assignments from the discriminator and to (2) assign equal prob-
ability to all classes in the generative process. The resulting discriminator can be used
to cluster data points into K different clusters. Incorporating labeled data and thus
extending CatGAN to the semi-supervised setting, Springenberg sets K = |Y| and
extends the discriminator’s loss function to include the cross-entropy loss for labeled
samples [163].

Salimans et al. extend GANs to the semi-supervised setting by using |Y|+1 outputs
[152]. Outputs 1, . . . , |Y| correspond to the individual classes; output |Y| + 1 corre-
sponds to “fake” samples. The loss function is adapted to include the cross-entropy loss
of the prediction given the true label for the labeled samples. The rest of the loss function
does not need to be changed significantly: when presented with an unlabeled sample,
the discriminator’s estimate of the sample being a “true” sample can be calculated as∑|Y|

c=1Dc(x) for sample x, where Dc(x) is the value of output c for the discriminator.
Odena independently proposed the same idea around the same time [133].

For an extensive overview of GANs, their applications and their extensions, we refer
the reader to the notes of Goodfellow’s 2016 NIPS tutorial on GANs [68].

Variational autoencoders

Aside from GANs, further efforts have been made towards constructing semi-supervised
deep generative models in recent years. One notable example is the proposal of varia-
tional autoencoders (VAEs) and their application to semi-supervised learning.

Proposed by Kingma and Welling, variational autoencoders are a type of latent vari-
able model, treating each data point x as being generated from a vector of latent variables
z [95]. Traditional latent variable models such as autoencoders generally yield a model
with a highly complex distribution pz(z), which makes it very difficult to use them for
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sampling. Crucially, VAEs assert that the distribution over latent variables is a very
simple one: a standard, multivariate Gaussian distribution (pz(z) = N (0, I)). The
possible transformation of the simple pz(z) to a more complex distribution of latent
variables is then left to a deep neural network. The outputs of the neural network form
the parameters of a distribution px|z(x|z). Again, this is asserted to be a simple dis-
tribution, such as a Gaussian with the neural network’s outputs as its mean vector and
covariance matrix σI (where σ is a hyperparameter). This part of the VAE is called the
decoder: given a latent vector z, it generates a distribution px|z(x|z) parameterized by the
outputs of the neural network.

To train the network, an encoder is introduced to model pz|x(z|x). Again, it is as-
sumed to be some simple distribution like a Gaussian with diagonal covariance matrix,
parametrized by another neural network. The neural networks are jointly trained, min-
imizing a combined loss function consisting of (1) the KL divergence between the pos-
terior pz|x(z|x) and the prior pz(z) and (2) the reconstruction loss of the autoencoder’s
output for input samples. For brevity, we do not go into too much detail regarding
the training procedure of VAEs, which includes a nontrivial backpropagation step due
to the sampling procedure; instead, we refer the reader to the VAE tutorial by Doer-
sch [57].

Kingma et al. propose a two-step model to use VAEs for semi-supervised learn-
ing [94]. In the first step, a VAE is trained on both the unlabeled and labeled data to
extract meaningful latent representations from data points. By itself, this can be seen
as an unsupervised preprocessing step, allowing the latent representations to be used
by any supervised classifier. In the second step, they implement a VAE in which the
latent representation is augmented with the sample label vector yi, which is the one-hot
encoded true label for labeled samples and is treated as an additional latent variable for
unlabeled samples. In addition to the decoder, a classification network is introduced
that infers the label predictions [94].

2.6 Transductive methods
The semi-supervised learning methods described in the previous sections were all in-
ductive algorithms: their primary goal was to use both labeled and unlabeled data to
construct a prediction model able to provide label predictions for data points in the en-
tire input space. In inductive learners, we can therefore clearly distinguish between a
training phase and a testing phase: in the training phase, labeled data (XL, yL) and
unlabeled data XU are used to construct a classifier. In the testing phase, this resulting
classifier is used to independently classify the unlabeled or other, previously unseen data
points.

In this section, we discuss the second major class of semi-supervised learning meth-
ods: transductive algorithms. Unlike inductive algorithms, transductive algorithms do
not produce a prediction model that is defined over the entire input space. Rather,
transductive methods only yield a set of predictions for the set of unlabeled data points
provided to the learning algorithm. Unlike for inductive methods, we thus cannot dis-
tinguish between a training phase and a testing phase: transductive algorithms are pro-
vided with labeled data (XL, yL) and unlabeled data XU , and output predictions ŷU



2.6. TRANSDUCTIVE METHODS 44

for the unlabeled data.
Transductive methods typically define a graph over all data points, both labeled

and unlabeled, encoding the pairwise similarity of data points with possibly weighted
edges [217]. An objective function is then defined and optimized to achieve two goals:

1. The predicted labels for labeled samples should match the true labels.

2. Similar data points, as defined via the similarity graph, should have the same label
predictions.

In other words, these methods encourage consistent predictions for similar data points
while taking into account the known labels. It is clear that a close similarity exists
between these methods and the inductive manifold-based methods from Section 2.5.3.
Both methods construct a graph over the data points and use pairwise similarity between
data points to approximate more complex structures. The only major difference between
them is that the inductive methods seek to obtain a classification model defined over the
entire input space, whereas transductive methods only yield predictions for the provided
unlabeled data points. Collectively, these methods are often referred to as graph-based
methods [216].

In Section 2.5.3, we focused on the interpretation and motivation of graph-based
techniques from the theoretical perspective of manifolds. The motivation for trans-
ductive graph-based methods, however, has generally been driven directly by the two
optimization criteria outlined above. This section, in which we discuss transductive
semi-supervised learning, follows that line of reasoning.

2.6.1 A general framework for graph-based methods
Graph-based semi-supervised learning methods generally involve three separate steps:
graph creation, graph weighting, and inference [89, 117]. In the first step, nodes (repre-
senting data points) in the graph are connected to each other based on some similarity
measure. In the second step, the constructed edges are weighted, yielding a weight
matrix. The first two steps are commonly referred to jointly as the graph construc-
tion phase. After graph construction, we have a graph consisting of a set of nodes
V = {v1, . . . , vn}, corresponding to the data points, and an n × n weight matrix W
containing the edge weights for all node pairs. An edge weight of 0 indicates that no
edge is present. In the remainder of this section, we use the terms node and data point
interchangeably in the context of graph-based methods.

Once the graph is constructed, it is used to form predictions ŷU for the unlabeled
data points. The general form of objective functions for transductive graph-based meth-
ods contains one component for penalizing predicted labels that do not match the true
label and another component for penalizing differences in the label predictions for con-
nected data points. Formally, given a supervised loss function ℓ for the labeled data and
an unsupervised loss function ℓU for pairs of labeled or unlabeled data points, transduc-
tive graph-based methods attempt to find a labeling ŷ that minimizes

λ ·
l∑

i=1

ℓ(ŷi, yi) +
n∑

i=1

n∑
j=1

Wij · ℓU (ŷi, ŷj), (2.21)
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where λ governs the relative importance of the supervised term. Furthermore, some
graph-based methods impose an additional unary regularization term on the unlabeled
predictions. This general framework for graph-based methods allows for a multitude of
variations in each of its steps. The formulation is commonplace in graph-based meth-
ods, and most graph-based inference algorithms can be shown to fit into this frame-
work [15, 167]. It is also present in the manifold regularization framework by Belkin
et al. [12] which was discussed in Section 2.5.3.

The spectrum of graph-based semi-supervised learning methods can be effectively
structured based on the different approaches in the two main phases, i.e., graph construc-
tion and inference. Early work on graph-based methods focused mainly on the second
problem, leaving graph construction as a scarcely studied topic. Zhu noted that this
imbalance might be unjust, and that graph construction can have a significant impact
on classifier performance [216]. Later work has addressed this imbalance, and graph
construction has since become an area of substantial research interest [51].

Graph-based transductive methods were introduced in the early 2000s, and graph-
based inference methods were particularly intensively studied during the subsequent
decade. As such, a large portion of the significant research that has been conducted
in this field is covered in the semi-supervised learning survey by Zhu [216]. Further-
more, Subramanya and Talukdar recently published a book on graph-based methods
[167]. These studies cover the literature on graph-based methods well. In light of this,
we have chosen to base our review of earlier work in this area heavily on the book by
Subramanya and Talukdar, Zhu’s survey, and Zhu’s doctoral thesis [217]. Following
the general chronological order of research in the field of graph-based methods, we be-
gin by outlining different approaches to solving the inference problem. After that, we
provide an overview of the research conducted on graph construction.

2.6.2 Inference in graphs

The inference process in transductive methods consists of forming predictions ŷU for
the unlabeled data points XU . If the predicted labels of the labeled samples are not
fixed to the true labels in the inference process, the optimization considers the entire
set of predicted labels ŷ.

A multitude of approaches has been suggested for tackling the optimization of
Equation 2.21. Generally, the optimization methods are dependent on the specific
choices of the loss functions ℓ and ℓU and the trade-off parameter λ. Furthermore,
some methods infer only the most likely label assignment ŷ, while others infer marginal
probabilities p(yi = c) of assigning a particular label c to individual samples. Com-
bined, these variations give rise to a plethora of different perspectives on the graph-
based inference problem.

Although the general objective function from Equation 2.21 applies to the multi-
class setting as well, many graph-based methods do not naturally extend beyond binary
classification. The inference methods we discuss mostly consider the binary classifica-
tion case. In discussing binary graph-based methods, we assume Y = {−1, 1} unless
explicitly stated otherwise.
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Hard label assignments: graph min-cut
The first graph-based semi-supervised classification method was proposed by Blum and
Chawla, who use a min-cut-based method for binary classification [21]. They experi-
ment with graph construction using k-nearest neighbors and the ϵ-neighborhood (con-
necting pairs of data points with distance smaller than ϵ). They keep the edge weights
fixed and uniform, but experiment with changing the weight of edges between unla-
beled data points relative to other edges.

Once the graph is constructed, they treat the optimization problem from a min-
cut perspective. They add a single source node v+, connected with infinite weight to
the positive samples, and a single sink node v−, connected with infinite weight to the
negative samples. Finding the minimum cut, then, corresponds to finding the set of
edges with minimal combined weight that, when removed, result in a graph with no
paths from the source node to the sink node. All unlabeled nodes in the resulting graph
that are in the component containing v+ are labeled as positive, and all unlabeled nodes
that are in the component containing v− are labeled as negative.

The min-cut approach can be seen to minimize the general objective function of
Equation 2.21 as λ approaches infinity (fixing the predictions on labeled data points to
their true labels) and ℓU (ŷi, ŷj) = 1{ŷi ̸=ŷj}, where 1 is the indicator function. Note
that, assuming labels 0 and 1 are used, the loss function for unlabeled samples corre-
sponds to quadratic cost, i.e., 1{ŷi ̸=ŷj} = (ŷi − ŷj)2. We can write the corresponding
objective function as

λ ·
l∑

i=1

(ŷi − yi)2 +
n∑

i=1

n∑
j=1

Wij · (ŷi − ŷj)2. (2.22)

Note that this objective function can be written in an alternate form, using the graph
Laplacian L = D−W (whereD is the diagonal matrix containing the degree for node
i at Dii) as follows:

λ ·
l∑

i=1

(ŷi − yi)2 + 2 · ŷ⊺ · L · ŷ. (2.23)

Pang and Lee use the min-cut for classification in the context of sentiment analy-
sis [135]. They note that, instead of fixing the predicted labels of labeled data to their
true labels, one can also assign finite weight to the connection between labeled data
points and v+ and v−, indicating confidences in either classification from the perspec-
tive of the individual data point.

The min-cut approach can easily lead to degenerate cuts, yielding a solution where
almost all unlabeled samples are in the same component. This behavior originates from
the fact that more balanced cuts generally have more potential edges to cut: when a cut
yields a split into negative nodes V − and positive nodes V +, the number of edges to
cut is potentially |V +||V −|. Joachims proposes to normalize the objective function of
min-cut based on this potential number of edges being cut [91]. Spectral methods are
then used to solve the resulting optimization problem.

Since the optimization of the min-cut algorithm optimizes over a binary vector, no
probabilities can be extracted from this optimization. To solve this problem, Blum et
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al. propose to construct an ensemble of min-cut classifiers, each finding the minimum
cut on a randomly perturbed version of the constructed graph, adding noise to the edge
weights [22]. The prediction probabilities are then simply calculated by the fraction of
classifiers predicting a label.

Probabilistic label assignments: Markov random fields

The lack of a principled, efficient way of estimating classification probabilities is a fun-
damental disadvantage to the min-cut approach to graph-based inference. In many
cases, we wish to estimate the probability p(yi = c) that an unlabeled sample xi has la-
bel c. Standard min-cut, however, only provides hard classifications (i.e., it only outputs
class labels and no probabilities). Approaching graph-based methods from the perspec-
tive of Markov random fields provides a potential solution to this problem. Note that
in the following paragraph, in a slight abuse of notation, we use X and x to denote
(realizations of ) random variables rather than data points.

The Hammersley-Clifford theorem states that a probability distribution P (X) for
random variablesX1, . . . , Xn corresponds to a Markov random field if a graphG exists
such that the joint probability density P (X = x) can be factorized over the (maximal)
cliques of G [80]. In other words, X corresponds to a Markov random field formed by
G if

P (X = x) =
1

Z

∏
c∈CG

ψc(xc), (2.24)

where Z is a normalization constant, CG is the set of cliques in G, ψc is an arbitrary
function, and xc is the subset of random variables in clique c.

Using the Hammersley-Clifford theorem, we can show that the general minimiza-
tion for graph-based methods, formulated in Equation 2.21, can be expressed in the
form of a Markov random field. Let G denote the graph with weight matrix W ob-
tained in the graph construction phase, and let Ŷ = {Ŷ1, . . . , Ŷn} be random variables
corresponding to the predicted labels (i.e., 0 or 1) for samples x1, . . . , xn. We extendG
by connecting each node Ŷi corresponding to a labeled sample xi to an auxiliary node
Y ′
i , corresponding to a random variable which can only attain the true label yi. We

denote the entire set of random variables, or nodes, as Y = Ŷ ∪ Y ′, where Y ′ is the
set of all auxiliary nodes. Since the auxiliary nodes can only attain the corresponding
true label, p(Y = y) = p(Ŷ = ŷ), where ŷ is the set of predictions for our (labeled and
unlabeled) samples.

This situation is depicted in Figure 2.3. The filled nodes Ŷ and the edges between
them correspond to the original graphG; the unfilled nodes with plus- and minus-signs
in them represent the auxiliary nodes Y ′, and are connected only to the corresponding
filled node.

Recall that a clique is a subset of nodes where all pairs of nodes are connected to
each other by an edge. A maximal clique, then, is a clique that cannot be expanded,
i.e., to which no nodes can be added such that the resulting subset of nodes also forms
a clique. We note that every pair of nodes that is connected by an edge is part of at least
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Figure 2.3: Example of an undirected graphical model for graph-based classification.
Filled nodes and edges between them correspond to the original graph G. Unfilled
nodes with plus- and minus-signs correspond to auxiliary nodes to labeled data.

one clique. Thus, if we can find an expression of the form

1

Z

∏
(u,v)∈E

ψ{u,v}({u, v}) (2.25)

for P (Ŷ = ŷ), the probability distribution corresponds to a Markov random field. We
proceed to show that we can express the cost function from Equation 2.21 in a way
such that minimizing it corresponds to maximizing the probability P (Ŷ = ŷ). We
can distinguish between two different types of edges: those between two normal nodes
u, v ∈ Ŷ , and those between a normal node and its auxiliary node (u ∈ Ŷ, v ∈ Y′, or
the other way around). Let us define ψ(·) for these two cases independently:

ψ({ŷi, ŷj}) = exp(−Wij · ℓU (ŷi, ŷj)) if vi, vj ∈ Ŷ , (2.26)
ψ({ŷi, y′i}) = exp(−ℓ(ŷi, y′i)) if vi ∈ Ŷ , vj ∈ Y ′. (2.27)

The unnormalized probability Z · P (Ŷ = ŷ) then becomes

∏
(u,v)∈E

ψ{u,v}({u, v}) = exp

− ∑
y′
i∈Y ′

ℓ(ŷi, y
′
i)−

∑
ŷi,ŷj∈Ŷ

ℓU (ŷi, ŷj)

 . (2.28)

The normalization constantZ can be calculated by summing over all possible config-
urations of Y . Although this is computationally too expensive for all practical purposes,
the normalization constant is irrelevant in the context of maximum-likelihood estima-
tion. The negative logarithm of the unnormalized probability, then, is exactly equal to
the general loss function for graph-based methods from Equation 2.21. Maximizing
the probability P (Y ), we obtain the mode of the Markov random field, i.e., its most
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likely configuration y. This solution is exactly the solution found when minimizing the
min-cut objective [21].

In the inductive semi-supervised classification setting, classifier predictions are in-
dependent, i.e., p(y) = p(y1)p(y2) · · · p(yn). In transductive, graph-based methods,
however, this is generally not the case: predictions are dependent on each other. The
most probable label assignment y, thus, generally does not correspond to the label as-
signment minimizing the expected error rate. To find the latter, each sample xi would
have to be assigned the label c that maximizes the marginal probability p(yi = c).
Unfortunately, finding the marginal probabilities of a random field is not trivial.

Zhu and Ghahramani attempt the calculation of the marginal probabilities via Markov
chain Monte Carlo (MCMC) sampling [219]. Experimenting with Metropolis and
Swendsen-Wang sampling, they report lacking computational efficiency. Getz et al.
use the multicanonical MCMC method to compute the marginal probabilities [157].

Efficient probabilistic label assignments: Gaussian random fields

There is no closed-form solution for calculating the marginal probabilities in the Markov
random field with binary labels described before. However, when the random vari-
ables Ŷ are relaxed to the space of real numbers, a closed-form solution does exist.
This approach is proposed by Zhu et al., who fix the labels of the labeled samples and
use quadratic cost for the pairs of predictions ŷi, ŷj ∈ R [220]. The resulting objec-
tive function is identical to the objective function used in the min-cut formulation (see
Equation 2.22), except for the relaxation of the predictions to the space of real numbers.

Using real-valued predictions with a quadratic loss function, the exponential form
for p(Ŷ = ŷ) is a multivariate Gaussian distribution. Thus, a closed-form solution
for the mode of the field, which equals its mean, exists. Furthermore, the marginal
probability distributions p(yi = c) are Gaussian as well, allowing for computation of
the label predictions minimizing the error rate. This is why the random field is called a
Gaussian random field.

Recall from Section 2.5.3 that we defined the graph Laplacian as L = D − W ,
where D is the degree matrix (i.e., a diagonal matrix with the vertex degrees at the
diagonal). Zhu et al. show that the prediction function is harmonic, i.e., Lŷ equals 0 at
unlabeled data points, and is equal to the true label at labeled data points [220]. The
predicted label at each unlabeled data point is equal to the average of the predictions of
its neighbors, i.e.,

ŷi =
1

Dii

∑
vj∈N (vi)

Wij · ŷj , for i = l + 1, . . . , n, (2.29)

where N (v) denotes the neighborhood of node v, that is, N (v) = {u ∈ V : (u, v) ∈
E}. Furthermore, the solution is unique and ŷi ∈ [0, 1] for each i. Thus, label predic-
tions can be easily obtained from the solution using thresholding.

Computation of the marginals of the Markov random field involves an inversion of
the submatrix LU corresponding to the unlabeled data points in the graph Laplacian.
This is computationally expensive for large numbers of unlabeled data points. Several
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other approaches have been proposed for finding the solution to the harmonic function,
including loopy belief propagation and a conjugate gradient method [220].

Before proposing the Gaussian random fields approach to graph-based methods,
Zhu et al. introduced the label propagation algorithm for inference on graphs [218].
It is an iterative algorithm that computes soft label assignments ŷi ∈ R by pushing
(propagating) the estimated label at each node to its neighboring nodes based on the
edge weights. In other words, the new estimated label at each node is calculated as the
weighted sum of the labels of its neighbors. In matrix notation, let

Aij =
Wij∑

vk∈N (vi)
Wik

(2.30)

denote the transition matrix. The label propagation algorithm then consists of two
steps, which are repeated until the label assignment ŷ converges. Starting with initial
label assignment ŷ, which is random for the unlabeled data points and clamped to the
true labels for the labeled data points:

1. Propagate labels from each node to the neighboring nodes: ŷ = A⊺ · ŷ.

2. Clamp the predictions of the labeled data points to the corresponding true labels.

As Zhu et al. show, the algorithm converges to the harmonic function solution
described earlier, and is guaranteed to converge [15, 217]. They also show that the label
propagation approach can be interpreted as a random walk with transition matrix A,
which stops when a labeled node is hit. Wu et al. cast this procedure in a framework they
call partially absorbing random walks where they, instead of deterministically stopping
when a labeled node is hit, stochastically determine whether to stop (absorb) or continue
the random walk [198]. The label propagation approach is closely related to the Markov
random walks approach by Szummer and Jaakkola [169]. Belkin et al. consider a similar
objective function, and they provide some theoretical analysis [11]. Azran proposed a
random walk approach where walks originate in unlabeled nodes, and the labeled nodes
are absorbing states. The probability that an unlabeled data points attains a certain label
is then derived from the probability that a walk starting from the unlabeled node ends
up in a labeled node of the corresponding class as the random walk length approaches
infinity [4].

Handling label noise and irregular graphs: local and global consistency
The Gaussian random fields method has two drawbacks [167]. Firstly, since the true
labels are clamped to the labeled data points, it does not handle label noise well. Sec-
ondly, in irregular graphs, the influence of nodes with a high degree is relatively large.
An approach closely related to the Gaussian random fields method that addresses these
two issues is proposed by Zhou et al. [210]. It is commonly known as the local and
global consistency (LGC) method, referring to the observation that graph-based meth-
ods promote consistency of labels on manifolds (global) and nearby in the input space
(local).

They address the first issue by refraining from clamping the true labels to the labeled
data points. Instead, they penalize the squared error between the true label and the
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estimated label. They address the second issue by regularizing the penalty term for
unlabeled data points by the node degrees. Furthermore, they regularize the predictions
for the unlabeled data points by pulling them towards zero [15]. We can write the
corresponding objective function in the general form as

l∑
i=1

(ŷi − yi)2 +
n∑

i=l+1

ŷ2i + λU ·
n∑

i=1

n∑
j=1

Wij ·

(
ŷi√
Dii

− ŷj√
Djj

)2

, (2.31)

where λU governs the weight of the penalization of inconsistencies in label predictions
between neighbors in the graph.

Note that, like for the min-cut and MRF objectives, the last term of the objective
function can be expressed using matrix notation. The only difference in that term is
that LGC uses the normalized graph Laplacian L̃ = D− 1

2 · L · D− 1
2 instead of the

unnormalized Laplacian L = D−W . Like Gaussian random fields, this formalization
admits a closed-form solution and a relatively efficient iterative approach to optimiza-
tion. In this algorithm, the label vector ŷt+1 at iteration t+1 is calculated based on the
label vector at iteration t, using the update rule

ŷt+1 = α · L̃ · ŷt + (1− α) · y, (2.32)

where y is 0 for the unlabeled data points, and α governs the relative importance of the
calculated label vector versus the base label vector y. This algorithm is often referred to
as label spreading.

Further research on graph-based inference
The previously described approaches, and in particular label propagation, have been
the de facto standard approach to the inference phase in graph-based semi-supervised
classification. Several variants and extensions to the approach have been proposed,
which we briefly summarize here.

Baluja et al. apply graph-based methods to recommender systems (in particular,
video suggestions to users) by considering a random-walk-based method [8]. They pro-
pose adsorption, a heuristic algorithm for predicting the label ŷi of node i by performing
a random walk starting at node vi. At each step in the random walk, the walk can either
continue to the next step (continue), accept the label of a labeled node as the prediction
(injection), or explicitly predict no label (abandonment). The last option corresponds to a
dummy prediction, which specifically indicates that the transducer is unable to output a
confident prediction. The option chosen by the algorithm is dependent on two hyperpa-
rameters, governing the relative frequencies of the three options. Heuristic approaches
to hyperparameter selection have been proposed by Baluja et al. [8] and Talukdar et al.
[172]. The algorithm has successfully been applied to video recommendation, but is
difficult to analyze theoretically due to its many heuristic components. Talukdar and
Crammer attempt to analyze the algorithm, and show that no objective function exists
that it is optimized by the adsorption process [171]. They propose a modified version
of adsorption that does have a corresponding objective function, and propose efficient
iterative methods to solve it.
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The previously described graph-based methods can be sensitive to class imbalance [216].
Zhu et al. propose to adjust the classification threshold such that the predicted label
proportions correspond to predefined label proportions [220]. Wang et al. propose
an optimization scheme that is less sensitive to noise in the true labels and that miti-
gates the problem of sensitivity to class imbalance by altering the influence of labeled
samples based on the label proportions [189]. They modify the objective function to
optimize over both real-valued predictions and binary label assignments, and penalize
difference between the real-valued predictions and the binary predictions. They pro-
ceed to optimize the objective function by alternatingly optimizing the real-valued and
binary label assignments. In later work, the authors consider the same approach from
a graph max-cut perspective [190].

In structured output learning, the labels of samples cannot be captured using simple
binary or real-valued representations. For instance, the output labels might be better
represented with histograms or probability distributions in some cases (e.g., when pre-
dicting the relative traffic density at a location over a 24-hour cycle). Subramanya and
Bilmes propagate discrete probability distributions through a graph based on the KL-
divergence between the distributions of different nodes [165, 166]. As an alternative
to KL-divergence, Solomon et al. propose to use the Wasserstein distance to measure
the similarity between the discrete distributions of neighboring nodes [162].

2.6.3 Graph construction
Arguably, graph construction is the most important aspect of graph-based methods: in
order for inference to work, the constructed graph must successfully encode local sim-
ilarities. In the early days of research in the area of graph-based methods, research was
mainly focused on the inference phase, and graph construction was not well-studied
[216]. In recent years, however, this has changed. Extensive experiments have been
conducted on different graph construction methods, and new methods have been in-
troduced [51, 89, 167].

Since the nodes of the graph correspond to the data points (both labeled and unla-
beled), the graph construction phase amounts to forming edges between nodes (yielding
the adjacency matrix) and attaching weights to them (yielding the weight matrix). In
many cases, the similarity measure governing the connectivity between nodes is also
used in the weight matrix.

Adjacency matrix construction

The first step in constructing the graph is the creation of an adjacency matrix, whose
elements indicate the presence of edges between pairs of nodes. Three popular data-
independent methods for constructing graphs exist and are outlined below. We note
that the first two methods, ϵ-neighborhood and k-nearest neighbors, are local in the
sense that the neighbors of a node can be determined independently for each node. In
other words, the construction of vi’s neighborhood does not influence the construc-
tion of vj ’s neighborhood (unless node vi is a neighbor of vj). The third method, b-
matching, on the other hand, optimizes a global objective, and nodes that are far apart
can significantly influence each other’s connectivity.
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ϵ-neighborhood. One of the first methods to be used in graph construction was
the ϵ-neighborhood method, which simply connects each node to all nodes to which
the distance is at most ϵ [21]. In other words, an edge between xi and xj is created if
and only if d(xi, xj) ≤ ϵ, where d(·, ·) is some distance measure (usually the Euclidean
distance). Clearly, this method is highly dependent on the choice of ϵ and the distance
measure. Furthermore, since ϵ is fixed, it does not work well if the scale of patterns
in the input data distribution varies. Because of these limitations, the ϵ-neighborhood
method is rarely used in practice [51, 89].

k-nearest neighbors. The most common graph construction method for transduc-
tive methods is the k-nearest neighbors method, where each node is connected to its
k nearest neighbors in the input space according to some distance measure [21]. Us-
ing vanilla k-nearest neighbors, however, a problem arises: since k-nearest neighbors
is not symmetric, we do not necessarily obtain the required undirected graph. Thus,
some additional processing is necessary to obtain an undirected graph. Two options are
commonly considered: one (symmetric k-nearest neighbors) constructs an edge if i is
in the k-neighborhood of j or vice versa, and the other (mutual k-nearest neighbors)
constructs an edge if i and j are both in each other’s k-neighborhood [51]. The differ-
ence between the ϵ-neighbors and k-nearest neighbors methods has been extensively
studied by Maier et al. in the context of clustering methods [122].

b-matching. The postprocessing step used when constructing the graph with k-
nearest neighbors generally results in a graph where not all nodes have exactly k neigh-
bors. If symmetric k-nearest neighbors is used, it often occurs that some nodes have
much higher degrees than others. Jebara et al. show that this can negatively impact
the final performance of the classifier [89]. They propose an edge construction method
that enforces the regularity of the constructed graph, i.e., that each node has the same
number of neighbors, and that the nodes have exactly the requested number of edges.
The approach they use is inspired by matching, a concept from graph theory where one
tries to find a subset of edges in a graph such that the edges do not share vertices. In
their method, referred to as b-matching, the objective is to find the subset of edges in
the complete graph such that (1) each node has degree b and (2) the sum of the edge
weights is maximized.

Note that, in the original paper by Jebara et al., instead of maximizing the sum of
edge weights, the objective is in fact to minimize the sum of the distances between
the remaining edges. However, since they define the distance matrix C with Cij =√
Wii +Wjj − 2Wij , these notions are equivalent. The corresponding optimization
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problem they formulate is:

minimize
Â∈Bn×n

n∑
i=1

n∑
j=1

Aij · Cij

subject to
n∑

j=1

Aij = b i = 1, . . . , n,

Aii = 0 i = 1, . . . , n,

Aij = Aji i, j = 1, . . . , n.

(2.33)

It can be shown that this corresponds to the optimization problem solved by k-
nearest neighbors, with the addition of the constraint that Aij = Aji. This ensures
that a symmetric graph is constructed such that no postprocessing step is required.
However, no efficient algorithm for solving the b-matching optimization problem is
known: the best known algorithm has time complexity O(n2.5) and is premised on
some assumptions that are not always satisfied in real-world scenarios [87].

Graph weighting
The graph weighting phase, which forms the second step of graph construction, deter-
mines the weights for the edges in the graph. In many cases, the weights correspond to
the similarity measure used for constructing the edges. For instance, a Gaussian kernel
is often used both to determine the connectivity of the graph via k-nearest neighbors
and for the edge weights. In that case, the graph construction process is usually con-
sidered as consisting of weighting and sparsification. Firstly, a complete adjancency
matrix K is constructed using some kernel function k for all pairs of nodes such that
Kij = k(xi, xj). Then, the weight matrix W is obtained by sparsification, i.e., by re-
moving edges from K.

Several methods for edge weighting have been suggested in the literature. One of
the most popular weighting schemes is Gaussian edge weighting ([51, 89]), where

Wij = exp
(
−||xi − xj ||2

2σ2

)
, (2.34)

and σ2 is the variance of the Gaussian kernel. Note that this corresponds to an isotropic
Gaussian kernel; a non-isotropic Gaussian kernel can also be used. Hein and Maier
suggest a local variant of Gaussian edge weighting for k-nearest neighbor graph con-
struction, where the variance for a pair of nodes i and j is based on the maximum
distance to i and j’s nearest neighbors [84]. They define the weight as

Wij = exp
(
−||xi − xj ||2
(max(hi, hj))2

)
, (2.35)

where hi = maxvk∈N (vi) ||xi−xk||2, i.e., the maximum squared distance between i and
its neighbors. Blum and Chawla suggest altering the importance of different features in
the similarity calculation based on their information gain [21]. Jebara et al. experiment
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with binary weights, where Wij = 1 if nodes i and j are connected, and Wij = 0
otherwise [89]. We note that, in all cases described above, Wij = 0 for unconnected
nodes.

The approaches described above determine edge weights Wij based solely on the
pairwise similarity of nodes xi and xj . However, it is also possible to take a the en-
tire neighborhood of a node into account when determining edge weights. Wang and
Zhang introduced the linear neighborhood propagation (LNP) algorithm [188]. Their
graph construction method assumes that the graph should be constructed such that any
sample xi can be approximated as a linear combination of its neighbors. In other words,
they assume that any sample xi can be represented as

xi =
∑

vj∈N (vi)

Wij · xj + ϵi (2.36)

for some vector ϵi of low magnitude. In this equation, the unknowns are the weights
Wij of the contributions of each neighbor to the approximation of xi. The approach
by Wang and Zhang consists of estimating W such that the difference between the
approximated sample values and the true sample values is minimized, while ensuring
that the weights are positive and that the sum of the edge weights for each node some
up to 1. The resulting optimization problem they pose is then:

minimize
W∈Rn×n

n∑
i=1

||xi − x̃i||2

subject to
∑

vj∈N (vi)
Wij = 1 i = 1, . . . , n

Wij ≥ 0 i, j = 1, . . . , n

(2.37)

where x̃i =
∑

vj∈N (vi)
Wij · xj . The optimization problem is identical to locally linear

embedding (LLE, [150]) with the addition of the two constraints. LNP can be solved
via a series of quadratic programming problems (one for each node). Crucially, this
depends on the fact that edge weight symmetry is not enforced, i.e., it is not necessarily
the case that Wij = Wji. Because of this, all weights Wij are independent of weights
Wkj for k ̸= i.

Karasuyama and Mamitsuka combine locally linear embedding with a local simi-
larity measure to obtain the edge weights [93]. In particular, given a pre-constructed
graph (for instance, with k-nearest neighbors), they calculate the weight between two
connected nodes with the Gaussian kernel; the covariance of this kernel is determined
via locally linear embedding. The authors use a diagonal covariance matrix for the Gaus-
sian kernel, which is chosen such that it minimizes the local reconstruction error, i.e.,
the difference between xi and the linear combination of its neighbors.

Liu and Chang construct the weight matrix with a modification of the symmetric
k-nearest neighbors method: two nodes are connected if either of them is in the other’s
k-neighborhood, but the weight of the two connections is summed if they are both in
each other’s neighborhoods [115]. In other words, the modified weight matrix W is
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constructed based on the original weight matrix Ŵ as follows:

Wij =


Ŵij + Ŵji, if vi ∈ N (vj) and vj ∈ N (vi)

Ŵji, if vi ∈ N (vj) and vj /∈ N (vi)

Ŵij , otherwise
(2.38)

De Sousa et al. compare the influence of several of these methods on the perfor-
mance of transductive algorithms [51]. In particular, they compare Gaussian weights,
the locally normalized Gaussian approach by Hein and Maier [84], and LNP [188];
somewhat surprisingly, their best results are obtained using Gaussian weights.

Simultaneous graph construction and weighting
The LNP algorithm described earlier (see Section 2.6.3) assumes that the graph struc-
ture (i.e., which pairs of nodes are connected) is known and fixed, and determines the
weights of the edges of each node locally, assuming each node can be reconstructed as
a linear combination of its neighbors. Instead of fixing the graph structure, however,
one can also simultaneously infer the graph structure and the edge weights by linearly
reconstructing nodes based on all other nodes.

Such an approach was first proposed by Yan and Wang [203], based on the sparse
coding approach formulated for face recognition by Wright et al. [197]. Their approach
finds, for each node xi, a coefficient vector a ∈ Rn, denoting the contributions of all
other nodes to xi’s reconstruction. The reconstruction, then, is calculated as x̃i = (X ′)⊺·
a+ϵ, where ϵ is the error vector. X ′ ∈ Rn×d denotes the full data matrix, but with a row
of zeroes at index i (since a node cannot contribute to its own reconstruction). Note
that, unlike the LNP reconstruction from Equation 2.37 where only predetermined
neighbors contribute to the reconstruction, all n− 1 other nodes can contribute to the
reconstruction. The corresponding basic optimization problem attempts to minimize,
for each sample, the norm of the difference ϵ between the reconstruction and the true
data. Crucially, Yan and Wang use the L1-norm. This is the second major difference
with LNP, which uses the L2-norm and thus promotes non-sparse solutions.

To prevent an underdetermined system of equations in some cases, the final opti-
mization problem penalizes both the norm of the reconstruction coefficients and the
noise vector. Let B = [(X ′)⊺, Id] be the concatenation of the data matrix X and the
d×d identity matrix Id. The reconstruction x̃i of input sample xi can then be calculated
as x̃i = Ba′. Here, a′ consists of the coefficient vector a = [a′1, . . . , a

′
n] and the noise

vector ϵ = [a′n+1, . . . , a
′
n+d]. The final optimization problem for finding the optimal

coefficients is then defined as follows for each node xi:

minimize
a′∈Rn+d

||a′||1

subject to B · a′ = xi,
(2.39)

where || · ||1 is the L1-norm. Now, let ai denote the coefficient vector found for node
i. The final graph is then constructed by simply adding an edge between nodes i and j
if and only if aij ̸= 0, and setting the edge weights to the magnitude of the coefficient,
i.e., Wij = |aij |. We note that this approach does not yield an undirected graph.
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However, Yan and Wang show that when quadratic loss is used for the unlabeled term,
i.e., ℓU (ŷi, ŷj) = (yi − yj)2, a closed-form solution exists for the optimal labeling ŷu.
A variant of the sparse coding method is proposed by He et al., who impose a constraint
that all coefficients be nonnegative to the objective from Equation 2.39 [83].

The coefficient vector a can be seen as an encoding of the data point xi. From this
perspective, one would expect similar data points to have similar encodings. Zhuang et
al. capture this preference by constructing a matrixA from all encodings a1, . . . , an and
regularizing the objective function by its rank [223]. Based on a well-known clustering
method called low-rank representation (LRR, [114]), the regularization term penalizes
coefficient matrices of high rank. The low-rankness of the matrix captures global struc-
tures in the data, while sparsity captures the local structure among data points. The
resulting optimization problem, which includes the nonnegativity constraint and pe-
nalizes the L0-norm of the coefficients, is NP-hard; Zhuang et al. propose a convex
relaxation leading to an objective function identical to the sparse coding objective func-
tion from Equation 2.39, but with the addition of the nonnegativity constraint and a
surrogate for the rank-regularization term.

Despite excellent empirical results, the motivation for using the contribution coef-
ficients a as graph weights remains somewhat unclear. As an alternative, Li and Fu use
the reconstruction coefficients of pairs of samples to measure their similarity [111, 112].
In particular, they build a matrix of encoding vectors that is both sparse and of low rank,
capturing global structures in the data, and base the similarity of data points on their
distance to each other in encoding space. Additionally, they impose the constraint that
all nodes have equal degree to promote sparsity and regularity of the graph.

2.6.4 Scalable transductive learning
Many of the graph construction and inference methods discussed thus far suffer from
a lack of scalability [117]. Graph construction methods commonly have O(n2) time
complexity (for instance, k-nearest neighbors has time complexityO(k ·n2)); inference
methods generally have time complexity O(n3) for obtaining the exact solution and
O(n) for approximate solutions. This can make it difficult to apply graph-based meth-
ods in real-world applications with large quantities of unlabeled data. Liu et al. provide
an overview of approaches for making graph-based methods more scalable [117].

To tackle the scalability problem, several approaches have been proposed for effi-
ciently constructing smaller graphs on which inference can be performed. These ap-
proaches rely on finding a set of m≪ n prototype or anchor points to express the struc-
ture in the data more compactly. When these anchor points are found, the inference
process can proceed over the anchor points, after which each unlabeled data point can
be classified based on the inferred labels of nearby anchor points. In this framework,
Zhang et al. propose to use a low-rank approximation to the adjacency matrix in the
graph regularization term [208].

A commonly used approach called anchor graph regularization was proposed by Liu
et al [116]. Their method seeks to find a set of anchor points u1, . . . , uk and corre-
sponding label assignments such that, for each data point xi ∈ X , the true label can be
expressed as a linear combination of the labels of the anchor points. They choose the
positions of the anchor points using k-means clustering, and construct a graph con-
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necting each data point to its closest s anchors. The corresponding weights are defined
via locally linear embedding (see Section 2.6.3); these are then used to construct a graph
over all data points. The inference process indirectly optimizes the predictions for the
data points by optimizing a graph-based objective function defined over the predictions
for the anchor points.

2.6.5 From transduction to induction
Since transductive methods do not provide a classification model over the entire input
space, the entire algorithm needs to be rerun when a prediction for a new data point is
desired. Due to the computational complexity of transductive algorithms, this is unde-
sirable in many cases. This problem has not been studied extensively in the literature,
but some potential solutions have been proposed.

The first type of approach is to find the optimal label prediction for previously un-
seen data points based on the objective function of the transductive algorithm. Such ap-
proaches fix the transductive predictions, and use the resulting graph to predict the label
of previously unseen data points [15, 216]. Considering the general objective function
from Equation 2.21, the optimal label assignment for the new data point can be calcu-
lated efficiently: assuming we can calculate the graph weightsWij for j = 1, . . . , n, we
can efficiently optimize the objective function with respect to only the predicted label
of the new data point. The label assignment ŷi minimizing the cost function is then
given by the weighted average of its neighbors’ predictions:

ŷi =

∑n
j=1Wij · ŷj∑n

j=1Wij
. (2.40)

The second type of approach for building an inductive classifier is to treat the pseudo-
labeled predictions as true labels, and to train a supervised classifier based on these pre-
dictions. This approach is taken by Kveton et al., who use the min-cut approach to
obtain the optimal labels, and train a supervised SVM using the combined labeled and
unlabeled data [102]. One can consider using a transductive approach with probabil-
ity estimates, such that unlabeled samples can be weighted in the supervised learning
algorithm. This approach can also be applied to inductive learners that have a computa-
tionally expensive prediction phase: we can train an inductive semi-supervised learning
method on all available data, and pass its predictions for the unlabeled data along with
the labeled data to a computationally more efficient classifier [180]. The efficient pre-
dictor can then be used to make predictions on new, previously unseen data points.

2.6.6 Classification in network data
In some real-world problems, data is inherently represented as a graph. Such data,
which is commonly referred to as network data, arises in the context of social networks,
scientific collaborations, disease spread networks, company structures, etc. In such net-
works, nodes generally represent entities (such as people), and edges represent relations
between them (such as friendships). The field that studies such data is commonly known
as network science [9].
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In such network data, graph-based transductive methods are an obvious choice
for performing inference. Node classification in particular can be considered a regu-
lar transductive semi-supervised learning task, and is broadly applied to problems in
social network analysis and natural language processing [173, 204]. Although there is a
considerable amount of overlap between these fields, the semi-supervised learning and
network science communities have operated rather independently. Of course, signifi-
cant differences also exist between data that is inherently given in the form of a network
and graphs that are inferred from input vectors based on some similarity measure.

Sen et al. provide an overview of inference techniques for node classification in net-
work data. They emphasize the difference between local classification, where each node
is classified individually based on its neighbors (possibly iteratively), and global classi-
fication, where a global, joint objective is optimized [153]. They specifically consider
the iterative classification algorithm (ICA), which constructs a local, supervised classifier
for each node and assigns it the most likely label based on its neighbors and their labels
[121, 128]. This procedure is iterated until the predictions in the entire network stabi-
lize. Yang et al. propose a neural network-based approach that simultaneously predicts
a node’s labels and its context using node embedding [204]. They extend this approach
to the inductive setting by expressing the embedding as a function of a node’s features
(and not its context). The context is predicted using a random walk; similar approaches
to that problem have been previously studied [137, 174]. Several approaches have been
suggested to generalize convolutional neural network architectures to network data (see,
e.g., [29, 60, 96]).

Network-based methods generally attempt to find a way to represent the network-
based data as vectors, allowing for inductive inference [204]. Interestingly, this can
be considered the inverse task of what most semi-supervised graph-based methods at-
tempt to do, which is to construct a graph based on vector data. These complementary
approaches highlight the difference between ‘standard’, tabular data and data specified
natively in the form of a network.

2.7 Related areas
Although semi-supervised classification comprises the vast majority of semi-supervised
learning research, studies have been conducted in other subfields as well. Most no-
tably, these include semi-supervised regression and semi-supervised clustering, which
we cover in limited detail below. We do not cover other, more distantly related machine
learning scenarios, such as active learning [154].

2.7.1 Semi-supervised regression
In classification problems, the label space Y is categorical and, in virtually all cases,
finite. In regression problems, on the other hand, the output value space is continuous.
Although some semi-supervised classification methods can be naturally applied to the
regression setting, most cannot.

A class of methods that can be rather easily extended to the regression setting is
that of graph-based methods (see Section 2.6). Many such methods model a real-valued
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function in an intermediate step and incorporate the real-valued predictions in a regu-
larization term in the objective function. These real-valued predictions can be readily
applied to the regression scenario (see, e.g., [11, 43]).

The second class of methods that can be readily applied to regression problems is the
class of wrapper methods (see Section 2.3). Although relatively little research has been
conducted in this direction, one can trivially apply paradigms such as self-training and
co-training to regression methods. In fact, like in supervised classification methods,
any supervised regressor can be used with a wrapper method. Zhou and Li propose
a co-training algorithm for semi-supervised regression [213]. They construct two k-
nearest neighbors regressors on the labeled data which then iteratively pass each other
pseudo-labeled data. The labeling confidence, which is used to select data points to
pseudo-label, is estimated based on the regressors’ consistency with the labeled data.

2.7.2 Semi-supervised clustering
Semi-supervised classification is a relatively well-defined task, where one is presented
with both fully labeled data and completely unlabeled data. In semi-supervised cluster-
ing, however, the supervised information can take different forms. For instance, there
can be must-link (two samples are known to be in the same cluster) and cannot-link (two
samples are known to be in different clusters) constraints [104]. On the other hand, it
is also possible that some cluster assignments are known beforehand.

An example of the incorporation of the latter type of information is the use of la-
beled data for cluster seeding. Basu et al. propose to initialize the clusters based on the
data points for which the cluster assignments are known [10]. For every cluster, they
initialize the cluster centroid for the k-means algorithm to the mean feature values of
the data points known to belong to that cluster. They also propose an alternative of this
approach where the cluster assignments of the labeled data points are kept fixed in the
k-means procedure.

Like semi-supervised regression, semi-supervised clustering is a minor research area
when compared to semi-supervised classification. For a more extensive overview of
semi-supervised clustering methods, we refer the reader to the recent semi-supervised
clustering survey by Bair [6] and the older survey on clustering methods by Grira et
al. [74].

2.8 Conclusions and future perspectives
In this survey, we have presented an overview of the field of semi-supervised learning.
Covering both methods from the early 2000s and more recent advances, our survey con-
stitutes an up-to-date review of the research field. Furthermore, we have presented a
new taxonomy for semi-supervised classification methods, distinguishing between the
different objectives of the approach (transductive versus inductive) and the way learners
incorporate unlabeled data (i.e., wrapper methods, unsupervised preprocessing, and intrin-
sically semi-supervised methods).

Early research in the field of semi-supervised learning mainly focused on wrap-
per methods (Section 2.3) and semi-supervised extensions of traditional supervised al-
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gorithms (such as support vector machines, see Section 2.5). Graph-based methods
(Section 2.5.3 and Section 2.6), have been extensively researched over the past two
decades. They are perhaps the most intuitive semi-supervised learning method, explic-
itly incorporating the similarity of different unlabeled data points in a principled way.
However, they still pose computational challenges. In recent years, semi-supervised
learning has developed along the same lines as supervised learning. We have seen a
boost in research regarding semi-supervised neural networks, both in the form of unsu-
pervised preprocessing (Section 2.4.3) and in the form of semi-supervised regulariza-
tion (Section 2.5.2). Additionally, deep generative models have been extended to the
semi-supervised setting (Section 2.5.4).

From our perspective, one of the most important issues to be resolved in semi-
supervised learning is the potential performance degradation caused by the introduction
of unlabeled data. Although receiving relatively little attention in the literature (likely
due to publication bias, as noted by Zhu [216]), many semi-supervised learning meth-
ods only perform better than their supervised counterparts or base learners in specific
cases [113, 160]. Moreover, the potential performance degradation is generally much
more significant than the potential improvement, especially in machine learning prob-
lems where good performance is achieved with purely supervised learning. We believe
that this is one of the main reasons for the dearth of applications of semi-supervised
learning methods in practice when compared to supervised learning.

A notable exception are the recent advances in semi-supervised neural networks,
which are generally perturbation-based (see Section 2.5.2). They incorporate the rela-
tively weak smoothness assumption (i.e., minor variations in the input space should only
cause minor variations in the output space). Empirically, these methods have shown to
be robust, consistently outperforming their supervised counterparts. Additionally, in-
corporating unlabeled data into their optimization procedure is relatively efficient com-
putationally: it involves the same type of backpropagation procedure used for labeled
samples.

A second potential remedy for the lack of robustness of semi-supervised learning
methods lies in the application of automated machine learning (AutoML) to the semi-
supervised setting. Recently, interest has significantly increased in automatically select-
ing and configuring learning algorithms for a given classification problem. These ap-
proaches include meta-learning and automated algorithm selection and hyperparameter
optimization. Recently, these approaches have been successfully applied to supervised
learning (see, e.g., [62, 178]). They have, however, not been applied to semi-supervised
learning yet. In Chapter 3, we propose a semi-supervised ensembling method and apply
it to ensembles constructed with AutoML.

Lastly, we expect the strong distinction between the fields of clustering and classi-
fication to fade. Fundamentally, both of these topics can be seen as a specification of
semi-supervised learning to the case where either only labeled data or only unlabeled
data is present. When we can confidently reason about the connections between the
marginal distribution p(x) and the conditional distribution p(y|x), both unlabeled and
labeled data can be confidently used in learning algorithms. The recent rise in popular-
ity of generative models (see Section 2.5.4) can be seen as evidence for this paradigm
shift.

Ultimately, we expect the incorporation of unlabeled data to be a vital step in the
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progress of machine learning and artifical intelligence. To uncover the intricate and
complex structures underlying the data model, the machine needs to be able to infer
patterns between observations about which it receives no explicit labeling information.
Semi-supervised learning, which aims to provide mechanisms to build such connec-
tions, will be an important tool in further developing machine learning.



Chapter 3

Automated Single-step
Co-ensembling

Most machine learning algorithms cannot be used off the shelf, requiring significant
amounts of hyperparameter tuning to achieve acceptable performance. In recent years,
automated machine learning systems have started to tackle this problem by automat-
ically selecting and configuring machine learning algorithms for any data set. auto-
sklearn is a state-of-the-art automated machine learning system that uses meta-learning
and advanced ensemble selection methods to robustly construct learner ensembles. We
propose to improve the ensemble constructed by auto-sklearn using semi-supervised
learning. In particular, we introduce a generic co-training procedure called co-ensembling,
which can be applied to any ensemble of more than two base learners. We show that
we can consistently improve the performance of the ensemble constructed by auto-
sklearn in multiclass classification problems by applying a single co-ensembling iter-
ation. Furthermore, we show that this procedure generally outperforms multi-step co-
ensembling, which exhibits decreasing performance and increasing performance vari-
ance as the number of iterations is increased. On a large benchmarking suite of diverse
multiclass classification data sets, single-step co-ensembling yields a relative reduction
in error rate of 7% on average; we improve the performance of the ensemble on over
75% of the multiclass classification problems we consider in our experiments.

3.1 Introduction
Traditionally, applying machine learning techniques to real-world problems has re-
quired substantial human effort in finding and configuring a suitable learning algorithm
for the problem at hand. This approach, where an expert considers a given problem or
data set and manually configures a machine learning algorithm to tackle the problem,
is not scalable when considering the ever-growing range of machine learning applica-
tions. Consequently, the demand for machine learning systems that require little or no
human interference has grown substantially.

Automated machine learning, or AutoML, is the branch of machine learning that

This chapter is based on an article co-authored with H.H. Hoos. I took primary responsibility for the research
conducted for this article, as well as for writing the manuscript.
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considers the automation of finding an algorithm and a corresponding hyperparame-
ter setting that performs well on a given problem (see, e.g., [178]). It can be seen as a
generalization of the hyperparamater optimization problem, which attempts to find the
optimal set of hyperparameters for a given learning algorithm and data set. Recent ad-
vances in automated machine learning combine meta-learning, which reasons about the
performance of algorithms based on data set characteristics and previous experiments,
with Bayesian optimization methods [161] and ensemble learning [62].

Ensembles of learners have been long known to outperform individual learners in
most supervised learning scenarios [212]. By training multiple, diverse classifiers on
the same problem or on small variations of the same problem and combining their
predictions, both overall performance and stability can be improved over individual
learners. The popular random forest model, for instance, is an ensemble model [26].
For ensembles to outperform individual learners, it is a necessary condition that the
learners are (1) accurate by themselves and (2) diverse (i.e., they make uncorrelated
errors) [28, 56, 82]. AutoML methods that construct ensembles of classifiers satisfy
the latter property either implicitly through Bayesian optimization [178] or explicitly
in an ensemble construction phase [62].

To the best of our knowledge, automated machine learning techniques have not yet
been applied to semi-supervised learning. This can be partially attributed to the lack
of standardized implementation toolkits for semi-supervised learning, which do exist
for supervised learning (e.g., Weka [79], scikit-learn [136]). Furthermore, semi-
supervised learning is not applied as broadly as supervised learning, and no clearly de-
fined set of methods is commonly applied in practice. Although wrapper methods (see
Section 2.3) could potentially be incorporated into the algorithm and hyperparameter
space relatively easily, their computational complexity can prove to be a limiting factor
due to their iterative nature and the large number of unlabeled data points in typical
real-world problems.

Instead of incorporating semi-supervised learning algorithms or paradigms in the
algorithm and hyperparameter space, one could also consider employing semi-supervised
learning in a separate training step after constructing supervised classifiers with Au-
toML. In particular, one could apply semi-supervised ensemble methods to the en-
semble constructed by the AutoML system. We note that the diversity and accuracy
conditions for ensembles of supervised models also apply to semi-supervised ensemble
methods [215]. For instance, the traditional co-training algorithm, which trains an
ensemble of two classifiers simultaneously by exchanging pseudo-labeled data points,
promotes diversity between the learners by training them on different subsets of the
input features [23]. In this work, we use this knowledge to train a semi-supervised en-
semble of learners obtained through AutoML, using a co-training style algorithm to
re-train them with both labeled and pseudo-labeled data.

Our main contribution is the proposal of a single-step co-training procedure where
an ensemble of classifiers is re-trained a single time using labeled and pseudo-labeled
data. The algorithm, which we call single-step co-ensembling, trains an ensemble of K
classifiers on labeled data and uses each sub-ensemble of K − 1 classifiers to pseudo-
label data for the remaining classifier. Each classifier is then re-trained on the labeled
data and its pseudo-labeled data. By applying only a single co-ensembling iteration on
the entire set of unlabeled data points, we overcome a common problem with wrap-
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per methods, where repeated pseudo-labeling iterations can introduce significant vari-
ance in performance and even degrade performance over the purely supervised ensem-
ble [179]. We apply the co-ensembling algorithm to ensembles constructed by auto-
sklearn, which is a prominent, state-of-the-art automated machine learning system.
In multiclass classification problems, we are able to significantly improve the predictive
power of the ensemble with a single co-ensembling iteration.

The rest of this chapter is structured as follows. In Section 3.2, we explain the
concept of AutoML and the auto-sklearn system. We then introduce our single-
step co-ensembling algorithm, along with a general framework for co-ensembling, in
Section 3.3. Our experiments and results are outlined in Section 3.4, followed by con-
clusions and discussion provided in Section 3.5.

3.2 AutoML: auto-sklearn
Given a learning problem, the goal of AutoML systems is to automatically infer a
learner that is well-suited to tackle this problem. Since a broad variety of learning
algorithms exists, and most of these algorithms depend on multiple hyperparameters
that significantly influence the performance of the learner, this is a challenging task.
However, recent work in AutoML has shown that reliable, broadly applicable AutoML
systems can be constructed that yield impressive performance across a broad range of
machine learning problems [62, 100, 178].

The AutoML problem can be cast as an optimization problem where some cost
function, expressing the performance of the learner on the input data set, has to be
minimized. The cost function is an approximation of the generalization error. It is
obtained by splitting the data into training and test sets and evaluating the test set
performance of a learner trained on the training set. We denote these k training and
test sets, which are usually obtained via cross-validation or holdout, byD(i)

train andD(i)
test,

respectively. The loss function of some algorithmA on the test set, when trained on the
training set, is then denoted as L(A,D(i)

train, D
(i)
test)

Let A = {A(1), . . . , A(R)} denote the space of available machine learning algo-
rithms, and let Λ(1), . . . ,Λ(R) denote their respective hyperparameter spaces. To-
gether, these form a hierarchical search space of all available algorithm configurations,
known as the configuration space. The AutoML optimization problem, then, can be
formulated as follows:

minimize
A(j)∈A,Λ∈Λ(j)

1

k

k∑
i=1

L
(
A

(j)
Λ , D

(i)
train, D

(i)
test

)
, (3.1)

where A(j)
Λ denotes learning algorithm A(j) with hyperparameters Λ.

Traditional hyperparameter optimization approaches tackle the same problem, but
fix the algorithm Aj . Examples of common hyperparameter optimization approaches
include grid search, random search [18], and, more recently, Bayesian optimization
methods [161]. The more general task of combined algorithm selection and hyperpa-
rameter optimization (known as CASH ) involves a much larger configuration space and
is generally approached using Bayesian optimization methods.



3.3. CO-ENSEMBLING 66

The first generic AutoML approach was Auto-Weka [100, 178], which constructs
a configuration space consisting of Weka [79] machine learning algorithms and feature
selection methods. The algorithm space contains multiple ensemble methods accepting
arbitrary base classifiers, which means the total configuration space size is exponential
in the number of base classifiers allowed by these ensemble methods. The authors limit
this to 5 base classifiers.

Another popular, more recent AutoML system is auto-sklearn [62], which is
based on the Python machine learning toolkit scikit-learn [136]. It takes the en-
semble construction process outside of the configuration space, instead constructing
the ensemble in a postprocessing step. A greedy ensemble selection procedure is em-
ployed, which iteratively adds the classifier to the ensemble that minimizes the objective
function for the resulting full ensemble [31]. This greatly reduces the size of the config-
uration space. auto-sklearn also employs meta-learning [25]: by running the opti-
mization procedure for long stretches of time on a large, diverse set of data sets, a model
is constructed for the posterior performance distribution conditioned on data set char-
acteristics. This model is used for new problems, initialising the Bayesian optimization
procedure to promising configurations.

A variety of Bayesian optimization procedures exists [155]. Both Auto-Weka and
auto-sklearn use the sequential model-based optimization method SMAC to find
the optimal algorithm and hyperparameters. SMAC builds a random forest model that
captures the dependence of the loss L on the algorithm A and hyperparameter settings
Λ. In each iteration, SMAC selects a new, promising configuration to evaluate by con-
sidering the configuration with the maximum expected improvement over the current
best configuration. The resulting evaluation is then used (in addition to the previously
obtained evaluations) to re-train the random forest model. This process is repeated until
a prespecified evaluation budget is exhausted. Crucially, SMAC consecutively evalu-
ates each configuration on the k different train-test sets, which allows the algorithm to
terminate further evaluation of low-performance configurations at an early stage.

auto-sklearn is one of the most prominent AutoML systems. In the original pa-
per, the authors show that it compares favorably to both Auto-Weka and Hyperopt-
sklearn [99] on a broad variety of data sets [62]. Furthermore, it was the winning
solution to the 2015 AutoML challenge [76].

3.3 Co-ensembling
We propose to enhance the ensemble generated by auto-sklearn using unlabeled data.
Specifically, we use every sub-ensemble ofK−1 classifiers to pseudo-label data for the
remaining classifier. Each classifier is then re-trained on the labeled data and its newly
obtained, pseudo-labeled data. Our approach falls into the group of wrapper methods,
i.e., semi-supervised learning methods that use pseudo-labeling to re-train supervised
classifiers (see Section 2.3). More specifically, it can be seen as a variant of co-training
where more than two classifiers are trained. The pseudo-labeling approach we use for
our semi-supervised method, where sub-ensembles form predictions for the remaining
classifier, is very similar to the pseudo-labeling approaches used by tri-training [214]
and co-forest [110] (see Chapter 4).
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We note that we have also considered integrating wrapper methods into the con-
figuration space of auto-sklearn. We integrated self-training into the configura-
tion space, activating it based on a Boolean hyperparameter in the configuration space.
However, most likely due to the widely observed weak performance of self-training
or due to its computational inefficiency, we were not able to obtain any performance
improvements. More information about these experiments is provided in Appendix B.

Co-training was one of the earliest semi-supervised learning paradigms. In its orig-
inally proposed form, it trained two classifiers independently on two different feature
subsets of the data [23]. In each co-training iteration, the classifier obtained in the
previous iteration is used to make predictions for the unlabeled data, which are pseudo-
labeled with the predictions and passed to the other classifier. The final classifier is
then simply constructed as the majority voting procedure using the two base classifiers.
This approach relies on the existence of multiple views of the data, i.e., feature subsets,
being available. Of course, this situation is not too common in machine learning prob-
lems. Since the original proposal of co-training by Blum and Mitchell, a plethora of
co-training style methods has emerged. Although many of them consider the multi-
view setting, single-view co-training has also received attention. Several approaches
have been proposed that train base learners with different hyperparameters on the same
data, or that use different base learners altogether [179].

3.3.1 Co-training assumptions
All co-training methods have one thing in common: they rely on the diversity of the base
classifiers [28, 215]. In multi-view learning, this requirement is satisfied by using two
uncorrelated or weakly correlated feature subsets. In single-view learning, the diversity
has to be enforced in the classifiers themselves. In addition to the diversity criterion, co-
training methods assume that the individual learners can, by themselves, yield accurate
predictions. In co-training literature, the former condition is commonly referred to
as independence, and the latter condition is commonly referred to as redundancy [215].
We note that these conditions coincide with the necessary conditions for supervised
ensemble methods: the base learners need to be diverse and accurate [56, 82].

Finding an ensemble of diverse, accurate classifiers is not a trivial task: since each
base learner needs to be accurate by itself, the corresponding algorithm and hyperpa-
rameter configuration task is even more complex than when using only a single classifier.
We propose to mitigate this problem by applying the co-training paradigm to the en-
semble generated by auto-sklearn, making use of the observation that the necessary
conditions for successful classifier ensembles are identical to the necessary conditions
for co-training to succeed.

3.3.2 General co-ensembling framework
We outline a simple framework for co-training using multiple classifiers. The frame-
work does not use sample weighting, probabilistic predictions for individual classifiers,
or bootstrapping. As such, it support supervised base learners of any type. We name
this framework co-ensembling, referring to the application of co-training style optimiza-
tion to any existing ensemble of classifiers. It is similar to the co-forest approach by Li
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and Zhou, who also use sub-ensembles of K − 1 classifiers to pseudo-label data for
the remaining classifier [110]. However, their approach employs a stopping criterion
based on an estimate of the generalization error; they bootstrap the initial, labeled data
for each classifier to obtain the out-of-bag error in each iteration. Additionally, they
use a subsampling step to limit the amount of pseudo-labeled data points. Our frame-
work works with any ensemble of classifiers, and does not require bootstrapping. This
is highly advantageous in scenarios where few base learners are available.

The final single-step co-ensembling procedure we propose fits nicely into our co-
ensembling framework. In accordance with the Programming by Optimization (PbO)
paradigm [86], we refrain from making design choices where not strictly necessary. The
resulting framework contains several hyperparameters that allow for automatic config-
uration. Extensive configuration of these hyperparameters is beyond the scope of this
work; we limit ourselves to optimization of the confidence threshold hyperparame-
ter (see Section 3.4.4). We do note that automatic configuration with multi-step co-
ensembling could be computationally expensive, since each co-ensembling iteration has
the same computational complexity as the training phase of the ensemble of supervised
base learners. Pseudo-code for the co-ensembling algorithm is provided in Algorithm 1.

The general co-ensembling procedure for base learners h1, . . . , hK proceeds as fol-
lows. Firstly, all classifiers are independently trained on the labeled data (lines 2 to 5).
For each classifier hk, we keep track of the unlabeled data points Uk that can still be
pseudo-labeled (i.e., that weren’t pseudo-labeled in a previous iteration). This set of
candidate samples is initialized to the full set of unlabeled data points. Secondly, we
iteratively introduce unlabeled data to each of the classifiers (lines 6 to 16). We refer to
one of these iterations as a co-ensembling iteration.

In each co-ensembling iteration, all ensembles of K − 1 classifiers pseudo-label
samples for the remaining classifier. To select the samples to pseudo-label, the sub-
ensemble Hk, consisting of all classifiers in the ensemble except for hk, is evaluated on
all remaining unlabeled samples Uk for classifier k (line 8). From the samples on which
Hk ’s confidence (i.e., the fraction of the K − 1 classifiers predicting the pseudo-label)
exceeds a certain threshold θ, the most confident samples are selected up to a certain
limit max_pl (line 9). Each classifier k is then re-trained on both the labeled samples
and these selected unlabeled samples with their pseudo-labels from Hk (lines 10 and
11). Depending on the setting of the Boolean hyperparameter retain_pl (governing
whether pseudo-labeled samples should be retained in later iterations), the pseudo-
labeled samples are removed from the set of unlabeled data points Uk that can still be
pseudo-labeled for classifier k (lines 12 to 14).

3.3.3 Single-step co-ensembling
Although receiving relatively little attention in the literature (likely due to publication
bias, as noted by Zhu [216]), many semi-supervised learning methods only perform
better than their supervised counterparts or base learners in specific cases [113, 160].
This is also the case for wrapper methods, including self-training and co-training (see,
e.g., [110, 179] and Chapter 4). Moreover, the potential performance degradation is
generally much more significant than the potential improvement, especially in machine
learning problems where good performance is achieved with purely supervised learning.
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Algorithm 1 Co-ensembling
Input:

Labeled data L = ((xi, yi))li=1

Unlabeled data U = (xi)ni=l+1

Ensemble of classifiers H = h1, . . . , hK
Confidence threshold θ
Maximum number of iterations num_iter
Maximum number of pseudo-labeled samples per iteration max_pl
Whether to retain pseudo-labeled samples in the next iteration retain_pl

Output: Trained ensemble H ′

1: procedure Co-ensembling
2: for k = 1, . . . ,K do
3: Uk ← U
4: hk = Traink(L)
5: end for
6: for t = 1, . . . , num_iter do
7: for k = 1, . . . ,K do
8: U ′

k ← {xi ∈ Uk : Confidence(Hk, xi) ≥ θ}
9: U∗

k ← Select max_pl highest-confidence samples from U ′
k

10: L′
k = {(xi,Hk(xi)) : xi ∈ U∗

k}
11: hk = Traink(L ∪ L′

k)
12: if retain_pl then
13: Uk ← Uk \ U∗

k

14: end if
15: end for
16: end for
17: return (h1, . . . , hK)
18: end procedure



3.4. EXPERIMENTS AND RESULTS 70

The main cause of potential performance degradation in wrapper methods is the
iterative nature of the algorithms: when the incorrect pseudo-labeling of a sample sig-
nificantly alters the decision boundary in an early iteration of the algorithm, this mistake
will be amplified throughout subsequent iterations. Furthermore, the diversity of the
ensemble, which is a necessary condition for the ensemble to perform well, is explicitly
weakened in each co-training iteration. When passing pseudo-labeled data between
classifiers, the correlation in the errors they make will generally increase.

We propose a simple solution to this problem: we only apply a single co-training
iteration, but use the entire set of unlabeled data (i.e., without explicitly limiting the
number of pseudo-labeled samples). The only constraint we impose is that the pre-
diction confidence of the sub-ensemble is above some threshold θ, to ensure that only
confidently predicted samples are pseudo-labeled.

3.4 Experiments and results
We assess our single-step co-ensembling approach by applying it to the ensemble gen-
erated by auto-sklearn. This allows us to directly compare its peformance to the per-
formance of auto-sklearn. We first describe our experimental setup in detail. Then,
we show that using the ensemble constructed by auto-sklearn in an unweighted ma-
jority voting scheme improves performance over the original, weighted ensemble. We
apply our co-ensembling procedure to this unweighted ensemble, and report consider-
able performance improvements on multiclass data sets. Furthermore, we demonstrate
that the improvements diminish as the number of co-ensembling iterations grows. On
the basis of this evidence for the viability of single-step co-ensembling, we conduct
extensive experiments with single-step co-ensembling. We demonstrate that it can re-
liably produce significant performance improvements on multiclass data sets.

3.4.1 Experimental setup
Both automated machine learning systems and semi-supervised wrapper methods need
to be applicable to a broad variety of data sets. We therefore evaluate the perfor-
mance of our algorithms on a diverse suite of data sets with different characteristics,
the OpenML 100 [19]. This benchmarking suite consists of roughly 100 data sets; at
the time of our experiments, it contained 52 binary and 45 multiclass data sets. A
broad range of data set sizes is represented, each data set consisting of between 100
and 100,000 samples. Further information about the benchmarking suite is provided
in Appendix C.

Our main experiments are conducted with 10% and 20% labeled data fractions; this
constitutes the training set that is passed to auto-sklearn. It will be further split
into different subsets for auto-sklearn’s training procedure. The rest of the data re-
mains unlabeled and constitutes the testing data. The features of these data points are,
of course, used in the co-ensembling procedure. Varying the amount of labeled data
relative to the number of data points in the data set is common when experiments are
conducted on data sets with diverse sample sizes [179]. Due to computational limi-
tations, some of our preliminary experiments are only conducted in the 20%-labeled



3.4. EXPERIMENTS AND RESULTS 71

setting, which provides the supervised base algorithms with more data and promotes
stability in our experiments.

For each data set, we conduct 10 experiments with different labeled/unlabeled (i.e.,
train/test) splits to obtain confident performance estimates. Each experiment proceeds
as follows. The data is split into labeled and unlabeled sets randomly (according to
the prespecified ratio of labeled to unlabeled data). Then, the labeled training data is
used by auto-sklearn to construct a weighted ensemble of classifiers. The evaluation
of this ensemble on the test data yields the performance of auto-sklearn. We also
evaluate the ensemble without weights on the testing data. Then, we apply single-step
co-ensembling to the unweighted ensemble (if it has at least 3 base learners), passing it
the features of the available unlabeled data points. The resulting ensemble is evaluated
on the unlabeled data. This approach is similar to the transductive semi-supervised
learning setting (see Section 2.6), where the goal of the learner is to infer the labels of
the unlabeled data points it encountered in the training phase. However, our approach
produces a classifier that is defined over the entire input space, as opposed to providing
only the predictions for the unlabeled data points.

Our experiments are conducted with auto-sklearn version 0.3.0. Each run of
auto-sklearn is performed in a distributed manner on 8 computing nodes, one of
which is used exclusively as a controller, aggregating results from the other nodes and
constructing the final ensemble. Each node receives a wall-clock time budget of 2 hours
(10% labeled data) or 4 hours (20% labeled data); the time limit for each individual run
(i.e., the construction of a single classifier) is limited to 10% of the total budget per
node. RAM is limited to 2.5 GB per node.

The co-ensembling procedure, which refines the ensemble constructed by auto-
sklearn, is run with a varying number of iterations num_iter. In our final single-step
co-ensembling experiments, the number of iterations is set to 1. No explicit limit is
imposed on the number of data points to pseudo-label in this single iteration (max_pl =
∞). In accordance with hyperparameter optimization experiments carried out for single-
step co-ensembling (see Section 3.4.4), the confidence threshold θ is set to 0.7. We note
that this fixed threshold can be considered to be more strict for data sets with more
classes, where the labeling confidence can be expected to be lower.

Construction of the final experiment set

Not all experiments we conduct are usable for performance comparisons. We outline
the reasons for this, and elaborate on the experiments that needed to be discarded.
All results we report are, unless explicitly stated otherwise, based on the experiments
remaining after this selection step.

Firstly, some data sets are ill-suited for semi-supervised learning experiments due
to their lack of sufficient data points per class. Since we need to split our data set into a
small labeled data set and a large unlabeled data set to emulate common semi-supervised
learning scenarios, the initial data set needs to contain sufficient samples per class. If it
doesn’t, no meaningful optimization procedure can be applied by auto-sklearn. We
therefore discard data sets with fewer than 10 samples per class on average when 20%
of the data is labeled. This leaves 91 data sets.

Secondly, the AutoML phase of the training process is susceptible to errors. For in-
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stance, auto-sklearn might suggest configurations that cause errors in scikit-learn,
and computing nodes may crash. After discarding crashed experiments, we are left with
697 valid experiments in the 10%-labeled setting and 710 valid experiments in the 20%-
labeled setting.

Thirdly, co-ensembling requires two or more learners in each sub-ensemble to be
able to estimate prediction confidence. Thus, three or more learners are required in
total for co-ensembling to proceed. Discarding those ensembles with fewer than 3
learners, we obtain our final set of 396 experiments in the 10%-labeled setting and 496
experiments in the 20%-labeled setting. This constitutes a weakness in our method: if
the ensemble constructed by auto-sklearn does not adhere to this specification, we
cannot reliably improve performance. We note that the final number of experiments
can vary slightly based on the hyperparameter settings; the numbers reported above are
based on the single-step co-ensembling experiments with a confidence threshold of 0.7.

All of these steps are independent of the results of the co-ensembling procedure: we
only omit infeasible and erroneous experiments, which can be identified as such before
starting the co-ensembling procedure.

3.4.2 Supervised ensemble weighting
auto-sklearn constructs an ensemble of classifiers from the set of candidate classi-
fiers by greedily selecting the classifier that minimizes the validation error of the en-
semble [31, 62]. Classifiers are in principle unweighted, but can be selected multiple
times. When the ensemble can no longer be improved or a predefined ensemble size
limit is reached, ensemble construction is finalized: classifiers that occur multiple times
are grouped, yielding a weighted ensemble.

In our co-ensembling experiments, we treat all classifiers in the ensemble equally.
In other words, we do not use the classifier weights in our co-ensembling approach.
Interestingly, our experimental results show that, even in the supervised setting, this
approach yields better performance than the weighted ensemble constructed by auto-
sklearn. The aggregated results of these experiments in both the 10%-labeled and
20%-labeled settings are provided in Table 3.1. To obtain these results, we grouped the
results per data set and calculated the mean error rates of the different methods and the
mean change in error rate. These results are then averaged to yield the final performance
figures. To show that auto-sklearn is able to find high-quality classifier ensembles,
we also compare it to random forests [26] with 100 trees. In the comparisons with
random forests, any data sets with missing values are omitted since random forests do
not natively handle missing data.

We assess the statistical significance of our results by applying the Wilcoxon signed-
rank test [195] with a significance level of 5% to the list of mean error rates for our data
sets, as is common when comparing two classifiers on multi data set experiments [54].
Interestingly, we find that the performance difference between auto-sklearn and ran-
dom forests is significant in the 20%-labeled setting but not in the 10%-labeled setting.
This can possibly be explained by the lack of sufficient labeled data auto-sklearn can
use to properly evaluate its solutions.

The performance improvement of the unweighted auto-sklearn ensemble over
the regular, weighted auto-sklearn ensemble and over random forests is significant
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Table 3.1: Performance comparison of random forests, auto-sklearn (ASKL), and
unweighted auto-sklearn on the OpenML 100 benchmarking suite. Both absolute
error rates and relative error rate differences are reported; results are averaged over all
data sets.

(a) Relative changes in error rate, averaged over
all data sets, and win/tie/loss rates.

Method Fraction labeled
10% 20%

ASKL vs Random forest
Mean rel. change -6.4% -14.0%
Win/tie/loss 42/0/32 51/0/23

ASKL (unweighted) vs ASKL
Mean rel. change -8.0% -5.1%
Win/tie/loss 57/2/19 56/1/21

ASKL (unweighted) vs Random forest
Mean rel. change -12.5% -18.8%
Win/tie/loss 46/1/27 54/1/19

(b) Absolute error rates, averaged over all
data sets.

Method Fraction labeled
10% 20%

Random forest 0.196 0.173
ASKL 0.188 0.160
ASKL (unw.) 0.182 0.154

in both labeled data fractions. Furthermore, the win/tie/loss rates clearly show that it
outperforms both the weighted ensemble and random forests in a large majority of cases.
This shows that, even when using very few data points, auto-sklearn yields a well-
performing ensemble. We stress that our results only include auto-sklearn ensembles
consisting of more than 2 learners (see Section 3.4.1). When the ensemble contains
only 2 learners, one can expect the weighted ensemble to outperform the unweighted
ensemble: the potential influence of a weak learner with low weight is, in that case,
potentially very large. Preliminary experiments (not reported here) substantiate that
claim.

3.4.3 Multi-step co-ensembling
Before continuing to the evaluation of single-step co-ensembling, the centerpiece of
our experiments, we evaluate multi-step co-ensembling. Using the trained, unweighted
ensemble from auto-sklearn as a starting point, we run the co-ensembling procedure
with num_iter = 20 iterations. These experiments are conducted in the 20%-labeled
setting. We compare the performance of the resulting ensemble to the unweighted base
ensemble after each iteration. We assess both the mean relative change in error rate and
its variance as the number of iterations grows.

The results are depicted in Figure 3.1. As is clearly visible, the performance im-
provement obtained when applying a single co-ensembling iteration is subtantial in
multiclass data sets: a mean performance improvement of over 7% is obtained after
the first co-ensembling iteration. As the number iterations grows, however, the im-



3.4. EXPERIMENTS AND RESULTS 74

provement diminishes. In binary data sets, performance is not noticeably improved at
all. However, the procedure exhibits the same behavior as in multiclass data sets when
varying the number of co-ensembling iterations: performance deteriorates as the num-
ber of iterations grows, and the best performance is obtained when using just a single
co-ensembling iteration.

The progressive degradation in performance improvement could potentially be caused
by the previously discussed effects of co-ensembling. Firstly, the diversity between the
classifiers decreases as the number of co-ensembling iterations grows. Secondly, in-
correct pseudo-labels obtained through confident misclassifications can be amplified
throughout the co-ensembling procedure.

Considering Figure 3.1, we notice that the variance in the relative change in error
rate grows significantly throughout the co-ensembling process. Large variance in the
performance change when applying a wrapper method to a base learner signifies a lack
of robustness and a relatively high probability of substantial performance degradations.
In general, we want the mean improvement to be large and the variance in the mean
improvement to be low. Both of these measures are optimized when using only a single
co-ensembling iteration, confirming our hypothesis.

3.4.4 Single-step co-ensembling
Having established the ability of co-ensembling to improve the performance of the en-
semble constructed by auto-sklearn, we proceed to a broader evaluation of the perfor-
mance of single-step co-ensembling. Firstly, we assess the influence of the confidence
threshold hyperparameter θ on the performance of single-step co-ensembling. Then,
using the optimal confidence threshold from these experiments, we elaborate on the
performance of single-step co-ensembling in both the 10%-labeled and 20%-labeled
settings. We show that single-step co-ensembling provides a substantial performance
improvement on multiclass data sets, and that it does so reliably, improving perfor-
mance on a large majority of data sets.

Confidence threshold

The co-ensembling framework we have presented is relatively generic: it allows for vary-
ing numbers of iterations, limits on the number of pseudo-labeled samples per iteration,
and different confidence thresholds. Having evaluated the influence of the number of
co-ensembling iterations in the previous, we now investigate the influence of the con-
fidence threshold on the performance of co-ensembling. Our co-ensembling method
does not impose restrictions on the number of samples to pseudo-label per iteration:
from our perspective, there is no compelling reason to impose such as limit unless driven
by computational limitations.

To evaluate the impact of the confidence threshold θ on the performance of co-
ensembling, we conduct experiments with different thresholds in the 20%-labeled set-
ting. The thresholds we evaluate range from 0.5, such that at least half of the classifiers
in the sub-ensemble have to agree to suggest a data point for pseudo-labeling, to 0.9.
The results of these experiments are shown in Figure 3.2. As is visible from this graph,
no confidence thresholds provide substantial performance improvements in binary data



3.4. EXPERIMENTS AND RESULTS 75

1 4 7 10 13 16 19
# Co-ensembling iterations

0%

+2%

+4%

+6%

+8%

M
ea

n 
re

la
tiv

e 
er

ro
r r

at
e 

ch
an

ge

Relative change (left axis)
Variance (right axis)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Va
ria

nc
e 

in
 re

l. 
ch

an
ge

 in
 e

rro
r r

at
e

(a) Multi-step co-ensembling results for binary data sets.

1 4 7 10 13 16 19
# Co-ensembling iterations

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

M
ea

n 
re

la
tiv

e 
er

ro
r r

at
e 

ch
an

ge

Relative change (left axis)
Variance (right axis)

0%

1%

2%

3%

4%

5%

6%

7%

8%

Va
ria

nc
e 

in
 re

l. 
ch

an
ge

 in
 e

rro
r r

at
e

(b) Multi-step co-ensembling results for multiclass data sets.

Figure 3.1: Ensemble performance on OpenML 100 data sets, using multiple co-
ensembling iterations. We plot the mean and variance of the relative change in error
rate between the unweighted auto-sklearn ensemble and the refined ensemble from
co-ensembling.
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Figure 3.2: Performance evaluation of single-step co-ensembling with different confi-
dence thresholds in the 20%-labeled setting.

sets. For multiclass data sets, the distribution is unimodal, and the largest performance
gains are attained with θ = 0.7.

It is not evident why such large differences exist between the performance of co-
ensembling on binary data sets and the performance of co-ensembling on multiclass
data sets, even when varying the confidence threshold. We identify two potential causes.
Firstly, it is possible that an agreement of multiple base learners on a prediction inher-
ently carries more significance in multiclass data sets. In binary data sets, and especially
when the ensemble is relatively small, it is more likely that a sub-ensemble of learners
agrees on a prediction by chance. Secondly, it is possible that the ensemble diversity
in binary classification problems is generally smaller than in multiclass classification
problems. In that case, the base learners would often be unable to exchange useful in-
formation. Further investigation of these potential causes is beyond the scope of this
work, but remains an interesting topic for future research.

Results

Using the previously established confidence threshold of 0.7 and a single co-ensembling
iteration, we conduct extensive experiments in both the 10%-labeled and 20%-labeled
settings. A summary of our results is provided in Table 3.2. Supporting the results of
our earlier experiments, we see that the average reduction in error rate of single-step
co-ensembling is 7.5% in the 20%-labeled setting and 6.8% in the 10%-labeled setting.
Comparing this to the performance improvement of the unweighted auto-sklearn
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Table 3.2: Performance comparison between the unweighted auto-sklearn ensemble
and the ensemble refined with single-step co-ensembling. Includes mean absolute error
rates and mean error differences.

Method Fraction labeled
10% 20%

Overall
Baseline (unw. ASKL) 0.177 0.151
Mean relative change -2.2% -3.5%
Win/tie/loss 45/2/31 42/2/34

Binary
Baseline (unw. ASKL) 0.158 0.144
Mean relative change 1.4% -0.5%
Win/tie/loss 18/1/25 16/2/26

Multiclass
Baseline (unw. ASKL) 0.198 0.158
Mean relative change -6.8% -7.5%
Win/tie/loss 27/1/6 26/0/8

ensemble over random forests from Table 3.1, co-ensembling yields a substantial im-
provement. Assessing statistical experiments with the Wilcoxon signed-rank test with
a significance level of 5%, we find that the performance improvements observed in the
multiclass data sets are indeed statistically significant; the differences observed in the
binary data sets are not.

More importantly, however, co-ensembling yields a substantial performance im-
provement in over 75% of the data sets, both in the 10%-labeled and 20%-labeled set-
tings. This signifies the robustness and genericness of single-step co-ensembling in
multiclass problems. We further evaluate the robustness of our procedure by consider-
ing the per-data-set results. These are available in full in Appendix A.

We proceed to compare the error rates of the unweighted auto-sklearn ensemble
and the ensemble obtained when using co-ensembling by means of a scatter plot. In
Figure 3.3, all valid multiclass experiments are plotted. We provide both a scatter plot
of the error rates within the 0 -10% range (in Figure 3.3a) and a full scatter plot (in
Figure 3.3b).

These scatter plots provide confirmatory evidence for our earlier observations: co-
ensembling is able to improve the unweighted ensemble from auto-sklearn in most
cases. Furthermore, it rarely degrades the ensemble’s performance substantially. This is
an important feature of successful semi-supervised learning methods: the user should be
confident that it does not perform worse than its supervised counterpart. The zoomed-
in scatter plot in Figure 3.3a shows that significant performance improvements are ob-
tained in ensembles with error rates in the range of 0 -10%. As the error rates obtained
by auto-sklearn increase, the improvement obtained by co-ensembling appears to
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(a) Zoomed-in scatter plot of error rates of valid multiclass experiments with error rates in range
0 -10%, comparing unweighted auto-sklearn to its co-ensembling extension.
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(b) Scatter plot of error rates of all valid multiclass experiments, comparing unweighted auto-
sklearn to its co-ensembling extension.

Figure 3.3: Scatter plots of auto-sklearn’s unweighted ensemble error rates before
and after co-ensembling.
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decrease (see Figure 3.3b).
Single-step co-ensembling is able to consistently improve the performance of strong

ensembles of classifiers in multiclass data sets. Performance improvements are obtained
in more than three quarters of our multiclass classification problems, and substantial
performance degradation is rarely observed. Furthermore, since co-ensembling re-
trains the existing ensemble, its time complexity is identical to the original ensemble of
classifiers. Because the original, labeled data is always used when the classifiers are re-
trained, the total running time of the algorithm can be expected to be at least twice the
running time of the supervised algorithm. The additional computation time attributed
to the increase in labeled data can greatly vary, and depends primarily on the number
of pseudo-labeled samples.

3.5 Conclusions
In this work, we have introduced a novel semi-supervised learning framework for train-
ing classifier ensembles. Our method, co-ensembling, iteratively introduces pseudo-
labeled data to each of the classifiers in the ensemble by using the predictions of the
sub-ensemble of all other classifiers. Our results demonstrate that such methods tend
to have increased performance variance as the number of iterations grows. In that light,
we proposed single-step co-ensembling, where the co-ensembling procedure is applied
a single time, considering all unlabeled data for pseudo-labeling.

We have shown that single-step co-ensembling can consistently improve the per-
formance of strong classifier ensembles on multiclass classification problems. Applying
our ensembling method to ensembles constructed by auto-sklearn, a prominent au-
tomated machine learning system, we were able to consistently improve performance
in multiclass classification problems. Firstly, we showed that using the ensemble con-
structed by auto-sklearn in an unweighted fashion improves performance over the
standard, weighted ensemble. Secondly, we used single-step co-ensembling to reduce
the error rate obtained by this unweighted ensemble by an average of close to 7% in mul-
ticlass classification problems under different fractions of labeled data. Our approach
yielded performance improvements in 27 of the 34 multiclass classification problems we
evaluated with 10% of the data being labeled. In the 20%-labeled setting, we achieved
performance improvements in 26 of the 34 data sets.

The single-step co-ensembling procedure achieves state-of-the-art performance in
multiclass automated machine learning problems. In future work, we intend to ex-
plore the possibilities of improving the performance in binary classification problems
as well, which we have not been able to achieve so far. One promising approach to
this problem would be to incorporate the diversity criterion of the ensemble explicitly
in the auto-sklearn ensemble construction process, or even in its Bayesian optimiza-
tion procedure. Furthermore, it would be interesting to evaluate the performance of the
ensemble obtained by co-ensembling on previously unseen data, which corresponds to
the fully inductive setting.



Chapter 4

Semi-supervised Decision Trees

In Chapter 3, we proposed a new single-step semi-supervised ensembling method for
strong classifier ensembles. The method we proposed pseudo-labels data for each classi-
fier by considering the predictions of the ensemble of all other classifiers. This pseudo-
labeling approach is similar to the pseudo-labeling approach used by the co-forest algo-
rithm [110], which we will discuss in this chapter. Co-forest is an extension of random
forests to the semi-supervised setting, introducing unlabeled data to each decision tree
based on the predictions of the other trees in the ensemble. It has been shown to out-
perform supervised random forests on a variety of data sets when using few trees, but no
prior work explores their performance using a larger number of trees. We address this
open question by evaluating co-forest with a varying number of trees on a benchmarking
suite of diverse data sets. We show that, in a large majority of cases, the performance
improvement of co-forest over random forests vanishes as the number of trees grows,
and is in fact reversed when using more than 10 to 15 trees. Our results indicate that
larger, supervised random forests outperform smaller, semi-supervised forests in almost
all cases.

In addition to these findings, we propose a novel semi-supervised node splitting
criterion for the construction of semi-supervised decision trees. We show that this
addition can significantly improve performance for individual decision trees, but fails
to yield improvements when the semi-supervised trees are incorporated into a random
forest.

4.1 Introduction
Decision trees have long been a popular classification and regression model in supervised
machine learning [120]. Due to their structured nature, where predictions are formed
via sequences of simple decisions, they are easy to understand, implement, and explain.
They require little tuning and data preprocessing and can be efficiently trained [81]. Al-
though individual decision trees are susceptible to noise and generalize poorly, multiple
decision trees can be combined to yield robust and powerful ensemble methods [212].

In ensemble learning, a distinction is often made between bagging and boosting
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methods. In bagging methods, each base learner is trained independently on a boot-
strapped training set. When training is completed, predictions are formed by aggregat-
ing the results of the base learners. In classification, this is done with majority voting;
in regression, the joint predictions are formed by averaging the predictions of the base
learners. In boosting methods, learners are constructed sequentially based on the per-
formance of previously constructed learners. After the training phase, predictions are
formed by aggregating the predictions of the base learner.

The most well-known bagging model for decision trees is the random forest, which
was proposed by Breiman [26]. In addition to bootstrapping the samples for each de-
cision tree, it only considers a (random) subset of features for determining the best split
at each node. This randomization step, which is an essential part of the training pro-
cedure of random forests, is intended to prevent overfitting. We cover the construction
process of supervised decision trees in more detail in Section 4.3.1. Today, random
forests are broadly used in machine learning applications [212]. Boosting methods are
often applied to decision trees as well: Freund and Schapire introduced the highly pop-
ular AdaBoost, which is a general boosting framework that often uses decision trees
as base leaners [63]. In recent years, decision trees have gained additional traction in
boosting methods with the introduction of the distributed gradient boosting algorithm
XGBoost [38].

Over the past two decades, several approaches have been suggested to include unla-
beled data in the training process. Most of these approaches incorporate the unlabeled
data into the classifiers using a wrapper method (see Section 2.3), re-training a decision
tree or random forest multiple times by iteratively introducing unlabeled data labeled
by the classifiers from the previous iteration. However, approaches also exist to directly
incorporate the unlabeled data into the decision tree. For instance, Liu et al. propose
to use an estimate of the sample density in the splitting criterion [118, 119].

Applying the well known self-training algorithm [205] to random forests, Leistner
et al. suggest to probabilistically pseudo-label unlabeled samples independently for each
tree based on the predictions of the full ensemble [108]. Tanha et al. also apply self-
training to decision trees and random forests, using improved confidence predictions
for individual decision trees [176]. Boosting methods typically pseudo-label samples
for each new tree that is added to the ensemble [17, 123].

Li and Zhou propose an adaption of co-training, a wrapper method where base
learners provide each other with pseudo-labeled data [21], to random forests [110].
They propose co-forest, which pseudo-labels unlabeled samples for each tree based on
the predictions made by the ensemble of all other trees. This approach was extended by
Deng and Guo, who attempt to prevent the influence of possibly mislabeled samples
by removing “suspicious” pseudo-labelings based on k-nearest neighbors [55]. These
approaches are compared to other wrapper methods by Triguero et al., who observe im-
pressive performance gains compared to other single-view co-training methods [179].

Crucially, in evaluating co-forest, existing work constructs an ensemble consisting
of only 6 trees. However, it has been shown that using more trees for supervised ran-
dom forests generally yields highly superior performance in practice [134]. In fact,
Osha et al. empirically showed that the area under the receiver operator characteristic
(ROC) curve, which is commonly used to measure classifier performance [24], typi-
cally increases monotonically as the number of trees grows. Furthermore, they suggest
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that it convergences asymptotically. The question naturally arises whether co-forest also
improves performance over supervised random forests when using more decision trees.

Here, we address this question and study the performance of co-forest in compari-
son with random forests as the number of trees grows. Since co-forest is an expansion
of random forests (it reduces to a supervised random forest when no unlabeled data
is present), we can directly evaluate the performance gain when introducing different
amounts of unlabeled data. Comparing results on the OpenML 100 [182], a bench-
marking suite of around 100 diverse data sets, we show that co-forest exhibits improved
performance over random forests when few trees are used, but that this performance
improvement quickly dwindles when the number of trees is increased. In fact, as the
number of trees grows, co-forest performs significantly worse than supervised random
forests.

Additionally, we study a simple density-estimation approach for incorporating un-
labeled data into decision trees. We propose a node splitting approach similar to the
approach by Liu et al. [118, 119], but with lower time complexity. We show that
this approach improves the performance of decision trees, but yields no improvement
compared to supervised random forests when used in an ensemble.

The remainder of this chapter is structured as follows. The co-forest algorithm is
outlined in Section 4.2, followed by our new semi-supervised node splitting criterion
in Section 4.4.2. We discuss our experiments and results in Section 4.4. Finally, we
present our conclusions in Section 4.5.

4.2 Co-forest
The co-forest algorithm is a wrapper method for ensembles of decision trees. Wrapper
methods iteratively introduce unlabeled data to regular, supervised classifiers by pseudo-
labeling unlabeled data points using the classifiers being trained (see Section 2.3). Self-
training, for instance, takes a base classifier and iteratively re-trains it by pseudo-labeling
its most confident predictions in each iteration [205, 149]. Co-training uses two base
classifiers which pass each other unlabeled data [21], and tri-training uses three base
classifiers [214].

Co-forest can be seen as an extension of co-training and tri-training to an arbi-
trary number of base learners. It iteratively introduces unlabeled data to the decision
tree classifiers by passing each decision tree the highly confident predictions of the en-
semble of all other trees. These pseudo-labeled samples are weighted by the prediction
confidence, defined as the fraction of classifiers predicting a particular label, varying
the influence of the pseudo-labeled samples in the decision tree construction process
based on their prediction confidence. Co-forest utilizes a stopping criterion based on
an estimate of the generalization error, which is readily available due to the fact that
random forests bootstrap labeled samples independently for each classifier. By com-
paring the true label of each sample to the label prediction of all trees that were not
trained on that particular sample, one can calculate the out-of-bag error, an estimate of
the generalization error.

The original formulation of the algorithm, as proposed by Li and Zhou, leaves open
two questions, regarding (1) the subset of samples to label in the first pseudo-labeling it-
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eration, and (2) bootstrapping of labeled samples and out-of-bag error-measurement [110].
We elaborate on these questions and address them after providing a more detailed, step-
by-step overview of the co-forest algorithm.

4.2.1 The co-forest algorithm
Let DL = ((xi, yi))li=1 denote the labeled data points, where xi ∈ Rd, yi ∈ Y for
each i = 1, . . . , n. Furthermore, letXU = (xi)ni=l+1 denote the unlabeled data points.
Co-forest construction, then, proceeds as follows.

Step 1: Random forest construction. A supervised random forest is constructed. K
decision trees are trained on independently bootstrapped subsamples of the labeled data
(i.e., for each decision tree, l labeled data points are sampled with replacement). The
number of features to consider in each decision tree node is set to log2(m+ 1), where
m is the total number of available features, corresponding to Breiman’s heuristic (see
Section 4.3.1). The error estimate, used in the stopping criterion, is set to 0.5 for each
classifier.

Step 2: Pseudo-labeling. For each individual tree hk, k = 1, . . . ,K, the ensemble of
all other decision trees determines which unlabeled data should be pseudo-labeled for
hk. This ensemble, which we will henceforth refer to as the concomitant ensemble, is
denoted by Hk.

We consider the procedure for tree hk in iteration t. Firstly, the out-of-bag error êk,t
is calculated for the concomitant ensemble Hk. If this out-of-bag error is larger than
the previous out-of-bag error, the performance of the concomitant ensemble is expected
to have deteriorated and no data is pseudo-labeled for hk. If the out-of-bag error has
decreased, however, the concomitant ensemble pseudo-labels the unlabeled data points
whose prediction confidence exceeds a certain threshold θ. A subsampling scheme is
used to limit the number of potential pseudo-labeled data points. This scheme, which is
elaborately explained in [110], effectively limits the additional number of samples based
on the estimated noise rate to prevent the additional samples from negatively impacting
performance [3]. LetWk,t denote the sum of all sample weights for the pseudo-labeled
samples for tree hk at iteration t. Then the maximum summed weight of the samples
U ′
k to consider for pseudo-labeling for tree hk is calculated as

Wmax =
êk,t−1 ·Wk,t−1

êk,t
. (4.1)

U ′
k is then determined by sampling from U uniformly at random until the sum of

the sample weights reaches Wmax. Note that, in each iteration, the entire set of unla-
beled data is considered for pseudo-labeling, and previous pseudo-labels are discarded.

Step 3: Re-training. In the third step, each tree is re-trained with its labeled sam-
ples and pseudo-labeled samples. If no trees receive unlabeled data (usually because
all out-of-bag error rates have increased), the algorithm halts and the training phase is
completed. Otherwise, steps 2 and 3 are repeated.
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4.2.2 Subsampling and bootstrapping
The explanation above leaves open one major question: how do we determine Wmax in
the first iteration of pseudo-labeling? At that point in time,Wk,t−1 is not available since
no pseudo-labeling step has occurred before. In the originally proposed algorithm, Li
and Zhou initialize Wk,0 = 0, but that would cause Wmax = 0, thereby preventing any
pseudo-labeling from occurring at all. In the original software implementation [109],
this problem is addressed by setting Wk,0 = min( 1

10 |XU |, 100), i.e., at most one tenth
of the number of unlabeled samples and at most 100 in total. We use this heuristic
as well, but note that imposing a constant limit on the summed weight of the samples
makes the impact of the unlabeled data in the co-forest algorithm highly dependent on
the data set size.

Secondly, in the original formulation of co-forest, each tree is trained on all labeled
samples (in addition to the pseudo-labeled samples), instead of just the original in-bag
labeled samples. This does not allow for an out-of-bag estimate of the error rate ê in
later iterations, or forces the error estimate to proceed on the training samples (which,
of course, yields a highly biased error estimate). This problem is addressed in the source
code [109], where each tree is only trained on its in-bag samples and the pseudo-labeled
samples.

The entire algorithm, including these modifications, is presented in Algorithm 2.
Clarifying some notation, we note that Subsample(X,Hk,Wmax) denotes the uniform
subsampling procedure of samples fromX , weighted by the confidence estimates ofHk,
up to a maximum total weight of Wmax. The TrainTreek(D) function trains tree hk on
samples (x, y) ∈ D, where labeled samples have weight 1 and possible pseudo-labeled
samples are weighted by the confidence estimates of Hk.

4.3 Semi-supervised node splitting
In addition to evaluating the performance of co-forest as the number of trees varies,
we propose a generic extension of splitting criteria for decision tree construction by
incorporating unlabeled data. In particular, we propose to include a loss term in existing
splitting criteria that promotes the splitting point to lie in a low-density area. We use
one-dimensional kernel density estimation to establish where such areas are. Before
elaborating on this procedure, we outline the typical construction process of supervised
decision trees.

4.3.1 Supervised decision tree construction
In the training phase, decision trees are constructed by iteratively splitting the data into
two subsets based on some criterion. Usually, this splitting criterion is based on class
impurity: the quality of the data split is determined by comparing the class impurity of
the two subsets to the class impurity at the parent node. Starting at the root node, which
contains all samples, the samples in each node are split into two new nodes. This process
continues for all nodes with nonzero impurity until each node contains only samples
from a single class. In most decision tree learning algorithms, only one-dimensional
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Algorithm 2 Co-forest
Input: Labeled data DL = ((xi, yi))li=1, unlabeled data XU = (xi)ni=l+1, number of

trees K, confidence threshold θ
Output: Trained decision tree ensemble H

1: procedure Co-forest
2: for k = 1, . . . ,K do
3: Lk ← Bootstrap(DL)
4: hk = TrainTreek(Lk)
5: êk,0 ← 0.5
6: Wk,0 ← min( 1

10 |XU |, 100)
7: end for
8: t← 0
9: repeat

10: t← t+ 1
11: for k = 1, . . . ,K do
12: êk,t ← OutOfBagError(Hk, DL)
13: L′

k,t ← ∅
14: if êk,t < êk,t−1 then
15: U ′

k,t ← Subsample(XU ,Hk,
êk,t−1·Wk,t−1

êk,t
)

16: Wk,t ← 0
17: for each xi ∈ U ′

k,t do
18: if Confidence(Hk, xi) > θ then
19: L′

k,t ← L′
k,t ∪ {(xi,Hk(xi)}

20: Wk,t ←Wk,t + Confidence(Hk, xi)
21: end if
22: end for
23: end if
24: end for
25: for k = 1, . . . ,K do
26: if L′

k,t ̸= ∅ then
27: hk = TrainTreek(Lk ∪ L′

k,t)
28: end if
29: end for
30: until None of the trees in the random forest receives new data
31: return (h1, . . . , hK)
32: end procedure
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splits (i.e., splits based on a single feature) are considered, benefiting both computational
efficiency in the construction phase and understandability in the inference phase.

When only one-dimensional splits are considered, the finite set of potential splitting
points with different class impurities can be obtained relatively easily. One can simply
consider a sorted list of feature values in the data set for each feature, and calculate the
class impurity when using a value between each subsequent pair of feature values as the
splitting point. Depending on the specific implementation of the algorithm, a subset
of all possible features and splitting points can be used. For instance, random forests
consider a random subset of log2(m + 1) features [26]; extremely randomized trees use
a random subset of√m features, and consider a single random splitting point for each
feature [65]. Since we consider random forests in our experiments, we use Breiman’s
heuristic [26].

The splitting criterion determines which of the potential splitting features and split-
ting values is used. A plethora of splitting criteria exist, but it has been noted, both in
empirical and in theoretical studies, that the choice of splitting criterion has little influ-
ence on the performance of the constructed tree in supervised scenarios [30, 127, 142].
In our work, we use the Gini criterion, which is used in the popular CART decision
tree training algorithm [27]. Considering a decision tree node with a set of items S
with labels (yi)i∈S , let p̂c denote the fraction of these items labeled with label c ∈ Y .
The Gini impurity I(S) is then defined as

I(S) = 1−
∑
c∈Y

[
p̂2c
]
. (4.2)

The feature split yielding the lowest weighted Gini index for the two child nodes is
used. Weighting occurs by the number of samples in each node.

The splitting procedure used in decision tree construction algorithms can be seen to
optimize an objective function with respect to two parameters: the feature to split by
and the feature value to split at. Let t ∈ {1, . . . ,m} denote the index of the feature to
split by, and let γ ∈ R denote the splitting value. Considering a node with samples S,
we define S1 as the samples x ∈ S where xt < γ, and S2 as the samples where xt ≥ γ.
The optimization problem, then, can be formulated as follows:

minimize
t,γ

L(t, γ) = |S1|
|S|

I(S1) +
|S2|
|S|

I(S2). (4.3)

As noted before, the splitting values γ that yield distinct values for L(s, γ) can be
easily enumerated since we are considering one-dimensional splits. We can simply sort
the feature values of all samples for each individual feature prior to tree construction,
which can be done in O(d · n · log(n)). We denote these potential splitting values by
Γ(S, t).

The decision tree construction process has been studied extensively, and a plethora
of heuristics and tuning methods exist. For example, decision tree construction can be
halted when the number of samples in a node is too small, or when a certain impurity
has been reached. For an extensive survey of decision tree construction methods, we
refer the reader to [148].
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4.3.2 Regularization by density

One of the assumptions often used in semi-supervised learning is the maximum-margin
assumption. It states that the decision boundary produced by the classifier should not be
close to any data points. This assumption is made explicit in (semi-supervised) support
vector machines, where the distance between the boundary and the data is maximized
(see Section 2.5). The maximum-margin assumption can also be considered from the
perspective of the marginal probability density p(x): if the distance of the decision
boundary to samples is large, it probably lies in an area where p(x) is low.

We propose to incorporate this perspective on the maximum-margin assumption
directly into the objective function L(s, γ) from Equation 4.3. We note that, for mod-
eling p(x), we need not rely solely on the labeled data: we can use all the unlabeled data
to obtain a better estimate of the marginal probability distribution. Of course, obtaining
a model of p(x) can be computationally expensive. By using kernel density estimation
on the one-dimensional data in each potential split, we overcome this problem.

Consider a node with data points S and potential split feature and split value t and
γ, respectively. Our estimate p̂t(x) is then an estimate of the density in our node for
feature t at point x, which can be calculated as

p̂t(x) =
1

|S|
∑
i∈S

k

(
x− xi,t

h

)
, (4.4)

where xi,t is the value of feature t for sample xi, k is some kernel function, and h is a
hyperparameter that controls the breadth of the influence of each sample (the scaling
factor). We use the exponential kernel, i.e., k(d) ∝ exp(−d2).

Our proposed method uses p̂t(x) directly by incorporating it into the optimization
problem in Equation 4.3: we simply add a loss term p̂t(x), penalizing decision bound-
aries in high-density areas. This approach poses two potential problems. Firstly, when
incorporating p̂t(γ) into the density function, the set of values of γ that yield distinct
values for L(s, γ) is potentially infinite and cannot be easily enumerated anymore. Sec-
ondly, even when considering only a limited number of data points, computing p̂t(γ)
can be computationally expensive.

We tackle the first problem by only considering splitting points from our original
set of potential splitting points. The second problem is the computational complexity
of kernel density estimation: the time complexity for calculating p̂(γ) for all splitting
points γ is O(|S|2). However, since we have access to sorted feature values, we can
obtain reasonable estimates of p̂(x) in constant time during training: as most of density
of a Gaussian distribution is concentrated around its mean, we only need to consider a
small window of samples around γ to obtain a reasonable estimate for p̂(γ). As such,
the densities for all splitting points γ for a feature s can be calculated simultaneously in
total time O(|S|).

Lastly, we note that we wish to consider the relative estimated densities. Therefore,
in our objective function, we normalize p̂t(γ) by the maximum p̂t(γ) for the candi-
date splitting points for the current feature t. Our semi-supervised objective function
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L′(t, γ) in the splitting procedure, then, is defined as

L′(t, γ) = (1− λ) · L(t, γ) + λ · p̂t(γ)

maxγ′∈Γ(S,t) p̂t(γ′)
, (4.5)

where λ ∈ [0, 1] governs the trade-off between the influence of the supervised and the
unsupervised loss terms.

In related work, Liu et al. propose semi-supervised decision trees with oblique node
splitting: each split is based on multiple features [118]. They also use kernel density
estimation to estimate the marginal density along the splitting hyperplane. However,
instead of explicitly incorporating an unsupervised objective into the loss function, they
use the unlabeled data to modify p̂c (which is a surrogate for p(c|S)). They follow an
approach similar to pseudo-labeling, determining the contribution of each unlabeled
data point to p̂c by estimating the probability that the unlabeled sample belongs to
class c. This probability is estimated using kernel density estimation.

Our method differs from their node splitting criterion in several ways. Firstly, we
do not use oblique node splitting, allowing us to enumerate all potential splitting points
for the supervised objective. Secondly, we do not pseudo-label the data, but use the es-
timated marginal density directly. This allows our approach to be used in any node
splitting approach, even when it does not use p̂c (such as maximum-margin splitting
criteria). Furthermore, because we use one-dimensional node splitting, we can precom-
pute the sorted feature values for each feature, thereby reducing the time complexity
of the kernel density estimation. Like the method proposed by Liu et al. [118], our
method naturally extends to random forests. However, as we demonstrate empirically,
our method does not improve performance when used in random forests.

4.4 Experiments and results
Recall from Section 4.1 that our main goal is to evaluate the performance of co-forest
as the number of base learners varies. In particular, we wish to quantitatively assess the
performance difference between supervised random forests and their semi-supervised
extension co-forest. Furthermore, we wish to evaluate the performance of our semi-
supervised node splitting algorithm.

The experimental setup for both problems is similar. Our experiments are con-
ducted on a diverse variety of classification data sets from the OpenML 100 [19], a
benchmarking suite consisting of both real-world and synthetic data sets (for more in-
formation about this data set, please consult Section 3.4.1 and Appendix C). Since
decision trees are not naturally equipped to handle missing data and we do not wish to
potentially influence our results with imputation steps, we discarded 18 data sets with
missing values. The remaining 79 data sets are listed in the main results table (Ta-
ble 4.1). For a full overview of all benchmark suite data sets and their characteristics,
we refer to Appendix C.

To evaluate the behavior of co-forest with different quantities of labeled data, ex-
periments are conducted with 5%, 10%, 15%, and 20% of the data being labeled (and
the rest unlabeled). Varying the amount of labeled data relative to the number of data



4.4. EXPERIMENTS AND RESULTS 89

points in the data set is common when experiments are conducted on data sets with
diverse sample sizes [179].

In outlining the specific experiments and their results, we distinguish between ex-
periments concerning co-forest and experiments concerning semi-supervised node split-
ting. We cover our experiments on co-forest extensively in Section 4.4.1, and provide
a brief overview of the decision tree experiments in Section 4.4.2.

4.4.1 Co-forest
For each of the 79 data sets, we conduct experiments on varying numbers of trees and
with varying quantities of labeled and unlabeled data. Each of the experiments is con-
ducted 30 times with different train/test splits to obtain confident performance esti-
mates.

Each experiment proceeds as follows. The data is split into labeled and unlabeled
sets randomly (according to the prespecified ratio of labeled to unlabeled data). Then,
the labeled training data is used to train a supervised random forest (which corresponds
with the first step of the co-forest algorithm). This random forest is refined iteratively
with unlabeled data using the co-forest algorithm. The resulting ensemble is evaluated
on the test set (i.e., the unlabeled data), to yield the final co-forest performance; it is
compared against the performance of the random forest constructed in the first step on
the same test data.

The number of trees is varied from 2 to 100 with increasing intervals. The difference
between each pair of subsequent ensemble sizes is gradually increased to reflect the ob-
servation that the addition of a single tree has more influence on smaller ensembles than
on larger ensembles. Starting with the real number 2, we iteratively increase the current
number with 10% until we surpass 100. We round the obtained numbers, leaving 33
distinct ensemble sizes. The lower limit of two trees does not allow for confidence esti-
mates in the concomitant ensemble, and our results show that this leads to performance
degradation. The upper limit of 100 trees corresponds to empirical evidence of random
forest convergence [134]. We increment the number of trees in steps of 10% so that the
number of experiments in the lower ranges is larger than the number of experiments
in the higher ranges; the influence of adding a single additional tree can be expected
to decrease as the number of trees grows. The other hyperparameters are kept constant
in accordance with the originally proposed co-forest algorithm [110]: the confidence
threshold θ is set to 0.75, and the maximum number of features to consider at each
split is set to log2(m+ 1). We note that the number of trees was fixed to 6 in previous
studies of co-forest.

An overview of the relative performance differences between co-forest and random
forests with varying number of trees and with different labeled/unlabeled rates is pro-
vided in Figure 4.1. As can be seen from this figure, the introduction of unlabeled data
to the random forest yields performance improvements when the number of trees is low,
but quickly vanishes as the number of trees increases. When more than 10-15 trees are
used, the pattern is in fact reversed, and the introduction of unlabeled data only worsens
performance of the forest. This pattern can be observed for all labeled/unlabeled ratios.
In fact, the performance curves can be seen to cross the x-axis, where the performance
difference is 0, at roughly the same number of trees for all ratios. This emphasizes
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Figure 4.1: Mean difference in error rates between random forest and co-forest with
varying number of trees and for different labeled/unlabeled ratios. Negative values in-
dicate that co-forest outperformed random forest.

the dependence of the relative performance of co-forest on the number of trees: inde-
pendent of the amount of labeled data, co-forest only yields improvements when the
number of trees is low.

Interestingly, no clear dependence can be observed in Figure 4.1 between the per-
formance improvement of co-forest and the ratio of labeled to unlabeled data. This
could potentially be explained by the heuristic used for limiting the number of samples
to consider for pseudo-labeling, as explained in Section 4.2.2: at any time, at most 100
samples are pseudo-labeled, indendendent of the number of labeled and unlabeled data
points.

When using few trees (in particular, when using fewer than 10 trees), the perfor-
mance improvement of co-forest is strongly influenced by the addition or removal of a
single tree. For example, when using 4 or 6 trees, the relative reduction in error rate
between obtained by co-forest when compared to random forests is around 3-5%; when
using 5 trees, the reduction is around 1%.

To evaluate the absolute performance of co-forest and random forests, we plot the
absolute mean error rates with varying number of trees and with different labeled/unlabeled
rates in Figure 4.2. The behavior observed in the evaluation of the relative performance
changes is reflected here as well: as the number of trees grows, the performance gain of
co-forest over random forests decreases, and the effect reverses as around 10-15 trees
are reached.

The figure also shows that, as expected, using more trees monotonically improves
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Figure 4.2: Mean error rates of co-forest and random forest with varying number of
trees and for different labeled/unlabeled ratios. Solid lines indicate random forest per-
formance; dashed lines indicate co-forest performance.
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the mean performance; the same behavior occurs when more labeled data is added.
We can also see that, although co-forest improves over random forests when using few
trees, we can still obtain greatly superior performance when using larger, supervised
random forests. We note that, since the error rates are averaged over all experiments,
the influence of experiments on data sets with large random forest error rates is dis-
proportionately large. However, the patterns we observe in these figures are generally
reflected in individual data sets as well, as the per-data-set results we discuss later will
show.

We assess the statistical significance of our results by applying the Wilcoxon signed-
rank test [195] to the mean error rates for our data sets, as is common when comparing
two classifiers on multi-data-set experiments [54]. We use a standard significance level
of 5%. We find that the performance difference between co-forests and random forests
is statistically significant when using up to 10 to 12 trees, and when using more than
20 to 22 trees. The specific thresholds vary slightly depending on the amount of labeled
data.

To compare the performance of co-forest to random forests per data set, we list
the mean error rates per data set for varying numbers of trees in Table 4.1. The table
reflects experiments conducted with 10% of the data labeled using 6, 12, and 24 trees;
we report the error rates and relative differences averaged over 30 experiments per data
set and ensemble size. The data confirms that the per data set performance generally
corresponds to the global patterns observed earlier: (1) the performance of both co-
forest and random forests improves as the number of trees grows, and (2) co-forest
is better than random forests when using few trees, but gets progressively worse than
random forests as the number of trees grows. The same behavior was observed when
conducting these experiments using different labeled data fractions.

We discuss two potential causes for the decreasing effectiveness of co-forest as the
number of trees grows.

Firstly, co-forest reduces the diversity of the ensemble of decision trees. Ensemble
diversity, the property that the base learners in an ensemble make uncorrelated errors,
is a determining factor in the improvement ensembles provide over individual learners
(see, e.g., [56, 82] and Section 3.3). By repeatedly exchanging pseudo-labeled data
between classifiers, co-ensembling explicitly reduces the diversity of the base learners.
Although this effect is present in both smaller and larger forests, it is conceivable that it
is more pronounced in smaller forests: in larger forests, less variance can be expected in
the fraction of learners agreeing on a prediction, thereby causing more unlabeled data
points to be pseudo-labeled consistently.

Secondly, the potential performance improvement the introduction of unlabeled
data can provide diminishes as the performance of the purely supervised ensemble im-
proves. As we have demonstrated, the error rate of random forests generally decreases as
the number of trees grows. When the error rate is high, there are many predictions that
could be changed to yield performance improvements. When the error rate is low, this
is not the case. Any change in the prediction the ensemble makes has a much higher
probability of decreasing the error rate when the original error rate is high. In other
words, it is easier to improve weak ensembles of learners than it is to improve strong
ensemble of learners.

Thirdly, the out-of-bag error estimate, which is unbiased in bagging methods, may
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no longer be unbiased as pseudo-labeled data is exchanged between learners. Co-forest
relies on the out-of-bag error estimate in its stopping criterion: a tree is only provided
with new pseudo-labeled data if its out-of-bag error is lower than in the previous it-
eration. Thus, incorrect out-of-bag error estimates may influence the performance of
co-forest. Let hk be the learner under consideration, and let Hk be its concomitant
ensemble. Furthermore, let L̃k = DL\Lk denote the out-of-bag samples of hk. Then
the out-of-bag error estimate for hk is based on the predictions of hk on L̃k. The calcu-
lation of the out-of-bag error, then, relies on the assumption that the decision boundary
of hk was not influenced by its out-of-bag samples. Now, assume that the concomitant
ensembleHk pseudo-labels a sample x∗ ∈ XU for hk. In that case, the pseudo-label for
x∗ is based on the predictions of the learners inHk, which may well be trained on some
samples from L̃k. In the next iteration, hk is trained on its labeled samples Lk and its
newly pseudo-labeled sample x∗. Now, the decision boundary of hk indirectly depends
on samples in L̃k, violating the out-of-bag error assumption. In smaller forests, one can
expect that some samples are included in the labeled data sets of very few base learners.
Such samples have limited influence on the pseudo-labeling procedure. Consequently,
the bias in the out-of-bag error estimate can be expected to be smaller when fewer trees
are used.

Table 4.1: Performance comparison between co-forest (CF) and random forest (RF)
with 6, 12, and 24 trees using 10% labeled data. Includes CF and RF mean error rate
per data set and relative difference between them.

Data set 6 trees 12 trees 24 trees
RF CF Diff RF CF Diff RF CF Diff

ada-agnostic 0.194 0.187 -3.2% 0.182 0.180 -0.9% 0.177 0.173 -2.1%
anacat-authors 0.125 0.081 -33.8% 0.074 0.067 -6.0% 0.048 0.061 28.3%
anacat-dmft 0.813 0.813 -0.0% 0.812 0.812 -0.0% 0.813 0.813 0.0%
artificial-characters 0.438 0.438 0.1% 0.414 0.413 -0.2% 0.402 0.404 0.4%
australian 0.201 0.171 -13.8% 0.169 0.151 -9.6% 0.157 0.156 -0.2%
balance-scale 0.239 0.245 3.6% 0.227 0.234 3.8% 0.217 0.230 6.3%
bank-marketing 0.109 0.108 -0.2% 0.105 0.105 -0.4% 0.102 0.102 -0.0%
banknotes 0.052 0.047 -7.2% 0.046 0.049 12.4% 0.042 0.049 17.9%
bioresponse 0.353 0.348 -1.2% 0.330 0.325 -1.4% 0.310 0.311 0.3%
blood-donors 0.268 0.269 0.7% 0.265 0.268 0.8% 0.264 0.263 -0.6%
car 0.154 0.154 0.7% 0.137 0.155 13.6% 0.128 0.150 18.5%
cardiotocography 0.051 0.010 -78.6% 0.026 0.016 -32.1% 0.017 0.017 54.2%
climate-model 0.092 0.090 -2.5% 0.091 0.086 -4.6% 0.087 0.086 -1.1%
cmc 0.527 0.525 -0.3% 0.508 0.508 -0.1% 0.505 0.503 -0.4%
cnae-9 0.328 0.301 -7.8% 0.269 0.253 -5.7% 0.229 0.222 -2.3%
collins 0.657 0.657 0.0% 0.584 0.586 0.4% 0.543 0.545 0.4%
credit-g 0.302 0.292 -3.2% 0.289 0.288 -0.2% 0.281 0.284 1.0%
diabetes 0.302 0.279 -7.4% 0.287 0.274 -4.4% 0.275 0.275 -0.1%
eeg-eye-state 0.230 0.229 -0.6% 0.197 0.197 0.2% 0.176 0.179 1.4%
electricity 0.188 0.186 -0.9% 0.170 0.171 0.2% 0.162 0.163 0.5%
gas-drift 0.056 0.050 -9.8% 0.039 0.037 -4.8% 0.031 0.031 0.8%
gesture-phase 0.531 0.531 0.0% 0.502 0.502 0.0% 0.477 0.478 0.2%
gina-agnostic 0.255 0.238 -6.1% 0.213 0.207 -2.4% 0.182 0.179 -1.1%
har 0.128 0.126 -0.9% 0.091 0.095 4.9% 0.073 0.076 4.5%
hill-valley 0.494 0.494 -0.1% 0.490 0.493 0.5% 0.490 0.491 0.1%

Table continues on next page
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Table 4.1: Performance comparison between co-forest (CF) and random forest (RF)
with 6, 12, and 24 trees using 10% labeled data. Includes CF and RF mean error rate
per data set and relative difference between them.

Data set 6 trees 12 trees 24 trees
RF CF Diff RF CF Diff RF CF Diff

ilpd 0.335 0.315 -5.3% 0.319 0.313 -1.7% 0.318 0.311 -2.3%
internet-ads 0.061 0.059 -3.4% 0.054 0.059 10.3% 0.050 0.056 10.6%
isolet 0.338 0.341 0.9% 0.242 0.242 0.2% 0.175 0.177 0.9%
japanese-vowels 0.170 0.168 -1.1% 0.125 0.126 1.2% 0.102 0.104 1.5%
kc1 0.179 0.167 -5.9% 0.170 0.162 -4.3% 0.168 0.161 -4.4%
kc2 0.194 0.183 -5.4% 0.186 0.183 -1.3% 0.187 0.187 0.1%
kr-vs-kp 0.091 0.067 -23.7% 0.065 0.057 -11.7% 0.057 0.053 -5.1%
led-display-domain 0.386 0.385 -0.1% 0.367 0.365 -0.6% 0.346 0.350 1.4%
letter 0.229 0.230 0.8% 0.187 0.187 0.3% 0.160 0.161 0.8%
madelon 0.490 0.491 0.3% 0.482 0.479 -0.7% 0.475 0.474 -0.1%
magic-telescope 0.168 0.166 -1.2% 0.153 0.152 -1.1% 0.146 0.146 0.1%
mfeat-factors 0.188 0.162 -13.1% 0.127 0.128 1.3% 0.104 0.102 -1.8%
mfeat-fourier 0.406 0.409 0.8% 0.337 0.338 0.5% 0.285 0.286 0.8%
mfeat-karhunen 0.364 0.361 -0.5% 0.255 0.254 0.2% 0.177 0.184 4.4%
mfeat-morph 0.341 0.329 -3.5% 0.325 0.327 0.6% 0.321 0.322 0.3%
mfeat-pixel 0.202 0.177 -11.5% 0.134 0.130 -1.9% 0.098 0.094 -3.1%
mfeat-zernike 0.403 0.395 -1.9% 0.344 0.343 -0.3% 0.308 0.310 0.6%
micro-mass 0.666 0.666 -0.0% 0.601 0.601 0.0% 0.554 0.554 0.0%
mnist-784 0.159 0.160 0.6% 0.107 0.107 0.1% 0.080 0.080 0.1%
monks-1 0.249 0.250 2.0% 0.212 0.218 4.9% 0.202 0.235 17.1%
monks-2 0.373 0.365 -1.9% 0.366 0.356 -2.5% 0.361 0.355 -1.5%
monks-3 0.087 0.051 -35.6% 0.060 0.042 -24.3% 0.051 0.041 -10.8%
mozilla4 0.068 0.065 -5.0% 0.064 0.062 -2.6% 0.062 0.061 -1.4%
nomao 0.060 0.059 -0.7% 0.052 0.052 -0.5% 0.049 0.049 1.0%
optdigits 0.146 0.137 -5.4% 0.093 0.091 -1.8% 0.067 0.069 3.4%
ozone-level-8hr 0.065 0.063 -2.8% 0.063 0.062 -0.3% 0.063 0.063 0.3%
pc1 0.076 0.073 -3.1% 0.073 0.070 -3.6% 0.073 0.070 -3.5%
pc3 0.116 0.107 -7.4% 0.112 0.104 -6.6% 0.111 0.104 -6.1%
pc4 0.124 0.123 -0.7% 0.123 0.122 -0.7% 0.121 0.121 0.3%
pendigits 0.061 0.057 -7.0% 0.044 0.044 -0.9% 0.036 0.037 3.3%
phoneme 0.185 0.180 -2.7% 0.174 0.173 -0.4% 0.166 0.168 0.9%
plants-margin 0.811 0.811 0.0% 0.751 0.751 0.0% 0.696 0.696 0.0%
plants-shape 0.795 0.795 0.0% 0.753 0.753 0.0% 0.725 0.725 0.0%
plants-texture 0.791 0.791 0.0% 0.725 0.725 0.0% 0.673 0.673 0.0%
qsar-biodeg 0.220 0.212 -3.4% 0.205 0.210 2.5% 0.194 0.209 8.1%
robot-navigation 0.050 0.040 -17.8% 0.038 0.036 -3.0% 0.029 0.034 20.0%
satimage 0.153 0.152 -1.0% 0.139 0.137 -1.4% 0.130 0.130 0.6%
scene 0.173 0.177 2.9% 0.163 0.175 7.6% 0.161 0.176 9.7%
segment 0.090 0.083 -6.7% 0.079 0.081 4.0% 0.073 0.079 9.6%
semeion 0.433 0.432 -0.3% 0.332 0.332 0.3% 0.267 0.268 0.6%
spambase 0.106 0.094 -10.8% 0.088 0.083 -5.6% 0.078 0.080 2.5%
splice 0.230 0.223 -1.7% 0.161 0.166 4.3% 0.127 0.138 9.4%
steel-plates 0.201 0.204 2.5% 0.162 0.183 16.2% 0.138 0.182 35.6%
sylva-agnostic 0.041 0.048 17.2% 0.036 0.044 23.9% 0.033 0.043 31.0%
synthetic-control 0.235 0.194 -16.6% 0.171 0.175 5.4% 0.145 0.166 15.4%
tamilnadu 0.136 0.160 26.5% 0.086 0.095 17.3% 0.057 0.068 26.6%
texture 0.127 0.120 -5.4% 0.099 0.100 0.6% 0.086 0.091 6.8%
theorem-proving 0.538 0.538 0.0% 0.521 0.521 0.0% 0.510 0.510 0.1%
tic-tac-toe 0.295 0.287 -2.2% 0.278 0.273 -1.3% 0.257 0.267 4.0%

Table continues on next page
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Table 4.1: Performance comparison between co-forest (CF) and random forest (RF)
with 6, 12, and 24 trees using 10% labeled data. Includes CF and RF mean error rate
per data set and relative difference between them.

Data set 6 trees 12 trees 24 trees
RF CF Diff RF CF Diff RF CF Diff

vehicle 0.401 0.388 -3.1% 0.369 0.361 -1.8% 0.345 0.348 0.9%
vowel 0.546 0.546 0.0% 0.493 0.491 -0.4% 0.457 0.462 1.3%
waveform-5000 0.251 0.242 -3.4% 0.209 0.206 -1.2% 0.186 0.184 -0.7%
wdbc 0.088 0.079 -9.1% 0.075 0.078 8.2% 0.072 0.080 11.7%
wilt 0.035 0.037 3.5% 0.035 0.037 5.0% 0.034 0.037 8.8%

4.4.2 Semi-supervised node splitting

We evaluate the performance of our semi-supervised node splitting criterion on deci-
sion trees and random forests with 10 trees. The supervised loss term in the splitting
criterion is the Gini impurity. In random forests, we bootstrap the samples for each
tree and use log2(m + 1) randomly selected features at each split, corresponding to
Breiman’s proposal for random forests [26]. To limit the influence of unlabeled data
points relative to the labeled data points in our loss function, we choose λ = 0.01. This
limitation of the influence of unlabeled data ensures that the unlabeled data can only
make a significant difference when there is a small difference in supervised performance
between candidate splitting points.

The results of these experiments, averaged over all data sets, are listed in Table 4.2.
As can be seen from this table, the semi-supervised decision trees generally outperform
supervised decision trees in all labeled data fractions. When using the semi-supervised
decision trees in an ensemble, however, they appear to be outperformed by their super-
vised counterparts. The win/tie/loss rates for the random forests suggest that the actual
performance differences between the supervised and semi-supervised implementations
are small. A possible explanation for this behavior is that the unsupervised loss term acts
as a regularizer, somewhat preventing the learner from overfitting. In random forests,
this regularization is not necessary due to the regularization provided intrinsically via
both the boostrapping and feature subsampling procedures.

As we did for our co-forest experiments, we apply the Wilcoxon signed-rank test to
assess the statistical significance of our results. The test shows that the semi-supervised
decision trees perform significantly better in all labeled data fractions (p < 0.05),
whereas there is no significant difference between the semi-supervised random forests
and the supervised random forests (p ≥ 0.05).

We conclude that our approach to incorporate unlabeled data into the splitting cri-
terion is not well-suited to most real-world problems where the objective is to minimize
the error rate. In that case, random forests would almost always exhibit superior per-
formance. However, the semi-supervised decision trees are both more cost-effective
and more understandable than random forests in the prediction phase. This potentially
warrants further research into semi-supervised node splitting criteria.
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Table 4.2: Performance comparison between decision trees and random forests with
and without semi-supervised node splitting. Includes mean absolute error rates and
mean error differences.

Method Fraction labeled
5% 10% 15% 20%

Decision tree
Supervised 0.316 0.277 0.257 0.242
Semi-supervised 0.312 0.274 0.253 0.239
Mean relative change -0.7% -0.6% -1.3% -1.0%
Win / tie / loss 49/0/28 56/0/21 58/0/19 59/1/17

Random forest
Supervised 0.282 0.241 0.220 0.207
Semi-supervised 0.284 0.242 0.221 0.208
Mean relative change 1.6% 1.2% 1.3% 0.8%
Win / tie / loss 35/1/41 39/2/36 33/1/43 34/1/42

4.5 Conclusions
In this chapter, we have evaluated the performance of the semi-supervised co-forest
approach relative to supervised random forests with varying numbers of trees. We have
shown that, when using few trees, co-forest significantly outperforms random forests.
As the number of trees grows, however, the performance improvement reduces. When
using more than 20 trees, supervised random forests significantly outperform co-forests.
Our results also show that the performance of larger, supervised forests generally ex-
ceeds the performance of smaller co-forests.

Based on these results, we argue that large, supervised random forests should in most
cases be preferred over co-forest in most real-world scenarios. Performance improve-
ments are rarely observed when introducing labeled data to forests consisting of many
trees, whereas substantial performance degradations do occur. Furthermore, since co-
forest typically includes multiple pseudo-labeling steps in which the trees need to be re-
trained, the computational resources required for the training phase in a small co-forest
can be expected to match the resources required for training a larger random forest.
However, when computational resources in the prediction phase are limited (e.g., when
using a pre-trained ensemble in mobile devices), co-forest can provide added value over
random forests: when using few trees, co-forest generally outperforms random forests.

We see potential merit in applying a single pseudo-labeling iteration to random
forests, as we did for general learner ensembles in Chapter 3. This could mitigate some
of the issues encountered with co-forests, and provide a computationally efficient way
of incorporating unlabeled data into the ensemble.

In addition to evaluating co-forest, we have introduced a generic approach to in-
corporate unlabeled data into the objective function of decision trees. Estimating the
marginal density with kernel density estimation, we directly penalize decision bound-
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aries in high-density regions by incorporating the density estimate in the splitting cri-
terion. Although this approach did significantly improve the performance of individual
decision trees, it failed to yield improvements when using the trees in random forests.
However, like supervised decision trees, they have the advantage of being more cost-
efficient and more understandable in the prediction phase. Potential directions for fu-
ture research include the evaluation of other unsupervised loss terms and the optimiza-
tion of the hyperparameter governing the weight of the unsupervised loss term.



Chapter 5

Conclusions and Future Work

In this thesis, we have studied semi-supervised ensemble methods. We have provided
an extensive literature review of the field of semi-supervised learning, covering the ma-
jor developments in semi-supervised learning over the past two decades. As part of
this survey, we have proposed a new taxonomy for the spectrum of semi-supervised
classification methods. The taxonomy reflects both the differences in the objectives of
different methods and the way these methods incorporate unlabeled data.

The primary contribution of this thesis is the proposal of a new semi-supervised
ensembling method, which can be applied to strong ensembles of supervised learn-
ers. In a single-step procedure, we exchange confident predictions for unlabeled sam-
ples between sub-ensembles of learners. We applied this method to a state-of-the-art
automated machine learning system, auto-sklearn, and showed that our algorithm
consistently improves ensemble performance in multiclass classification problems. We
evaluated the performance of the approach on the OpenML 100, a prominent bench-
marking suite of diverse classification data sets. Under different labeled data fractions,
we achieved an error rate reduction of around 7% on average. Performance improve-
ments were obtained in 75% of the multiclass data sets we evaluated.

Our ensembling method provides some interesting opportunities for further re-
search. In particular, we see great potential in the explicit promotion of ensemble diver-
sity during ensemble construction, or even in the hyperparameter optimization phase.
Substantial ensemble diversity, the extent to which base classifiers make uncorrelated
errors, is a key criterion for co-ensembling to succeed. In the presence of unlabeled
data, diversity could be quantified by comparing the predictions of the classifiers on the
data points.

In addition to these contributions, we have investigated co-forest, a popular semi-
supervised extension of random forests. We have shown that it performs better than
its supervised counterpart when few base learners are used, but that it is outperformed
by random forests when more trees are used. This substantiates our claim that using
unlabeled data to consistently improve over strong supervised learning methods is a
difficult task. Lastly, we have proposed a semi-supervised node splitting criterion for
decision trees, which provided performance improvements in individual trees, but not
in random forests.

98
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In the broader field of semi-supervised classification, the past few years have shown
interesting developments. Recent advances in generative models and neural networks
have opened up new ways of using unlabeled data to improve learners. Generative
semi-supervised models, which approximate the joint data distribution p(x, y), facil-
itate a principled way of incorporating all available data, both labeled and unlabeled.
Furthermore, the versatility of neural networks in regard to the cost function allows for
straightforward inclusion of both supervised and unsupervised cost terms. We expect
the incorporation of unlabeled data in such classifiers to become commonplace, but note
that potential performance degradation is still a pressing issue: if the assumptions un-
derlying the learning algorithm do not hold, the introduction of unlabeled data can be
counterproductive. We have addressed this issue in the context of wrapper methods in
this thesis, but expect that more advances will have to be made before semi-supervised
learning can be broadly and reliably applied in practice.



Bibliography

[1] S. Abney. Bootstrapping. In Proceedings of the 40th Annual Meeting on Asso-
ciation for Computational Linguistics, pages 360–367. Association for Computa-
tional Linguistics, 2002.

[2] M. R. Anderberg. Cluster analysis for applications. Academic Press, 1973.

[3] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning,
2(4):343–370, 1988.

[4] A. Azran. The rendezvous algorithm: Multiclass semi-supervised learning with
markov random walks. In Proceedings of the 24th international conference on Ma-
chine learning, pages 49–56, 2007.

[5] P. Bachman, O. Alsharif, and D. Precup. Learning with pseudo-ensembles. In
Advances in neural information processing systems, pages 3365–3373, 2014.

[6] E. Bair. Semi-supervised clustering methods. Wiley Interdisciplinary Reviews:
Computational Statistics, 5(5):349–361, 2013.

[7] M.-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards
bridging theory and practice. In Advances in neural information processing systems,
pages 89–96, 2005.

[8] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran,
and M. Aly. Video suggestion and discovery for youtube: taking random walks
through the view graph. In Proceedings of the 17th international conference on World
Wide Web, pages 895–904. ACM, 2008.

[9] A.-L. Barabási. Network science. Cambridge university press, 2016.

[10] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seeding. In
Proceedings of the 19th International Conference on Machine Learning, pages 27–34,
2002.

[11] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised
learning on large graphs. In International Conference on Computational Learning
Theory, pages 624–638. Springer, 2004.

100



BIBLIOGRAPHY 101

[12] M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In Pro-
ceedings of the 10th International Conference on Artificial Intelligence and Statistics,
pages 17–24, 2005.

[13] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of machine
learning research, 7:2399–2434, Dec 2006.

[14] S. Ben-David, T. Lu, D. Pál, and M. Sotáková. Learning low density separa-
tors. In Proceedings of the 12th International Conference on Artificial Intelligence
and Statistics, pages 25–32, 2009.

[15] Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and quadratic
criterion. In O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-supervised
Learning, chapter 11, pages 193–216. The MIT Press, 2006.

[16] K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. In
Advances in neural information processing systems, pages 368–374, 1999.

[17] K. P. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensem-
ble methods. In Proceedings of the 8th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 289–296. ACM, 2002.

[18] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[19] B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Manto-
vani, J. N. van Rijn, and J. Vanschoren. Openml benchmarking suites and the
OpenML100. ArXiv e-prints, 2017.

[20] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.

[21] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph
mincuts. In Proceedings of the 18th International Conference on Machine Learning,
pages 19–26, 2001.

[22] A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy. Semi-supervised learn-
ing using randomized mincuts. In Proceedings of the 21st international conference
on Machine learning, page 13, 2004.

[23] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the 11th annual conference on Computational learning
theory, pages 92–100. ACM, 1998.

[24] A. P. Bradley. The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[25] P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta. Metalearning: Applications
to data mining. Springer Science & Business Media, 2008.

[26] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.



BIBLIOGRAPHY 102

[27] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen. Classification and Regression
Trees. Chapman and Hall, 1984.

[28] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: a survey
and categorisation. Information Fusion, 6(1):5–20, 2005.

[29] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally
connected networks on graphs. International Conference on Learning Representa-
tions, 2014.

[30] W. Buntine and T. Niblett. A further comparison of splitting rules for decision-
tree induction. Machine Learning, 8(1):75–85, 1992.

[31] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection
from libraries of models. In Proceedings of the 21st International Conference on
Machine learning, page 18. ACM, 2004.

[32] O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised
svms. In Proceedings of the 23rd international conference on Machine learning, pages
185–192, 2006.

[33] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. The MIT
Press, 1st edition, 2006.

[34] O. Chapelle, V. Sindhwani, and S. S. Keerthi. Optimization techniques for
semi-supervised support vector machines. Journal of Machine Learning Research,
9:203–233, Feb 2008.

[35] O. Chapelle and A. Zien. Semi-supervised classification by low density separa-
tion. In Proceedings of the 10th International Workshop on Artificial Intelligence and
Statistics, pages 57–64, 2005.

[36] K. Chen and S. Wang. Semi-supervised learning via regularized boosting work-
ing on multiple semi-supervised assumptions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(1):129–143, 2011.

[37] M. Chen, Y. Chen, and K. Q. Weinberger. Automatic feature decomposition
for single view co-training. In Proceedings of the 28th International Conference on
Machine Learning, pages 953–960, 2011.

[38] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Pro-
ceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 785–794. ACM, 2016.

[39] C. M. Christoudias, R. Urtasun, A. Kapoorz, and T. Darrell. Co-training with
noisy perceptual observations. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2844–2851. IEEE, 2009.

[40] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive svms.
Journal of Machine Learning Research, 7:1687–1712, Aug 2006.



BIBLIOGRAPHY 103

[41] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12:2493–2537, Aug 2011.

[42] A. Corduneanu and T. Jaakkola. On information regularization. In Proceedings of
the 19th conference on Uncertainty in Artificial Intelligence, pages 151–158. Morgan
Kaufmann Publishers Inc., 2003.

[43] C. Cortes and M. Mohri. On transductive regression. In Advances in neural
information processing systems, pages 305–312, 2007.

[44] F. G. Cozman, I. Cohen, and M. C. Cirelo. Semi-supervised learning of mixture
models. In Proceedings of the 20th International Conference on Machine Learning,
pages 99–106, 2003.

[45] M. Culp and G. Michailidis. An iterative algorithm for extending learners
to a semi-supervised setting. Journal of Computational and Graphical Statistics,
17(3):545–571, 2008.

[46] F. d’Alche Buc, Y. Grandvalet, and C. Ambroise. Semi-supervised marginboost.
Advances in neural information processing systems, 1:553–560, 2002.

[47] R. Dara, S. C. Kremer, and D. A. Stacey. Clustering unlabeled data with soms
improves classification of labeled real-world data. In International Joint Confer-
ence on Neural Networks, volume 3, pages 2237–2242. IEEE, 2002.

[48] S. Dasgupta, M. L. Littman, and D. A. McAllester. Pac generalization bounds
for co-training. In Advances in neural information processing systems, pages 375–
382, 2002.

[49] T. de Bie and N. Cristianini. Convex methods for transduction. In Advances in
neural information processing systems, pages 73–80, 2004.

[50] T. de Bie and N. Cristianini. Semi-supervised learning using semi-definite pro-
gramming. In O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-supervised
learning, pages 119–135. The MIT Press, 2006.

[51] C. A. R. de Sousa, S. O. Rezende, and G. E. Batista. Influence of graph con-
struction on semi-supervised learning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 160–175. Springer, 2013.

[52] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised clustering
using genetic algorithms. Artificial neural networks in engineering, pages 809–
814, 1999.

[53] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society, Series
B, pages 1–38, 1977.

[54] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7( Jan):1–30, 2006.



BIBLIOGRAPHY 104

[55] C. Deng and M. Zu Guo. A new co-training-style random forest for computer
aided diagnosis. Journal of Intelligent Information Systems, 36(3):253–281, 2011.

[56] T. G. Dietterich. Ensemble methods in machine learning. In International
workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[57] C. Doersch. Tutorial on variational autoencoders. ArXiv e-prints, 2016.

[58] I. Dópido, J. Li, P. R. Marpu, A. Plaza, J. M. B. Dias, and J. A. Benedikts-
son. Semisupervised self-learning for hyperspectral image classification. IEEE
Transactions on Geoscience and Remote Sensing, 51(7):4032–4044, 2013.

[59] J. Du, C. X. Ling, and Z.-H. Zhou. When does cotraining work in real data?
IEEE Transactions on Knowledge and Data Engineering, 23(5):788–799, 2011.

[60] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in neural information processing sys-
tems, pages 2224–2232, 2015.

[61] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio.
Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11:625–660, Feb 2010.

[62] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hut-
ter. Efficient and robust automated machine learning. In Advances in neural
information processing systems, pages 2962–2970, 2015.

[63] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[64] B. Geng, D. Tao, C. Xu, L. Yang, and X.-S. Hua. Ensemble manifold regulariza-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(6):1227–
1233, 2012.

[65] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

[66] A. B. Goldberg, X. Zhu, A. Singh, Z. Xu, and R. D. Nowak. Multi-manifold
semi-supervised learning. In Proceedings of the 12th International Conference on
Artificial Intelligence and Statistics, pages 169–176, 2009.

[67] S. Goldman and Y. Zhou. Enhancing supervised learning with unlabeled data.
In Proceedings of the 17th international conference on machine learning, pages 327–
334, 2000.

[68] I. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. ArXiv
e-prints, 2017.



BIBLIOGRAPHY 105

[69] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press,
2016.

[70] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[71] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for
robust tracking. Computer Vision–ECCV 2008, pages 234–247, 2008.

[72] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimiza-
tion. In Advances in neural information processing systems, pages 529–536, 2005.

[73] Y. Grandvalet, F. d’Alché Buc, and C. Ambroise. Boosting mixture models for
semi-supervised learning. Artificial Neural Networks - ICANN 2001, pages 41–
48, 2001.

[74] N. Grira, M. Crucianu, and N. Boujemaa. Unsupervised and semisupervised
clustering: a brief survey. In 7th ACM SIGMM international workshop on Mul-
timedia information retrieval, 2004.

[75] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864. ACM, 2016.

[76] I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Ma-
cia, B. Ray, M. Saeed, A. Statnikov, et al. Design of the 2015 ChaLearn autoML
challenge. In IEEE International Joint Conference on Neural Networks, pages 1–8.
IEEE, 2015.

[77] I. Guyon and A. Elisseeff. An introduction to feature extraction. Feature extrac-
tion, pages 1–25, 2006.

[78] G. R. Haffari and A. Sarkar. Analysis of semi-supervised learning with the
Yarowsky algorithm. In Proceedings of the 23rd Conference on Uncertainty in Arti-
ficial Intelligence, pages 159–166, 2007.

[79] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The weka data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[80] J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices.
1971.

[81] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier,
2011.

[82] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE transactions on
pattern analysis and machine intelligence, 12(10):993–1001, 1990.



BIBLIOGRAPHY 106

[83] R. He, W.-S. Zheng, B.-G. Hu, and X.-W. Kong. Nonnegative sparse coding
for discriminative semi-supervised learning. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2849–2856. IEEE, 2011.

[84] M. Hein and M. Maier. Manifold denoising. In Advances in neural information
processing systems, pages 561–568, 2007.

[85] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[86] H. H. Hoos. Programming by optimization. Communications of the ACM,
55(2):70–80, 2012.

[87] B. Huang and T. Jebara. Fast b-matching via sufficient selection belief propa-
gation. In Proceedings of the 14th International Conference on Artificial Intelligence
and Statistics, pages 361–369, 2011.

[88] Jayadeva, R. Khemchandani, and S. Chandra. Twin support vector machines
for pattern classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(5):905–910, 2007.

[89] T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching for
semi-supervised learning. In Proceedings of the 26th annual international conference
on machine learning, pages 441–448, 2009.

[90] T. Joachims. Transductive inference for text classification using support vector
machines. In Proceedings of the 16th international conference on machine learning,
volume 99, pages 200–209, 1999.

[91] T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings
of the 20th International Conference on Machine Learning, pages 290–297, 2003.

[92] D. Jurafsky and J. H. Martin. Speech and Language Processing (2Nd Edition).
Prentice-Hall, 2009.

[93] M. Karasuyama and H. Mamitsuka. Manifold-based similarity adaptation for la-
bel propagation. In Advances in neural information processing systems, pages 1547–
1555, 2013.

[94] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised
learning with deep generative models. In Advances in neural information processing
systems, pages 3581–3589, 2014.

[95] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2013.

[96] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. ArXiv e-prints, 2016.



BIBLIOGRAPHY 107

[97] S. Kiritchenko and S. Matwin. Email classification with co-training. In Pro-
ceedings of the 2001 conference of the Centre for Advanced Studies on Collaborative
research, page 8. IBM press, 2001.

[98] T. Kohonen. The self-organizing map. Neurocomputing, 21(1-3):1–6, 1998.

[99] B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: automatic hyper-
parameter configuration for scikit-learn. In 31st ICML Workshop on AutoML,
2014.

[100] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-
weka 2.0: Automatic model selection and hyperparameter optimization in weka.
volume 18, pages 826–830. JMLR, 2017.

[101] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[102] B. Kveton, M. Valko, A. Rahimi, and L. Huang. Semi-supervised learning with
max-margin graph cuts. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, pages 421–428, 2010.

[103] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. In
International Conference on Learning Representations, 2017.

[104] T. Lange, M. H. Law, A. K. Jain, and J. M. Buhmann. Learning with con-
strained and unlabelled data. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 731–738. IEEE, 2005.

[105] N. D. Lawrence and M. I. Jordan. Semi-supervised learning via gaussian pro-
cesses. In Advances in neural information processing systems, pages 753–760, 2005.

[106] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436,
2015.

[107] D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In 30th ICML Workshop on Challenges in Rep-
resentation Learning, volume 3, page 2, 2013.

[108] C. Leistner, A. Saffari, J. Santner, and H. Bischof. Semi-supervised random
forests. In IEEE 12th International Conference on Computer Vision, pages 506–
513. IEEE, 2009.

[109] M. Li. Co-forest java implementation. http://lamda.nju.edu.cn/code_
CoForest.ashx, 2007.

[110] M. Li and Z.-H. Zhou. Improve computer-aided diagnosis with machine learn-
ing techniques using undiagnosed samples. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans, 37(6):1088–1098, 2007.

http://lamda.nju.edu.cn/code_CoForest.ashx
http://lamda.nju.edu.cn/code_CoForest.ashx


BIBLIOGRAPHY 108

[111] S. Li and Y. Fu. Low-rank coding with b-matching constraint for semi-
supervised classification. In Proceedings of the 23rd international joint conference
on Artificial Intelligence, pages 1472–1478, 2013.

[112] S. Li and Y. Fu. Learning balanced and unbalanced graphs via low-rank coding.
IEEE Transactions on Knowledge and Data Engineering, 27(5):1274–1287, 2015.

[113] Y.-F. Li and Z.-H. Zhou. Towards making unlabeled data never hurt. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(1):175–188, 2015.

[114] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank repre-
sentation. In Proceedings of the 27th international conference on machine learning,
pages 663–670, 2010.

[115] W. Liu and S.-F. Chang. Robust multi-class transductive learning with graphs.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 381–388.
IEEE, 2009.

[116] W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-
supervised learning. In Proceedings of the 27th international conference on machine
learning, pages 679–686, 2010.

[117] W. Liu, J. Wang, and S.-F. Chang. Robust and scalable graph-based semisuper-
vised learning. Proceedings of the IEEE, 100(9):2624–2638, 2012.

[118] X. Liu, M. Song, D. Tao, Z. Liu, L. Zhang, C. Chen, and J. Bu. Semi-supervised
node splitting for random forest construction. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 492–499. IEEE, 2013.

[119] X. Liu, M. Song, D. Tao, Z. Liu, L. Zhang, C. Chen, and J. Bu. Random forest
construction with robust semisupervised node splitting. IEEE Transactions on
Image Processing, 24(1):471–483, 2015.

[120] W.-Y. Loh. Fifty years of classification and regression trees. International Sta-
tistical Review, 82(3):329–348, 2014.

[121] Q. Lu and L. Getoor. Link-based classification. In Proceedings of the 20th Inter-
national Conference on Machine Learning, pages 496–503, 2003.

[122] M. Maier, U. V. Luxburg, and M. Hein. Influence of graph construction on
graph-based clustering measures. In Advances in neural information processing
systems, pages 1025–1032, 2009.

[123] P. K. Mallapragada, R. Jin, A. K. Jain, and Y. Liu. Semiboost: Boosting for
semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(11):2000–2014, 2009.

[124] S. Melacci and M. Belkin. Laplacian support vector machines trained in the
primal. Journal of Machine Learning Research, 12:1149–1184, Mar 2011.



BIBLIOGRAPHY 109

[125] R. Mihalcea. Co-training and self-training for word sense disambiguation. In
Proceedings of the 8th Conference on Computational Natural Language Learning,
2004.

[126] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

[127] J. Mingers. An empirical comparison of selection measures for decision-tree
induction. Machine learning, 3(4):319–342, 1989.

[128] J. Neville and D. Jensen. Iterative classification in relational data. In 17th AAAI
Workshop on Learning Statistical Models from Relational Data, pages 13–20, 2000.

[129] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-
training. In Proceedings of the ninth international conference on Information and
knowledge management, pages 86–93. ACM, 2000.

[130] K. Nigam, A. McCallum, and T. Mitchell. Semi-supervised text classification
using em. Semi-Supervised Learning, pages 33–56, 2006.

[131] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine learning, 39(2):103–134,
2000.

[132] P. Niyogi. Manifold regularization and semi-supervised learning: Some theo-
retical analyses. Journal of Machine Learning Research, 14(1):1229–1250, 2008.

[133] A. Odena. Semi-supervised learning with generative adversarial networks.
ArXiv e-prints, 2016.

[134] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas. How many trees in a ran-
dom forest? In International Workshop on Machine Learning and Data Mining in
Pattern Recognition, pages 154–168. Springer, 2012.

[135] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjec-
tivity summarization based on minimum cuts. In Proceedings of the 42nd annual
meeting on Association for Computational Linguistics, page 271. Association for
Computational Linguistics, 2004.

[136] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[137] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 701–710. ACM, 2014.



BIBLIOGRAPHY 110

[138] M. Pezeshki, L. Fan, P. Brakel, A. Courville, and Y. Bengio. Deconstructing the
ladder network architecture. In Proceedings of the 33rd International Conference
on Machine Learning, pages 2368–2376, 2016.

[139] N. Pitelis, C. Russell, and L. Agapito. Learning a manifold as an atlas. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 1642–1649. IEEE,
2013.

[140] N. Pitelis, C. Russell, and L. Agapito. Semi-supervised learning using an unsu-
pervised atlas. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 565–580. Springer, 2014.

[141] Z. Qi, Y. Tian, and Y. Shi. Laplacian twin support vector machine for semi-
supervised classification. Neural Networks, 35:46–53, 2012.

[142] L. E. Raileanu and K. Stoffel. Theoretical comparison between the gini index
and information gain criteria. Annals of Mathematics and Artificial Intelligence,
41(1):77–93, 2004.

[143] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-
supervised learning with ladder networks. In Advances in neural information pro-
cessing systems, pages 3546–3554, 2015.

[144] F. Ratle, G. Camps-Valls, and J. Weston. Semisupervised neural networks for
efficient hyperspectral image classification. IEEE Transactions on Geoscience and
Remote Sensing, 48(5):2271–2282, 2010.

[145] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. Recommender systems handbook.
Springer, 2011.

[146] S. Rifai, Y. N. Dauphin, P. Vincent, Y. Bengio, and X. Muller. The mani-
fold tangent classifier. In Advances in neural information processing systems, pages
2294–2302, 2011.

[147] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the 28th
International Conference on Machine Learning, pages 833–840, 2011.

[148] L. Rokach and O. Maimon. Top-down induction of decision trees classifiers-a
survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 35(4):476–
487, 2005.

[149] C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training
of object detection models. In 7th IEEE Workshop on Applications of Computer
Vision, pages 29–36, 2005.

[150] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.



BIBLIOGRAPHY 111

[151] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization with stochastic
transformations and perturbations for deep semi-supervised learning. In Ad-
vances in neural information processing systems, pages 1163–1171, 2016.

[152] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training gans. In Advances in neural information process-
ing systems, pages 2234–2242, 2016.

[153] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93, 2008.

[154] B. Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(1):1–114, 2012.

[155] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the
IEEE, 104(1):148–175, 2016.

[156] R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. Z. Chahooki. A survey
on semi-supervised feature selection methods. Pattern Recognition, 64:141–158,
2017.

[157] N. Shental and E. Domany. Semi-supervised learning–a statistical physics ap-
proach. In 22nd ICML workshop on Learning with Partially Classified Training
Data, 2005.

[158] V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularization approach to semi-
supervised learning with multiple views. In 22nd ICML Workshop on Learning
With Multiple Views, pages 74–79, 2005.

[159] V. Sindhwani and D. S. Rosenberg. An rkhs for multi-view learning and man-
ifold co-regularization. In Proceedings of the 25th international conference on Ma-
chine learning, pages 976–983, 2008.

[160] A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn’t.
In Advances in neural information processing systems, pages 1513–1520, 2009.

[161] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems,
pages 2951–2959, 2012.

[162] J. Solomon, R. Rustamov, L. Guibas, and A. Butscher. Wasserstein propagation
for semi-supervised learning. In Proceedings of the 31st International Conference
on Machine Learning, pages 306–314, 2014.

[163] J. T. Springenberg. Unsupervised and semi-supervised learning with categorical
generative adversarial networks. ArXiv e-prints, 2015.

[164] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of
machine learning research, 15(1):1929–1958, 2014.



BIBLIOGRAPHY 112

[165] A. Subramanya and J. Bilmes. Soft-supervised learning for text classification. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 1090–1099. Association for Computational Linguistics, 2008.

[166] A. Subramanya and J. Bilmes. Semi-supervised learning with measure propaga-
tion. Journal of Machine Learning Research, 12:3311–3370, Nov 2011.

[167] A. Subramanya and P. P. Talukdar. Graph-based semi-supervised learning. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning, 8(4):1–125, 2014.

[168] R. Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[169] M. Szummer and T. Jaakkola. Partially labeled classification with markov ran-
dom walks. In Advances in neural information processing systems, pages 945–952,
2002.

[170] M. Szummer and T. S. Jaakkola. Information regularization with partially la-
beled data. In Advances in neural information processing systems, pages 1049–1056,
2003.

[171] P. P. Talukdar and K. Crammer. New regularized algorithms for transductive
learning. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, pages 442–457. Springer, 2009.

[172] P. P. Talukdar, J. Reisinger, M. Paşca, D. Ravichandran, R. Bhagat, and
F. Pereira. Weakly-supervised acquisition of labeled class instances using graph
random walks. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 582–590. Association for Computational Linguistics,
2008.

[173] C. Tan, L. Lee, J. Tang, L. Jiang, M. Zhou, and P. Li. User-level sentiment anal-
ysis incorporating social networks. In Proceedings of the 17th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 1397–1405.
ACM, 2011.

[174] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Con-
ference on World Wide Web, pages 1067–1077. International World Wide Web
Conferences Steering Committee, 2015.

[175] J. Tanha, M. van Someren, and H. Afsarmanesh. An adaboost algorithm for
multiclass semi-supervised learning. In IEEE 12th International Conference on
Data Mining, pages 1116–1121. IEEE, 2012.

[176] J. Tanha, M. van Someren, and H. Afsarmanesh. Semi-supervised self-training
for decision tree classifiers. International Journal of Machine Learning and Cyber-
netics, 8(1):355–370, 2017.



BIBLIOGRAPHY 113

[177] A. Tarvainen and H. Valpola. Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in Neural Information Pro-
cessing Systems, pages 1195–1204, 2017.

[178] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka: Com-
bined selection and hyperparameter optimization of classification algorithms. In
Proceedings of the 19th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 847–855. ACM, 2013.

[179] I. Triguero, S. García, and F. Herrera. Self-labeled techniques for semi-
supervised learning: taxonomy, software and empirical study. Knowledge and
Information Systems, 42(2):245–284, 2015.

[180] R. Urner, S. Ben-David, and S. Shalev-Shwartz. Access to unlabeled data can
speed up prediction time. In Proceedings of the 27th international conference on
machine learning, pages 641–648, 2011.

[181] H. Valizadegan, R. Jin, and A. K. Jain. Semi-supervised boosting for multi-class
classification. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 522–537. Springer, 2008.

[182] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo. Openml: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–
60, 2014.

[183] V. N. Vapnik and V. Vapnik. Statistical learning theory, volume 1. Wiley New
York, 1998.

[184] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
25th international conference on Machine learning, pages 1096–1103, 2008.

[185] S. Wager, S. Wang, and P. S. Liang. Dropout training as adaptive regularization.
In Advances in neural information processing systems, pages 351–359, 2013.

[186] X. Wan. Co-training for cross-lingual sentiment classification. In Proceedings of
the 47th Annual Meeting of the ACL, pages 235–243. Association for Computa-
tional Linguistics, 2009.

[187] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1225–1234. ACM, 2016.

[188] F. Wang and C. Zhang. Label propagation through linear neighborhoods. IEEE
Transactions on Knowledge and Data Engineering, 20(1):55–67, 2008.

[189] J. Wang, T. Jebara, and S.-F. Chang. Graph transduction via alternating mini-
mization. In Proceedings of the 25th international conference on Machine learning,
pages 1144–1151, 2008.



BIBLIOGRAPHY 114

[190] J. Wang, T. Jebara, and S.-F. Chang. Semi-supervised learning using greedy
max-cut. Journal of Machine Learning Research, 14:771–800, Mar 2013.

[191] J. Wang, S.-w. Luo, and X.-h. Zeng. A random subspace method for co-
training. In IEEE International Joint Conference on Neural Networks, pages 195–
200. IEEE, 2008.

[192] W. Wang and Z.-H. Zhou. Analyzing co-training style algorithms. In Pro-
ceedings of the 18th European Conference on Machine Learning, pages 454–465.
Springer, 2007.

[193] W. Wang and Z.-H. Zhou. A new analysis of co-training. In Proceedings of the
27th international conference on machine learning, pages 1135–1142, 2010.

[194] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised em-
bedding. In Proceedings of the 25th International Conference on Machine Learning,
pages 1168–1175, 2008.

[195] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin,
1(6):80–83, 1945.

[196] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemo-
metrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[197] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recogni-
tion via sparse representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(2):210–227, 2009.

[198] X.-M. Wu, Z. Li, A. M. So, J. Wright, and S.-F. Chang. Learning with partially
absorbing random walks. In Advances in neural information processing systems,
pages 3077–3085, 2012.

[199] Z. Wu, J. Wu, J. Cao, and D. Tao. Hysad: A semi-supervised hybrid shilling at-
tack detector for trustworthy product recommendation. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 985–993. ACM, 2012.

[200] C. Xu, D. Tao, and C. Xu. A survey on multi-view learning. ArXiv e-prints,
2013.

[201] J. Xu, H. He, and H. Man. Dcpe co-training for classification. Neurocomputing,
86:75–85, 2012.

[202] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class sup-
port vector machines. In Proceedings of the 20th National Conference on Artificial
Intelligence, volume 5, page 13, 2005.

[203] S. Yan and H. Wang. Semi-supervised learning by sparse representation. In Pro-
ceedings of the 2009 SIAM International Conference on Data Mining, pages 792–
801. SIAM, 2009.



BIBLIOGRAPHY 115

[204] Z. Yang, W. W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In Proceedings of the 33rd International Con-
ference on Machine Learning, pages 40–48, 2016.

[205] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised
methods. In Proceedings of the 33rd annual meeting on Association for Compu-
tational Linguistics, pages 189–196. Association for Computational Linguistics,
1995.

[206] Y. Yaslan and Z. Cataltepe. Co-training with relevant random subspaces. Neu-
rocomputing, 73(10):1652–1661, 2010.

[207] S. Yu, B. Krishnapuram, R. Rosales, and R. B. Rao. Bayesian co-training. Journal
of Machine Learning Research, 12:2649–2680, Sep 2011.

[208] K. Zhang, J. T. Kwok, and B. Parvin. Prototype vector machine for large scale
semi-supervised learning. In Proceedings of the 26th International Conference on
Machine Learning, pages 1233–1240, 2009.

[209] W. Zhang and Q. Zheng. Tsfs: A novel algorithm for single view co-training. In
IEEE International Joint Conference on Computational Sciences and Optimization,
volume 1, pages 492–496. IEEE, 2009.

[210] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with
local and global consistency. In Advances in neural information processing systems,
pages 321–328, 2004.

[211] Y. Zhou and S. Goldman. Democratic co-learning. In 16th IEEE International
Conference on Tools with Artificial Intelligence, pages 594–602. IEEE, 2004.

[212] Z.-H. Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

[213] Z.-H. Zhou and M. Li. Semi-supervised regression with co-training. In Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence, volume 5,
pages 908–913, 2005.

[214] Z.-H. Zhou and M. Li. Tri-training: Exploiting unlabeled data using three
classifiers. IEEE Transactions on Knowledge and Data Engineering, 17(11):1529–
1541, 2005.

[215] Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowledge
and Information Systems, 24(3):415–439, 2010.

[216] X. Zhu. Semi-supervised learning literature survey. Technical Report 1530,
University of Wisconsin-Madison, 2005.

[217] X. Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon
University, 2005.



BIBLIOGRAPHY 116

[218] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with
label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon
University, 2002.

[219] X. Zhu and Z. Ghahramani. Towards semi-supervised classification with
markov random fields. Technical Report CMU-CALD-02-106, Carnegie Mel-
lon University, 2002.

[220] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of the 20th International
conference on Machine learning, pages 912–919, 2003.

[221] X. Zhu and A. B. Goldberg. Introduction to semi-supervised learning. Synthesis
lectures on artificial intelligence and machine learning, 3(1):1–130, 2009.

[222] X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and
graph-based methods for inductive and scalable semi-supervised learning. In
Proceedings of the 22nd international conference on Machine learning, pages 1052–
1059. ACM, 2005.

[223] L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, and N. Yu. Non-negative low
rank and sparse graph for semi-supervised learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2328–2335. IEEE, 2012.



Appendix A

Co-ensembling Results Per Data
Set

In Table A.1, the per-data-set results of the co-ensembling experiments (Chapter 3) are
displayed. The results in every table cell are aggregated over the individual experiments
for that data set and labeled data fraction.

Table A.1: Co-ensembling results per data set. The column “ASKL (unw.)” con-
tains the performance of the unweighted ensemble from auto-sklearn. The column
“+CE” contains the performance of the ensemble obtained when applying single-step
co-ensembling to the unweighted ensemble mentioned beore.

Data set 10% labeled 20% labeled
ASKL
(unw.) +CE Diff ASKL

(unw.) +CE Diff

Multiclass
anacat-dmft 0.819 0.814 -0.6% 0.826 0.818 -1.0%
artificial-characters 0.378 0.380 0.6% 0.260 0.269 3.4%
balance-scale 0.155 0.124 -19.5% 0.110 0.108 -1.6%
car 0.092 0.086 -6.7% 0.062 0.056 -10.4%
cjs 0.023 0.025 51.9% 0.012 0.006 -51.9%
cmc 0.505 0.494 -2.1% 0.470 0.459 -2.3%
cnae-9 0.146 0.119 -18.0% 0.084 0.076 -9.5%
eucalyptus 0.475 0.464 -2.4% 0.401 0.394 -1.8%
gas-drift 0.012 0.011 -9.4% 0.007 0.007 -1.7%
gesture-phase 0.440 0.455 3.4% 0.411 0.431 4.7%
har 0.035 0.034 -4.7% 0.022 0.022 -4.0%
isolet 0.073 0.066 -10.0% 0.051 0.044 -12.0%
japanese-vowels 0.043 0.043 -0.7% 0.026 0.025 -6.0%
led-display-domain 0.352 0.343 -2.5% 0.300 0.285 -4.9%

Table continues on next page
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Table A.1: Co-ensembling results per data set. The column “ASKL (unw.)” con-
tains the performance of the unweighted ensemble from auto-sklearn. The column
“+CE” contains the performance of the ensemble obtained when applying single-step
co-ensembling to the unweighted ensemble mentioned beore.

Data set 10% labeled 20% labeled
ASKL
(unw.) +CE Diff ASKL

(unw.) +CE Diff

letter 0.111 0.107 -5.1% 0.064 0.059 -7.5%
mfeat-factors 0.068 0.051 -25.9% 0.044 0.038 -12.7%
mfeat-fourier 0.199 0.193 -2.8% 0.168 0.162 -3.9%
mfeat-karhunen 0.064 0.050 -21.5% 0.038 0.033 -13.6%
mfeat-morph 0.307 0.306 -0.0% 0.281 0.281 0.1%
mfeat-pixel 0.091 0.064 -24.7% 0.038 0.032 -14.1%
mfeat-zernike 0.209 0.201 -3.5% 0.198 0.187 -5.5%
optdigits 0.028 0.024 -16.8% 0.018 0.015 -15.4%
pendigits 0.014 0.012 -13.0% 0.008 0.006 -15.3%
robot-navigation 0.019 0.019 -0.6% 0.011 0.010 -3.0%
satimage 0.124 0.125 1.2% 0.107 0.109 2.1%
segment 0.057 0.054 -4.8% 0.042 0.041 -1.4%
semeion 0.168 0.149 -12.2% 0.094 0.085 -9.1%
splice 0.063 0.063 -0.1% 0.051 0.052 2.2%
synthetic-control 0.043 0.024 -43.5% 0.028 0.023 -11.8%
texture 0.010 0.006 -34.9% 0.006 0.004 -30.5%
theorem-proving 0.493 0.502 1.8% 0.459 0.466 1.7%
vehicle 0.306 0.305 -0.3% 0.237 0.241 1.9%
vowel 0.473 0.418 -9.4% 0.228 0.221 -3.2%
waveform-5000 0.154 0.164 6.2% 0.139 0.142 1.6%

Binary
ada-agnostic 0.175 0.182 3.7% 0.161 0.159 -1.3%
adult 0.139 0.142 1.8% 0.137 0.142 3.5%
australian 0.180 0.207 13.3% 0.167 0.162 -1.8%
bank-marketing 0.102 0.103 1.7% 0.099 0.101 2.4%
blood-donors 0.280 0.281 0.1% 0.240 0.246 2.5%
climate-model 0.096 0.095 -1.5% 0.089 0.085 -4.2%
credit-approval 0.192 0.193 -1.8% 0.156 0.150 -3.6%
credit-g 0.289 0.284 -1.8% 0.272 0.269 -1.3%
cylinder-bands 0.402 0.435 8.5% 0.339 0.359 6.2%
diabetes 0.295 0.290 -1.3% 0.279 0.275 -1.2%
dresses-sales 0.459 0.443 -3.2% 0.462 0.465 0.7%
eeg-eye-state 0.071 0.065 -9.2% 0.057 0.057 0.3%
electricity 0.143 0.147 2.8% 0.111 0.117 5.3%
higgs 0.291 0.300 3.1% 0.288 0.301 4.5%

Table continues on next page



119

Table A.1: Co-ensembling results per data set. The column “ASKL (unw.)” con-
tains the performance of the unweighted ensemble from auto-sklearn. The column
“+CE” contains the performance of the ensemble obtained when applying single-step
co-ensembling to the unweighted ensemble mentioned beore.

Data set 10% labeled 20% labeled
ASKL
(unw.) +CE Diff ASKL

(unw.) +CE Diff

hill-valley 0.040 0.034 -47.9% 0.022 0.017 -46.7%
ilpd 0.328 0.333 1.8% 0.304 0.312 3.0%
jm1 0.192 0.193 0.3% 0.188 0.202 7.2%
kc1 0.162 0.162 -0.2% 0.156 0.152 -2.0%
kc2 0.145 0.166 14.7% 0.179 0.178 -0.1%
kddcup09-churn 0.075 0.075 0.0% 0.074 0.074 0.0%
kddcup09-upselling 0.050 0.054 7.6% 0.050 0.050 -0.2%
kr-vs-kp 0.036 0.037 2.4% 0.017 0.018 2.4%
madelon 0.292 0.290 -0.3% 0.213 0.221 3.5%
magic-telescope 0.136 0.137 1.1% 0.129 0.130 1.3%
monks-2 0.219 0.242 13.1% 0.072 0.076 20.4%
monks-3 0.092 0.086 -8.9% 0.042 0.039 2.9%
mozilla4 0.061 0.061 0.4% 0.054 0.054 0.9%
nomao 0.043 0.044 1.9% 0.038 0.041 5.8%
ozone-level-8hr 0.077 0.074 -4.5% 0.062 0.063 1.7%
pc1 0.074 0.072 -2.6% 0.078 0.077 -1.0%
pc3 0.167 0.150 -3.3% 0.122 0.119 -2.3%
pc4 0.118 0.117 -0.8% 0.102 0.102 -0.1%
phoneme 0.177 0.180 1.9% 0.135 0.140 3.4%
profb 0.376 0.361 -3.9% 0.360 0.357 -0.5%
qsar-biodeg 0.192 0.205 6.1% 0.164 0.167 1.5%
scene 0.021 0.015 -28.9% 0.015 0.012 -11.1%
sick 0.036 0.035 -2.3% 0.022 0.022 0.6%
spambase 0.069 0.069 1.1% 0.057 0.057 0.2%
speed-dating 0.150 0.154 2.4% 0.141 0.142 0.7%
sylva-agnostic 0.008 0.008 -6.1% 0.007 0.007 1.8%
tic-tac-toe 0.052 0.057 8.9% 0.052 0.029 -45.0%
wilt 0.016 0.017 6.3% 0.018 0.017 0.1%



Appendix B

Self-training in auto-sklearn

As part of our preliminary experiments for co-ensembling (Chapter 3), we integrated
the self-training wrapper method into the configuration space of auto-sklearn. A
versatile self-training framework was implemented, exposing a variety of hyperparam-
eters. These hyperparameters, which are similar to the hyperparameters in the co-
ensembling algorithm, are listed in Table B.1.

The experimental sutup was somewhat dissimilar from the experimental setup used
in the main experiments. In particular, we used 100 labeled data points per class for
each data set, instead of 10% or 20% of the full data set. Furthermore, we did not con-
duct fully paired tests between the supervised and semi-supervised setup: data splitting
into labeled/unlabeled sets was independent for each experiment. Like in our main ex-
periments, we used 8 nodes per experiment. Each node was provided with one hour
of computational budget (wall-clock time) and three minutes per individual classifier
training run. Our preliminary experiments are conducted on a subset of the OpenML
100 benchmarking suite (see Appendix C) corresponding to the first half of the data
sets obtained via the OpenML Python API [182]. These, along with the per-data-set
results of the self-training experiments, are listed in Table B.3.

The aggregated results of our experiments are listed in Table B.2. The results show
that the incorporation of self-training into the configuration space degrades perfor-

Table B.1: Hyperparameters for the self-training framework.

Hyperparameter Description
num_iter Number of self-training iterations

θ
Minimum predictive confidence of classifier to
pseudo-label sample

max_pl Maximum number of samples to pseudo-label
per iteration

retain_pl Whether to retain previously pseudo-labeled
samples in later iterations
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Table B.2: Performance comparison between auto-sklearn with and without self-
training included in the design space. Includes mean absolute error rates and mean
error differences.

Hyperparameter Description
Overall
Supervised 0.162
Semi-supervised 0.162
Mean relative change 4.9%
Win/tie/loss 27/0/24

Binary
Supervised 0.163
Semi-supervised 0.162
Mean relative change 1.0%
Win/tie/loss 18/0/15

Multiclass
Supervised 0.161
Semi-supervised 0.161
Mean relative change 12.1%
Win/tie/loss 9/0/9

mance on average. Considering the win/tie/loss rates, both methods win in approx-
imately the same number of cases. Applying the Wilcoxon signed-rank test to the
per-data-set results [195], the performance difference between the supervised and semi-
supervised auto-sklearn implementations is not statistically significant (p ≥ 0.05).
The similar win/tie/loss rates, combined with the substantial average performance degra-
dation, indicates that self-training does not lead to better-performing configurations,
and that it can prevent the optimization procedure from finding interesting configura-
tions within the allotted time. The latter is likely caused by the computational burden
imposed by the self-training procedure.

We note that the large variance in the per-data-set results can be explained by the
lack of paired tests: the small amount of labeled data in each experiment causes differ-
ent experiments to yield highly varying results. As such, we mainly reason about the
performance comparison from the perspective of the aggregated results.
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Table B.3: auto-sklearn self-training results per data set. Comparison of auto-
sklearn with (“Supervised” column) and without (“Semi-supervised” column) self-
training included in the design space. Includes mean absolute error rates and mean
error differences.

Data set Supervised Semi-supervised Difference
adult 0.188 0.185 -1.6%
artificial-characters 0.426 0.433 1.6%
australian 0.149 0.155 3.9%
bank-marketing 0.123 0.119 -3.1%
banknotes 0.023 0.020 -12.8%
bioresponse 0.284 0.319 12.3%
blood-donors 0.245 0.239 -2.4%
cardiotocography 0.000 0.001 61.9%
climate-model 0.104 0.106 2.5%
cnae-9 0.056 0.057 2.6%
cylinder-bands 0.292 0.287 -1.9%
dresses-sales 0.441 0.443 0.5%
eeg-eye-state 0.301 0.319 6.2%
gas-drift 0.030 0.035 16.7%
gesture-phase 0.509 0.512 0.6%
gina-agnostic 0.220 0.185 -15.8%
har 0.064 0.055 -14.2%
hill-valley 0.036 0.024 -33.8%
ilpd 0.309 0.294 -5.1%
internet-ads 0.058 0.067 15.5%
jm1 0.167 0.212 27.3%
kc1 0.166 0.161 -2.5%
kc2 0.189 0.169 -10.8%
kddcup09-churn 0.086 0.097 12.7%
kddcup09-upselling 0.078 0.081 5.1%
led-display-domain 0.264 0.263 -0.4%
madelon 0.433 0.423 -2.4%
magic-telescope 0.200 0.191 -4.3%
mice-protein 0.003 0.001 -84.3%
micro-mass 0.098 0.093 -4.7%
mnist-784 0.084 0.101 19.9%
mozilla4 0.109 0.078 -28.3%
nomao 0.099 0.089 -10.2%
ozone-level-8hr 0.073 0.082 13.3%
pc1 0.086 0.087 1.8%
pc3 0.131 0.127 -2.8%
pc4 0.100 0.129 29.3%
phoneme 0.217 0.221 1.7%

Table continues on next page



123

Table B.3: auto-sklearn self-training results per data set. Comparison of auto-
sklearn with (“Supervised” column) and without (“Semi-supervised” column) self-
training included in the design space. Includes mean absolute error rates and mean
error differences.

Data set Supervised Semi-supervised Difference
plants-margin 0.171 0.166 -3.0%
plants-shape 0.341 0.342 0.5%
plants-texture 0.175 0.183 4.6%
qsar-biodeg 0.192 0.184 -3.9%
robot-navigation 0.048 0.047 -2.0%
semeion 0.073 0.069 -4.9%
speed-dating 0.188 0.173 -8.3%
steel-plates 0.006 0.009 52.4%
tamilnadu 0.000 0.000 253.6%
texture 0.011 0.008 -29.2%
theorem-proving 0.538 0.527 -1.9%
wdbc 0.053 0.044 -17.4%
wilt 0.036 0.041 15.6%



Appendix C

Data Sets

All methods we evaluate and propose are intended to be generic, robust machine learn-
ing methods, applicable to a broad variety of data sets. In that light, the algorithms
should be evaluated on a large number of data sets with diverse characteristics. The
OpenML 100 is a benchmarking suite that satisfies these requirements [19]. The
benchmarking suite consists of 100 data sets and is publicly accessible via the OpenML
platform [182]. We note that the benchmarking suite is somewhat subject to change; at
the time of our experiments, three data sets had been removed from the benchmarking
suite, presumably due to some inconsistencies in these data sets.

An overview of the data sets used in our experiments is provided in Table C.1. It
includes some data set properties, including the number of samples and the number of
classes present in the data set.

Table C.1: Data sets used in our experiments. The “ID” column contains the ID of the
data set on the OpenML platform. The “Missing values” column indicates whether any
feature values are missing in the data sets, which is particularly relevant for the random
forest experiments.

ID Name # Samples # Classes # Features Missing values
1043 ada-agnostic 4562 2 48
1590 adult 48842 2 14 Yes
458 anacat-authors 841 4 70
469 anacat-dmft 797 6 4
1459 artificial-characters 10218 10 7
40981 australian 690 2 14

11 balance-scale 625 3 4
1461 bank-marketing 45211 2 16
1462 banknotes 1372 2 4
4134 bioresponse 3751 2 1776
1464 blood-donors 748 2 4
15 breast-w 699 2 9 Yes
21 car 1728 4 6

1466 cardiotocography 2126 10 35
23380 cjs 2796 6 33 Yes

Table continues on next page
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Table C.1: Data sets used in our experiments. The “ID” column contains the ID of the
data set on the OpenML platform. The “Missing values” column indicates whether any
feature values are missing in the data sets, which is particularly relevant for the random
forest experiments.

ID Name # Samples # Classes # Features Missing values
1467 climate-model 540 2 20
23 cmc 1473 3 9

1468 cnae-9 1080 9 856
478 collins 500 15 21
29 credit-approval 690 2 15 Yes
31 credit-g 1000 2 20

6332 cylinder-bands 540 2 37 Yes
37 diabetes 768 2 8

23381 dresses-sales 500 2 12 Yes
1471 eeg-eye-state 14980 2 14
151 electricity 45312 2 8
188 eucalyptus 736 5 19 Yes
1476 gas-drift 13910 6 128
4538 gesture-phase 9873 5 32
1038 gina-agnostic 3468 2 970
1478 har 10299 6 561
23512 higgs 98050 2 28 Yes
1479 hill-valley 1212 2 100
1480 ilpd 583 2 10
1176 internet-ads 3279 2 1558
451 irish 500 2 5 Yes
300 isolet 7797 26 617
375 japanese-vowels 9961 9 14
1053 jm1 10885 2 21 Yes
1067 kc1 2109 2 21
1063 kc2 522 2 21
1112 kddcup09-churn 50000 2 230 Yes
1114 kddcup09-upselling 50000 2 230 Yes

3 kr-vs-kp 3196 2 36
40496 led-display-domain 500 10 7

6 letter 20000 26 16
1485 madelon 2600 2 500
1120 magic-telescope 19020 2 10
12 mfeat-factors 2000 10 216
14 mfeat-fourier 2000 10 76
16 mfeat-karhunen 2000 10 64
18 mfeat-morph 2000 10 6
20 mfeat-pixel 2000 10 240
22 mfeat-zernike 2000 10 47

4550 mice-protein 1080 8 81 Yes
1515 micro-mass 571 20 1300
554 mnist-784 70000 10 784
333 monks-1 556 2 6
334 monks-2 601 2 6
335 monks-3 554 2 6
1046 mozilla4 15545 2 5
24 mushroom 8124 2 22 Yes

1486 nomao 34465 2 118
28 optdigits 5620 10 64

Table continues on next page
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Table C.1: Data sets used in our experiments. The “ID” column contains the ID of the
data set on the OpenML platform. The “Missing values” column indicates whether any
feature values are missing in the data sets, which is particularly relevant for the random
forest experiments.

ID Name # Samples # Classes # Features Missing values
1487 ozone-level-8hr 2534 2 72
1068 pc1 1109 2 21
1050 pc3 1563 2 37
1049 pc4 1458 2 37
32 pendigits 10992 10 16

1489 phoneme 5404 2 5
1491 plants-margin 1600 100 64
1492 plants-shape 1600 100 64
1493 plants-texture 1599 100 64
470 profb 672 2 9 Yes
1494 qsar-biodeg 1055 2 41
1497 robot-navigation 5456 4 24
182 satimage 6430 6 36
312 scene 2407 2 299
36 segment 2310 7 19

1501 semeion 1593 10 256
38 sick 3772 2 29 Yes
42 soybean 683 19 35 Yes
44 spambase 4601 2 57

40536 speed-dating 8378 2 120 Yes
46 splice 3190 3 60

1504 steel-plates 1941 2 33
1036 sylva-agnostic 14395 2 216
377 synthetic-control 600 6 60
1505 tamilnadu 45781 20 3
40499 texture 5500 11 40
1475 theorem-proving 6118 6 51
50 tic-tac-toe 958 2 9
54 vehicle 846 4 18
307 vowel 990 11 12
60 waveform-5000 5000 3 40

1510 wdbc 569 2 30
1570 wilt 4839 2 5
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