
Bachelor Computer Science

Improving Public Speaking Performance by Facial Emotion, Body Language
and Speech Recognition based Feedback

Damian Olav Domela Nieuwenhuis Nyegaard

Supervisors:
Dr.ir. D.J. Broekens & Prof.dr.ir. F.J. Verbeek

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 30 July 2019

http://www.liacs.leidenuniv.nl/

Abstract

Speaking in public efficiently is relevant in a modern context. In the
interest of advancing this area, we discuss the evaluation of a real-
time performance feedback program on improving public speaking.
Through a browser-based user interface, the user’s facial emotion,
body movements and speech is tracked in order to provide dynamic
feedback that informs the user of common mistakes made during
presentations. This project aims to contribute towards providing
accessible software to improve public speaking and analyze the
experimental findings of testing this software.

1 Introduction

Storytelling, pitching, presenting and public speaking have become
an integral part of our careers and lives, as helping others
understand our intentions and or problems can help us reach
solutions we cannot reach on our own. Public speaking/oral
communication is considered to be one of the most valuable abilities
in the labor force[1], is considered to be a highly prevalent and
disabling factor causing anxiety[2] and is considered to be a more
common fear than even the fear of death[3]. In the interest of
decreasing anxiety and fear towards public speaking and improving
this ability, we create a controlled virtual environment in which
verbal and non-verbal communication are automatically analyzed.
Three existing frameworks allow us to correctly track verbal and
non-verbal communication: speech, pose and facial expression
recognition. To give appropriate feedback to the user, it is important
to differentiate good from bad presenting in the context of the
above three categories.

1.1 Motivation and related work

Other similar efforts have been made in order to potentially
improve. Alternative approaches relative to this project are tackling
anxiety directly as well as using a virtual environment to give
dynamic feedback to the user. At Ҫankaya University, Turkey, 6
novice software engineers who had been confirmed to have public
speaking anxiety, were subjected to a virtual environment designed

to simulate an auditorium[15]. In this simulated auditorium, another
user is in control of creating anxiety causing phenomena, such as
the amount of people in the virtual audience. Though there are
similarities, this program is specifically aimed towards helping
people who suffer from public speaking anxiety, while this
program’s target audience is universal, anxiety in this context isn’t
required for the user to potentially improve his/her public speaking
skills. In 2010, a classifier was developed which handled speech
emotion classification[16]. This classifier took the user’s
conversational activity, emphasis, influence and mimicry as feature
inputs to infer in real-time what personality traits are relevant at
that time. A very impressive correlation of about 0,85 was achieved
by this program. However, it is important to note that the output of
this classifier was in the form of the five-factor model[19], which
approximates personality, instead of the basic emotions. By opting
for the five-factor model, it focuses more on the the user’s
personality than the conveyance of emotions. Though there is much
discussion considering the 6 Basic Emotions[20], in the context of
practicing a speech, the Basic Emotions can be seen as “acted
emotions” as this is close to a performance. In a similar study, a
Multimodal Corpus[17] was designed to deliver an automated
assessment of the user’s public speaking skills. In other words, this
project aimed to take human scoring out of the grading process of a
presentation. This project took in speech delivery, speech content
and non-verbal behaviors as input features to achieve a correlation
of 0,477 for its Support-Vector Machine regression model, in
comparison to a data set created by monitoring actual human
scoring by experts. Unfortunately, this project isn’t in real-time, has
no concrete feedback besides the grading itself, doesn’t take into
account the user’s expression and isn’t convincingly accurate.
Lastly, in 2015, an ambitious piece of software was programmed in
[18]. This project simulates a virtual audience in real-time, who’s
behavior (nodding, clearing throat etc.) is augmented dynamically
based on a performance assessment of the user’s presentation,
which receives eye gaze, facial expressions, gestures and voice
quality as input parameters. This software manages to achieve a
remarkable correlation of 0,745 between its automated prediction
and an expert human assessment. This project’s translation of a
performance assessment to the behavior of a virtual audience is
very impressive, but might lack the clarity of simple feedback, as
the user needs to interpret the audience’s behavior for himself as
well. In addition to this, in comparison to our program, it lacks the
ability to control how specific excerpts of the presentation are
conveyed, creating a more static win-state for the user, as there is
only 1 good way to present an excerpt.

Due to the apparent lack of one single project which delivers an
accessible approximation of emotional conveyance by the user as
well as provides clear dynamic feedback in real-time, this software
was developed.

2 Research question

Can a program developed to give dynamic real-time feedback using
speech, facial emotion and body movement recognition as input
cause more awareness regarding what aspects of his or her speech
need to be improved by testing emotional conveyance? Testing
whether or not this program actually had a concrete effect on
improving emotional conveyance is left open for future work. In
addition to this, does this program offer a comfortable user
experience to novice users? This program will deliver real-time
feedback in the form of colored icons that are placed next to the
current sentence in the speech to make clear to the user very
quickly what he or she did correctly and/or incorrectly. During the
development of this program, design decisions were made in the
interest of providing an accessible end product.

2.1 Hypotheses

The evaluation of the feedback on, in combination with the
recognition of the actions of the user, will yield results that hint at
the user becoming more aware of what aspects of the speech need
to be improved.

3 Methodology

To investigate if technological aids can help presenters become
more aware of what aspects of the speech need to be improved,
first the program in question needs to be outlined in its entirety. In
this section, the three frameworks which form the basis for this
project are explained, alongside several design decisions. Facial
expression recognition is required to give a basis for the feedback
given, real-time speech recognition is required to determine where
in the speech we are currently, allowing us to give feedback on the
appropriate text excerpt and pose estimation is required to give

feedback on the dynamicity of the user’s pose. Following the
outlining of the program, an experiment wherein users will test out
the program with a prewritten speech will take place, after which
these users fill in a questionnaire to determine their satisfaction
with certain facets of the program.

3.1 Materials

3.1.1. OpenFace & OpenPose

Well-known programs to approximate Facial Expressions and Body
Poses, are “OpenFace”[24] and “OpenPose”[25] respectively. Due
to their recognition when it comes to projects of similar nature, they
were considered in the earlier stages of this project as the
frameworks of choice to estimate the Facial Emotion and Body Pose
aspects. Both programs offer an array of features and options to the
user. Fundamentally however, these programs were developed in
Python, a programming language known for its accessibility and
available libraries, but certainly not for its computational
performance. These programs run either on a CPU alone or with the
addition of a Nvidia GPU using CUDA. The fact that these pieces of
software require a formidable CPU (and preferably a powerful CUDA-
enabled GPU to avoid a reduction of ~50x performance on Ubuntu
[6]) would force this project locally with certain strict requirements
or on a capable server, diminishing its accessibility and complicating
the developing process significantly. With respect to user
accessibility, I opted for implementations of these aspects in
Javascript (applicable to speech recognition as well), for these
reasons, OpenFace and OpenPose are not used in this project.

3.1.2. TensorFlow and PoseNet (Javascript)

Tensorflow [2] “is an end-to-end open source platform for machine
learning.” Among its implementations, is one for JavaScript, a library
in which Machine Learning models are developed and trained in
JavaScript and deployed in Node.js or in the browser. PoseNet[5] is a
collaboration between the developers behind Tensorflow (Google
Brain Team) and Google Creative Lab[7]. PoseNet is a JavaScript
written program which is fundamentally based on a Tensorflow
Machine Learning model, developed for real-time pose estimation
in the browser, accepting live webcam feedback as input. Capable
of either approximating multiple persons or a single person with its
algorithm, the latter yielding better performance, but requires only
one person to be in frame to avoid incorrect results. In this project,
single-person estimation is opted for, for its superior performance.

Fundamentally, pose-estimation is done by a Convolutional Neural
Network in two separate phases:
1. An input RGB Image is fed to a Deep Learning Network, weights
of importance are assigned to aspects in the image (the keypoints
of the body in this case).
2. A single-pose decoding algorithm is used to decode poses, pose
confidence scores, keypoint positions, and keypoint confidence
scores.

In table 1 we present a list of which body parts are recognized by
PoseNet:

Index: Body Part:

0 Nose

1 Left Eye

2 Right Eye

3 Left Ear

4 Right Ear

5 Left Shoulder

6 Right Shoulder

7 Left Elbow

8 Right Elbow

9 Left Wrist

10 Right Wrist

Figure 1. PoseNet Convolutional Neural Network Algorithm

11 Left Hip

12 Right Hip

13 Left Knee

14 Right Knee

15 Left Ankle

16 Right Ankle

3.1.3. Basic Emotions of Ekman

The six basic emotions of Ekman[9] consist of: happiness, sadness,
disgust, surprise, fear and anger. These emotions are labeled as
“basic”, and as such form the set known as the “Basic Emotions”. In
Ekman’s research, each of these emotions are defined by a
combined position of the lower face, eyelids, eyebrows and
forehead. Due to Ekman’s definitions, we have access to his Facial
Action Coding System[21], meaning we can scientifically map facial
movements to human facial emotions.

The original paper that introduced the concept of Ekman’s 6 Basic
Emotions[9] came out in 1972. Since then, many have questioned
the existence of this notion[26], as the 6 Basic Emotions are likely to
represent a more complex set of signals. In this project we are
considering the conveyed emotions as acted emotions, as the
program monitors a performance. Making the academic skepticism
towards Ekman’s work not applicable to our situation.

3.1.4. Face API (Javascript)

JavaScript face recognition API[8] is a program that, similar to
PoseNet, is built upon a TensorFlow Machine Learning Model. This
TensorFlow based software has been developed and made publicly
available, meaning it can be used to track facial actions of the user
to conclude which of the six basic emotions of Ekman (combined
with a neutral facial expression) are expressed at the current time.
The first step in the process of emotional recognition, is face
detection. Several detectors are available[22], of which I opted for
“Tiny Face Detector”[10]. A detector which is not quite as accurate
as other options, but makes up for that by having relatively very
fast performance.

After this, the input image is subjected to a Face Expression
Recognition Model[23]. This model was trained on a variety of
images from publicly available datasets.

Table 1. Recognized Body Parts by PoseNet

In figure 2 some examples of input are presented, along with the
given output of the recognized emotion and its confidence score
(minimum of 0, maximum of 1):

In practice, each emotion listed is based on the interpretation of one
of Ekman’s 6 basic emotions, as shown in Table 2:

Figure 2. The recognized emotions by Face-API (in addition to a Neutral expression)

Ekman’s definition

Brows-Forehead Eyes-Lids Lower Face

Happy Not relevant. Eyes relaxed or neutral in
appearance.

Outer corners of lips
raised.

Sad Eyebrows drawn
together with inner

corners raised and outer
corners lowered.

Eyes may be looking
downward or eyes may

show tears.

Mouth either open
with partially stretched
trembling lips, or closed
with outer corners pulled

slightly down.

Disgust Eyebrows drawn down
but not together.

Lower eyelids pushed
up and raised.

Raising cheeks; mouth
either closed with upper
lip raised and lower lip
forward and/or out, or
closed with upper lip
pushed up by raised

lower lip.

Surprised Raised curved
eyebrows; long

horizontal forehead
wrinkles

Wide opened eyes. Dropped-open mouth

Fear Raised and drawn
together eyebrows.

Eyes opened. Mouth corners drawn
back, but not up or down.

Angry Brows pulled down
and inward.

Upper lids appear
lowered.

Either lips tightly
pressed together or an
open, squared mouth.

3.1.5. Google Web Speech API (Javascript)

Google’s Web Speech API[11] is an open source JavaScript program
developed to implement speech recognition that allows fine control
and flexibility over its capabilities.
The API is built as an event handler, in the case that the user
speaks, the spoken sentence is converted into a string in memory
when the user is done with said sentence. The speech recognition
functions as a timestamp signifying at what part of the speech the
user is currently at, allowing the program to label the correct
sentence with the current displayed expression.

Table 2. Ekman’s detailed definitions of the 6 basic emotions

In order to improve the speed of this project, intermediate results
are enabled. Intermediate results are generated whilst the speaker
is still mid-sentence, with somewhat lower accuracy.

Unfortunately, the Google Web Speech API requires the user to stop
talking in order for it to be considered as the final result. This adds a
lot of latency to finishing a sentence and the user needs to halt his
speech every now and then. To speed this up and mediate the
latency, this program works with said intermediate results from the
Google Web Speech API. If the intermediate results match with the
first two words of the following sentence in the speech, our text
matching algorithm concludes that we are currently at that
sentence. This results in a more improved flow of the program’s
recognition of the speech.

3.1.6. String Similarity Function

We receive the spoken text from the Google Web Speech API in the
form of a string in memory. Unfortunately, the accuracy isn’t quite
100% as each speaker has a distinct dialect and a distinct level of
articulation. Due to the speech recognition not being one to one, we
need to recognize a spoken sentence which is similar enough to the
associated sentence in the speech.

In order to recognize a similar enough string, we need to compare
two strings and apply an assertion of correlation between the two
strings. This is done by a similarity function in JavaScript which is
based on the Levenshtein distance. In this algorithm, computations
use the length of the two string, making a distinction between the
longer string length(L) and the shorter string length. The
Levenshtein distance is a measure of similarity between the two
strings which uses the amount of deletions, insertions and
substitutions necessary to transform the first string into the second
string(T), returning a value between 0 and 1 which signifies the level
of similarity between the two strings (0 meaning that there was no
correlation and 1 meaning that the strings are identical).

Levenshteindistance=(L)−(T / L) (1)

3.1.7. Average Speech Velocity

Given that speech recognition is a component of our program,
applying it in a manner that also directly gives feedback to the user
is an effort worth the trouble of implementation, as the speaker
speaking at an understandable pace is important to bring across
information. This implementation boils down to the analysis of the
speech velocity of the user. In the English language, based on the
combined effects of syllable weight (stressed or unstressed),
syllable position in the sense-group (final or non-final) and syllable
type (closed or open) have been joined by P. Delattre[12] to form an
average duration of time per syllable for all of these three factors (in
centiseconds):

With this decision tree, we can determine an upper and lower bound
of speech velocity (in syllable per centisecond). The upper bound
being a combination of stressed syllable weight, final syllable
position and closed syllable type (40.81 centiseconds), while the
lower bound is set by a combination of unstressed syllable weight,
non-final syllable position and open syllable type (12.02
centiseconds). If the speaker‘s speech velocity is slower than this
lower bound or faster than this upper bound, feedback is given to
the user that his speech velocity is too fast or too slow.

3.1.8 Feedback System

Naturally, in the interest of improving the quality presentation, the
results of the software’s analysis are to be made clear to the user.
The communication between the software and the user comes in
the form of real-time feedback with icons which convey the
feedback in a visual manner without text. These icons are
dynamically attached to the end of a spoken sentence in the User
Interface after it has been recognized/marked by the Google Web

Speech API. Below an image can be found detailing which icon is
supposed to convey what feedback:

1. Using the aforementioned PoseNet framework, we can recognize
17 keypoints of the human body. 5 of which are facial keypoints:
The nose, the left ear, the right ear, the left eye and the right eye.
In a situation where PoseNet is not able to identify one of these 5
facial keypoints, we can conclude that the user is facing away from
the screen, which also hinders the JavaScript face recognition API
and its ability to identify what expression the user is making,
alongside the lack of eye-contact gives people the feeling that
they’re aren’t fully in communication[13].
2. Compared to the lower bound of the average speech velocity
discussed in 3.1.7, the user is talking relatively slow. This icon is a
subtle hint to the well-known fable of “The Tortoise and the Hare”.
3. Compared to the upper bound of the average speech velocity
discussed in 3.1.7, the user is talking relatively faster. This icon is
also a subtle hint to the well-known fable of “The Tortoise and the
Hare”.
4. Using the PoseNet component of our program, we can detect the
velocity of the user’s movement by tracking the difference of the
coordinates over time. More on that in section 3.1.9.
5. According to the comparison between the highlighted text
excerpt and what emotion was displayed during the user’s speech
during that segment, the user accurately conveyed the right
emotion, which is why positive feedback is given.
6. According to the comparison between the highlighted text
excerpt and what emotion was displayed during the user’s speech
during that segment, the user accurately conveyed the incorrect
emotion, which is why negative feedback is given.

Two colors are used to fill the icons, red and green. Red being
associated with a negative valence and green being associated with
a positive valence[14], which is why positive feedback is green and
negative feedback is red. Along with 1-5 of the icons, all of the 7
expressions displayed are always displayed with either a red or
green color, which it shares with either the 4th or the 5th icon. If a
text excerpt was set to be conveyed happily, but the user conveys it
angrily, a red happy icon is given as feedback, meaning that the
conveyed emotion was incorrect, the user was supposed to display
happiness in this segment. In the case that the user does dispay
happiness during this segment, a green happy icon is shown to
signify that happiness was correctly conveyed.

3.1.9. The N Frame Average Function

In order to make conclusions for emotional expressions and velocity
of momentum more accurate, we need to only arrive at such
conclusions when the evidence towards it is profound. For emotional
expressions, this means that we only have confidence that a certain
emotion is displayed, if it’s been around for some N time. The same
applies to velocity of movement, we can only correctly give
feedback to the user whether his pose is static if it has been so for
some N time.

Here are the two base formulas, which apply to both velocity of
movement and emotional expressions:

NSum=(N−1)∗(R)+I (2)

R=(NSum / N) (3)

The first formula is an update rule for the sum of the previous N
frames by adding the current frame information(I), to (N-1) times
the current running N frame average(R). The current frame
information(I) contains the value for the current frame of the aspect
being measured, being either movement velocity or emotional
expression confidence scores.
The second formula is an update rule for the N frame average, this
is done simply by dividing the new sum of the previous N frames by
N.

3.1.9.1 Velocity Tracking

PoseNet approximates the 17 skeletal keypoints from the input it
receives from the webcam per still frame, visual points are drawn
and over time, the still frames add up to the video feedback the
user receives. Per frame update, the relative location (in the form of
an x and y coordinate) of all 17 keypoints are calculated. If
compared to the previous frame’s 17 keypoints, we can calculate
the velocity in distance per frame. Below are the applied formulas:

VelocitySum=(N−1)∗runningNFrameAvg+currentFrameVelocity

runningNFrameAvg=(VelocitySum/ N)

Here we see the application of aforementioned formulas to the
velocity of the user’s movement. An important annotation to make
is that to calculate the velocity of the user, we need to use the
Pythagoras function. This is due to the fact that, if based on the
coordinate (x, y) tuples, calculating the distance per frame/velocity
is done using this formula for every frame:

currentFrameVelocity=√|Xnew−Xold|
2
+|Ynew−Yold|

2

In order to calculate the distance from one point to another in a 2
dimensional space, we can use the absolute horizontal movement
and the absolute vertical movement as parameters for the
Pythagoras function to get the movement along the hypotenuse. As
the hypotenuse movement is measured per frame, it is seen as
velocity, which is updated every frame.

3.1.9.2 Facial Expression Tracking

After every successful analysis of the current frame’s facial
expression by the JavaScript face recognition API, we receive
confidence scores towards each of the 6 basic emotions and the
neutral expression. To avoid sudden conclusions, we apply the same
two formula’s, but somewhat differently:

emotionSum[i]=(N−1)∗emotionNAvg[i]+currentEmotion [i]

emotionNAvg [i]=(emotionSum [i]/ N)

These operations take place in a for loop of 7 iterations, one for
each emotion. The highest of the emotionNAvg elements its index is
tracked, in order to know what emotion over N frames currently has
the highest confidence score on average.

3.1.10. The User Interface

The software’s front end is what connects the software’s back end
and the user. Here is an example of what the browser looks like
during the execution of our framework:

{1}. The Input Field: In this field, the user is supposed to input his
speech in text form, after which the user is able to highlight each
distinct sentence with an emotion from the emotion set presented in
{3}. In the case that the user highlights a sentence as a selection,
the selection is checked on being a correct sentence (ending on a
full stop). If so, the sentence’s class in HTML is changed to the
appropriate emotion, which triggers the font color of this sentence
to the associated color in {3} to make clear to the user that it has
correctly been highlighted.

{2}. Webcam Video Frame: The user is informed in real-time
about the software’s accuracy through the usage of visual markings.
Firstly, a blue rectangular box with confidence score attached marks
the successful recognition of the user’s face and expression,
secondly, up to 17 keypoints on the human body can be detected,
which, if the confidence score for the respective keypoint is high
enough, will be displayed on the Webcam Video Frame as light blue
points. As a consequence, the user can change his posture to help
the software pick up keypoints and recognize his or her face.

{1}

{2}

{3}

The PoseNet framework is developed to have a Graphical User
Interface which offers a small window monitoring the performance
of the pose estimation software as well as options to the user which
alter the parameters for the algorithm.

{3}. The Emotion Set: A set of buttons which includes the 7
aforementioned expressions of ‘neutral’, ‘happy’, ‘sad’, ‘angry’,
‘fearful’, ‘disgusted’ and ‘surprised’. These buttons need to be
clicked by the user to mark a highlighted sentence with the
respective expression. Hovering over each button shows an
example of how the respective emotion icon would look. Below
these 7 buttons we have the start button, which starts the
presentation by starting speech recognition (Pose estimation and
Face recognition are already running, but with speech recognition
being the catalyst of our feedback, starting it also starts the
presentation). Once the start button has been clicked, it is either
colored in with green or red. Green suggesting that speech
recognition is enabled and the software is active, red suggesting
that the program has stopped. Next to the start button we have an
info element which, by hovering the cursor over it, details what
feedback the user can receive, as is visible in this paper under
heading 3.1.8. Lastly, the log button transforms the content {1} into
the previously given feedback to the user, which might come in
useful for review.

3.2 Experimental setup / approach

As we need to measure to what extent users have become more
aware of what aspects of the speech need to be improved, the
experiment is structured to make assertions about the experience of
the user, which is done by handing out a questionnaire regarding
the experience. With a sample size of N = 10, this experiment gives
the user a short sample speech, which is submitted into the User
Interface with the following emotional highlighting:

The user is seated at a distance of around half a meter from the
webcam, a distance which will make it possible for the pose-
estimation to track the movement of the user’s torso, arms and
head while also allowing the microphone to accurately recognize the
user’s speech.
Before the experiment, the program is concisely explained to the
user, to ensure that the user knows what the aim of the experiment
is.

3.3 Measures

After using the program, the user is asked to fill in said
questionnaire, which poses several questions regarding the aspects
of the program which have been developed in this project and the
aspects which have been developed by others (to determine where
the possible weak and strong points of this program lie). Each
question is to be answered with a grade from 1 to 5, matching the
user’s thoughts (5 being perfect and 1 being terrible).
The questionnaire’s form and its corresponding questions are
detailed on the following page, with the results being visualized
afterwards:

Questionnaire Bachelor Project Damian Domela: GRADE

1. How intuitive was the User Interface? 1 2 3 4 5

2. How well did the program recognize your speech? 1 2 3 4 5

3. How well did the program track your movements? 1 2 3 4 5

4. How well did the program recognize your expressions? 1 2 3 4 5

5. How helpful was the real-time feedback? 1 2 3 4 5

6. How good/stable would you rate your internet connection? 1 2 3 4 5

7. How intuitive were the icons seen in the User Interface? 1 2 3 4 5

8. How well did the program track your velocity of speech? 1 2 3 4 5

9. How well does text highlighting work? 1 2 3 4 5

10. How would you rate the entire program? 1 2 3 4 5

11. How much has this program helped you become more aware of what aspects
of the speech need to be improved? 1 2 3 4 5

Other reaction(s) (optional):

4 Results

4.1 Results Discussion

{1}. How intuitive was the User Interface? [4.9] The User
Interface is clearly structured and apparently this translated well to
the test subjects. Every utility which the user has access to within
the framework on the front end is visible in one single screen
without the need for scrolling or clicking, minimizing the potential
confusion at run time for the user.

{2}. How well did the program recognize your speech? [2.9]
Seeing as the Google Speech API for Javascript[11] is a separate
framework but also needs to be implemented into our program,
whether the performance of the speech recognition is a factor for
which this project should be held accountable is somewhat of a gray
area. However, the manner in which the speech recognition was
implemented is largely similar to the suggested implementation in
[11], meaning that the accuracy of the speech recognition should be
a feat for which this project shouldn’t be held responsible in its
entirety. With that being said, as mentioned before, slight
adjustments were made to make the user experience more
comfortable as well as increase the speed at which sentences are
recognized. This has somewhat improved the accuracy of the
speech recognition, meaning that partially, this project helped
improving the speech recognition. This decent grade of 2.9 does
hint at the fact that the accuracy is quite far away from 100%,
which is unfortunately the case.

{3}. How well did the program track your movements? [4.7]
The PoseNet[5] framework, with proper lighting, yields excellent
dynamic results in tracking the user’s movements. This is directly
visible in the relatively high grade of 4.7 it received from the test
subjects.

{4}. How well did the program recognize your expressions?
[2.6] The Face API[8] is decent at recognizing several expressions,
namely “angry”, “happy”, “neutral”, “surprised” and “sad”. The
other two expressions; “fearful” and “disgusted” are very difficult
for the software to have them recognized. In addition to this, the
framework isn’t built to recognize emotions on the user’s face while

he or she is speaking, which also lowers the accuracy of the
approximation of expressions in this context. Both these factors are
reflected in the mere mediocre feedback grade of 2.6 from the test
subjects.

{5}. How helpful was the real-time feedback? [4.1] The real-
time feedback is concise and dynamically disappears when it’s no
longer relevant, making what feedback is relevant more clear. The
real-time feedback is situated directly next to what sentence is
currently active and is dynamically based on the running frame
average of what confidence score for what expression is the
highest, increasing the accuracy. This apparently resulted in the test
subjects giving a great feedback grade of 4.1 for this aspect of the
project.

{6}. How good/stable would you rate your internet
connection? [3.2] The test subjects were located at two different
places. 2 out of the 10 test subjects rated their internet connection
a 4 out of 5 and the other 8 rated it a 3 out of 5. The strength of the
user’s internet connection is important as the speed and latency of
the speech recognition are dependent on the user’s internet
connection. All in all, we can conclude that the internet connection
of the test subjects in this experiment were slightly above average.

{7}. How intuitive were the icons seen in the User Interface?
[4.8] The User Interface was designed to make sure that before the
speech recognition has started, during the text highlighting portion
of the process, an automatic pop-up window has notified the user
about what icon is associated with what expression. For icons that
aren’t expressions, the User Interface provides an “info” field which,
when the cursor hovers over it, informs the user about the usage of
the other icons. This forces the user to be informed with the
meaning of the icons before starting the presentation, which is
reflected in above feedback grade of 4.8.

{8}. How well did the program track your velocity of speech?
[1.7] As mentioned before, the upper and lower bound for the
speech velocity per syllable are very precise and strict. Our only
option to determine how fast the user is speaking, is by using the
Google Speech API, which adds a lot of latency, which makes it hard
to determine the precise length of how long the user was speaking
per syllable. The most precise manner was to use intermediate
results and measure how long the user took to pronounce the
syllables from the first two words of the current sentence. However
this results in an unstable prediction of whether the user speaks too
fast or too slow, as it’s based on a prediction of only the first two

words. This is why the 1.7 feedback grade from the test subjects is
very low, as they received inaccurate feedback on their speech
velocity.

{9}. How well does text highlighting work? [3.7] Highlighting
one or multiple sentences is very easy and requires only two clicks
per operation. The expression buttons are colored adequately and
are easily accessible. Every now and then the next sentence is also
highlighted with the current emotion, but that’s due to the range of
a text portion being highlighted by the cursor is somewhat tricky to
get right. The decent feedback grade of 3.7 from the test subjects
hints at this portion of the framework working well.

{10}. How would you rate the entire program? [4.2] The
combination of the PoseNet, Face API and Google Speech Web API
frameworks is rather novel. Though the accuracy isn’t great, the
program is functional in its entirety. The test subjects’ feedback of
4.2 grade is quite high, expressing the interest of the test subjects
towards the program as a whole and their comfort accessing the
program.

{11}. How much has this program helped you become more
aware of what aspects of the speech need to be improved?
[2.3] Becoming more aware of what aspects a speech needs to be
improved on is quite a difficult feat to accomplish. The fact that the
facial expression recognition doesn’t work great in this context as
well as the speech recognition not being precise enough in its
timing to accurately give feedback on the velocity of speech from
the user makes the real-time feedback from the program less
valuable. This is reflected in the test subjects’ mediocre feedback
grade of 2.3, which is less than sufficient.

5 Conclusion and further research

5.1 Shortcomings of the Program

The Google Web Speech API requires a connection to the internet to
work, which in turn, requires this whole project to have an internet
connection. As the speech velocity is determined by the Google Web
Speech API, and the speed at which the speech recognition works
slightly varies due to it being dependent on an internet connection,
determining precisely how long the speaker took to pronounce a
certain amount of syllables is difficult. Not only is the speech
recognition an obstacle in this aspect, but the built-in microphone
for a computer as well as the Face API require the user to be close

to the computer to get as accurate results as possible in speech
recognition and expression recognition respectively. A possible
solution for this would be to use an external microphone, but this
would decrease the accessibility of the program as well. The built-in
microphone results in the webcam not picking up the lower parts of
the user’s body as they’re outside of the video frame, so the
movement tracking is based on just the upper body. Unfortunately,
some of the 7 expressions are difficult to have recognized and
speaking disturbs a human’s expression and thus the software’s
ability to track it. In addition to this, both PoseNet and the Face API
require good lighting to achieve a high confidence score towards
their respective recognition.

5.2 Conclusion

The merging of the Google Web Speech API, TensorFlow’s PoseNet
and Face API frameworks combined into a multifaceted Back End to
our self-developed User Interface Front End. In addition to The goal
of this merging of frameworks was to improve the user’s
conveyance of emotions during a speech. The User Interface was
responsible for notifying the user to what extent he or she was
successful in conveying the desired emotions, which, according to
the results in our experiment, provided a comfortable user
experience. The user interface used a feedback system based on
colored icons to quickly bring across feedback to the user. To
correctly implement speech velocity, a string similarity function was
developed to check whether or not the spoken sentence matched
the current sentence in the speech. To avoid hasty conclusions, an
N frame average function was implemented in order to only make
conclusions when there is a consistent confidence towards it over
the span of N frames. In the experiment, test subjects were
confronted with the program’s interpretation of their ability to
convey the correct emotions in their speech in the form of real-time
feedback and thus possibly making the user more aware of what
aspects of his speech need to be improved. The goal of the
experiment was to test to what extent the developed application
provided a comfortable user experience, while also checking
whether the user became more aware of what aspects of his or her
speech need to be improved. When looking at the results of the
experiments in the form of the feedback grades from the test
subjects, though the sample size is small, it hints at a great and
intuitive user experience and a small to negligible effect towards
sparking more awareness for the user, with it receiving a 2.3 out of
5 from the sample group. Furthermore, the User Interface, PoseNet,
the real-time feedback, the icons and the program as a whole
received more than positive feedback, while the average speech

velocity, expression and speech recognition received less than
positive feedback.

5.3 Future Work/Research

A legitimate research towards whether or not the tool improved the
user’s ability to correctly convey emotions during a presentation is
needed to make conclusions about the developed application having
an actual effect on the user. This would require a significantly larger
sample size for its experiment. Also, in this project, the basic
emotions of Ekman were chosen as a basis to give feedback on,
however, the amount of bodily energy or arousal the user is
portraying towards the audience could be an alternative solid basis
to conclude how well the user is presenting. This alternative is a
great foundation to implement a different approach to this project in
future research.

Bibliography

1. Dwyer, K.K., Davidson, M.M.: Is Public Speaking Really More Feared Than
Death? Communication Research Reports · pages 7-8 · April 2012.

2. Google Brain Team, Tensorflow, November 9th 2015,
<https://www.tensorflow.org>

3. P. C. Kyllonen. Measurement of 21st century skills within the common
core state standards. In Invitational Research Symposium on Technology
Enhanced Assessments. Technology Enhanced Assesment, pages 7–8,
May 2012.

4. C. B. Pull. Current status of knowledge on public-speaking anxiety.
Current Opinion, Page 37, January 2012.

5. Google Brain Team, Google Creative Lab, PoseNet, April 6th 2018
<https://github.com/tensorflow/tfjs-models/tree/master/posenet>

6. Gines Hidalgo, OpenPose Issue: CPU version – Running Without CUDA,
January 18th 2018
<https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/37
5>

7. D. Oved, Real-time Human Pose Estimation in the Browser with
TensorFlow.js, May 7th 2018 <https://medium.com/tensorflow/real-time-
human-pose-estimation-in-the-browser-with-tensorflow-js-
7dd0bc881cd5>

8. Vincent Mühler, JavaScript face recognition API, May 19th 2018
<https://github.com/justadudewhohacks/face-api.js>

9. Ekman, P. Universals and Cultural Differences in Facial Expressions of
Emotions. Personality Processes and Individual Differences, Page 251-
252, March 13th 1987

10. The MatConvNet Team, Tiny Face Detector, July 2017
<https://github.com/peiyunh/tiny>

11. G. Shires, Voice Driven Web Apps: Introduction to the Web Speech API,
May 29th 2019
<https://developers.google.com/web/updates/2013/01/Voice-Driven-Web-
Apps-Introduction-to-the-Web-Speech-API>

12. P. Delattre, A Comparison Of Syllable Length Conditioning Among
Languages. International Review of Applied Linguistics in Language
Teaching, Page 186, Table 1, September 1966

13. M. Argyle, J. Dean, Eye-Contact, Distance and Affiliation. Sociometry,
Page 289, September 1965

14. A.C. Moller, A.J. Elliot, M.A. Maier, Basic Hue Meaning Associations.
Emotion Page 901, December 2009

15. M.D. Nazligul, M. Yilmaz, U. Gulec, M.A. Gozcu, R.V. O’Connor & P.
Clarke, Overcoming Public Speaking Anxiety of Software Engineers using

https://www.tensorflow.org/
https://github.com/peiyunh/tiny
https://github.com/justadudewhohacks/face-api.js
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/375
https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/375
https://github.com/tensorflow/tfjs-models/tree/master/posenet

Virtual Reality Exposure Therapy. Systems, Software and Services
Process Improvement, page 5, August 12th 2017

16. T. Pfister, P.Robinson, Speech Emotion Classification and Public
Speaking Skill Assessment. Human Behavior Understanding, page 7-8,
August 2010

17. L. Chen, G. Feng, J. Joe, C.W. Leong, C. Kitchen, C.M. Lee, Towards
Automated Assessment of Public Speaking Skills Using Multimodal Cues.
ICM ‘14, page 3-4, November 12th-16th 2014

18. T. Wörtwein, M. Chollet, B. Schauerte, L. Morency, R. Stiefelhagen, S.
Scherer, Multimodal Public Speaking Performance Assessment. ICM ‘15,
page 44-45, November 9th-13th 2015

19. J.M. Digman, Personality Structure: Emergence of the Five-Factor Model.
Annual Review of Psychology, page 421, February 1990

20. P. Ekman, Are There Basic Emotions? Psychological Review, page 552,
February 10th 1991

21. P. Ekman, E.L. Rosenberg, What the face reveals: Basic and applied
studies of spontaneous expression using the Facial Action Coding System
(FACS). Page 13, January 1997

22. Vincent Mühler, Available models Face-API, May 19th 2018
<https://github.com/justadudewhohacks/face-api.js#available-models>

23. Vincent Mühler, Face Expression Recognition Model Face-API, May 19th
2018 <https://github.com/justadudewhohacks/face-api.js#models-face-
expression-recognition>

24. B. Amos, B. Ludwiczuk and M. Satyanarayanan, OpenFace: A general-
purpose face recognition library with mobile applications. Technical
Report, page 5-8, June 2016

25. Z. Cao, G. Hidalgo, T. Simon, S. Wei and Y. Sheikh, OpenPose: realtime
multi-person 2D pose estimation using Part Affinity Fields. Transactions
on Pattern Analysis and Machine Intelligence, page 6-7, December 18th
2018

26. R.E. Jack, O.G.B. Garrod and P.G. Schyns, Dynamic Facial Expressions of
Emotion Transmit an Evolving Hierarchy of Signals over Time. Current
Biology, page 5, January 20th 2014

https://github.com/justadudewhohacks/face-api.js#models-face-expression-recognition
https://github.com/justadudewhohacks/face-api.js#models-face-expression-recognition
https://github.com/justadudewhohacks/face-api.js#available-models

