
Opleiding Informatica

Dynamic Real-time Videostream Stitching

Using Multiple Uncalibrated Cameras

Mitchel Colli

Supervisors:

Dr. E. M. Bakker & Dr. W. A. Kosters

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)

www.liacs.leidenuniv.nl July 1, 2019



Abstract

In this paper the problem of real-time stitching using two or more uncalibrated cameras is addressed. Three

different feature detecting algorithms (SIFT, SURF and ORB) using two of our own filters (so-called Domain

Filter and Slopes Filter) are evaluated to determine their ability to find suitable image pairs for stitching in

various scenarios. In static high contrast scenarios many features are able to be detected and many matches

can be made, whereas in moving low-contrast scenarios this is severely reduced. Without enough matches it is

not possible to perform homography estimation. The panoramic video is formed by stitching two or more

videostreams together. Our system is designed as a lightweight system where the computational requirements

are kept relatively low and low-cost off-the-shelf cameras are used. This in contrast to specialized systems that

are either too bulky or too expensive, and that require cameras to be calibrated. In our case we researched

the ability to obtain high-quality results without distortions, in real-time, but without calibration. This goal

enables us to perform stitching on-the-fly without having to spend much time beforehand.

Performance analysis shows that our system is eligible for real-time stitching by doing so only when a suitable

image pair is found, and does not spend any resources on cases where it is not possible.
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Chapter 1

Introduction

One camera lens can capture only one image at a specific point in time. The size of this image is limited to the

angle of view of that camera. If we want to create a larger image, we could take different images at different

points in time and put them together to create a so called panorama. Creating such a panorama allows for

photos with a wider angle than is typically allowed by your lenses. This broad perspective is especially useful

for photographers who like larger and more detailed prints, like architectural and landscape photographers.

However, taking shots at different moments with moving objects in the scene would create many distortions

and we also wouldn’t be able to create a video from the area. To create a video whose dimension is larger than

the one image taken from a single camera, multiple cameras / lenses are required.

After the invention of photography in 1839, the phenomenon of “being there” [1] started to develop. In order

to create this “realistic immersive feeling” like you’re actually there viewing the scene, people thought of

putting multiple photos of the environment together: creating a panoramic image. Soon enough, in the late

nineteenth century, cameras were manufactured to produce panoramas themselves and more techniques were

established [2]. But this progress led to several problems to be solved. One of the early problems was that of

visible seams caused by different exposures1, as can be seen in Figure 1.1.

Figure 1.1: View from the top of Lookout Mountain, Tenn., February, 1864 George Barnard albumen silver print; 10.5 x 42

in. PH - Barnard, G., no. 86 (F size) P&P. Note the visible seams as a result of different exposures. Image taken from [63].

1These and other related problems will be discussed more thoroughly in the next chapter.
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Nowadays a lot of research has been put into creating panoramas, which resulted in stitching software like

AutoStitch [42], Microsoft Photosynth2 [58] and PTGui [43]. However, these programs are not suitable for use

during live recordings. Also various devices have made it to the market, e.g., the Samsung Gear 360 [44], GoPro

Odyssey [45] and Nokia OZO [46]. These are often expensive specialized calibrated cameras making them

unsuitable for the masses (approx. $15,000 and $60,000 for the Odyssey and OZO, respectively). Furthermore,

the built-in stitching software often does not perform as expected (Gear 360 [32]). The Insta360 Pro 2 [47]

supports 360 live-streaming at 4K resolution — in both 3D and monoscopic formats, but costs $4999.95.

Research on this topic is quite important, as it finds applications in a wide variety of areas, such as: robotics,

texture synthesis, industrial inspection, street view services, surveillance systems, the military, virtual reality

and many more. Imagine a group of soldiers wanting to diffuse a bomb. To keep the men safe, they send in a

robot equipped with a camera to do the job for them. The Daksh is such a device with multiple cameras, as

seen in Figure 1.2. To reduce the risk of making mistakes, the captured images must combine into one with as

little delay as possible and without any visible errors.

Figure 1.2: Daksh is an electrically powered Remotely Operated Vehicle (ROV) designed and developed by the Indian
state-owned Defence Research and Development Organisation (DRDO) at the Research and Development Establishment
(Engineers), Pune, India [49].

These previously described examples, however, use calibrated cameras. An application of stitching images

from uncalibrated cameras is when you have persons and vehicles equipped with wearable cameras in one

environment. For a central operator concatenated images of the scene would be very useful. But also for

landscape and architectural photographers who want to create panoramas using one or more cameras. Another

example would be robotic platforms with multiple slightly moving cameras.

In this paper we address if an obtained image pair is eligible for stitching by comparing the effects of

three different state-of-the-art feature detecting algorithms without the use of any form of calibration, i.e., you

have only a restricted control over its position, orientation, field-of-view, resolution and exposure. In addition,

the framework is suitable for anyone who owns a computer/laptop of 2019’s standards.

2However, this website and service was shut down on February 6, 2017.
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The rest of the paper is organized as follows. Chapter 2 gives background information about video stitching.

In Chapter 3 we review related state-of-the-art work. Then in Chapter 4 we discuss several algorithms and

methods that are applied for real-time video stitching. In Chapter 5 we show how we tested our approach. In

Chapter 6 acquired results are displayed. Lastly we draw our conclusions and explore future work in Chapter

7.

This paper was written as a Bachelor project at the Leiden Institute of Advanced Computer Science (LIACS) of

Leiden University under the supervision of dr. E. M. Bakker and dr. W. A. Kosters.
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Chapter 2

Background: the image stitching pipeline

During the design of previous image stitching systems, different approaches have been taken. Techniques for

stitching are broadly classified into two approaches: direct (pixel-based) and feature-based. Various researches

[20, 21] have shown advantages and disadvantages of these approaches. However, direct techniques require

information about the camera motion model. In this paper we deal with uncalibrated cameras (i.e., you have

limited knowledge of the cameras’ internal characteristics and restricted control over their positioning in the

real world), therefore we do not have such information. For feature-based techniques, on the other hand,

calibration is not mandatory, this makes them suitable for our problem and will be the focus of our research.

Feature-based image stitching generally follows the various steps of an image stitching pipeline, as de-

picted in Figure 2.1.

Figure 2.1: An image stitching pipeline.

Various researches [3, 4] have been using this processing pipeline for calibrated image stitching. Calibration is

used to reduce the dissimilarities between what is seen in the real world and what is captured by the two

or more cameras. Each lens slightly distorts incoming light depending on their purpose, causing straight

lines in the real world to appear curved. For example, wide-angle lenses typically produce images with

barrel distortion (Figure 2.2) because they have a wide field of view. It is possible to calibrate each camera

by calculating how the image should actually look like, and always use that information to rectify the image

from that camera before further processing. Another part of calibration is to characterize the position and
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the direction between cameras and use this information to reconstruct the three-dimensional structure of a

pixel coordinates scene of its image points. In several studies [39, 40] this data has been used to improve

homography estimation, which relates the transformation between two planes. In our case we can not perform

such calculations, because we are not performing any lens calibration.

Figure 2.2: Most common lens distortions [50].

In the following, we describe the problems that have to be solved at each stage of the processing pipeline

in more detail. Once the system has started, the image registration technique is employed. It takes images

captured from the cameras and finds points in the images that have distinct properties (e.g. edges, textures,

colors, etc.) and tries to match the same points in each of those images. Afterwards, those matches are used to

extrapolate and calculate the relationship between all the points in the images. This enables us to stitch the

images together. This technique of collecting matches usually consists of the first five steps of the processing

pipeline: 1) Input Images with Calibration, 2) Feature Detection, 3) Feature Description, 4) Feature Matching

and 5) Robust Estimation / Outlier Removal. The calculation of the relationship between the planes is done in

step 6) Image Transformation. Lastly, the images become one in step 7) Image Blending, resulting in our final

panoramic image.

1) Input Images with Calibration

Simply capture images using the selected cameras.

2) Feature Detection (Interest Point Detection / Corner Detection)

An algorithm that chooses points from the captured images based on some criterion. The word ’interest’ says

it all, a method like this finds the most interesting, most informative points, such as corners, edges, textures,

etc. A few examples are: Harris [5], DoG [60], DoH [62], FAST [6] and Min. Eigen [7].

3) Feature Description

”A descriptor is a vector of values that describes the image patch around found interest points. They could be

as simple as the raw pixel values, or it could be more complicated, such as a histogram of gradient orientations.

A few examples are: SIFT [8], SURF [9], BRISK [12], BRIEF [10], FERNS [11], ORB [13], FREAK [14] and

LIOP [15]. Many of these examples also come with their own feature detector. SIFT’s detector is based on the

Difference-of-Gaussian (DoG), which is an approximation of the Laplacian [61]. The DoG detector detects
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centers of blob-like structures. SURF is meant to be a fast approximation of SIFT. BRISK’s detector is a corner

detector. Its descriptor is a binary string representing the signs of the difference between certain pairs of pixels

around the interest point. A challenge of being a good useful descriptor is invariance. The descriptor generally

should be scale, shift and rotational invariant.

An interest point together with its descriptor is usually called a local feature. Local features are used for

many computer vision tasks, such as image registration, 3D reconstruction, object detection and object recogni-

tion” [64]. ”In [16] detectors were evaluated by their repeatability ratios and total number of correspondences

over several views of scenes and with various image distortion types. In [17] descriptors were evaluated by

their matching rates for the same views” [18].

4) Feature Matching

Here the local features are used to establish correspondences between the images. Methods could be broadly

divided into two classes:

• ”Tree-based methods, like k-d tree [24], Best Bin First [25] and Bag-of-Words [26, 27]. These schemes,

however, need to set up an indexing tree before feature searching. Because of their additional time costs in

building and updating the indexing tree, these methods may not be suitable for real-time applications.”

• ”Brute-force searching: a straightforward way to find the most similar feature correspondences. Given a

certain feature in one image, its search time is computed by the similarity measure time between two

features multiplied by the total number of feature candidates in another image” [4].

5) Robust Estimation / Outlier Removal

Once the matches are made, faulty ones still exist. ”A simple example is fitting a line in two dimensions to a

set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted

to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting

will generally produce a line with a bad fit to the data including inliers and outliers. The reason is that it is

optimally fitted to all points, including the outliers. RANSAC [28], on the other hand, attempts to exclude

the outliers and find a linear model that only uses the inliers in its calculation. This is done by fitting linear

models to several random samplings of the data and returning the model that has the best fit to a subset of

the data. Since the inliers tend to be more linearly related than a random mixture of inliers and outliers, a

random subset that consists entirely of inliers will have the best model fit. In practice, there is no guarantee

that a subset of inliers will be randomly sampled, and the probability of the algorithm succeeding depends

on the proportion of inliers in the data as well as the choice of several algorithm parameters” [59]. A few

other examples are: LMedS [29], MSAC [30] and BaySAC [31]. RANSAC is the most widely used technique to

remove them, because of its ability to do robust estimation. Its processing speed is controlled by the sampling

time, which is determined by the percentage of outliers inside the input data.
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6) Image Transformation

Images undergo the necessary geometric transformations, i.e., rotations, scaling, etc. to align them with each

other.

7) Image Blending

Stitching is employed across the stitch, in order to result in seamless stitching. A few examples are: Alpha

“feathering” blending, Gaussian Pyramid, Poisson blending and Multiband blending [57]. Stitching techniques

are broadly classified into two approaches:

• Direct techniques (Pixel-based): each pixel’s intensity in an image is compared with every other pixel in

another image. These methods are variant to image scale and rotation.

• Feature-based techniques: each feature point in an image is compared with every other feature point in

another image, using their local descriptor. These methods are likely invariant to noisy images, image

scale, translation and rotation.

Feature-based video stitching follows the same steps as feature-based image stitching – as video comprises of

multiple images shown quickly after each other — but with additional difficulty [34]. Our goal is to achieve

an errorless stitched panoramic video in real-time using multiple cameras — in our case two cameras3. But

using multiple cameras means obtaining multiple frames. These images can differ a lot from each other, which

causes a lot of problems during the stitching process. So we will first have to determine which negative effects

occur and secondly we will create methods to eliminate them.

The following are important topics which are needed to be solved when stitching as they are artifacts

that are visually unacceptable:

• Distortions: straight lines in a scene that don’t remain straight in an image. A picture taken from a

fisheye-lens nicely shows this phenomenon (Figure 2.3).

Figure 2.3: Barrel distortion. Image taken from Android Authority.

3A single camera with multiple lenses which produce different images is considered the same thing.
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• Illumination: light is a very important factor in creating images. If one camera is more exposed to the

source than the other, a visible glare can really disrupt the outcome of a panorama (Figure 2.4).

Figure 2.4: Light exposure. Image taken from Android Authority.

• Parallax: a displacement in the apparent position of an object viewed along two different lines of sight,

and is measured by the angle of inclination between those two lines (Figure 2.5).

Figure 2.5: Parallax. Image taken from [51].

• Ghosting: a ghost is a replica of the transmitted image, offset in position, that is superimposed on top of

the main image (Figure 2.6).

Figure 2.6: Ghosting. Image taken from [52].

• Visible seams: images stitched together may still leave visible seams behind that have to be removed

(Figure 2.7).

Figure 2.7: Visible seams. Image taken from [53].
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• Vignetting: a reduction of an image’s brightness or saturation toward the periphery compared to the

image center (Figure 2.8).

Figure 2.8: Vignetting. Image taken from [54].

• High-cost computations: a higher computational cost means it takes more time to complete a task.

These disturbances decrease the overall speed of a system and should be avoided as best as possible.

For our processing pipeline we choose SIFT, SURF and ORB as our feature detectors/descriptors and RANSAC

as our outlier remover. Other aspects of the processing pipeline are not within the scope of this paper. Details

about these methods are described in Chapter 4.
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Chapter 3

Related Work

In the previous chapter we described the used techniques and methods for image stitching. Here we focus

on work that is closely related to our research goal of determining how to dynamically stitch real-time

videostreams using multiple uncalibrated cameras.

Brown et al. [20] formulated ”stitching as a multi-image matching problem, and uses invariant local features

to find matches between all of the images”. Because of this, their method is ”insensitive to the ordering,

orientation, scale and illumination of the input images. It is also insensitive to noise images that are not part of

a panorama, and can recognise multiple panoramas in an unordered image dataset”. They have ”developed a

C++ implementation of the algorithm described in their paper, called Autostitch. A demo of this program

can be downloaded from http://www.autostitch.net”. Our framework uses a similar setup to this and is

described in Chapter 4.

Li et al. [4] presented a high-speed aerial video stitching system. Their method – using fast feature detection

and binary feature description, a spatial and temporal coherent filter and dynamic key frame updating – was

able to obtain results at 150 frames per second (fps) on a what the authors call ”normal personal computer”

(2014), rather than an ”advanced vision platform such as FPGA”. This was implemented using C++ and the

OpenCV library with image resolutions of 320×240.

Rydholm [36] implemented his vehicle mounted system for creating panoramic video using cylindrical

projection – which reduces the problem to finding a translation between the images – and stitching using

feature detection and matching with the ORB algorithm. To reduce artifacts such as ghosting, a simple but

effective alpha blending technique was used. With three cameras in colour with resolutions of 1024×768, he

was able to achieve a panoramic video at approximately 15 fps. This was accomplished using C++ and the

OpenCV library on a computer of what the author calls ”2012’s standards”.
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He et al. [37] presented ”an efficient parallax-robust stitching algorithm to build wide field of view (FOV)

videos for surveillance applications. This method consists of two parts: alignment work done at the stitching

model calculation stage and change detection based frame updating at the video stitching stage. The system

uses layered warping method to pre-align the background scene which is robust to scene parallax. As for

each new frame, an efficient change detection based seam updating method is adopted to avert ghosting

and artifacts caused by moving foregrounds”. They obtained results varying at around 12, 22 and 31 fps

for resolutions of 1280×720, 720×480 and 352×288, respectively, using C++. All of their experiments were

conducted on a PC with Intel® Core™ i3 CPU @ 2.33GHz × 2 and 2GB RAM.

Su et al. [38] proposed ”a robust video stitching approach that can explicitly detect the potential occlusions.

Then, based on the occlusion maps”, they chose ”a proper strip in the overlapped region as the blending

area. With spatial-temporal Bayesian view synthesis, spatial ghost-like artifacts are significantly eliminated

and the output videos kept stable” at around 4 fps with a resolution of 4800×1080. All of their experiments

were performed on a workstation with Visual Studio 2013, OpenCV 3.0 and CUDA6.5, Intel® Xeon® CPU @

3.0GHz. 64GB RAM, Quadro5000 and GPU-Z is 3GB.

Yoon et al. [35] proposed a ”real-time video stitching method using camera path estimation and homography

refinement”. Their method can ”stably stitch multiple frames acquired from moving two cameras with a

resolution of 1280×720 in real-time at a rate exceeding 13 fps using C++”. Their methods were tested on a PC

with an Intel® i5-4590 CPU @ 3.4GHz and 4GB RAM. To reduce processing time, they proposed ”the use of

camera path estimation, which is an estimation method using a grid and Lucas-Kanade optical flow” instead

of using existing methods like feature extraction, feature matching and homography estimation. To remove

the error of alignment, they ”propose the homography refinement, which is a refinement method that uses

block matching”.

Ha et al. [41] proposed a condition of suitable image pairs for feature-based image stitching. They introduced

a new criterion which is based on the distribution relationship of corresponding features. Applying several

sets of sequenced images, they confirmed the usability of their proposed condition. Through the conditions,

they expect that the failure of feature-based image stitching will be reduced by controlling strange images

that do not satisfy the conditions in advance. We will use this condition to test our framework’s ability to find

suitable images pairs. Details about this method is described in Chapter 5.

All previous described methods for stitching require calibrated cameras to perform their calculations, hence

we can not adopt these methods. All other techniques for the reduction of artifacts and alignment errors are

not within the scope of this paper.
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Chapter 4

Videostream Stitching Framework for

Multiple Uncalibrated Cameras

In this chapter we describe our framework for videostream stitching using a similar setup to [20] as described

in Chapter 2. The videostream pipeline can be seen in Figure 4.1.

Figure 4.1: A videostream pipeline.

Our main focus is on the first five stages of this pipeline. This is where the matching and filtering is happening.

Afterwards, calculating image transformations, etcetera, only has to happen when an image pair is suitable for

stitching.

Implementation

Our framework is implemented using C++11 and OpenCV version 3.3.1 (Open Source Computer Vision

Library), which ”is an open source library for image and video analysis” [22]. ”OpenCV is aimed at making

computer vision accessible to programmers and users in the area of real-time human-computer interac-

tion and mobile robotics. Thus, the library comes with source code and hand-tuned assembly language

binaries optimized for Intel processors, so that users can both learn from the library and make use of its

performance” [23].
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At each stage of the pipeline one or more algorithms are executed. First we have to select which cameras that

are attached to the system we want to use. Then the images are captured and converted into grayscale, because

the feature detectors are designed to obtain the intensity of the pixels. Next, interest points are captured,

described and matched. Wrong matches are then filtered out of the collection. Using the leftover good matches

we can calculate a homography transformation and finally put the images together. So in short, our framework

consists of the following algorithms executed in sequence:

• Camera Selector

• Input Images without Calibration

• Feature Detection

• Feature Description

• Feature Matching

• Domain Filter (optional)

• Slopes Filter (optional)

• Image Transformation (visualization only)

• Image Blending (visualization only)

Now we will explain what is done at each stage of our pipeline from Figure 4.1 and which algorithms belong

to it.

1) Input Images without Calibration

In this module we count and select cameras in order for them to capture images. Because C++ / OpenCV does

not have a function to determine the amount of attached cameras, we had to write our own method. Since this

method tries to “open” a camera at index i starting from 0 and increments it after each successful attempt, it

eventually hits an index that can’t be used and will produce an inevitable error as shown in Algorithm 1. The

user is then able to select which two cameras to use. Then images can be captured. Pseudo-code for this is

shown in Algorithm 2.
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Algorithm 1: Camera Selector
Input: -
Output: Indexes used to represent the left and right camera.
/* Part I: count if enough cameras are attached to the system. */

1 attachedCount = 0;
2 while true do
3 if a camera doesn’t exist at index attachedCount then
4 Break;
5 end
6 if the current camera can’t be opened then
7 Exit program;
8 end
9 attachedCount++;

10 end

/* Part II: ask user which cameras to use. */

11 if attachedCount < 2 then
12 Exit program;
13 end
14 while true do
15 Ask which camera to use for le f tIndex; /* Index ∈ [0, attachedCount] */

16 Ask which camera to use for rightIndex; /* Can’t be the same number as le f tIndex */

17 end

Algorithm 2: Input Images without Calibration
Input: leftCamera and rightCamera
Output: Captured images and their grayscale counterpart

1 Capture leftFrame;
2 Capture rightFrame;

3 if leftFrame.empty() ‖ rightFrame.empty() then
4 Print an error;
5 Exit program;
6 end

7 Show captured images;
8 Convert images to grayscale;
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2) Feature Detection

In this module the features are detected by either SIFT, SURF or ORB. The user can choose which method

to use by setting a variable (mode) and is used to easily test the different methods during our experiments.

Because of the uncalibrated cameras we want to be able to find interest points that are invariant to scale

and rotation. In addition, we want to fulfill the real-time requirement. From the vast selection of feature

detectors/descriptors we choose SIFT, SURF and ORB, because they all meet the requirements and for their

accessibility within OpenCV. Pseudo-code for this module is shown in Algorithm 3.

Algorithm 3: Feature Detection
Input: Input frames (grayscale), mode
Output: Feature points for the frames.

1 switch mode do
2 case 0 do
3 Detect feature points with SIFT;
4 end
5 case 1 do
6 Detect feature points with SURF;
7 end
8 case 2 do
9 Detect feature points with ORB;

10 end
11 otherwise do
12 Error, wrong mode used;
13 Exit program;
14 end
15 end

3) Feature Description

In this module the features are described based on the same variable mode from the previous algorithm.

Pseudo-code for this is shown in Algorithm 4.

Algorithm 4: Feature Description
Input: Input frames (grayscale), detected features, mode
Output: Descriptors for the features.

1 switch mode do
2 case 0 do
3 Describe feature points with SIFT;
4 end
5 case 1 do
6 Describe feature points with SURF;
7 end
8 case 2 do
9 Describe feature points with ORB;

10 end
11 otherwise do
12 Error, wrong mode used;
13 Exit program;
14 end
15 end
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4) Feature Matching

In this module the features are matched based on the variable mode. For SIFT and SURF we had a choice

between the L1-norm, i.e., a Manhattan distance function, or the L2-norm, i.e., a Euclidean distance. We select

the L1-norm here, because of the real-time requirement. ORB uses binary descriptors, so their distances are

represented using the Hamming distance. Pseudo-code for this is shown in Algorithm 5.

Algorithm 5: Feature Matching
Input: Detected features, mode
Output: Vector of matches

1 switch mode do
2 case 0 do
3 Match descriptors using Brute-Force NORM L1 matcher;
4 end
5 case 1 do
6 Match descriptors using Brute-Force NORM L1 matcher;
7 end
8 case 2 do
9 Match descriptors using Brute-Force NORM HAMMING matcher;

10 end
11 otherwise do
12 Error, wrong mode used;
13 Exit program;
14 end
15 end

5) Robust Estimation / Outlier Removal

Once matches have been made, false ones still exist. These are the matches that contain interest points that are

not the same in the real world, but still get matched because of the similar descriptors. In this module we

have to eliminate these wrong matches to improve homography estimation or else we will obtain an incorrect

result. To do this, we introduce two different methods. The goal is to experimentally compare the suitability of

the image pairs (using our methods and the measure of [41], which will be explained in Chapter 5) with the

different algorithms: SIFT, SURF and ORB. We choose these algorithms due to their invariance in scale and

rotation, fast performance rates and easy access with C++ and OpenCV.

Domain Filter

For this method we look at different intervals in the distance reaches of SIFT, SURF and ORB. Every feature-

based algorithm keeps track of how accurate a made match is. This is done by looking at the ”distance”

between two feature points. For floating-point features a Manhattan or Euclidean measure is maintained,

for binary representations the Hamming distance is used. The closer these ”distances” are to zero, the more

similar the two points look alike. If the maximum distance is reached, the points are the exact opposite of each

other. These maximum values are not desirable and practical, so we define new practical maxima based on an

empirical experiment. We chose a high contrast environment so we could obtain many matches using SIFT,

SURF and ORB and looked at the distances we obtained from them. We obtained an approximate maximum
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reach for SIFT to be 3742, for SURF this is 3 and for ORB it is 98. In case higher values are possible in lower

contrasted scenarios we round up these numbers to the closest power of two. So we define a domain of

[0-4096], [0-4] and [0-128] for SIFT, SURF and ORB, respectively. These domains are then divided in ten equal

lengths and the maximum value is then lowered to the next interval where the performance is measured.

Pseudo-code for this is shown in Algorithm 6.

Algorithm 6: Domain Filter
Input: Vector of matches, mode
Output: Vector of matches

1 maxDistanceSIFT = 4096.0;
2 maxDistanceSURF = 4.0;
3 maxDistanceORB = 128;
4 domainFactor; //Some value in [1-10]

5 if mode == 0 then
6 maxDistance = (domainFactor / 10) * maxDistanceSIFT;
7 end
8 if mode == 1 then
9 maxDistance = (domainFactor / 10) * maxDistanceSURF;

10 end
11 if mode == 2 then
12 maxDistance = (domainFactor / 10) * maxDistanceORB;
13 end
14 for every match do
15 if currentMatches.distance > maxDistance then
16 Remove match;
17 end
18 end

Slopes Filter

When looking at unfiltered matches in an image we see a lot on lines criss-cross throughout the image with

a wide variety of lengths. In case two images only have a horizontal displacement, all lines are ought to be

parallel with approximately the same lengths. When one image is slightly rotated lines do cross with different

lengths. In order to remove lines that do not look similar to the biggest group this method removes them

based on their slope and length. We calculate the standard deviation for both values and remove all matches

whose slope or length is not within one standard deviation of the mean. This interval also decreases by a tenth

and the performance is measured per algorithm. Pseudo-code for this is shown in Algorithm 7.

These methods are compared to a state-of-the-art outlier removal technique with and without the filters

active. For this technique we use RANSAC, because it is capable of interpreting/smoothing data containing a

significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis

where interpretation is based on the data provided by error-prone feature detectors [28] and because of its

easy use as its implementation is within OpenCV funcionality.
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Algorithm 7: Slopes Filter
Input: List of matched pixels, left input frame.
Output: Vector of matches

1 for every match do
2 Obtain coordinates of left pixel;
3 Obtain coordinates of right pixel, adding the width of the left input frame to the x-value;
4 Calculate difference for x and y-values;
5 Calculate the slope and length for this match and save this data;
6 end

7 Calculate the means and standard deviations for the slopes and lengths;
8 double stdScalar; //Some value in [0-1]

9 for every match do
10 if !(slope > mean1 - stdScalar*stddev1 && slope < mean1 + stdScalar*stddev1) ‖ !(length > mean2 -

stdScalar*stddev2 && length < mean2 + stdScalar*stddev2) then
11 Remove match;
12 end
13 end

6) Image Transformation

In this module the homography between the filtered matches is calculated. Afterwards, the frames warp to

their destination. Pseudo-code for this is shown in Algorithm 8. This module is for visualization only and is

not important to optimize further at this stage.

Algorithm 8: Image Transformation
Input: List of matched pixels, both input frames.
Output: Transformed frame.

1 Calculate the homography matrix between the rightPixels and le f tPixels;
2 Warp rightFrame to le f tFrame using the homography matrix with a perspective transformation;

7) Image Blending

The resulting images from the Image Transformation are used to properly determine the overlapping region.

That part of the image is getting a simple adjustment based on the position of that area. The blending method

as described in [36] yields the best result as it avoids as much ghosting as possible, while still making the seam

between the frames as smooth as possible. Pseudo-code for this is shown in Algorithm 9. This module is for

visualization only and is not important to optimize further at this stage.

Algorithm 9: Image Blending
Input: leftFrame and transformed rightFrame
Output: Panorama image

1 Determine overlapping region;
2 Perform non-linear alpha blending on that region;
3 Show the created panorama;
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Chapter 5

Experiments

In this chapter we describe the experimental setups used to validate the performance and limits of our system.

To evaluate the performance of the system, a variety of experiments have to be conducted. The goal is to

see if the system is able to find suitable image pairs in an easy scene (e.g., lot of contrast so the system can

find more feature points) and a difficult scene (e.g., not much contrast so not many feature points will be

detected). Hard- and software specifications used for the experimental setup are shown in Table 6.1 in Chapter 6.

We first define performance as a combination of two factors: speed and quality.

We know the frame rate of the capture device, for real-time we want our system to match that frame rate.

Pseudo-code for these measurements can be seen in Appendix A in Algorithm 11 and Algorithm 12, respec-

tively.

Quality of the captured image pair is measured by adopting the method described in [41] and works as follows.

After the feature points of both input images have been matched, the size of the area where the matches are

distributed on the image with the four matches located at the outermost positions is calculated. These are

the pixel coordinates corresponding to the minimum and maximum values in the x and y direction at the

pixel position of all matches. Then, the ratio that the matches area occupies in the entire image is calculated

(Eq. 5.1). After the good matches have been extracted, the area where they are distributed and their ratio is

also calculated (Eq. 5.2). Finally, the percent score is calulated by Eq. 5.3.

Matches ratio (%) =
Matches area

Total size o f image
× 100 (5.1)

Good matches ratio (%) =
Good matches area
Total size o f image

× 100 (5.2)

Percent score (%) =
Good matches ratio

Matches ratio
× 100 (5.3)
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Figure 5.1 represents the idea behind this quality measure.

Figure 5.1: Interest points in corresponding feature analysis. (a) is matches area, which is the area occupied by the outermost
corresponding features. (b) is good matches area, which is the area occupied by the outermost good matches [41].

Pseudo-code for this is shown in Algorithm 10.

Algorithm 10: Percent Score
Input: rightFrame, rightPixels
Output: Percent Score
/* Define four out of bounds minimum and maximum coordinates */

1 Point2f p1(0, MAX RESOLUTION);
2 Point2f p2(-1, 0);
3 Point2f p3(0, -1);
4 Point2f p4(MAX RESOLUTION, 0);
5 for every rightPixel do
6 Point2f currentPoint = rightPixels[i];
7 if currentPoint.y < p1.y then
8 p1 = currentPoint;
9 end

10 if currentPoint.x > p2.x then
11 p2 = currentPoint;
12 end
13 if currentPoint.y > p3.y then
14 p3 = currentPoint;
15 end
16 if currentPoint.x < p4.x then
17 p4 = currentPoint;
18 end
19 end
20 Store x and y values of all points in separate variables with the same number;

/* Calculate the area according to the four outermost coordinates */

21 area = abs(( (x1*y2 - y1*x2) + (x2*y3 - y2*x3) + (x3*y4 - y3*x4) + (x4*y1 - y4*x1) ) / 2.0);
22 matchesRatio = (area / size of(rightFrame)) * 100.0;
23 percentScore = (matchesRatio / initialRatio) * 100.0;

/* The initial ratio is calculated in the same way after all matches have been made */
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Figure 5.2 shows where in the pipeline these measurements are taken.

Figure 5.2: Quality measurements.

According to [41], whenever the percent score falls between 5% and 80%, the images are a suitable pair for

stitching. If the percent score falls below 5%, the overlapping area is too small to find enough good matches. If

the percent score exceeds 80%, not enough bad matches are removed from the initial acquired matches. This in

turn affects the calculation of the homography between the images and makes stitching unsuccessful. We shall

use these values as well to evaluate our own filters.

Secondly, we define limits as the maximum angle between the cameras’ viewing direction where they still

obtain percent scores which show the captured image pair is suitable for stitching. If the test constantly returns

a negative suitable pair has been found, the limit has been reached or there is no overlap at all between both

images.
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Experimental execution

The default setup is defined as two cameras with their lenses being 14cm apart and having parallel viewing

directions 122cm away from the captured scene, as can be seen in Figure 5.3.

Figure 5.3: The experimental setup. The poster used during our experiments is ©MARVEL4.

Starting from this position, the percent score is measured by performing a rotation with the rightmost camera

until no possible overlap exists divided in 10 steps. This translates to a maximum rotation of 45°. An abstract

representation of explaining this setup can be seen in Figure 5.4.

Figure 5.4: Abstract representation of the experimental setup.

The captured images for the starting and ending position can be seen in Figure 5.5. At each of these intervals

of 4.5° the percent score is calculated for every algorithm and every filter. The cameras are attached to a

servomechanism so we can accurately rotate according to the intervals.

(a) (b)

Figure 5.5: Captured images. (a) Starting position; (b) Final position.

4MARVEL, all related characters: ™ & © 2008 Marvel Entertainment, Inc. and its subsidiaries. Licensed by Marvel Characters B.V.
www.marvel.com All rights reserved.
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Chapter 6

Results

In this chapter we evaluate our achieved results from the experiments described in Chapter 5. Our experiments

were conducted using the following hard- and software details, as shown in Table 6.1:

OS Ubuntu 16.04.2 LTS
Kernel 4.13.0-38-generic

RAM 15,6 GiB
CPU Intel® Core™ i7-7700HQ CPU @ 2.80GHz × 8

GPU Intel® HD Graphics 630 (Kaby Lake GT2)
Cmake 3.5.1

Make 4.1
C++ C++11

Compiler 5.4.0 (GNU C++ Compiler)
OpenCV 3.3.1

USB 3.0
Resolution 640×480

FPS 15

Table 6.1: Hard- & software details.

With these specifications and the used cameras the system is able to capture and process 15 frames per second

(FPS) without any other calculations. Table 6.2 shows the average speeds of the used algorithms at which our

system handles the captured images.

Algorithm SIFT SURF ORB
FPS 4 13 10

Table 6.2: Average speeds of the used algorithms.

This means SURF is the fastest and SIFT the slowest algorithm.
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In order to compare our filters with RANSAC, we have to know the performance of only RANSAC. Figure 6.1

shows the performance of RANSAC without our own filters using the different algorithms.

(a) (b)

(c) (d)

Figure 6.1: Performance of RANSAC without our own filters using the various algorithms. (a) Using ORB; (b) Using SURF;
(c) Using SIFT; (d) Comparison of all three cases.

According to these results, RANSAC with SURF rarely ever returns a value that states the given image pair is

suitable for stitching. However, Figure 6.2 shows a screenshot of a suitable image pair of said combination at

an angle of 22.5°. Also, the 40.5° angle is the final step which maintains a little bit of overlap between the two

images. At a 45° angle no overlap exists, but the scores might be positive — this gives unreliable scores.

(a)

(b)

Figure 6.2: Result using RANSAC with SURF at a 22.5° angle. (a) Input images; (b) Resulting panorama. The area
highlighted in green is the sweet spot.
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The performances of our own filters using the different algorithms are shown in Appendix B throughout

Figures B.1-B.6. Here we will highlight the best case for each of those results. Figure 6.3 and Figure 6.4 show

the best cases for the Domain Filter and Slopes Filter, respectively.

(a) (b)

(c)

Figure 6.3: Best results of Domain Filter. (a) ORB with factor 4; (b) SURF with factor 1; (c) SIFT with factor 3. The area
highlighted in green is the sweet spot.

(a) (b)

(c)

Figure 6.4: Best results of Slopes Filter. (a) ORB with scalar 0.4; (b) SURF with scalar 0.4; (c) SIFT with scalar 0.7. The area
highlighted in green is the sweet spot.
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What immediately stands out here, is that no data exists now for a 45° angle (no overlap). This is because

so many matches have been filtered out, there are not enough matches left to even perform a homography

estimation so there is no need to calculate the percent score. The influence of RANSAC after matches have

been preprocessed by our own filters is minimalistic.
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Chapter 7

Conclusion and Future Work

The goal of this paper was to determine how to dynamically stitch real-time videostreams using multiple

uncalibrated cameras. Three state-of-the-art feature-based algorithms were used to collect interest points

and create matches. We introduced two different methods to filter out good matches and compared them to

RANSAC, an other widely used filtering technique. Our experimental setup was designed to compare several

scenarios. To evaluate the quality of our methods we adopted a performance measurement introduced by Ha

et al [41].

Results quickly show that our methods are able to score on par compared to the use of only RANSAC.

However, RANSAC’s scores are unreliable once no overlap between two images exist due to the fact that

RANSAC handles data without context and will always want to try to keep the greatest common denominator

of data. Whereas our methods filter based on thresholds, so it is possible to be left without enough matches to

even perform homography estimation. This in turn will tell that two images are not suitable for stitching even

without the use of the performance measurements. Applying RANSAC after our own filters is redundant.

Based on our findings the optimal setup would be to use ORB with the Slopes Filter having its scalar set to 0.4.

Some improvements and inconsistencies exist within our results. The first five graphs or so in Figures B.1-B.6

show our filters score a 100%, meaning no points were filtered. So instead of rounding up our experimental

maxima to the nearest power of two, we could have started with half of the limits — but this should be tested.

Also notice the fact that the percent score is able to exceed 100%. Once all matches have been made, the

outermost points are determined and the area they encompass is calculated. After a filter is applied, this

process is repeated. However, it is possible for the outermost points to arrange themselves in such a way the

area they then surround could actually be larger than smaller. Our suggestion is to include a bounding box

containing these points. This way, when the outermost points change, the bounding box is always smaller or
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equal to its previous version. Figure 7.1 shows this behaviour.

(a) (b)

Figure 7.1: Areas of minima/maxima, points obtained after a potential filter are denoted with an apostrophe. (a) Proof that
the first obtained area is smaller than the next one; (b) Suggested bounding box.

To see if our filters are state-of-the-art worthy, we would like to test our approach in a variety of other scenarios.

These include setups with less contrast, more camera movements (e.g., horizontal/vertical displacements),

more depth in the scenes to test its robustness when parallax occurs and moving objects. For other future

work, we would like to see our addition of the bounding box to the performance measurements tested. With

further research and improvements — such as applying multithreading or using optical flow — the system

might be even faster and more accurate. We believe using more than two cameras would still work, but that

should be tested.
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[10] M. Calonder, V. Lepetit, M. Özuysal, T. Trzcinski, C. Strecha, and P. Fua, “Brief: Computing a Local

Binary Ddescriptor Very Fast,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7,

pp. 1281–1298, 2012.

29
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Appendix A

Time Analysis

The speed at which our system operates has a significant role in the evaluation of our framework. To determine

at which speeds the cameras capture frames and how fast these frames are processed a time analysis is

conducted. Algorithm 11 is used to determine the amount of FPS the cameras capture images. Algorithm 12 is

used to determine the amount of FPS are processed by the pipeline. For real-time processing these frame rates

should be closely matched.

Algorithm 11: Time Analysis Default Frame Rate
Input: Input frames
Output: Speed at which frames are captured

1 #include <chrono>
2 auto begin = chrono::high resolution clock::now();

3 for i = 0; i < 100; i++ do
4 Capture leftFrame;
5 Capture rightFrame;
6 Show frames;
7 end

8 auto end = chrono::high resolution clock::now();
9 auto dur = end - begin;

10 auto ms = std::chrono::duration cast<std::chrono::milliseconds>(dur).count();
11 auto fps = frames/(ms/1000);
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Algorithm 12: Time Analysis System Frame Rate
Input: Input frames
Output: Speed at which frames are processed

1 #include <chrono>
2 auto begin = chrono::high resolution clock::now();

3 for i = 0; i < 100; i++ do
4 Enable module(s);
5 end

6 auto end = chrono::high resolution clock::now();
7 auto dur = end - begin;
8 auto ms = std::chrono::duration cast<std::chrono::milliseconds>(dur).count();
9 auto fps = frames/(ms/1000);
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Appendix B

Experimental Results

On the next few pages we compare the performances of our filters to RANSAC using the three algorithms. In

some of the graphs the angle is limited to a value lower than 45°, this is because after that point not enough

matches were found to continue our calculations.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure B.1: Performance of ORB with Domain Filter without and with RANSAC at each interval. (a) - (j): Factor 10 - Factor
1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure B.2: Performance of SURF with Domain Filter without and with RANSAC at each interval. (a) - (j): Factor 10 -
Factor 1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure B.3: Performance of SIFT with Domain Filter without and with RANSAC at each interval. (a) - (j): Factor 10 - Factor
1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure B.4: Performance of ORB with Slopes Filter without and with RANSAC at each interval. (a) - (i): Scalar 1.0 - Scalar
0.2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure B.5: Performance of SURF with Slopes Filter without and with RANSAC at each interval. (a) - (i): Scalar 1.0 - Scalar
0.2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure B.6: Performance of SIFT with Slopes Filter without and with RANSAC at each interval. (a) - (i): Scalar 1.0 - Scalar
0.2.
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