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1 Abstract

Parkinson's Disease (PD) is a progressive neurodegenerative disorder. It is the

second most common disease that a�ects the central nervous system. PD mani-

fests with both motor symptoms such as tremors, rigidity and non-motor symp-

toms like depression and fatigue. Although the pathogenesis of PD remains

a puzzle, several genetic and environmental factors are known to a�ect the

progression of the disease. This research focuses on the discovery of metabolic

changes due to the PINK1 gene mutation. PINK1 is a mitochondrially targeted,

serine/threonine-protein kinase PTEN-induced kinase 1 (PINK1) that protects

cells from stress-induced mitochondrial dysfunction. We compare the e�ects

of PINK1 gene mutation by inhibiting complex 1 and complex 5 on the inner

membrane of mitochondria, with healthy controls. Generic human genome-

scale metabolic models are used to create metabolic models of a context-speci�c

dopaminergic neuron. The steady-state solution spaces of these constraint-based

models of dopaminergic neurons are sampled for �ux distributions. The objec-

tive of this work is three folds, �rstly, the sampled �ux distributions are checked

for uniformity. Secondly, an algorithm is proposed to classify diverse (uniform,

normal, truncated, etc.) �ux distributions, to reduce the challenge of statistical

analysis. Thirdly, individual reactions are compared to highlight dissimilari-

ties in their distributions. The approach proposed in this paper allows us to

study the changes in metabolic rates between the inhibited, and healthy control

models by categorizing corresponding �ux distributions. Thereby, leading to a

better understanding of the pathogenesis of PINK1-PD.

2 Introduction

Parkinson's Disease is the second most common neurodegenerative disorder,

a�ecting about 4-10 million people every year[24, 17]. It is a progressive dis-

ease, with increasing severity of symptoms with the aging of the person. The

symptoms include a group of motor de�cits, like bradykinesia (slowness in

movement)[7], postural instability[10], rigidity and tremors, which could lead

to immobility. Some other symptoms are non-motor such as loss of smell, de-

pression, and fatigue[34, 17]. Although the e�ect of neurodegeneration is evident

in di�erent parts of the brain, the primary problem lies in the loss of dopamin-

ergic neurons in the substantia nigra pars compacta (SNpc)[17, 39], causing

problems in movements. However, the mechanism that leads to the death of



dopaminergic neurons, and therefore causes the progression of PD, is still not

completely understood. Multiple hypotheses were formed for unraveling the

puzzle of this progressive disorder, such as proteostasis, oxidative stress, mito-

chondrial dysfunction, neuroin�ammation[39]. It is predicted that the number

of patients su�ering from PD would increase to 9 million by the year 2030, in

Europe alone. Studying the progression of the disease through a systems ap-

proach could lead to a better (preventative) treatment or cure, giving patients

a better quality of life.

Several medications have been suggested for the treatment of Parkinson's

Disease[55]. The �rst and most commonly used medication is levodopa. Dis-

covered in 1996, levodopa is administered as a tablet or liquid. The medication

is absorbed by the nerve cells and turned into chemical dopamine, and used for

transmitting messages between parts of the brain and nerves that control move-

ment, thereby improving levels of dopamine and reducing movement problems.

However, in some cases, levodopa is prescribed along with other medications

such as benserazide or carbidopa, in patients with side e�ects such as nausea

and vomiting[33, 34]. Other treatments include dopamine agonists, monoamine

oxidase-B inhibitors, and catechol-O-methyltransferase inhibitors. Dopamine

agonists are induced to act as substitutes for dopamine in the brain, having

a similar e�ect as levodopa, but milder. However, the positive e�ects of ago-

nists may diminish over time[19]. Monoamine oxidase-B inhibitors, including

rasagiline and selegiline, are alternative treatments in the early stages of the

disease. These act by blocking the break down of dopamine, thereby increasing

dopamine levels[45], while catechol-O-methyltransferase inhibitors are used to

prevent levodopa in the later stages of PD[61]. The available options for treat-

ment are shown in Figure 1. Although the medication currently used seems to

reduce the e�ects of the symptoms caused by PD, the root cause of the dis-

ease seems to remain a puzzle. Hence, there is no proven cure. Observing the

progression in detail could lead to a preventive cure.



Figure 1. Pharmacologic treatment options available for PD. Abbrivations: BBB, blood-

brain barrier; COMT, catechol-O-methyl-transferase; DA, dopamine; L-DOPA, 3,4 dihydroxy-

L-phenylamine; HVA, homovanillic acid; 3-MT, 3-methoxytramine; MAO, monoamine oxi-

dase, inspired by [33].

Although the exact cause of the disease is not known, both genetic and envi-

ronmental factors have been identi�ed to play signi�cant roles in the pathology

of the disease. Early observations revealed relations between mitochondrial

dysfunction with the progression of PD[37]. Mutations in the genes encoding

mitochondria-related proteins, seem to have a considerable e�ect on the early

on-set of PD[58]. Our research focuses on one such gene mutation[1]. PINK1 is

a mitochondrially targeted, serine/threonine-protein kinase PTEN-induced ki-

nase 1 (PINK1) that protects cells from stress-induced mitochondrial dysfunc-

tion. This protein is localized in mitochondria [28, 18]. It is linked to quality

control of mitochondria[47], protecting it from damage. PINK1 is continuously

processed and degraded by proteases in healthy mitochondria. When mitochon-

dria are damaged, proteolysis is stopped, causing PINK1's accumulation on the

outer membrane of mitochondria. Parkin is then recruited from the cytosol to

the depolarized, damaged mitochondria and mediates the process of mitophagy.

PINK1 acts as an enzyme to relocate Parkin and carry out mitophagy, thus

becoming a dimer in the removal of damaged mitochondria and quality control

[44] (Figure 2). When PINK1 protein is mutated, it causes to fail the process of

recruitment of Parkin. Thereby, inhibiting the process of mitophagy. Thereby,

accumulating damaged mitochondria in the cell, ultimately leading to cell death.

Hence, it is interesting to observe biochemical changes of PINK1 gene mutations



and comparing these changes to healthy controls.

Figure 2. Depolarization of mitochondria or blocking mitochondrial import causes PINK1

to accumulate on the outer mitochondrial membrane[48].

PINK1 gene mutation also impairs the respiratory chain and ATP production

of a cell's mitochondria[66]. In the respiratory chain, several enzyme-complexes

take part to provide cells with the required energy[49]. Complex 1 plays the role

of the initial enzyme used to catalyze the process of electron transfer to a liquid

soluble electron carrier (ubiquitin). Thereby initiating the multi-step process of

producing ATP to the cell[20]. While complex 5 is the last step for producing

ATP to the cell. Previous research has shown evidence that exposure to high

amounts of rotenone or oligomycin, would mutate complex 1 and complex 5

in mitochondria a�ecting the process of oxidative phosphorylation leading to

mitochondrial dysfunction. As discussed before damaged mitochondria lead to

Parkinson's disease[37]. Therefore leaps of di�erences seen when either complex

1 or complex 5 are inhibited in healthy mitochondria. Hence, in this research,

two pathways are inhibited in a healthy dopaminergic neuronal model to observe

the changes made by their mutations.

To comprehend how the dysfunctional pathway interacts with the rest of the

network to result in neurodegeneration, it requires an interdisciplinary system's

approach[68]. An iterative cycle of mathematical model formulation, compu-

tational modeling, and quantitative experimental measurements is the process

of the systems approach. Mathematical model formulation and computational

modeling are formal representations of biochemical knowledge used for propos-

ing a hypothesis, design experiments, and interpret results. Conversely, quanti-

tative experimental measures are used to test the hypotheses, and to generate



data used to build the models. The ultimate aim of applying a systems ap-

proach to PD is to formulate the non-trivial hypothesis for discovering metabolic

changes in both in-silico and in-vitro, leading to speci�c biomarkers[39]. This

work is part of a SysMedPD consortium, an H2020 project funded by the EU,

to implement the systems approach to Parkinson's Disease. [1].

This research seeks to compare metabolic changes between complex 1 and

complex 5 inhibitions, in healthy dopaminergic neuronal cells derived from hu-

man neuroepithelial stem cells through system's approach. A generic genome-

scale human metabolic model is used to create candidate-speci�c dopaminergic

neuron models. The steady-state solution spaces of these constrained-models

are uniformly sampled to obtain �ux distributions in the reactions involved.

These sampled points are checked for uniformity. Through this research, a clas-

si�cation algorithm is presented, which categorizes diverse �ux distributions

(uniform, normal, truncated, etc.) to observe dissimilarities. These dissimilari-

ties of �ux distributions are used to analyze metabolic phenomena such as phase

shifts, and log fold changes between reactions of di�erent models.

In Chapters 2 to 4, the computational approaches taken to identify dissimi-

larities in �ux distributions of reactions in the models are discussed.

Chapter 2 describes the process of building a candidate-speci�c genome-scale

dopaminergic neuron model using constraint-based modeling. This chapter aims

to explain genome-scale metabolic models and their importance in predicting

biomarkers for diseases. It also discusses various generic genome-scale metabolic

models (Recon3, HMR 2.0), and an approach of making them candidate-speci�c.

Diving deeper, the method used for building these dopaminergic neuronal mod-

els is described with examples from the current research. An introduction to

unbiased and biased sampling approaches is given, while de�ning the method

chosen. The concept of the popular sampling technique of CHRR sampler is dis-

cussed. Further, the uniformity of sampled points for �ux distributions is studied

using the Gap-ratio algorithm. Variance and standard deviation measures are

studied for further insights on the spread of population sampled. Di�erent sets

of points are generated and are checked for uniformity.

Sampled points from the constrained-based solution spaces have various

types of distributions. The reasons for these distributions are analyzed. To

compare these distributions, and observe changes quantitatively, a classi�cation

algorithm is proposed in Chapter 3. This novel algorithm aims to categorize

the observed distributions. Each part of the algorithm is separately discussed.

The derivation of the classi�cation algorithm is explained for the robustness and



results speci�c to the research.

Each reaction is treated as a di�erent dimension, and after running the distri-

butions through the classi�cation algorithm, the reaction is compared between

complex 1 inhibited models, complex 5 inhibited models and healthy control

models. These reactions are compared using fold changes between the models

in Chapter 4. The results are quanti�ed for the most changed reactions for

complex 1 and complex 5 inhibited models when compared to healthy controls.

In Chapter 5, overall conclusions and comparison of in-silico insights with

in vitro are stated. Chapter 6 describes future works. Chapter 7 includes an

appendix.



Chapter 1 : Constraint-based

modelling and �ux based sampling

The integration of biochemical knowledge with physiolgy, enzyme kinet-

ics, stoichiometry of enzyme-reaction relationships lead to mathematical recon-

strunction of metabolic networks. Genome-scale metabolic networks are integral

part of biotechnology, allowing an understanding of the phenotypic behaviour of

all living organisms, including humans[64]. Genome-scale metabolic networks

are comprehensive representations of all chemical reactions while containing

stoichiometric representations of all reactions of any living organism.

In this chapter, candidate-speci�c dopaminergic neurons are built using

genome-scale metabolic networks. These networks are constrained using infor-

mation from human neuroepithelial stem cell-derived dopaminergic neurons in

vitro cell cultures. Multiple steps are involved in building a constrained-based

genome-scale model for candidate speci�c dopaminergic neurons, to observe

metabolic changes[5]. The constrained model's steady-state solution spaces are

sampled for �ux distributions of corresponding reactions.

Components, such as metabolites and enzymes, play the most important

role in biological proceses. They vary in time and are constrained by ther-

modynamical laws. Components are the building blocks of reactions, links,

that form the metabolic network. Enzymes, encoded by genes, enable thermo-

dynamically infavourable metabolite conversions required to sustain metabolic

functions, functional states, of the organisms. Given enough time, the network

reaches homeostasis, steady-state, where components no longer vary in time,

but the constant �ux through the reactions is observed (Figure 3). Geome-scale

models are based on the steady-state assumption, and consist of all metabolites

and reactions observed to be present in a given organims.



Figure.3. System view of the reactions. The concentrations of the network

components(C), and kinetic properties of links in the network (K).[46]

As the number of functional states increases the solution space also increases

exponentially, and the maintenance of a single solution for each reactions' �ux

becomes infeasible. Therefore, constraining the conditions under which a cell

operates and evolves against are easier to state, use, and identify. Constraint-

based approaches for analyzing complex biological networks are proven to be

very useful[32] (Figure 4.a). Cells are subjected to hard constraints based on

the components and their associated mass and energy balances[52], giving an

allowable range of states for the network[23]. The states that are suitable for the

network are kept, while unwanted states are removed by implementing regula-

tory networks (Figure 4.b). The allowability of changing states and phenotypic

behaviour is regulated by the gene and its bi-products at that point in time.

Figure 4. Illustration of constraints on solution spaces and network func-



tions. (left) allowable range of solutions, (right) viable contraints on network

functions for di�erent states and phenotypes, inspired by [46].

3 iNESC2DN model

3.1 Reconstruction:

In this research, Generic human metabolic models are used to generate a steady-

state dopaminergic neuronal model by using manual curations[51]. These mod-

els were built in MATLAB using a mathematical framework called COnstraint-

Based Reconstruction and Analysis (COBRA) toolbox [31]. COBRA toolbox

provides a mechanistic computational framework for intergation and analysis

of experimental, quantitative prediction of biochemical and physiochemically

feasible phenotypic states. COBRA toolbox is an open-source library frame-

work which intergrates biochemical information from various databases to en-

able mathematical representations of genome-scale human metabolic networks

(Figure 6), and allows uniform sampling of high dimensional sampling spaces.

It takes a mathematical approach in representing relationship between genotype

and phenotype by modelling constraints. It also highlights gaps in reconstruc-

tions for speci�c genomes to get a clear picture of the models.

Two of the most widely used generic human metabolic model reconstruc-

tions are HMR 2.0[50] and Recon3D[31]. HMR 2.0 is a intergration of multi-

omics data widely used for cell-speci�c data analysis. It contains reactions,

related compounds and annotation informations. Initially it was built using

the Edinburgh human metabolic network [38], Recon2 [64] and HepatoNet[35]

as well as external reaction databases: KEGG[35], HumanCyc[57], BRENDA

(18), HMDB[69], ChEBI[35], LMSD[62] and PubChem[11], and annotation data

was combined based on Ensembl[26] and UniProt [50].

Recon3D, is the most comprehensive generic human metabolic model recon-

struction. It is used to re-build context-speci�c models by gaining knowledge

from a combination of manual model curations and integration of di�erent omics

data. It is an updated, expanded metabolic reconstruction that integrates phar-

macogenomic associations, large-scale phenotypic data, and structural informa-

tion for both proteins and metabolites. It contains over 6000 more reactions

from the previous models, manually curated for redundency[14].



Figure 5. Genome-scale metabolic reconstruction in Recon3D[31]

3.2 Model Generation:

To build context-speci�c dopaminergic neuronal models that are stoichiomet-

rically and �ux consistant, manual curations of NESC-derived dopaminergic

neurons in vitro are used[51]. Constraints based on the transcriptomics data

and manual curation were integrated with the Recon3D using COBRA toolbox,

and the model was created using FASTCORE algorithm. Figure 6, shows the

work�ow of generation of dopaminergic neuron for analysis developed by Pre-

ciat et al [51]. Models were re�ned by comparing biochemical literature with

the results of Flux Balance Analysis.



Figure 6. Overview of the model generation pipeline[51]

Generic human metabolic model, Recon3D:

Generic human metabolic recontruction, Recon2[60] was updated using man-

ual curations for literature speci�cs of dopaminergic neurons, and included in

the Recon3D[31], highlighting the enzyme-gene correspondence. More manual

curations were performed to de�ne active and inactive reactions, transport reac-

tions, degradation pathways, and quantitative constraints necessary to represent

requirements for molecular turnover in a non-growing dopaminergic neuron. The

biomass requirements for turnover constraints were ensured by initally taking

all the needed biomass, and slowly understanding the progression of degradation

by precurser dysfunction. The rates of exchange reactions and reversible extra-

cellular transport reactions, including water, CO2, and oxygen were constrained

by de�ned fresh cell culture medium.

Generation of the turnover model:

On the generic model, constraints of turnover rates of key constituents of

dopaminergic neurons were imposed to create a turnover model. These con-

straints are derived by literature. A 25% relaxation of the lower bounds from

the estimated degradation rate was used as standard to account for uncertainty

in the data[63]. If more than one reaction could be degraded, the total sum of

degradation was set as greater than 0.75 times the degeradation rate d.

v1 + v2 + ...+ vn ≥ 0.75 ∗ d (1)

Generation of the preconditioned model:

The preconditioned model was generated by applying the maximum uptake

constraints on the, otherwise reversible, exchange reactions. The uptake of

metabolites was measured in in vitro cell cultures of dopaminergic neurons. If

metabolite was uptaken in vitro the corresponding exchange reaction's lower

boundary was set to the measured value, otherwise the lower boundary was set

to zero.

Generation of context-speci�c model:

This model is an integration of omics data with preconditioned model to

achieve a �ux-consistent network. A metabolic network formed from the set of

core reactions alone is not necessarily �ux consistent. Therefore, FASTCORE

algorithm along with COBRA toolbox was used to integrate di�erent omics

data to generate a network, not only consisting of core reactions, but support

reactions aswell to ensure �ux-consistency of the models.



4 Derivation of reactions

There are several ways to study properties of genome-scale networks once the

solution space is formed. The conical solution space can be studied by uni-

form random sampling to generate representative solutions of correspondoing

�ux distributions. Properties of the representative solutions can be studied to

understand the behaviour of the original solution space. This method is known

as the unbiased assessment. On the contrary, biased assessment involves studies

of network states of interest with an objective function. Computationally, this

approach is based on linear optimization, where solutions can be obtained by

the popular procedure of Flux-Balance Analysis (FBA). Biased methods allow

to obtain a single solution for the objective function, however they do not pro-

vide an information about the �ux distributions within the solution space of the

rest of the network[46].

To study changes between solution spaces of di�erent models, unbiased ap-

proach was used. The iNESC2DN model was used to study the e�ect of inhibi-

tion of two key reactions in energy metabolism: mitochondrial complex I, and

mitochondrial complex V. The solution spaces of the iNESC2DN model a�ected

by each of these inhibitions were uniform randomly sampled. Total number of

active reactions for these models are 1789, where the constrained-solution space

has 439 dimensions, and 184 exchange reactions.

Constraint-based models can be formulated as optimization problems to de-

rive and predict the nature of reactions. This optimization problem can be

mathematically written as:

min{v ∈ Rn} ψ(v) (2)

s.t.Sv = 0, and l≤v≤u, (3)

where SεRMXNis a stiochiometric matrix of m metabolites and n reactions

representing a network, vεRMis the vector representing the �ux through reac-

tions(Figure.7). The set of feasible steady-state �ux vectors form a polyhedral

convex solution space, de�ned by equality and inequality of constraints set on

the Equation (2). Internal reactions are balanced by mass and charge. Ex-

change reactions are described as sink, demand and exchange reactions (Figure

7.a.) and are characterised by having only one non-zero element in the corre-

sponding column of the stoichiometrix matrix. The lower and upper bounds of

contraints for distributions are l and u respectively.



The metabolic network reconstruction can be represented as a stoichiometric

matrix, S (Figure 7.b.), where rows correspond to each reaction (n), and columns

corresponds to the metabolites (m) involved in those reactions. An element in

the matrix, Snm, represents the stoichiometric requirement of a metabolite (m)

in that reaction (n). If Snm ≥ 0 the metabolite (m) is a product, Snm ≤ 0 it is

a substrate of the reaction, and if Snm = 0 then metabolite (m) is not involved

in the reaction. The linearity in Equation (3) represents the mass balance for

all the metabolites. The reaction achieves an equilibrium between metabolite

consumption and production in a steady state model.

Figure 7. Derived reactions and stoichiometric matrix of reactions.7.a. shows

derivation of reaction and metabolites[9],7.b.stoichiometric matrix of reaction

networks.

Constraining the solution space generates a polytope with all the feasible

function states. In the feasible function states, the projected dimensions are de-

scribed to be hard constraints, eliminating dependent reactions,i.e., those that

have similar functionality, and dimensions of the vector space are the indepen-

dent reactions that de�ne overall representations. This polytope consists of

optimal solutions for each reaction in the network. Uniform random sampling

of the solution space can be performed resulting in a representative dataset con-

taining a feasible �ux distribution for each reaction in the network. There are

several algorithms available for uniform sampling of high-dimensional spaces,

that follow the Markov chain Monte Carlo sampling methods.

5 Linear optimization

Monte Carlo methods rely on repeated random sampling to obtain numerical

results. This method is often used to describe highly complex probability dis-

tributions that are di�cult to handle with traditional analytical approaches.

Given N independent and ideally distributed (i.i.d) samples xi ∼ p(x|D) from

the posterior distribution over a given dataset D, the method aims towards a



desired quantity of interest Φ by considering a sample mean such that,

λ = 1/N N
∑

i = 1φ(xi) (4)

such that, λ ≈ E[φ(x)|D],and measure for posterior probability, for an ele-

ment of (m,n) ∈ UxV .

p(m|n) =
ˆ
v

p(m, v|n)dv (5)

Two central properties justify this approach, the i.i.d. estimator λ is unbiased

and the arithematic mean of observations converges to the expected value (law

of strong large numbers)[56]. A stocastic process that satis�es Markov property

is a Markov process. Markov property is the conditional probability of future

states in the process depends only on the present state and not in�uenced by

sequence of previous events. This can be mathematically represented as,

P (Xi = xijX0 = x0, ...., Xi=1 = xi=1) = P (Xi = xijXi=1 = xi=1)

Transition between each state is modelled using a transition matrix and

probabilities of transition must be equal to 1. If the process is con�ned to a

state space, then it is called a Markov chain[13].

When each of the chain states can be a starting point for the markov process,

the initial distribution is denoted by πT0 εRNwhere N represents the dimension-

ality of the n-dimensional state vector. The time step t can be modelled, and

hence the output represents the probability distribution of over Markov chain

in the t-th time step. This distribution presents the probability for each of the

chain states to be the current state at time t. Such a distribution is called

stationary if

π = π.P (6)

A combination derivation of posterior probability from Markov chain and

Monte carlo methods to obtain a stationary distribution π of a given markov

chain that approximates a presumed posterior probability p(x|D). The com-

bined algorithm is a part of many popular sampling algorithms[41, 12]. Here,

an implementation of the algorithm is discussed, for sampling high-dimenstional

solution spaces generated by constraint-based models.



5.1 CHRR sampler

Hit-and-Run (HR) algorithm mitigates the problem of rejection sampling, where

if a sample generated is out of the boundaries of constrained solution space,

then that sample is rejected. It is not viable to accumulate hard boundaries on

solutions spaces, and generate feasible samples. Hence reject sampling is not

iteratively used. Hit-and-Run algorithm samples directly from solution space.

It starts at a point −→x 0in the contrained space, and it travels along an arbitrary

path −→u1to a point chosen on the boundary of uniformly distributed sphere RN.

The distance travelled between the starting point and −→u1 determines the max-

imum distance. A small step λ1is taken in the negative direction towards −→u1,
such that no boundary contraints are exceeded. The next sampled point−→x 1is

reached after travelling the distance ofλ1, and iteration through this process

obtains Markov chain of consecutive samples[13].

Figure 8. Hit-and-Run algorithm[41].



Coordinate Hit-and-Run algorithm (CHRR) is used to uniformly sample a

constrained solution space using volume ellipsoid algorithm as rounding algo-

rithm. This algorithm has two parts, rounding of the polytope P = {xεRN|Ax ≤
b}preprocessing, generating samples using coordinate HR[29].

5.1.1 Rounding

To ensure the e�cient convergence, the polytope formed by solution space is

rounded. This helps to achieve uniform random samples, with fewer steps.

However, there are two types of roundness: well-roundedness and isotropy.

For a polytope P = {xεRN|Ax ≤ b} is said to be R-rounded if Bn ⊆ P ⊆
Bn.R. So the body in observation is in the radius of R and the radius of 1. It

is well-rounded if R = O ∗ (M −msn) and will converge in O ∗ (n3).
Another approach for well-roundedness is to observe if polytope P has an

isotropic position. A polytope is in isotropic position if its centre of mass is the

origin and its covarience matrix is the its identity. If P is isotropic, then its

radius is given by O ∗ (
√
n).

Since both approaches mentioned above are computationally expensive, here

maximum volume ellipsoid algorithm is used[72](Figure 9). Results show that

the body is n-rounded[29].

Figure 9. CHRR sampler

5.1.2 Coordinate hit-and-run

Coordinate Hit-and-Run follows the similar process that of Hit-and-Run. In-

stead of choosing a random direction from the current point −→x 0 to −→x 1 in −→u1,
it selects a uniformly random direction from the current direction. It take

O ∗n2steps to converge with CHRR, while it takes O ∗n3steps to converge with



Hit-and-Run algorithm.

6 Results

The set of sampled points for each reaction needs to be veri�ed for uniform

spread over the solution space(uniformity). Variance and standard deviation

of the solution samples are also checked. It is also hypothesized, that larger

the number of samples, more uniformity of the distribution[29]. To check these

hypothesis, following algorithms are used:

1. Gap-ratio algorithm for checking the uniformity of distribution[8],

2. Chi-square test for checking standard deviation[4].

6.1 GA algorithm:

For testing the spread of points on the polytope, gap-ratio algorithm is used.

The distance between each consecutive ordered point is measured, and divided

by the di�erence and checked if the ratio is less than or equal to 2. Reactions

that have maximum points with the di�erence equal to 2 or less, are labelled

as uniform distributions. If the majority of points deviate from the di�erence,

then the reactions are labelled as non-uniform distributions.

Figure 10. Uniformity of 8x sampling.



In Figure 10, sampled points of size 3512 are measured (8 times the number

of independent reactions in the model). The total size of samples is 3512, and

number of reactions is 1786. In healthy controls, 1654 are uniform �ux distribu-

tions and 132 are non-uniform �ux distributions. For complex 1 inhibited mod-

els, 1704 reactions have uniform distributions, while only 82 are non-uniform.

Although for complex 5, a change is observed. There are 1688 non-uniform

distributions, and 118 uniform distributions. This could have occured due to

skipping of sampled points that travel out of the constrained solution space.

Figure 11. Uniformity of 16x sampling.

With larger number of points sampled for the distribution, higher the chances

of covering the solution space, and larger the uniformity of points. In Figure

11, sampled points of size 16 times the number of independent reactions are

measured(439). The total size of samples is 7024, and number of reactions is

1786. In healthy controls, 1661 are uniform �ux distributions and 126 are non-

uniform �ux distributions. For complex 1 inhibited models, 1673 reactions have

uniform distributions, while only 114 are non-uniform. For complex 5, similar

change is observed as in Figure 9. There are 1692 non-uniform distributions,

and 95 uniform distributions.

6.2 Chi-sqaured test:

For testing the varience of the population, two sided chi-squared test is used.

The two sided version of tests against the varience and standard deviation of the

samples normal distribution. The null hypothesis is tested for equal variences



for the population under question and the 5% standard deviation of normal

distribution. If the varience is equal the null hypothesis is accepted, else, it is

checked if the varience is greater or lesser than the ideal population, accepting

alternative hypothesis.

Figure 12. Chi-square test varience of 8x sampling.

In Figure 12, sampled points of 1786 reactions are tested for varience. In

healthy controls, 1061 samples have same varience, 383 reactions have varience

greater normal distribution, and 344 samples have lesser varience. Complex 1

inhibited models, have same varience for 1078, 361 samples greater than, and

349 reactions less than normal distributions. In complex 5 inhibited models

1034 samples have same varience, 309 and 445 samples with varience greater

and lesser than normal distribution respectively.



Figure 13. Chi-square test varience of 16x sampling.

In Figure 13, sampled points of 1786 reactions are tested for varience. In

healthy controls, 2222 samples have same varience, 669 samples have varience

greater normal distribution, and 685 samples have lesser varience. Complex 1

inhibited models, have same varience for 2218, 338 reactions greater than, and

720 samples less than normal distributions. In complex 5 inhibited models 2352

samples have same varience, 643 and 581 samples with varience greater and

lesser than normal distribution respectively.

7 Conclusions

Contrained-based modelling has many applications in the �eld of bioinformat-

ics. Genome-scale modelling and �ux balance analysis(FBA) have played cru-

cial roles in discovery of cures for various diseases[65, 53]. Here, genome-scale

modelling is used for understanding the progression of Parkinson's Disease. Re-

con3D was used to build the required patient-speci�c dopaminergic neuronal

model with the aquired information from in vitro cell cultures. The procees of

data integration and building of model were explained. The constrained solu-

tion spaces were sampled using CHRR sampler. The uniformity of population

and varience are tested, as shown in the results.

It can be observed from the obtained results that the percentage of uni-

formity of distributions is not high. For healthy control model, points that

were sampled 8x the polytope size had 92.9% of uniform distributions, and 16x

had 93.4% of uniform distributions. Similarly, Complex 1 inhibition model's



reactions have 95.3% of uniform distributions for 8x sampling, while for 16x re-

duces the amount of reactions with uniform distributions to 93.6%. Contrary to

healthy controls and complex 1 inhibition models, complex 5 model's reactions

have higher percentage of non-uniform distributions. For 8x sampling, complex

5 reactions have 94.4%, and for 16x, 94.6% of non-uniform distributions. For

testing the varience of the samples chi-squared test was used. As seen in the

results, there is high varience in both 8x and 16x sampling for healthy controls,

complex 1, and complex 5 inhibited models.

Uniformity of a population represents the gap between the sampled points.

Here, sampled points are of �ux distributions, in a steady-solution space gen-

erated by constrained models of dopaminergic neurons. These points represent

distributions for each reactions of the genome-scale model. As observed in re-

sults, there are more uniform distribution in complex 1 and healthy control

models than in complex 5 models. It can be infered from this result that com-

plex 1 and healthy control models have reactions have hard-limits over their

constrained solution space, there by having uniformity in their sampled �ux

distributions. Whereas, same is not the case in complex 5 model. It has more

reactions with non-uniform samples than uniform, infering that the boundaries

applied on the solution spaces are not de�nitive. Theoratically, 8x sampling

points achieves better performance[29]. This has been proven in the results

obtained.

However, it is also observed that the varience is similar for all three models.

Even with high varience, the number of uniform distributions is minimal in

complex 5 models. This could be due to a number of reasons. The main property

of any sampling algorithm is the step size. The step size determines how wide

spread sampled points are. The larger the step size the higher the chances

are of hitting the contraints, thus ignoring the sampled point. Another reason

for non-uniformity is to be stuck at an local-optima solution, because of over

sampling. The most common reason for non-uniformity is skipping the points

that are sampled outside the constrained solution space.



Chapter 2 : Classi�cation

algorithm

From the CHRR sampler (Chapter 1), points representing each reaction

are uniform randomly sampled. These sets of randomly sampled points are

checked for uniformity with the Gap-Ratio (GA) algorithm. Each reaction's

set of points are continuous. The statistical description of each population is

derived to understand the shape of the distribution. Based on these inferences,

various types of distributions are classi�ed using a novel algorithm.

8 Types of �ux distributions

Continuous distributions of each reaction provide an insight of the �ux distri-

butions of the solution space for individual reaction. These distributions have

a cumulative distribution function that is absolutely continuous. A population

set is said to be continuous if,

P [a ≤ X ≤ b] =
ˆ b

a

f(x)dx (7)

where [a,b] are the lower and upper bound of the reaction's contrainted

solution space. The probability density function of a population represents the

probabilities of occurence of solution for that reaction. A probability indicates

the likelihood that a value will fall under a certain interval.

The area cover under the plot of probability distribution must always equal

to 1. The proportion of the area under the curve that falls within a range of

values along the X-axis represents the likelihood that a value will fall within

that range.

There are multiple approaches to understand types of distributions. Graph-

ically, Q-Q plots represent observed points of data, against the normally dis-

tributed data for the same mean and standard deviation. Statistically, Kolmogorov-

Smirnov test compares the cumulative distribution function with step function

of the same data. Di�erent types of distributions observed in the data provided

are represented in Figure 14.



Figure 14: Types of �ux distributions from the solution space.

When there is a disruption in any pathway, the uptake and secretion rates

of corresponding reactions change. Characterisation of the �ux distributions of

individual reactions will lead to a better understanding of their changes between

di�erent models.



9 Kolmogorov Smirnov test

The sampled data points for each reaction from the solution space, are assumed

to have a normal distributions. To check this hypothesis, Kolmogorov-Smirnov

test for goodness of �t was used[40]. The null hypothesis of this parametric test

assumes that the distribution in question correlates with a normal distribution

for the same parameters. Alternatively, if the there is very little correlation

between both distributions, null hypothesis is rejected.

For a deeper understanding, a cumulative distribution function of a reaction

F(x), the cumulative step-function of a random sample of N observations is

expected to be close to normal distribution function. If they do not correlate,

then both the distributions vary considerably. Mathematically, if CDF(x) is the

cumulative distribution function of x reaction, and SN (x)is the step function

of the same population, such thatSN (x) = k/N , where k is the number of

observations less than or equal to x, then the sampling distribution of

d = max|F0(x)− SN (x)|

is known, is independent ofF0(x) is continuous as shown in Figure 15.

Figure 15. KS test cumulative relative frequency [2].

For the classi�cation algorithm, 3497 points were sampled for each reaction.

Based on the central limit theorem (CLT), the mean of sample points are used

to plot the probability distributions from the acquired points. These sampled

points for each reaction are run through KS-test for goodness of �t, between

the sample distribution and normal distribution. Intuitively, if d is signi�cantly



small, the compared distributions are more similar.

10 E�ects of truncation on normal populations

Probability density function of a truncated normal variate can be mathemati-

cally given as:

f(x;µ, σ, a, b) =
1√
(2π)σ

e
−1
2 ( x−µσ )2 −∞ < x <∞;−∞ < µ <∞;σ > 0 (8)

where,

C−1 = (2π)
−1
2

ˆ b

a

e
−1t2

2 dt (9)

The cumulative distribution function for a population derived from Equation

(1) can be written as,

X̃ = (1/n)

n∑
i=1

Xi (10)

and the quantile function can be represented by,

Z{α}/
√
(n) := Pr(X ≤ x)/

√
n (11)

Hypothesis tests derived from Equation(3) that, for a normal distribution

with sample size n, the mean(µ) and varience(σ2), one can assume standard

deviation σ2 = 1, without loosing generality.

Hypothesis Conditions Outcomes

H0

µ = 0

µ < 0
Normal distribution

Ha

µ > 0 if X̃ > Z{α}/
√

(n)tends to 1

µ > 0 if X̃ > Z{α}/
√

(n) tends to 0

left truncated distribution

right truncated distribution

If Ha closer to1 the distribution is left truncated, and closer to 0 the distri-

bution is right truncated as the sample size increases.



11 Skewness

The third moment of Equation (2) measures the skewness of the distribution.

The nonnormality of a population can be described by using its central moments

di�ering from ideal values. The third moment can be calculated as below:

√
β1 =

E(X − µ)3

[E(X − µ)2]3/2
=
E(X − µ)3

σ
(12)

If the value of
√
β1equal to 0, then it re�ects symmetry. If it is great than

zero, then it is skewed to the right, and if it is less than zero, it is skewed to the

left(Figure 16).

Figure 16: Di�ering distributions in Skewness; A: Right skewed distribution,

B: Normal distribution, C: Left skewed distribution.[30]

Hypothesis Conditions Types

H0

√
β1 = 0 Normal distribution

Ha

√
β1 > 0 Right skewed distribution√
β1 < 0 Left skewed distribution

This property was discovered by [56, 22], to observe non-normal distribu-

tions formed by the populations. Popular algorithms such as D'Agostino and

Stephans[21] have moments as their basis. For this algorithm, each reaction's

sampled points are tested for skewness. Skewness observes the Expected value

operator (E) over the cube of standard deviation. Implying, variation in the

population in�uences the statistic of skewness. If the standard deviation is

high, less expected value operator(E), and hence left skewness, and vice-versa.

The larger the skewness on both sides, the more skewness.



12 Classi�cation algorithm

The classi�cation algorithm built allows a statistical description of �ux distribu-

tions in the multi-dimensional solution space is described. In �gure 17, classi�ed

distributions at di�erent stages of the algorithm are picturized. In the �rst step,

sample's population data is provided, for each model. Points for individual reac-

tions are run through KS test for goodness of �t algorithm (section 2.2). In this

step, zero dimensions and normal distributions along with indexes are recog-

nized and subsetted. Reactions which are not subsetted in the �rst step are fed

to e�ects of truncation on normal populations (section 2.3). Individual labels

are given as �Left truncated�, �Right truncated�, and �normal distributions�. On

the same step, skewness(section 2.4) of these distributions are determined, and

labelled. Upon comparing the labels, distributions with �left� and �right� trun-

cation are subsetted. All the other distributions that do not fall under the three

categories are labelled as �uniform distributions� for uncontrained reactions.

Figure 17. Classi�ed distributions at di�erent stages of the algorithm.



Algorithm 1 Classi�cation algorithm

Input: List of samples for individual reactions per each row; Reaction names;
number of samples(n)
Output: List of Exchange reactions along with samples and labels.

1. Integrate the list of reaction names with the matrix of sampled points for
�ux distributions from the solution space.

2. KS test for normality:

3. Cumulative distribution function(CDF) for individual reaction by taking
mean and standard deviation of the sample.

4. IF p-value of CDF(x) < 0.0000005: Fail to accept null hypothsis for normal
distribution

(a) Else: Fail to reject null hypothesis for normal distribution

(b) Comparison index of distribution that failed ks test:

i. IF p-value in 2.a.ii is 0: Zero dimension

ii. Else: normal distribution

5. E�ects of truncation on normal distribution:

(a) Determine CDF(x)

i. sum_norm = Sum of CDF(x)

ii. len_norm = 1/n

iii. X̃ =len_norm * sum_norm

(b) Inverse cumulative function(Z):

i. Pr(x)

ii. Zα/
√
n = Pr(X ≤ x)/

√
n

iii. IF Zα < X̃:

A. IF X̃ ≥ 0.5: left truncated distribution

B. Else : Right truncated distribution

iv. Else : Normal distribution

6. Skewness:

(a) Di�erence = []

i. Skew(x)

ii. Inverse cumulative distribution function : PPF(x)

iii. Di�erence = skew(x) - PPF(x) : append �Di�erence list�

(b) IF Di�erence(x) > 0 : left skewed

i. Elif Di�erence(x) = 0 : normal distribution

ii. Else: Right skewed

7. Comparison of Skewness and e�ects of truncation on normal distribution:

(a) IF Di�erence = Zα: label the reaction same distribution

(b) Else: Di�erence != Zα(Truncated) is label for the reaction

(c) Di�erence != Zα(Skewness) is label for the reaction



13 Results

Classi�cation algorithm was used to categorise 184 exchange reactions from

three models. The distributions are classi�ed into �ve catergories, �Normal dis-

tributions�,�Zero dimensions�, �left skewed�, �right skewed�, and �unconstrained�.

The �ve categories of distributions are counted for all the three models.

Complex 1

inhibitions

Complex 5

inhibitions

Healthy

controls

Normal

distributions

6 6 6

Zero

dimensions

6 6 6

Left skewed 123 122 125

Right

skewed

5 5 5

Unconstrained

distributions

44 45 43

Table 1. Number of classi�ed reactions into respective categories.

Catergorized distribution data is plotted as bar graph in �gure 18. Highest

number of �ux distributions are left skewed for all three models, 123 for healthy

controls, 122 for complex 1 inhibition and 125 for complex 5 inhibition. The

second largest category is uncontrained reactions, with 44 reactions in healthy

controls, 45 for complex 1, and 43 for complex 5. While there is a slight shift

between left skewed distributions to unconstrained distributions, other three

categories remain constant. Six reactions have normal distribution, six zero

dimension reactions and �ve right skewed reactions for all three models.



Figure 18. Display of categorised distributions

14 Conclusions

Comparing Flux distributions for a reaction is proven to be a di�cult task for

all three models. With no prior label of distribution type represented by the re-

action in the solution space, important features such as phase shifts, or direction

changes cannot be obeserved. Eventhough, comparing algorithms like f-test, t-

test inform su�ciently about the statistics of the populations, crucial inferences

for observing metabolic changes may not be infered. Hence, a class�cation al-

gorithm which e�ectively labels reactions with their corresponding distribution

types, based on statistical inferences is very important for observing �ux-based

changes in genome-scale models.

From the results, an important observation is made, there are reactions

that shift distributions between left truncated gaussians to uniform distributions

and vice-versa. This would imply that certain metabolites, eventhough have

higher secretion rates, the constraints of these reactions do not have hard lower-

bounds, hence becoming unconstrained reactions. Taking this misallocation into

account, the accuracy of predicted labels for �ux distribution is 90%. Intutively,

when plotted the labels are clearly accurate.



Chapter 3 : Comparison of

distributions

From the classi�cation algorithm the sampled distributions resulted into

�ve classes, that is normal, left-truncated, right-truncated,uncontrained distri-

butions and zero dimensions. The labelled reactions are listed, to compare

same reactions from the three models. Each reaction is compared to observe

the changes in �ux distributions and the secretion/uptake rates of metabolites.

These distributions are compared by observing the fold changes.

To compare reactions between two models, their distribution labels are taken

into account. These labels are checked for smililarities. When a similar distri-

bution is encountered, the metabolite is considered to have the same activity

in both models. When the labels are dissimilar then there is a change in the

metabolite activity. For example, if a certain reaction has a left skewed dis-

tribution in complex 1 inhibited model, where as in healthy control model the

reaction is of uniform distribution, then there is a clear deviation between the

metabolite's activity in the two models. So reactions with same labelled distri-

butions have the same shape, while distributions with di�erent labels represent

the most changed reactions.

Each reaction in a genome-scale metabolic model is constrained using lower

and upper bounds oberved in cell-cultures(chapter 1). The lower and upper

bounds represent the uptake, and secretion rates of metabolites. If the �ux

distribution is symmetrical around zero, it is a normal distribution. Normal

distributions have equal uptake and secretion rates. When the �ux distribution

reaches zero from negative ranges, by left or right truncation, the activity of

reaction decrease. Implying uptake/consumption of the metabolite. While the

�ux distribution moves away from zero to positive ranges, the reaction is more

active, there by implying secretion/production. Uniform distributions represent

reactions with no hard boundaries, while zero dimensions are support reactions

for the metabolic networks.

The comparison between complex 1 model and healthy control model's ex-

change reactions have 134 reactions with the same labels as shown in Table 2.

The break-down of each category is also shown. As observed, there are 38 reac-

tions with dissimilar distributions, where 23 are right truncated gaussians and

15 are left truncated gaussians. The dissimilar distribution between complex 1



and healthy controls are stated in Table 3, with reaction and metabolite. The

metabolite's �ux changes are not similarly distributed, implying a change in

their activity. Hence these reactions could be interesting for further investiga-

tions.

Non-equal reactions are distributions that the algorithm was not able to

decide a de�nitive categorisation. Hence these reactions are labelled to have

uniform distributions, 14 of them fall under this category when compared be-

tween complex 1 and healthy control models.

Table 2: Similar distributions between complex 1 and healthy control model's

reactions.
Reactions Metabolites

EX_fucacngalacglcgalgluside_hs[e] Iv3-A-Neu5Ac,

Iii4-A-Fuc-Lc4Cer

EX_HC00229[e] Isomaltose

EX_phe_L[e] L-Phenylalanine

EX_nh4[e] Ammonia

EX_xolest_hs[e] Cholesterol Ester

EX_xoltri24[e] 7-Alpha,

24(S)-Dihydroxycholesterol

EX_xylt[e] Xylitol

Table 3: list of maximum changed reactions between complex 1 and healthy

control model's reactions.

Most changed reactions have been represented in �gure 19 below.



Figure 19: �ux distribution plots for most changed reactions between complex

1 and healthy controls.

Comparison between complex 5 model and healthy control model's exchange

reactions have 130 similar distribution labels as shown in Table 3. The break-

down of each category is as observed, there are 36 reactions with dissimilar

distributions, with 12 right truncated gaussians and 23 left truncated gaussians.

The dissimilar distribution between complex 1 and healthy controls are stated

in Table 5, with reaction and metabolite names. The metabolite's �ux changes

are not similarly distributed, implying a change in �ow of those metabolites.=

Non-equal reactions are distributions that the algorithm was not able to

decide a de�nitive categorisation. Hence these reactions are labelled to have

uniform distributions, which are 18 of them when compared between complex

5 and healthy control models.



Table 4: Similar distributions between complex 5 and healthy control model's

reactions.
Reactions Metabolites

EX_dxtrn[e] Phosphorylase-Limit Dextrin

EX_gal[e] D-Galactose

EX_glcn[e] D-Gluconate

EX_glcur[e] D-Glucuronate

EX_h2o[e] Water

EX_h2o2[e] Hydrogen Peroxide

EX_HC00229[e] Isomaltose

EX_hco3[e] Bicarbonate

EX_hxan[e] Hypoxanthine

EX_lac_L[e] L-Lactate

EX_leuktrB4[e] Leukotriene B4

EX_nicrnt[e] Nicotinic acid mononucleotide

EX_o2[e] Oxygen

EX_pydxn[e] Pyridoxine

EX_so4[e] Sulfate

EX_thymd[e] Thymidine

EX_xolest_hs[e] Cholesterol Ester

Table 5: list of maximum changed reactions between complex 5 and healthy

control model's reactions.



Most changed reactions have been represented in �gure 20 below.

Figure 20: �ux distribution plots for most changed reactions between complex

5 and healthy controls.

Generally, to observe changes between two models and their most changes

reactions log of ratio between populations are derived. Fold change is the ratio

between mean of the distribution of inhibited model and the control model over

each reaction. This can be mathematically represented by,

FC =
Minhibition

Mhealthycontrols
(13)

where M= mean of distribution.

Log fold change is represented by log2(FC) of Equation (1). Log fold changes

are used to easily interpret the fold changes between two models. In the biolog-

ical perspective, if the log fold change is less than zero, then there is a change

in inhibition model. If the value is equal to or greater than zero, then there is

change in control model.

Fold changes of exchange reactions of three models in question are calculated,

along with their log fold changes. The fold changes between reactions that are

greater than between complex 5 and healthy control models are subsetted, and

plotted as a heatmap shown in Figure 22. The colour scheme represented shows

that larger values have darker shades and smaller values(less than zero) have

lighter shades. It can be observed that most of the reactions have similar means

for healthy control model and complex 5, while complex 1 reaction means show

many di�erences compared to control. Figure 21 represents the heatmap for fold

changes between complex 1 and healthy control models. It can be observed that



there are similarities in complex 5 inhibited model means and healthy control

means, while complex 1 changes.

Figure 21: Fold changes between reactions of complex 5 and healthy control

models for similar reactions.



Figure 22: Fold changes between reactions of complex 1 and healthy control

models for similar reactions.

Figures 19 and 20 show the most varied reactions in the complex 1 and

complex 5 inhibitions in comparison with healthy controls respectively. It can

be observed there are more varying reactions in complex 5 inhibitions than in

complex 1.



Conclusion Classi�ed �ux distributions need to be compared to identify sig-

ni�cant changes. These signi�cant changes may lead to discovering important

pathways that cause neurodegeneration thereby leading to Parkinson's Diease.

To observe �ux changes, labelled distributions are compared between inhibition

models and healthy control models. Reactions with dissimilar labels seems to

have maximum changes in �ux distributions, as per the obtained results.

In complex 5 inhibited model's exchange reactions for Oxygen, L-Lactic acid,

Phosphate, Water, Dehydroascorbic acid, Carbondioxide, Isomaltose, Ascorbic

acid, and L-Cystine have shown major changes when compared with healthy

control models. These are positive results since, complex 5 is a enzyme-complex

used to produce ATP for the energy of cells. When this complex is inhib-

ited, there needs to be �ux changes for oxygen, water, carbondioxide, which

are important reactions for release Adinosine triphosphate, which provides the

cells with energy. Similar changes have been shown in the heatmap. Hence,

classi�cation algorithm has considerable accuracy in predicting and comparing

dissimilar �ux distributions between complex 5 and heatlhy controls.

Similarly, complex 1 inhibited model's reactions for L-Lactic acid, L-Phenyl-

alanine, Cholesterol Ester, Hydrogen Peroxide, Isomaltose, Ammonia have shown

major changes when compared to healthy controls. All these metabolites play

important roles in TCA cycle which initiates the product for electron tranfer in

mitochondria. Eventhough most of the common observed changes are part of

TCA cycle which is altered by complex 1 inhibitions, complex 5 inhibition has

shown more alterations in reactions. This conclusively proves that inhibiting

complex 5 has more e�ect over neuron. It can be expected to see deviations

in �ux distributions for these metabolites. Therefore, classi�cation algorithm

displays positive results for categorize di�erences in �ux distributions, there by

allowing comparisons.



Discussion

Overall conclusions

Parkinson's Disease is a neurodegenerative disease, that e�ects up to 10 mil-

lion people every year. It is a progressive disease with motor symptoms such as

tremors, bradykinesia (slowness in movement)[7], postural instability[10], rigid-

ity and tremors, which could lead to immobility. Some other symptoms are

non-motor such as loss of smell, depression, and fatigue[33, 17]. Evidence has

proven that the neurodegeneration, is caused due to loss of dopaminergic neu-

rons in substantia nigra part of the brain, responsible for movement in the body.

However the pathology of the death of dopaminergic neurons in PD is still in-

completely understood. Multiple hypotheses are aiming at unravelling the cause

of this progressive disorder, such as proteostasis, oxidative stress, mitochondrial

dysfunction, neuroin�ammation[39]. Hence, this research looks into the e�ects

of PINK1 gene mutations on dopaminergic neurons. Complex 1 mutation and

complex 5 mutations are observed to obtain the maximum changes cause to mi-

tochondria in comparison to healthy controls. These changes are observed under

the consortium of SysMedPD which takes a system's approach for predicting

biomarkers for Parkinson's Disease.

System's approach to observe progression of Parkinson's Disease is a novel

approach. Constrained-based modelling is used to build candidate-speci�c genome-

scale dopaminergic neuron model. The constrained steady state solution spaces

are uniform randomly sampled for �ux distributions of each reactions. These

continuous �ux distributions can be of various types(normal, uniform, trun-

cated). This research provides a novel classi�cation algorithm, which e�ectively

classi�ed the variety of �ux distrbutions, and labels the reactions with their

corresponding distribution type. Thereby, allowing an informed observation of

maximum changed reactions, in the uptake and secretion rates. These are com-

pared using log fold changes and maximum deviated reactions represented as

heatmap.

In Chapter 1, steps taken to attain a constrained-based model of dopamin-

ergic neuron is discussed. It is observed that there are 1789 reactions for the

currently used model for healthy controls. This model is inhibited for complex

1 pathways constraining the uptake and secretion rates for corresponding reac-

tions and the same for complex 5 pathway. These pathways generate a steady



state solution space which when randomly sampled produces �ux distributions

of each reaction. These population of �ux distributions are checked for unifor-

mity and varience by using gap-ratio algorithm and chi-square test respectively.

From the results it can be observed that 8x sampling of the solution space gives

an average uniformity of 70% over all the three models, avoiding getting stuck in

a local optima as is the case for 16x sampling. This conclusively proves that 8x

the dimensions of the polytope gives better results than 16x sampling. The vari-

ence tested is quiet high for both times of sampling, hence it can be concluded

that sampling algorithm produces various solutions for the same reaction.

In Chapter 2, the classi�cation algorithm has been introduced. Each algo-

rithm used as a part of classi�cation is explained in detail. Exchange reactions

from the three models are run through the classi�cation algorithm to categorize

them as normal distributions, zero dimensions, unconstrained distributions, left

truncated distributions and right truncated distributions. An accuracy of 90%

is achieved in categorising �ux distributions for exchange reactions. It can be

concluded that the classi�cation algorithm is useful to statistically categorise

the �ux distributions, with high accuracy.

In Chapter 3, comparison of the distributions between complex 1, complex

5 and healthy controls were stated. For each reaction the labels of their cor-

responding reactions are compared to obtain similarities and most importantly

dissimilarity of distributions. As observed, there are more reactions with sim-

ilar distributions between complex 1 and healthy controls than complex 5 and

healthy controls. Fold changes are compared and a heatmap plotted to observe

phase shifts between complex 5 and healthy controls in relation with complex 1.

Exhange reactions for metabolites for L-Lactic acid, L-Phenylalanine, Choles-

terol Ester, Hydrogen Peroxide, Isomaltose, Ammonia have shown major in both

inhibitions when compared to healthy controls.

One of the most commonly changed metabolite when comparing complex

1 and complex 5 inhibited models with healthy controls is Isomaltose. It is a

disaccharide similar to maltose, with an alpha linkage. Isomaltose is used as

a product of digestion, there by producing the energy to the cell. When there

is an alteration of this metabolite to the right, the usage of it has increased.

Eventhough it is not a direct biomarker pointing towards PD, the energy degra-

dation process that it is a biproduct of, is a known path for the progression

of the disease[15]. Hence it can be proposed as a biomarker for observing the

progression of the disease.

Other metabolites that showed alterations are cholesterol ester, and hydro-



gen peroxide. The electronic properties of hydrogen peroxide were monitored

for progression of Parkinson's Disease. Increase in the metabolite has shown

shifts to left truncations, thereby leading higher levels of deep brain variations.

This could be caused by oxidative stress to the brain[36]. Implying from the

changes seen in this research and [36], hydrogen peroxide could be a varient in

observing dopamine secretion rates in di�erent parts of the brain.

Lipids have lead considerable hypothesis for the study of progression of the

disease. A number of control-studies have suggested lower prevalence of PD

with an increase in serum levels of cholesterol[59, 42].While some studies showed

evidence that this phenomenon occurs only in male metabolism[6]. Although

recent studies have shown that a decrease in cholesterol ester would increase the

risk of PD[43]. As observed in this research, there has been considerable changes

in cholesterol ester's secretion rates, which could be factor for progression of PD,

or an element to decrease the prevalence of the disease.

Overall there are considerable changes seen in metabolites that are proven

biomarkers. Some of the other biomarkers observed while comparing individ-

ual inhibitions on the networks with healthy controls are: xylitol[71, 73] and

ammonia[16] for complex 1 inhibitions, water[27], oxygen[3, 67, 70], phosphorylase-

limit[25], dextrin[54] and carbondioxide[27] for complex 5. These metabolites

have been proven to progression of parkinson's disease. One of the most impor-

tant metabolite that varied in both inhibitions is in dompamine. In both the

models, it was represeting a left truncated distribution implying higher usage,

and lesser production. Hence, it is proven that the classi�cation algorithm labels

each reaction with corresponding �ux distributions and they can be observed to

show maximum changes.

Future work

In the futuristic perspective, the main objective would be to embed the clas-

si�cation algorithm into model generation in Matlab. By �xing this algorithm

in the process of model generation(Chapter 1), the �ux distributions are la-

belled and classi�ed as a part of the output. This could lead to catergorized

comparisons of reactions, thereby hypothesizing e�ciently. These hypothesis

would lead to predicting biomarkers for early-onset of Parkinson's Disease.

Secondly, the results are comparisons of exchange reactions alone. Im-

plementing these comparisons for all the reactions and conclusively represent

biomarkers for progression of Parkinson's disease due to PINK1 gene mutation.



These comparisons would have better e�ects when compared by the ratio stan-

dard deviations of sampled populations rather than means. This could also be

another futuristic goal.

Thirdly, more e�orts can be put into testing di�erent sampling algorithms to

achieve higher uniform distributions, without disrupting the varience of results.

Increasing e�ciency of sampling algorithms reduces the stress on hardware,

there by expidite the computations.
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Appendix 

 

Gap ratio algorithm 

 

import os 

import pandas as pd 

import scipy.spatial  

from scipy.spatial import distance_matrix,distance 

import numpy as np 

from sklearn.decomposition import PCA 

from sklearn.metrics.pairwise import euclidean_distances 

import matplotlib.pyplot as plt 

from sklearn import preprocessing 

from collections import Counter 

 

 

os.chdir('C:\\Users\\Padma\\Desktop\\Master Thesis\\16x\\16x') 

os.getcwd() 

 

#datasets 

complex1_8x = pd.read_csv("c1_8.csv",delimiter=',') 

complex5_8x = pd.read_csv("c5_8.csv",delimiter=',') 

healthy_8x = pd.read_csv("H_8.csv",delimiter=',') 

 

#selecting the dataset 

data = complex5_16x 

 

df = pd.DataFrame(data.iloc[:,:]) 



dist_mat_ = distance_matrix(df.values,df.values) 

df_dist = pd.DataFrame(dist_mat_) #distance matrix  

 

#plot  

for val in data.index: 

    print(val) 

    v_b = data.iloc[val,:] 

    fa,binns,patches = plt.hist(v_b, bins=100,align='left') 

    #plt.legend(name) 

    u = fa 

    xp = binns[0:100] 

    fig = plt.plot(xp,u,'r') 

    plt.plot() 

    plt.show() 

 

#gap ratio algorithm implementations 

gap_ratios = [] 

for kp in range(len(df.iloc[:,1:])-1): 

    print(kp) 

    p = 0 

    for i in range(len(df.iloc[:,1:])-1): 

        p_ = p +1 

        rp = ((df.iloc[kp,p]-df.iloc[kp,p_])/2) 

        Rp = abs(distance.minkowski(df.iloc[0,p],df.iloc[0,p_], p = float('inf'))) 

        gap_ratio = rp/Rp 

        p = p_ 

        gap_ratios.append("For index {0} gap ratio is {1}".format(kp,gap_ratio)) 

samples_for_dim = [gap_ratios[samp:samp+1787] for samp in range(0,len(gap_ratios),1787)] 

uniform_split_index = [gapr.split(' ')[3] for gapr in samples_for_dim[1]] 



distribution_type = [] 

for ik in range(len(samples_for_dim)): 

    print(ik) 

    uniform_split = [gapr.split(' ')[6] for gapr in samples_for_dim[ik]] 

    epp = [] 

    for o in range(len(uniform_split)): 

        ep = float(uniform_split[o]) 

        nu = float(2 * ep) 

        de = float(1 + float(ep)) 

        if de == 0: 

            epsilon = 0 

        else: 

            epsilon = float(nu) / float(de) 

        if (ep <= epsilon <= 2): 

            epp.append("True") 

        else: 

            epp.append("False")    

    false = [] 

    true = []     

    for k in range(len(epp)): 

        false_ = 0 

        true_ = 0 

        if epp[k] == "False": 

            false.append(false_+1) 

        else:  

            true.append(true_+1)      

    if len(false) < len(true): 

        print("uniform distribution") 

        distribution_type.append("uniform distribution") 



    else: 

        print("non-uniform distribution") 

        distribution_type.append("non-uniform distribution") 

 

Classification algorithm 

 

reactions = pd.read_csv("rxns.csv", delimiter = ",") 

complex_5 = pd.read_csv("S_C5.csv", delimiter = ",") 

control = pd.read_csv("S_iNESC2DN.csv", delimiter = ",") 

complex1 = pd.read_csv("S_C1.csv",delimiter=",") 

 

react = np.array(reactions.iloc[:,0]) 

c5 = complex_5 

c5.set_index(react,inplace=True) 

#c5.to_csv("c5.csv",sep = ',') 

 

ctrl = control 

ctrl.set_index(react,inplace=True) 

#ctrl.to_csv("ctrl.csv",sep=',') 

 

complex1.set_index(react,inplace=True) 

#complex1.to_csv("c1.csv",sep=",") 

#np.where(complex1[complex1.index == 'EX_t']) 

 

matching = [s for s in react if "EX_" in s] 

 

index_match_c1 = [] 

for i in range(len(complex1.index)): 



    rea = complex1.index[i] 

    for k in range(len(matching)): 

        if np.all(rea == matching[k]): 

            index_match_c1.append(i) 

exchange_react_c1 = complex1.iloc[index_match_c1,:] 

 

index_match_ctrl = [] 

for i in range(len(ctrl.index)): 

    rea = ctrl.index[i] 

    for k in range(len(matching)): 

        if np.all(rea == matching[k]): 

            index_match_ctrl.append(i) 

exchange_react_ctrl = ctrl.iloc[index_match_ctrl,:] 

 

index_match_c5 = [] 

for i in range(len(c5.index)): 

    rea = c5.index[i] 

    for k in range(len(matching)): 

        if np.all(rea == matching[k]): 

            index_match_c5.append(i) 

exchange_react_c5 = c5.iloc[index_match_c5,:] 

 

dataset = exchange_react_ctrl 

 

#ks test for complex 5 

reject_null_hyp_ks = [] 

accept_null_hyp_ks = [] 

accept = [] 

pval_ = [] 



for ks in range(len(dataset.index)): 

    print(ks) 

    data = dataset.iloc[ks,:] 

    ks_,pval = stats.kstest(data, 'norm', args = (np.mean(data), np.std(data))) 

    pval_.append(pval) 

    #print(ks_) 

    if np.any(pval < 0.000001):#ctrl=0.005,c1=0.000001,c5=0.00000005 

        reject_null_hyp_ks.append("for {} reject null hypothesis".format(ks)) 

    else: 

        accept_null_hyp_ks.append("for {} accept null hypothesis".format(ks)) 

        accept.append("{}".format(ks)) 

 

accept_ = [] 

accept_index = [] 

zero_dimension = [] 

zero_dimension_index = [] 

for i in accept: 

    ip = int(i) 

    k = pval_[ip] 

    if np.all(math.isnan(k)): 

        print(dataset.index[ip]) 

        zero_dimension.append(dataset.index[ip]) 

        zero_dimension_index.append(ip) 

    else: 

        print("{}:{}".format(ip,k)) 

        accept_.append(dataset.index[ip]) 

        accept_index.append(ip) 

 

for i in accept_index: 



    k = dataset.iloc[i,:] 

    plt.hist(k,bins=100) 

    plt.show() 

 

c5_without_zero =  dataset.drop(index=zero_dimension) 

c5_zero = dataset.iloc[zero_dimension_index,:] 

c5_without_normal =  c5_without_zero.drop(index=accept_) 

c5_normal = dataset.iloc[accept_index,:] 

 

#truncated test 

x_bar_c5 = [] 

for val in c5_without_normal.index: 

    print(val)     

    norm_cdf = scipy.stats.norm.cdf(c5_without_normal.loc[val,:],loc=0,scale=1) # calculate the cdf - also 

discrete 

    norm_cdf_ = (sum(norm_cdf)) 

    norm_len = 1/len(c5_without_normal.columns) 

    num_ = norm_len*norm_cdf_ 

    x_bar_c5.append(num_) 

 

uniform_c5 = [] 

for i in range(len(c5_without_normal.index)): 

    critt = scipy.stats.norm.ppf(q = 

0.05,loc=np.mean(c5_without_normal.iloc[i,:]),scale=np.std(c5_without_normal.iloc[i,:])) 

    z_alpha = critt/np.sqrt(len(c5_without_normal.columns)) 

    if z_alpha < x_bar_c5[i]: 

        if x_bar_c5[i] >= 0.5: 

            print("index {} : left skewed".format(i)) 

            uniform_c5.append("index {} : left skewed".format(i)) 



        else: 

            print("index {} : right skewed".format(i)) 

            uniform_c5.append("index {} : right skewed".format(i)) 

    else: 

        print("index {} : normal".format(i)) 

        uniform_c5.append("index {} : normal".format(i)) 

#skewess 

skewed = [] 

for i in c5_without_normal.index: 

    print(i) 

# generate univariate observations 

    data = c5_without_normal.loc[i,:] 

    # normality test 

    stat= stats.skew(data) 

    #print('Statistics=%.3f, p=%.3f' % (stat, p)) 

    statss= stats.norm.ppf(0.05, loc=np.mean(data), scale=np.std(data)) 

    diff = stat - statss 

    #print('Statistics=%.3f' % (statss)) 

    skewed.append("{0} : {1}".format(i, stat)) 

 

t_skew = [lname.split(':')[1] for lname in skewed] 

t_skew_ind = [iname.split(':')[0] for iname in skewed] 

 

skew = [] 

for s in range(len(c5_without_normal.index)):     

     k = float(t_skew[s]) 

     indk = t_skew_ind[s] 

     if k > 0 : 

         print("index {} : left skewed".format(indk)) 



         skew.append("index {} : left skewed".format(indk)) 

     elif k == 0: 

         print("index {} : normal".format(indk)) 

         skew.append("index {} : normal".format(indk)) 

     else: 

         print("index {} : right skewed".format(indk)) 

         skew.append("index {} : right skewed".format(indk)) 

          

uniform_splitc5 = [unam.split(':')[1] for unam in uniform_c5] 

skew_splitc5 = [sname.split(':')[1] for sname in skew] 

 

algorithm_comp = [] 

list_true = [] 

list_false_uc5 = [] 

list_false_sc5 = [] 

algo_index = [] 

false_index = [] 

true_index = [] 

for ji in range(len(uniform_splitc5)): 

    a = uniform_splitc5[ji] 

    print(a) 

    b = skew_splitc5[ji] 

    print(b) 

    if np.any(a == b): 

        print("TRUE") 

        algorithm_comp.append("TRUE") 

        algo_index.append("TRUE for {}".format(ji)) 

        true_index.append("{}".format(ji)) 

        list_true.append(uniform_splitc5[ji]) 



    else: 

        print("FALSE") 

        algorithm_comp.append("FALSE") 

        algo_index.append("FALSE for {}".format(ji)) 

        false_index.append("{}".format(ji)) 

        list_false_uc5.append(uniform_splitc5[ji]) 

        list_false_sc5.append(skew_splitc5[ji]) 

 

 

zero_list = ["zero distributions" for x in range(len(zero_dimension_index))] 

normal_list = ["normal distribitions" for x in range(len(accept_index))] 

 

 

zero_dimensions_data = dataset.iloc[zero_dimension_index,:] 

zero_dimensions_data["type"] = zero_list 

normal_dimensions_data = dataset.iloc[accept_index,:] 

normal_dimensions_data["type"] = normal_list 

true_index_dimensions = c5_without_normal.iloc[np.array(true_index).astype(np.float),:] 

true_index_dimensions["type"] = list_true 

false_index_dimensions = c5_without_normal.iloc[np.array(false_index).astype(np.float),:] 

false_index_dimensions["type_uni"] = list_false_uc5 

false_index_dimensions["type_skew"] = list_false_sc5 

classified_c5 = pd.concat([c5_zero,c5_normal,true_index_dimensions,false_index_dimensions]) 

classified_c5.to_csv("classified_ctrl_exchange.csv",sep=",") 

 

 

 

 

 



 

Comparison 

 

classified_c1 = pd.read_csv("classified_c1_exchange.csv",delimiter = ',') 

classified_c5 = pd.read_csv("classified_c5_exchange.csv",delimiter = ',') 

classified_ctrl = pd.read_csv("classified_ctrl_exchange.csv",delimiter = ',') 

 

concate_c1ctrldf = pd.concat([classified_c1,classified_ctrl], ignore_index=True).fillna(0) 

div = [rec_df for rec,rec_df in concate_c1ctrldf.groupby('Unnamed: 0')] 

#comparing the means for fold changes 

k_c1_ctrl = [] 

k_c1_ctrl_index = [] 

mean_c1_ctrl = [] 

mean_c1_ = [] 

mean_ctrl_ = [] 

log_2cha = [] 

for u in range(len(div)): 

    c1 = div[u].iloc[0,1:3497] 

    ctrl = div[u].iloc[1,1:3497] 

    mean_c1 = np.mean(c1) 

    mean_ctrl = np.mean(ctrl) 

    dst = mean_c1/mean_ctrl 

    log_2fold = abs(np.log2(dst)) 

    if (mean_c1 == 0 or mean_ctrl == 0): 

        mean_c1_ctrl.append(0) 

        log_2cha.append(0) 

    else:     

        mean_c1_ctrl.append(dst) 



        log_2cha.append(log_2fold) 

    #mean_c1_ctrl.append(dst) 

    mean_c1_.append(mean_c1) 

    mean_ctrl_.append(mean_ctrl) 

    k_c1_ctrl.append(np.unique(div[u].iloc[:,0]))  

    k_c1_ctrl_index.append(u) 

 

df_k_c1_ctrl = pd.DataFrame({'index':k_c1_ctrl_index, 

                           'name': k_c1_ctrl, 

                           'fold_change' : mean_c1_ctrl, 

                           'mean_c5':mean_c1_, 

                           'mean_ctrl':mean_ctrl_, 

                           'log2_FC_c5':log_2cha}).fillna(0) 

 

k_gh = df_k_c1_ctrl.sort_values(by='fold_change',ascending=True) 

#df_k_c1_ctrl.to_csv("sort_c5_ctrl_std.csv",sep=',') 

k_il = k_gh['index'].tolist() 

 

#equality of distributions 

eq_eq_zero = [] 

eq_eq_t_zero = [] 

eq_eq = [] 

not_eq = [] 

not_eq_trun_not_eq = [] 

not_eq_skew_eq = [] 

not_eq_skew_not_eq = [] 

not_eq_trun_eq = [] 

not_eq_t = [] 

eq_eq_not_t_zero = [] 



not_eq_trun_eq_t = [] 

not_eq_trun_not_eq_t = [] 

not_eq_skew_not_eq_t = [] 

not_eq_skew_eq_t = [] 

for le in range(len(k_il)): 

    inde = int(k_il[le]) 

    if np.any(div[inde].iloc[1,3497] == div[inde].iloc[0,3497] == 0): 

        print(inde) 

        #print(div[inde].iloc[:,0]) 

        eq_eq_zero.append(inde) 

        if np.any(div[inde].iloc[1,3498] == div[inde].iloc[0,3498]): 

            #print(inde) 

            eq_eq_t_zero.append(inde) 

            continue 

        elif np.any(div[inde].iloc[1,3498] != div[inde].iloc[0,3498]): 

            #print(inde) 

            #print(div[inde].iloc[0,3498]) 

            eq_eq_not_t_zero.append(inde) 

            continue 

    elif np.any(div[inde].iloc[1,3497] == div[inde].iloc[0,3497] != 0): 

        #print(inde) 

        eq_eq.append(inde) 

    elif np.any(div[inde].iloc[1,3497] != div[inde].iloc[0,3497] == 0): 

        not_eq_t.append(inde) 

        if np.any(div[inde].iloc[1,3498] == div[inde].iloc[0,3498]): 

            #print(inde) 

            not_eq_trun_eq.append(inde) 

            continue 

        elif np.any(div[inde].iloc[1,3498] != div[inde].iloc[0,3498]): 



            #print(inde) 

            not_eq_trun_not_eq.append(inde) 

            continue 

            if np.any(div[inde].iloc[1,3499] != div[inde].iloc[0,3499]): 

                not_eq_skew_not_eq.append(inde) 

                continue 

            elif np.any(div[inde].iloc[1,3499] == div[inde].iloc[0,3499]): 

                not_eq_skew_eq.append(inde) 

    elif np.any(div[inde].iloc[1,3497] != div[inde].iloc[0,3497] != 0): 

        not_eq.append(inde) 

        if np.any(div[inde].iloc[1,3498] == div[inde].iloc[0,3498]): 

            not_eq_trun_eq_t.append(inde) 

            continue 

        elif np.any(div[inde].iloc[1,3498] != div[inde].iloc[0,3498]): 

            not_eq_trun_not_eq_t.append(inde) 

            continue 

            if np.any(div[inde].iloc[1,3499] != div[inde].iloc[0,3499]): 

                not_eq_skew_not_eq_t.append(inde) 

                continue 

            elif np.any(div[inde].iloc[1,3499] == div[inde].iloc[0,3499]): 

                not_eq_skew_eq_t.append(inde) 

 

zero = df_k_c1_ctrl.iloc[eq_eq,:].set_index('name') 

zero.to_csv("sort_c1_ctrl_std.csv",sep=',') 

 

c1_ctrl = pd.read_csv("sort_c1_ctrl_zerostd.csv",delimiter = ',',index_col='name') 

c1_the_ = c1_ctrl.sort_values(by=['fold_change'],ascending = False) 

c1_the = c1_the_[c1_the_['fold_change'] > 1] 

c1_log = c1_the[c1_the['log2_FC'] < 0.5] 



 

c5_ctrl = pd.read_csv("sort_c5_ctrl_zerostd.csv",delimiter=',',index_col='name') 

c5_the_ = c5_ctrl.sort_values(by=['fold_change'],ascending = True) 

c5_the = c5_ctrl[c5_ctrl['fold_change'] > 1.00005] 

c5_log = c5_the[c5_the['log2_FC'] < 0.5] 

 

c1_c5_ctrl = c1_the_.merge(c5_the_,how='outer',left_index=True,right_index=True).fillna(0) 

c1_c5_ctrl= c1_c5_ctrl.drop(columns = ['index_x','index_y']) 

 

df_norm_row= c1_c5_ctrl.iloc[:,[0,2,4,6,7]].sub(c1_c5_ctrl.iloc[:,[0,2,4,6,7]].mean(axis=1), axis=0) 

# 2: divide by standard dev 

df_norm_row=df_norm_row.div(c1_c5_ctrl.iloc[:,[0,2,4,6,7]].std(axis=1), axis=0 ) 

plt.figure(figsize=(5,15)) 

plt.xticks(rotation=0) 

plt.yticks(rotation=90) 

sns_ = sns.heatmap(df_norm_row,annot=False,cmap="YlGnBu",yticklabels='auto',cbar=False, 

                   cbar_kws=dict(use_gridspec=False,location="top")) 

plt.colorbar(sns_.get_children()[0], orientation = 'horizontal') 

# locate colorbar ticks 

plt.cax.xaxis.set_ticks_position('top') 

fig = sns_.get_figure() 

fig.savefig("compare_c15.pdf") 


