
Opleiding Informatica

Performance Comparison of Configurable Particle Swarm

and Differential Evolution Algorithms

Rick Boks

Supervisors:

Prof.dr. T.H.W. Bäck and Dr. H. Wang

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 06/08/2019

Abstract

Many variants of Particle Swarm Optimization (PSO) and Differential Evolution (DE) have been proposed,

making it difficult to pick a particular algorithm variant for a given problem. Moreover, from an algorithm

design perspective, many potentially useful variants still remain unexplored. We introduce a framework

in which characteristic components (modules) of existing PSO and DE algorithms are isolated and can be

combined into new algorithm instances, many of which have not been considered before. A total of 128

possible algorithm variants resulting from the modular approach are benchmarked on the 24 functions in

the COCO framework for different problem dimensions. The instances are compared with regard to their

performance on the various function groups and dimensionalities. As a result of the experiments performed

by the framework, we discuss combinations of modules that perform well on (specific subsets of) the set of

test functions, as well as concrete instances that outperform the original variants.

Contents

1 Introduction 4

2 Particle Swarm Optimization 5

2.1 The Original Particle Swarm Optimization Algorithm . 5

2.2 Velocity Update Strategies . 6

2.3 Population Topologies . 7

3 Differential Evolution 9

3.1 The Original Differential Evolution Algorithm . 9

3.2 Population Initialization Strategies . 11

3.3 Mutation Techniques . 12

3.4 Opposition-based Generation Jumping . 14

4 Experimental Setup 15

5 Naming Convention of Algorithms 17

6 Results 18

7 Conclusion 21

8 Future Work 22

A ECDF Graphs 25

B aRT Tables 27

Chapter 1

Introduction

In this paper, we consider algorithmic variants of Particle Swarm Optimization (PSO) and Differential Evolution

(DE) which aim at solving continuous-variable black-box optimization problems of dimensionality n:

f : F ⊆ Rn → R

where F = ∏n
i=1[ui, vi], and without loss of generality a minimization task is assumed, i.e., f → min.

These algorithms, which are both inspired by concepts from nature, are two popular techniques to tackle such

optimization problems. In recent years, PSO and DE have attracted the attention of many researchers, which

has resulted in a large number of variations on the original algorithms. There is no single best algorithm;

performance of different algorithms varies greatly when applying them to various optimization problems. For

this reason, choosing an algorithm to solve a given problem can be a daunting task. In this work, characteristic

operators (modules) of existing PSO and DE variants are combined into hybrid algorithms, many of which

have never been considered before. A configurable framework is created, which allows modules that are

extracted from existing algorithms to be combined arbitrarily. A similar research in the field of Evolution

Strategies has been conducted by van Rijn et al. [vWvB16]. Every hybridized algorithm, which will be referred

to as a PSO- or DE instance, is tested on the COCO benchmarking framework [HAM+
16], which contains 24

test functions. This work aims at finding hybrid PSO and DE algorithms that outperform the original variants

on the set of test functions or on specific subsets thereof. The outline of this paper is as follows: Section 2

introduces the state-of-the-art variants of PSO. Section 3 goes over various leading edge variants of DE. In

Section 4, we describe the experimentation that has been performed to benchmark the generated PSO- and DE

instances1. In Section 5, we define a naming scheme in order to easily refer to all instances. The results of the

experiments are then discussed in Section 6. Finally, the conclusion is given in Section 7 and future work is

discussed in Section 8.

1The source code of the framework is available at: https://github.com/rickboks/pso-de-framework.

4

https://github.com/rickboks/pso-de-framework

Chapter 2

Particle Swarm Optimization

Particle Swarm Optimization is an optimization algorithm that mimics the behaviour of a flock of birds, or a

school of fish searching for food. PSO was introduced by Eberhart and Kennedy in [EK95].

2.1 The Original Particle Swarm Optimization Algorithm

A particle in a swarm of size M > 1 is composed of three vectors: the current position xi, velocity vi, and its

previous best position pi, where i ∈ {1, . . . , M}. After the random initialization of xi and vi, the algorithm

enters a loop where the xi are updated until the termination criteria are met. The update of xi is preceded

by the update of vi. xi is then calculated by adding vi to the current position. The velocity vector is updated

using the following equation:

vi ← vi +U (0, φ1)⊗ (pi − xi) +U (0, φ2)⊗ (pg − xi) (2.1)

where U (0, φi) represents a vector containing random numbers, uniformly distributed in [0, φi], and ⊗ is

component-wise multiplication. pg represents the best solution that has been found in the neighborhood of

particle i. To prevent the velocity from exploding, which can result in particles leaving the search space, vi is

kept in the range [−vmax, vmax], such that vij ∈ [−Vmax, Vmax] for a vector vi and j ∈ {1, . . . , n} .

After calculating the new velocity, the new position of the particle representing a new candidate solution is

calculated as follows:

xi ← xi + vi (2.2)

After every position update, the current position is evaluated, i.e., its objective function value f (xi) is computed.

If it is the best solution that has been found by the particle thus far, pi is updated with the particle’s current

position, xi. The objective function value of pi is denoted as pbesti = f (pi).

The pseudo-code of the original PSO algorithm is given in Algorithm 1:

5

Algorithm 1: Original Particle Swarm Optimization

1 for each particle xi do
2 for j = 1 to n do
3 xij ← U (uj, vj) . Initialize
4 vij ← U (−Vmax, Vmax)

5 end
6 pbesti ← max
7 end
8 while termination criteria are not met do
9 for each particle xi do

10 fi ← f (xi) . Evaluate
11 if fi < pbesti then
12 pi ← xi . Select
13 pbesti ← fi
14 end
15 Find xi’s neighbor pg with the best value of pbest
16 vi ← vi +U (0, φ1)⊗ (pi − xi) +U (0, φ2)⊗ (pg − xi)
17 xi ← xi + vi . Update velocity and position
18 end
19 end

A termination criterion in PSO can simply be exhausting the maximum amount of function evaluations.

Another example is convergence, measured by analyzing whether the average distance between particles has

gone below a predetermined threshold.

2.2 Velocity Update Strategies

In the original PSO algorithm, the position xi of a particle is updated using the following formulas:

vi ← vi +U (0, φ1)⊗(pi − xi) +U (0, φ2)⊗(pg − xi)

xi ← xi + vi

(2.3)

In this original approach, it is important that the value for vmax is chosen carefully. This is, however, not a

trivial task since the optimal value is problem-specific. This is not the only problem that using hard velocity

bounds introduces. Particles often fail to converge when using [−vmax, vmax] because this approach fails to

move from an exploratory search to an exploitative one. In an attempt to move away from using hard velocity

bounds, a modified version of the update function was introduced in [SE98]. An inertia weight ω is used in

order to better control the scope of the search without the use of Vmax:

vi ← ωvi +U (0, φ1)⊗(pi − xi) +U (0, φ2)⊗(pg − xi)

xi ← xi + vi

(2.4)

A large value of ω will result in an exploratory search, while a small value corresponds to a more exploitative

search. Because it is desirable to move from exploratory to exploitative search, it is no surprise that researchers

found that the inertia weight performs especially well when decreasing the value of ω over time. Both the

6

original inertia weight and the version with the decreasing value of ω are considered in this paper. When

using the decreasing inertia weight, ω is decreased from 0.9 to 0.4 throughout the run of the algorithm. A

value φ1 = φ2 = 1.49618 is chosen during this research according to a recommendation given in [CK02].

Instead of only being influenced by the best neighbor, the velocity of a particle in the Fully Informed Particle

Swarm (FIPS) [KM02a] is updated using the best previous positions of all its neighbors. The corresponding

equation is:

vi ← χ
(

vi +
1
Ki

Ki

∑
j=1

U (0, φ)⊗ (pnbrj
− xi)

)
(2.5)

where Ki is the number of neighbors of particle i and nbrj is the jth neighbor of particle i. The value of χ is

computed as

χ =
2

φ− 2 +
√

φ2 − 4φ
. (2.6)

The value φ = 4.1 is chosen according to the recommendation by the authors, which results in a value

χ = 0.7298.

Finally, Bare-Bones PSO is a completely different approach from those listed previously. In fact, it uses no

velocity at all. In Bare-Bones PSO, every component xij of xi is updated according to a Gaussian probability

distribution with mean
pij+gij

2 and variance |pij − gij| instead, where pij and gij are the jth component of pi

and gi, respectively:

xij ∼ N
(pij+gij

2 , |pij − gij|
)

(2.7)

2.3 Population Topologies

Eight different topologies from the literature have been implemented in the framework, including both

static and dynamic topologies. Static topologies remain the same throughout the entire run, while dynamic

topologies can add and remove connections between particles as the run progresses.

In the lbest (local best) or ring topology as proposed in [EK95], the target particle is only influenced by its two

adjacent neighbors in the array. In this topology, information about newly found solutions travels relatively

slowly through the population. This gives the lbest topology an explorative property, which reduces the risk of

getting ’stuck’ in local optima, but also reduces the convergence rate of the swarm.

The gbest (global best) [EK95] or star topology is implemented as a fully connected graph, so that every particle

is influenced by the best solution found in the entire swarm. It converges faster than the lbest topology, but

performs a less explorative search. The gbest topology is more susceptible to being attracted by local optima.

Multiple topologies were experimented with in [Ken99], two of which will be considered in this paper: the

random graph and the wheel topology. In the random graph topology, every particle is connected to three

randomly selected neighbors from the topology. These connections are, in contrast to most other topologies,

unidirectional: If, for particles i and j, i ∈ neighborhood(j), it does not necessarily mean that j ∈ neighborhood(i).

7

The wheel topology is implemented as follows: one particle is connected to all the others, and all the other

particles are only connected to this central particle.

Among others, the Von Neumann topology was tested by Kennedy and Mendes in [KM02b]. This topology

is a good trade-off between the lbest and gbest topologies. Particles are arranged in a two-dimensional array,

and have four neighbors: the ones horizontally and vertically adjacent to them, with toroidal wrapping. This

way, it allows for the parallel search that the lbest topology excels at, while at the same time retaining good

convergence properties. The Von Neumann topology in particular performed very well in the experiments

performed by Kennedy and Mendes.

The final three topologies are dynamic: In contrast to the static topologies, their connections change throughout

the run of the algorithm.

The increasing topology was proposed in [Sug99]. The idea behind this topology is to utilize the best of both

the lbest and gbest topologies by starting with an lbest topology and gradually increasing the connectivity so

that, by the end of the run, the particles are fully connected. The connectivity Ci of particle i (i.e. the number

of neighbors particle i has), at any time is determined by:

Ci = 2 + [Cmax · (#evals/evalBudget)] (2.8)

Here, Cmax is the maximum connectivity, which in our case is M− 1, where M is the population size. #evals and

evalBudget denote number of evaluations performed and the maximum number of evaluations, respectively.

New connections are chosen randomly.

The counterpart of the increasing topology, though potentially very interesting, has never been considered

before. The implementation of this decreasing topology is analog to the increasing one: We start off with a fully

connected swarm, and remove randomly chosen connections between particles as the run progresses until the

particles are connected with a ring topology by the end of the run. The connectivity of every particle at any

time is determined by:

Ci = Cmax − [(Cmax − 2) · (#evals/evalBudget)] (2.9)

In all previously discussed topologies, the particles are connected in a single cluster. The dynamic multiswarm

topology (DMS-PSO), as proposed in [LS05], creates clusters consisting of three particles each, and creates new

clusters after every 5 iterations. If the population size is not divisible by three, every cluster has size three,

except one, which is of size 3 + (M mod 3).

8

Chapter 3

Differential Evolution

Differential Evolution (DE) was first introduced by Storn and Price in 1995 [SP95]. This original version already

proved its effectiveness at various contests and conferences, and has been improved since, resulting in many

different variants of the algorithm. Differential Evolution works in a similar fashion as other evolutionary

algorithms. However, it uses scaled differences of randomly selected members of the population in order

to perturb members of the current population, called genomes. We adopt this original DE teminology here,

although the genomes could also be called particles or individuals. The algorithm consists of four main parts:

initialization, mutation, crossover and selection.

3.1 The Original Differential Evolution Algorithm

The first step of the algorithm is the initialization of the genomes. The first generation of genomes should cover

the search space as uniformly as possible. Genomes are initialized uniformly at random inside the bounds of

the search space.

After initialization, the main loop of the DE algorithm commences. In this loop, the genomes of the current

population (the target vectors) are first mutated, which creates perturbations of the target vector with a random

element. These mutated vectors are called donor vectors. After mutation, the previously created donor vectors

are combined with the target vectors in order to enhance the diversity of the population. The vectors that are

generated in this crossover step are called trial vectors. Finally there is the selection step. In this step, the best

genomes from the union of the target- and trial vectors are selected for the next generation.

Mutation of a single genome in DE requires three other genomes from the current population. These vectors

are selected uniformly at random and will be referred to as xri
1
, xri

2
, and xri

3
, where the indices ri

1 6= ri
2 6= ri

3 6= i.

The donor vector vi is created by adding the scaled difference of two of the randomly-selected vectors to the

third one.

vi ← xri
1
+ F · (xri

2
− xri

3
) (3.1)

9

Here, F is a scalar value called the mutation rate, which is often chosen in the interval [0.4, 1].

After the generation of the donor vectors, the trial vectors are created through crossover. The trial vector

is created by taking some elements from the target vector and some from the donor vector. Two different

crossover methods can be used: exponential- and binomial crossover. In exponential crossover, two integers p,

q ∈ {1, . . . , n} are chosen. The integer p acts as the starting point where the exchange of components begins,

and is chosen randomly. q represents the number of elements that will be given by the donor vector, and is

chosen using Algorithm 2.

Algorithm 2: Algorithm for assigning a value to q

1 q← 0
2 do
3 q← q + 1;
4 while ((rand(0, 1) ≤ Cr) and (q ≤ n))

In the pseudo-code above, Cr is the crossover rate, which determines how much influence the donor vector

has in the crossover process. The values p and q are re-determined for every genome in the population, every

iteration. The trial vector is generated as:

uij ←

 vij for j = 〈p〉n, 〈p + 1〉n . . . 〈p + q− 1〉n
xij for all other j ∈ {1, . . . , n}

(3.2)

The angular brackets 〈〉n denote the modulo operator with modulus n. uij is the jth element of trial vector ui,

vij the jth element of donor vector vi, etc.

Binomial crossover is a much simpler approach, yet at the same time the more popular crossover method

of the two, because it seems to be the most competitive on most test functions. Binomial crossover works as

follows: a random number k ∼ U (0, 1) is chosen for every element of the trial vector. If the jth random number

k j is less or equal to the crossover rate Cr, the jth element of the trial vector is inherited from the jth element

of the donor vector, else it is assigned the jth element of the target vector. In order to make sure that at least

one element of the donor vector is inherited by the trial vector, a random number jrand ∈ [1, D] is chosen. The

jrandth item of the donor vector will always be inherited by the trial vector.

The value of jrand is re-determined for each vector, every iteration. Binomial crossover can be outlined as:

uij ←

 vij if rand(0, 1) ≤ Cr or j = jrand

xij otherwise
(3.3)

The final step in the main loop of the DE algorithm is selection. Every iteration, new trial vectors are generated

during the crossover step. We can, however, not just keep adding these newly generated trial vectors to the

population; the population size needs to remain constant. For this reason, only the best individual from every

10

target- and trial vector pair is kept for the next generation:

xi ←

 ui if f (ui) < f (xi)

xi otherwise
(3.4)

The termination criteria in DE usually take the same form as for PSO. To give a clear overview of the complete

Differential Evolution algorithm, the pseudo-code is provided in Algorithm 3.

Algorithm 3: Differential Evolution using binomial crossover

1 for each genome xi do
2 for j = 1 to n do
3 xij ← U (uj, vj) . Initialize
4 end
5 end
6 while termination criteria are not met do
7 for each genome xi do
8 vi ← xri

1
+ F · (xri

2
− xri

3
) . Mutate

9 end
10 for each donor vector ui do
11 for j = 1 to n do
12 p← U ({1, . . . , n})
13 Compute q according to Algorithm 2

14 if j ∈ {〈p〉n, 〈p + 1〉n . . . 〈p + q− 1〉n} then
15 uij ← vij . Crossover
16 else
17 uij ← xij
18 end
19 end
20 end
21 for i = 1 to M do
22 if f (ui) < f (xi) then
23 xi ← ui . Select
24 end
25 end

3.2 Population Initialization Strategies

In original DE, genomes are initialized randomly within the bounds of the search space. This is generally a

decent technique, but can be improved by also taking a look at the so-called opposite of the random guesses.

Opposition-based population initialization is part of Opposition-Based Differential Evolution, as proposed

by Rahnamayan et al. [RTS08]. Opposition-Based Differential Evolution modifies the original DE algorithm

at three different stages. Apart from opposition-based population initialization, there is opposition-based

generation jumping, which will be discussed in section 3.4, and opposition-based individual jumping, where

the best genome from the population can potentially be replaced by an improved version. This last concept is

not considered in this research.

11

Opposition-based population initialization initially creates a randomly initialized population P, just like in the

original approach. Then the opposite of P, O is created. The elements of O are constructed as follows:

oij ← uj + vj − pij (3.5)

Here, pij is the jth component of the ith genome from the population P (analog for oij). uj and vj are the

minimum and maximum bounds of the search space for the jth solution vector component, respectively. When

O is constructed, the best M genomes from the set P ∪O form the first generation. Because the algorithm

starts off with the better of the two guesses, it will likely converge faster.

3.3 Mutation Techniques

The original mutation scheme, as mentioned in section 3.1, uses three randomly selected, mutually exclusive

vectors to create its donor vectors. One of the vectors is used as the base vector. In the original approach,

only one weighted difference vector, F · (xri
2
− xri

3
), is used. For this reason, this mutation scheme is called

DE/rand/1. The ’rand’ refers to the base vector that is randomly selected, and the ’1’ refers to the single

difference vector that is used. Storn and Price [SP95] proposed four other mutation schemes, which are named

using the same naming convention.

The first one is DE/best/1. It is similar to DE/rand/1, except that DE/best/1 uses the vector with the best

objective function value instead of a randomly selected one as the base vector:

vi ← xbest + F · (xri
1
− xri

2
) (3.6)

DE/target-to-best/1 uses the target vector as the base vector, and also uses the weighted difference between

the best- and target vector:

vi ← xi + F · (xbest − xi) + F · (xri
1
− xri

2
) (3.7)

DE/best/2 uses two scaled differences of randomly chosen vectors:

vi ← xbest + F · (xri
1
− xri

2
) + F · (xri

3
− xri

4
) (3.8)

Finally, similar to DE/best/2, DE/rand/2 uses two scaled differences of randomly chosen vectors, but also

uses a randomly chosen vector as base:

vi ← xri
1
+ F · (xri

2
− xri

3
) + F · (xri

4
− xri

5
) (3.9)

Apart from the mutation techniques from Storn and Price’s DE family, three others will be considered. The

first one, DE/rand/2/dir, which was proposed in [FJ04], can be described as follows:

vi ← xr1
i +

F
2
· (xri

1
− xri

2
+ xri

3
− xri

4
) (3.10)

12

where xi
r1

, xi
r2

, xi
r3

and xi
r4

are four distinct population members such that f (xi
r1
) ≤ f (xi

r2
) and f (xi

r3
) ≤ f (xi

r4
).

Das et al. proposed a new neighborhood-based mutation scheme [DACK09] in a desire to improve DE/target-

to-best/1, which performs poorly on multimodal fitness landscapes. The resulting algorithm, called DEGL,

uses neighborhoods similar to PSO in order to prevent the premature convergence which DE/target-to-best/1

displays because the entire population is attracted by the same best found solution. In DEGL, a radius k is

chosen, which determines the size of every particle’s neighborhood (2k). The neighborhood of every vector xi

in the population includes the k vectors to the left and to the right of it in the array, such that xi−1 and xi+1 are

xi’s direct neighbors. A local and a global vector are created in order to compose the donor vector. The local

vector is created as follows:

`i ← xi + α · (xn besti
− xi) + β · (xp − xq) (3.11)

where n besti is the index of the vector in the neighborhood of xi with the best objective function value, p and

q are indices of two random vectors in the neighborhood of xi, and α and β are scaling factors. The global

vector is created similarly:

gi ← xi + α · (xg best − xi) + β · (xr1 − xr2) (3.12)

where g best is the index of the best vector in the entire population, and r1, r2 are two random indices with

r1 6= r2 6= i. Finally, the donor vector is created by combining the local and global vector:

vi ← wi · gi + (1− wi) · `i (3.13)

where wi is a self-adaptive scalar weight in (0, 1), which is updated for every vector, in every generation.

The update procedure is outlined in [DACK09]. In this work, the values of α and β are chosen according to

recommendations of the authors: α = β = F. A value of neighborhood radius k = 3 is used as a result of our

previous experimentation.

The final mutation technique that will be considered in this paper, known as NSDE, which was introduced by

Yang et al. [YYH07], performs mutation using:

vi ← xri
1
+

 di · N(0.5, 0.5) if rand(0, 1) < 0.5

di · δ otherwise
(3.14)

where di = xri
2
− xri

3
, N is a normal distribution, and δ is a Cauchy random variable with location parameter

t = 0 and scale parameter s = 1.

13

3.4 Opposition-based Generation Jumping

Opposition-based generation jumping is one of three components of Opposition-Based Differential Evolu-

tion [RTS08]. It forces the evolutionary process to jump to a fitter generation. After the usual process in each

iteration of mutation, crossover and selection, there is a chance Jr that opposition-based generation jumping

occurs. When this happens, the opposite of the current population, OP, is calculated and the M fittest vectors

from the set P ∪OP are selected. It is important to note that the minimum and maximum values of every

variable in the current population are used instead of the predefined aj and bj. If we would use the static

boundaries, like in opposition-based population initialization, we would lose progress when vectors jump out

of the search space that has shrunken during the progression of the run. For Jr, the authors recommend a

value of 0.3 which will be used in this work.

14

Chapter 4

Experimental Setup

A framework has been implemented to create PSO- and DE instances out of arbitrary combinations of modules.

The framework is written in C++ and uses the COCO (COmparing Continuous Optimizers) benchmarking

framework [HAM+
16] to measure the performance of the created algorithms. Various topologies, velocity

update functions, mutation strategies, etc. have been implemented in the framework, including the ones that

are experimented with in this work. A suite of PSO or DE instances can be instantiated, that contains every

possible instance that can be created with the implemented modules, or with just a desired subset of modules.

It is possible to create all possible combinations of operators and experiment with the resulting algorithm.

The structure of the framework allows for easy implementation of extensions, such as new PSO topologies,

velocity update functions, DE initialization strategies, mutation techniques, etc.

In the experiments conducted, a PSO instance is seen as a combination of three modules: the population

topology, velocity update technique and the ”synchronicity” of the updates of the pbesti’s and gbest’s (either

synchronous or asynchronous). The eight population topologies discussed in section 2.3 have been implemented

in the framework, as well as the four different velocity update strategies as mentioned in section 2.2. Velocity

update strategies and population topologies can be combined arbitrarily in a PSO instance, and every PSO

instance can have synchronous or asynchronous updates. Combining every velocity update strategy, population

topology and synchronicity results in a total of 8 · 4 · 2 = 64 different PSO instances.

A DE instance is composed of four modules: the initialization strategy, mutation technique, crossover technique,

and opposition-based generation jumping, which can be either enabled or disabled. The initialization technique

can be one of the two that were discussed in section 3.2. The second module, mutation, can be realized by one

of the eight different techniques described in section 3.3. One of the two crossover techniques described in

section 3 can be used for the third module. By combining all possible modules we also obtain 2 · 8 · 2 · 2 = 64

different DE instances.

All instances are tested on the COCO benchmarking framework [HAM+
16], containing 24 test functions. Every

PSO- and DE instance is given a budget of 104D function evaluations. As a result of previous experimentation,

a population size of 6D and 8D are used for PSO and DE, respectively. Furthermore, the mutation rate F has

15

value 0.5 and crossover rate Cr = 0.7 for DE. To get a reliable result, every instance is run on the first function

instance of every function for a total of 50 times.

The experiment is run on the DAS-5 cluster, which allows all 64 variants to be run in parallel, using MPI. COCO

produces data of the performance of every PSO- and DE instance on every function, on every dimension. As a

measure of performance, the average runtime (aRT) is used, which is the total number of function evaluations

an algorithm used to reach a certain target during all of its runs (in our case 50), divided by the number of

successful runs. The measured aRT’s of the best performing algorithms on every test function during the

Black-Box Optimization Benchmarking workshop in 2009 are also provided by COCO, which are used as a

reference. After post-processing the data with the tool provided by COCO, we obtain tables for every function

on every dimension, containing the aRT’s of every PSO- and DE instance divided by the aRT of the reference

algorithm. In order to determine which instance performs best on a given function group and dimension, a

ranking is created for every function group, for every dimension. This is done by sorting the instances on

their aRT ratios on every one of the seven targets. If the target was never reached, the instance will always get

the lowest possible rank: 64. If two instances have the same aRT ratio, they will get the same rank. Then, the

’average rank’ of every instance on this function and dimension is calculated by averaging the seven ranks. In

order to get a more easily digestible result, we calculate the average rank of every instance on every function

group, instead of on individual functions. This is simply done by taking the average of the members of every

function group. The function groups will be referred to by using a value 1 . . . 5. The corresponding function

group descriptions are provided in table 4.1.

Description
1 Seperable functions
2 Functions with low or moderate conditioning
3 Unimodal functions with high conditioning
4 Multi-modal functions with adequate global structure
5 Multi-modal functions with weak global structure

Table 4.1: COCO function group descriptions

16

Chapter 5

Naming Convention of Algorithms

In order to easily refer to any PSO- and DE instance, a naming scheme is introduced. Because any instance can

be characterized by the modules it is composed of, it will be named using abbreviations of the modules. A PSO

instance is named using the following scheme: PSO X Y Z, where X represents the velocity update strategy,

Y denotes the topology and Z is either S or A, which represent synchronous and asynchronous updates,

respectively. Tables 5.1 and 5.2 show the abbreviations for all velocity update strategies and topologies.

DE instances are named using a similar scheme: it can be described by DE W X Y Z, where W denotes the

initialization strategy, X is the mutation technique, Y the crossover technique, and Z represents opposition-

based generation jumping. The initialization technique W is either O (opposition-based) or R (random). The

Y can be substituted by a B if binomial crossover is used, and E in the case of exponential crossover. The

value for Z is either 0 or 1, which shows whether opposition-based generation jumping is enabled or disabled.

Lastly, the mutation technique X can be one of the eight described in section 3.3. The eight corresponding

abbreviations can be found in table 5.3.

X Velocity update
B Bare-Bones PSO (BPSO)
F Fully-informed PSO (FIPS)
I Inertia weight
D Decreasing inertia weight

Table 5.1: Velocity update encodings

Y Topology
L lbest (ring)
G gbest (fully connected)
R Random graph
N Von Neumann
W Wheel
I Increasing connectivity
D Decreasing connectivity
M Dynamic multi-swarm

Table 5.2: Population topology encod-
ings

X Mutation
R1 DE/rand/1

B1 DE/best/1

TTB1 DE/target-to-best/1

B2 DE/best/2

R2 DE/rand/2

R2D DE/rand/2/dir
TOP Topology-based (DEGL)
NS NSDE

Table 5.3: Mutation encodings

17

Chapter 6

Results

Table 6.1 shows the PSO instances that performed best in the conducted experiments on the various dimensions

and function groups. It is important to note that these results do not necessarily prove the superior performance

of one algorithm instance over another. The number of function evaluations and runs that every algorithm

configuration was given on each of the function instances is not large enough to facilitate a decisive conclusion

about the relative performance of the algorithms. In many cases, the best-performing instance on some

dimension and function group is closely followed by an instance which only performed slightly worse. In

these cases, the ranking based on the performance of the instances could partly be a result of the random

element of both PSO and DE. It is possible that different results are obtained when running the instances for a

larger number of times on every problem.

2-D 5-D 20-D
1 PS B G S PS B D S PS B G S
2 PS I N S PS F R S PS F M S
3 PS I N A PS F N A PS F R S
4 PS B N S PS F R S PS F R S
5 PS I M A PS I M A PS F L S

Table 6.1: Best performing PSO instances on all function groups and dimensions

A very apparent observation is that Bare-Bones PSO performed significantly better than any other velocity

update (in BPSO’s case position update) strategy on the first function group. In all dimensions, the top 7 to 15

best performing algorithms use BPSO. Out of the topologies we considered, BPSO shows the best performance

in combination with the gbest and the decreasing connectivity topology. In 2 dimensions, BPSO is also the

best performing velocity update strategy on function group 4. On the other three function groups, the inertia

weight is the best choice, particularly when combined with the Von Neumann- or dynamic multi-swarm

topology.

When looking at 5 dimensions, we see that the Fully-Informed Particle Swarm performs well on nearly all

function groups, namely 2, 3, 4, and 5. The best topologies to use in combination with FIPS are Von Neumann,

lbest and the random topology. The performance of the inertia weight in 5-D is comparable to that of FIPS on

18

function groups 2, 3, and 5 when using it with the increasing connectivity-, dynamic multi-swarm-, or the Von

Neumann topology.

In 20-D, FIPS remains a good, if not the best choice for every function group except the first. On function

groups 2, 3, and 4, FIPS is best combined with the random, dynamic multi-swarm, or von Neumann topology.

However, FIPS performed best on function group 5 when it was used with the lbest topology. The decreasing

inertia weight seems to perform relatively well on the fifth function group, in all three dimensionalities, when

combined with the Von Neumann- or multi-swarm topology.

In general, the best choice of using synchronous- or asynchronous updates appears to depend on the topology

that is used. For example, the gbest topology favors synchronous updates, and instances with the lbest topology

generally work better with asynchronous updates. There does, however not seem to be a rule that decides

whether to choose for synchronous or asynchronous updates, for any topology.

It is clear that the PSO algorithm is very sensitive to the choice of modules. An instance that shows poor

performance on one function group can perform great on another. The optimal combination of modules also

varies between dimensionalities, which further complicates choosing a PSO instance for a given function

group.

A similar summary of the best performing DE instances is shown in table 6.2. The best/2 scheme consistently

performs well in two dimensions, especially on function groups 1,2 and 3. On function group 4 and 5, instances

using target-to-best/1 or rand/1 mutation also showed good performance. The mutation scheme appears to

be the only module with significant influence on the performance of a DE instance in 2-D. When an instance

with a certain mutation scheme performs well, most or all of the other instances with this mutation scheme

also perform well. Opposition-based initialization and -generation jumping do, however seem to improve the

performance of poorly performing instances to some extent.

2-D 5-D 20-D
1 DE R B2 BIN 0 DE R B1 EXP 1 DE R B1 EXP 1
2 DE O B2 EXP 0 DE R B1 EXP 0 DE O B2 BIN 1
3 DE O B2 BIN 1 DE R TTB1 BIN 0 DE R B1 BIN 1
4 DE R R1 EXP 0 DE O NS BIN 1 DE R TTB1 BIN 1
5 DE O B2 BIN 1 DE R B1 BIN 1 DE O TTB1 BIN 0

Table 6.2: Best performing DE instances on all function groups and dimensions

In 5 dimensions, the best/2 scheme is no longer most successful. The best/1 scheme is part of successful

instances on all function groups. The performance of best/1 is only topped on function groups 3 and 4, by

target-to-best/1 and the NSDE mutation scheme, respectively. Surprisingly, DE O NS BIN 1 was the best

performing instance on function group 4, while no other instances using NSDE made it to the top 10. Function

groups 1 and 4 show a clear preference regarding the crossover scheme. Exponential crossover shows much

better performance on function group 1, while the better crossover scheme for function group 4 is clearly

binomial.

19

In 20 dimensions, this pattern becomes even more clear, now for all function groups. The preferred crossover

schemes for function groups 1 and 4 remain the same. For the other function groups, binomial crossover is the

most competitive choice. Choosing the right crossover scheme seems even more crucial than the mutation

scheme, in 20-D. Best/1 again performed well on all function groups. Target-to-best/1 also showed good

performance compared to others, except on function group 1. The best/2 scheme was used in the best

instances on function group 2, specifically in combination with opposition-based generation jumping. In

general, opposition-based generation jumping seems to be beneficial to most instances, but the difference

in performance is generally not large. The effect of opposition-based initialization on the performance of an

instance does not show in 20-D.

Similar to PSO, choosing the right combination of modules for a DE instance for a certain job is vital.

The performance differences between DE instances are, however, generally smaller than those of PSO. The

performance of the best PSO instance on a certain function group and dimension is often similar to that of the

best DE instance, but on average DE performs much better than PSO.

ECDF graphs of some of the best-performing instances are provided in Appendix A. Tables with the aRT’s of

all instances in 2-D and 5-D on a fixed target are available in Appendix B.

20

Chapter 7

Conclusion

A framework has been created in which characteristic parts (modules) of existing Particle Swarm Optimization-

and Differential Evolution variants are extracted and combined into new instances. Modules can be combined

arbitrarily in the framework, which allows experimentation with unorthodox instances that have not been

considered before. In this work, 64 PSO instances and 64 DE instances have been generated by the framework

and have been tested on the 24 test functions provided by the COCO benchmarking framework. By introducing

a method to rank the instances with regard to their performance, we obtain a ranking of all the instances

on various function groups and dimensions. Various interesting PSO- and DE instances have been found

that outperform the classical variants on given function groups and dimensions. As to be expected, no single

instance performs best on all functions and dimensions. However, we can conclude that some combinations of

modules form excellent instances that outperform their original counterparts.

To give an example, the Fully Informed Particle Swarm (FIPS) showed great performance on a subset of the test

functions, when used in conjunction with the dynamic multi-swarm topology and the topology with random

connections between particles. Bare-Bones PSO combined with a decreasing connectivity topology also showed

good performance. More specific instances that performed well can be named, as well as individual or pairs of

modules that have proven to be successful for certain jobs.

We observed large performance differences between various DE mutation- and crossover schemes on specific

function groups and dimensionalities. It is important to carefully consider which operators are used when

choosing a DE instance because the optimal algorithm is strongly dependant on the problem at hand. In partic-

ular, the choice of crossover scheme becomes very important as the dimensionality grows. Another interesting

observation is that opposition-based generation jumping generally contributes to a better performance of a DE

instance.

Differential Evolution seems to be the more competitive optimization algorithm of the two. Although the best

PSO instance on a given problem generally performs similarly to the best performing DE instance, PSO has

much larger differences in performance which makes choosing the optimal algorithm a lot more difficult.

21

Chapter 8

Future Work

Only a limited amount of modules have been experimented with in this work, in order to restrict the resulting

PSO- and DE instances to a reasonable number. The benefit of ’only’ considering 128 instances is that we can

give every instance a relatively large objective function evaluation budget and many runs on every problem, to

get a more reliable result. The obvious downside is that many topologies, velocity update strategies, mutation

techniques and crossover techniques are left unconsidered.

Moreover, an interesting extension of this approach is to combine all modules from PSO and from DE and to

allow for arbitrary combinations of their modules, thereby increasing the design space significantly. Similar to

the combinatorial design space that was introduced by van Rijn et al. for evolution strategies [vWvB16], we

can then generate and compare thousands of new algorithms or even use a genetic algorithm to search this

algorithm design space.

22

Bibliography

[CK02] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and convergence in a mul-

tidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1):58–73, Feb

2002.

[DACK09] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar. Differential evolution using a neighborhood-

based mutation operator. IEEE Transactions on Evolutionary Computation, 13(3):526–553, June 2009.

[EK95] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. Proceedings of the sixth

international symposium on micro machine and human science, pages 39–43, 1995.

[FJ04] V. Feoktistov and S. Janaqi. Generalization of the strategies in differential evolution. In 18th

International Parallel and Distributed Processing Symposium, 2004. Proceedings., pages 165–, April 2004.

[HAM+
16] N. Hansen, A. Auger, O. Mersmann, T. Tušar, and D. Brockhoff. COCO: A platform for comparing

continuous optimizers in a black-box setting. ArXiv e-prints, arXiv:1603.08785, 2016.

[Ken99] J. Kennedy. Small worlds and mega-minds: effects of neighborhood topology on particle swarm

performance. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.

99TH8406), volume 3, pages 1931–1938 Vol. 3, July 1999.

[KM02a] J. Kennedy and R. Mendes. Population structure and particle swarm performance. In Proceedings

of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), volume 2, pages

1671–1676 vol.2, May 2002.

[KM02b] J. Kennedy and R. Mendes. Population structure and particle swarm performance. In Proceedings

of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), volume 2, pages

1671–1676 vol.2, May 2002.

[LS05] J. J. Liang and P. N. Suganthan. Dynamic multi-swarm particle swarm optimizer. In Proceedings

2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pages 124–129, June 2005.

[RTS08] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama. Opposition-based differential evolution.

IEEE Transactions on Evolutionary Computation, 12(1):64–79, Feb 2008.

23

[SE98] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In 1998 IEEE International Conference

on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat.

No.98TH8360), pages 69–73, May 1998.

[SP95] Rainer Storn and Kenneth Price. Differential evolution: A simple and efficient adaptive scheme for

global optimization over continuous spaces. Journal of Global Optimization, 23, 01 1995.

[Sug99] P. N. Suganthan. Particle swarm optimiser with neighbourhood operator. In Proceedings of the 1999

Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), volume 3, pages 1958–1962 Vol.

3, July 1999.

[vWvB16] S. van Rijn, H. Wang, M. van Leeuwen, and T. Bck. Evolving the structure of evolution strategies.

In 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–8, Dec 2016.

[YYH07] Zhenyu Yang, Xin Yao, and Jingsong He. Making a Difference to Differential Evolution, pages 397–414.

Springer Berlin Heidelberg, 12 2007.

24

Appendix A

ECDF Graphs

Below are the ECDF graphs of 5 of the best PSO instances and 5 of the best DE instances, on all 5 function

groups in 5 dimensions and 20 dimensions. The best algorithm from the Black-Box Optimization Benchmarking

workshop in 2009 is highlighted as a thick yellow line as a reference. The ECDF graphs in 2 dimensions are

omitted because they are unclear and not as informative due to the smaller performance differences. We

recommend Table B.1 and Table B.2 as a reference for the instances in 2 dimensions instead.

Function group 1, 5-D Function group 2, 5-D

Function group 3,5-D Function group 4, 5-D

25

Function group 5, 5-D Function group 1, 20-D

Function group 2, 20-D Function group 3, 20-D

Function group 4, 20-D Function group 5, 20-D

26

Appendix B

aRT Tables

Tables B.1 and B.2 on the next two pages contain the aRT’s of every PSO- and DE instance on target fopt + 10−7

of test functions 1, 6, 10, 15 and 20, in 2-D and 5-D, divided by the respective best aRT measured during

BBOB-2009. The aRT’s in 20 dimensions are omitted because in most cases, instances never reached the final

target. The most common instances and the best value(s) in every column are highlighted in bold.

27

Table B.1: aRT of every PSO instance on target fopt + 10−7 of several test functions, in 2-D and 5-D, divided by the respective
best aRT measured during BBOB-2009.

Instance 2-D 5-D

f-1 f-6 f-10 f-15 f-20 f-1 f-6 f-10 f-15 f-20

PS B D A 57.00 10.00 ∞ 4.40 6.70 134.00 6.70 ∞ ∞ 1.20
PS B D S 50.00 9.10 ∞ 3.60 7.80 123.00 6.40 ∞ 116.00 1.40

PS B G A 54.00 10.00 ∞ 5.00 6.70 138.00 6.70 ∞ 57.00 2.50

PS B G S 49.00 8.60 ∞ 3.70 7.60 121.00 6.10 ∞ 57.00 1.90

PS B I A 98.00 21.00 ∞ 4.80 11.00 287.00 8.80 ∞ 116.00 1.20
PS B I S 82.00 18.00 ∞ 4.70 12.00 259.00 8.30 ∞ ∞ 1.80

PS B L A 100.00 23.00 ∞ 4.60 11.00 342.00 17.00 ∞ ∞ 3.70

PS B L S 82.00 20.00 ∞ 6.50 13.00 305.00 16.00 ∞ 58.00 2.50

PS B M A 87.00 20.00 ∞ 3.90 9.00 292.00 10.00 ∞ 38.00 1.40

PS B M S 83.00 18.00 ∞ 3.80 8.30 271.00 10.00 ∞ 115.00 1.80

PS B N A 66.00 13.00 ∞ 4.30 8.90 217.00 9.20 ∞ ∞ 1.50

PS B N S 60.00 11.00 ∞ 4.30 7.20 192.00 8.30 ∞ ∞ 1.50

PS B R A 84.00 17.00 ∞ 5.20 8.70 248.00 11.00 ∞ 116.00 1.40

PS B R S 73.00 14.00 ∞ 6.00 7.70 229.00 10.00 ∞ 38.00 2.60

PS B W A 84.00 15.00 ∞ 7.20 8.90 225.00 10.00 ∞ 58.00 2.40

PS B W S 69.00 13.00 ∞ 5.70 7.20 200.00 9.30 ∞ ∞ 2.00

PS D D A 383.00 28.00 44.00 3.00 17.00 678.00 11.00 17.00 ∞ ∞
PS D D S 373.00 26.00 46.00 3.40 13.00 661.00 13.00 16.00 ∞ ∞
PS D G A 371.00 27.00 45.00 3.10 17.00 657.00 12.00 16.00 ∞ 22.00

PS D G S 376.00 27.00 45.00 3.80 15.00 669.00 21.00 19.00 115.00 22.00

PS D I A 433.00 31.00 50.00 3.30 14.00 782.00 11.00 16.00 ∞ 15.00

PS D I S 440.00 31.00 50.00 3.40 12.00 772.00 11.00 16.00 57.00 15.00

PS D L A 461.00 33.00 56.00 3.80 15.00 1091.00 18.00 23.00 ∞ 45.00

PS D L S 469.00 33.00 51.00 4.20 14.00 1077.00 16.00 23.00 ∞ 22.00

PS D M A 365.00 29.00 50.00 3.50 15.00 790.00 12.00 19.00 117.00 8.60

PS D M S 385.00 28.00 48.00 3.60 14.00 779.00 12.00 18.00 115.00 22.00

PS D N A 415.00 29.00 47.00 3.50 15.00 794.00 11.00 18.00 116.00 7.10

PS D N S 405.00 28.00 46.00 3.20 16.00 785.00 11.00 17.00 ∞ 15.00

PS D R A 436.00 30.00 54.00 4.30 15.00 859.00 13.00 19.00 ∞ 22.00

PS D R S 435.00 31.00 52.00 4.40 14.00 839.00 12.00 18.00 116.00 22.00

PS D W A 499.00 33.00 55.00 4.00 18.00 883.00 67.00 88.00 ∞ ∞
PS D W S 478.00 33.00 53.00 4.00 21.00 846.00 62.00 25.00 117.00 ∞
PS F D A 128.00 8.80 118.00 3.90 22.00 961.00 ∞ ∞ ∞ ∞
PS F D S 115.00 20.00 550.00 3.80 28.00 153.00 ∞ ∞ 115.00 ∞
PS F G A 125.00 9.00 53.00 3.60 23.00 1082.00 ∞ ∞ ∞ ∞
PS F G S 115.00 10.00 3280.00 4.20 35.00 152.00 ∞ ∞ ∞ ∞
PS F I A 220.00 18.00 30.00 2.30 10.00 447.00 9.20 9.10 4.50 ∞
PS F I S 221.00 17.00 29.00 2.80 11.00 434.00 6.50 8.70 4.30 ∞
PS F L A 219.00 19.00 29.00 2.60 8.50 660.00 13.00 16.00 58.00 11.00

PS F L S 222.00 17.00 28.00 2.50 10.00 608.00 12.00 15.00 18.00 11.00

PS F M A 265.00 21.00 45.00 2.90 11.00 687.00 13.00 20.00 14.00 2.10

PS F M S 266.00 20.00 43.00 2.60 10.00 665.00 12.00 19.00 10.00 2.90

PS F N A 168.00 13.00 18.00 1.70 8.50 365.00 7.50 8.30 6.00 ∞
PS F N S 165.00 12.00 17.00 2.10 11.00 335.00 6.00 7.90 4.70 22.00

PS F R A 185.00 14.00 22.00 2.20 9.40 424.00 7.90 9.40 6.70 7.20

PS F R S 181.00 14.00 21.00 1.90 8.80 397.00 7.30 9.20 3.20 5.00

PS F W A 328.00 47.00 128.00 6.10 46.00 1439.00 466.00 ∞ ∞ ∞
PS F W S 312.00 39.00 131.00 10.00 49.00 1569.00 262.00 ∞ ∞ ∞
PS I D A 117.00 9.30 16.00 3.00 17.00 233.00 7.90 10.00 ∞ 44.00

PS I D S 112.00 9.40 16.00 3.10 18.00 218.00 23.00 19.00 ∞ 11.00

PS I G A 115.00 9.40 16.00 4.60 9.00 227.00 12.00 10.00 ∞ ∞
PS I G S 112.00 9.20 17.00 3.60 14.00 219.00 42.00 124.00 115.00 15.00

PS I I A 141.00 12.00 18.00 3.20 12.00 369.00 6.60 8.50 ∞ ∞
PS I I S 141.00 11.00 17.00 3.40 12.00 343.00 6.30 8.00 117.00 15.00

PS I L A 142.00 11.00 17.00 3.30 8.40 519.00 12.00 15.00 117.00 22.00

PS I L S 134.00 12.00 17.00 3.40 15.00 476.00 11.00 13.00 ∞ 44.00

PS I M A 136.00 10.00 16.00 3.40 8.70 356.00 7.50 10.00 ∞ 22.00

PS I M S 126.00 10.00 16.00 2.50 10.00 340.00 7.00 9.00 57.00 ∞
PS I N A 120.00 10.00 16.00 2.20 11.00 299.00 6.10 8.50 ∞ 22.00

PS I N S 120.00 10.00 16.00 2.50 14.00 277.00 5.30 8.10 ∞ 11.00

PS I R A 132.00 10.00 16.00 3.60 10.00 334.00 7.50 10.00 117.00 ∞
PS I R S 129.00 11.00 16.00 2.50 11.00 301.00 6.80 9.00 58.00 15.00

PS I W A 146.00 11.00 18.00 4.30 16.00 369.00 107.00 57.00 ∞ ∞
PS I W S 137.00 12.00 18.00 3.60 19.00 322.00 76.00 25.00 ∞ 45.00

28

Table B.2: aRT of every DE instance on target fopt + 10−7 of several test functions, in 2-D and 5-D, divided by the respective
best aRT measured during BBOB-2009.

Instance 2-D 5-D

f-1 f-6 f-10 f-15 f-20 f-1 f-6 f-10 f-15 f-20

DE O B1 BIN 0 49.00 5.10 22.00 2.80 11.00 114.00 3.10 17.00 58.00 2.70

DE O B1 BIN 1 54.00 8.00 24.00 1.80 11.00 129.00 3.70 14.00 22.00 2.30

DE O B1 EXP 0 50.00 5.10 13.00 3.40 11.00 145.00 4.00 12.00 29.00 1.30

DE O B1 EXP 1 54.00 7.20 27.00 2.80 13.00 164.00 4.80 11.00 11.00 0.84

DE O B2 BIN 0 70.00 7.40 8.10 1.10 7.70 207.00 7.00 13.00 ∞ 1.20

DE O B2 BIN 1 69.00 7.20 7.60 1.00 7.90 198.00 6.10 17.00 29.00 0.88

DE O B2 EXP 0 71.00 7.50 8.10 1.20 6.80 245.00 9.00 13.00 ∞ 0.52

DE O B2 EXP 1 70.00 7.10 7.80 0.97 9.00 226.00 6.90 17.00 57.00 0.44

DE O NS BIN 0 110.00 12.00 13.00 2.00 4.80 370.00 9.30 37.00 8.40 0.24

DE O NS BIN 1 100.00 14.00 12.00 1.80 4.50 319.00 8.70 41.00 16.00 0.32

DE O NS EXP 0 109.00 11.00 13.00 1.80 4.80 382.00 11.00 46.00 10.00 0.23

DE O NS EXP 1 95.00 15.00 11.00 2.00 6.00 327.00 10.00 37.00 13.00 0.24

DE O R1 BIN 0 88.00 72.00 14.00 2.30 4.40 295.00 7.40 20.00 57.00 0.26

DE O R1 BIN 1 81.00 1095.00 16.00 3.00 18.00 269.00 30.00 26.00 9.50 0.56

DE O R1 EXP 0 88.00 69.00 14.00 2.10 6.50 315.00 8.90 21.00 ∞ 0.20
DE O R1 EXP 1 85.00 917.00 12.00 2.80 14.00 278.00 132.00 26.00 11.00 0.25

DE O R2D BIN 0 67.00 7.00 11.00 4.00 5.20 261.00 6.40 22.00 116.00 0.66

DE O R2D BIN 1 71.00 21.00 12.00 5.30 8.90 261.00 6.20 25.00 57.00 1.00

DE O R2D EXP 0 65.00 6.70 21.00 4.60 6.90 274.00 8.30 26.00 57.00 0.28

DE O R2D EXP 1 72.00 12.00 14.00 5.60 8.80 276.00 7.00 28.00 38.00 0.40

DE O R2 BIN 0 106.00 11.00 13.00 1.50 4.80 422.00 11.00 ∞ ∞ ∞
DE O R2 BIN 1 90.00 100.00 11.00 1.80 5.10 326.00 8.20 ∞ 116.00 1.90

DE O R2 EXP 0 106.00 11.00 13.00 1.60 4.90 420.00 13.00 ∞ ∞ 3.00

DE O R2 EXP 1 93.00 117.00 11.00 1.60 8.90 324.00 8.70 ∞ ∞ 0.89

DE O TOP BIN 0 79.00 31.00 29.00 2.80 13.00 164.00 906.00 140.00 ∞ 4.00

DE O TOP BIN 1 140.00 389.00 27.00 2.30 11.00 172.00 289.00 34.00 116.00 1.40

DE O TOP EXP 0 69.00 29.00 21.00 3.00 13.00 197.00 51.00 97.00 ∞ 5.90

DE O TOP EXP 1 103.00 426.00 24.00 2.10 14.00 201.00 354.00 25.00 ∞ 1.30

DE O TTB1 BIN 0 68.00 5.60 11.00 1.20 10.00 160.00 5.50 10.00 8.20 2.20

DE O TTB1 BIN 1 65.00 72.00 13.00 1.30 11.00 162.00 247.00 14.00 6.30 1.60

DE O TTB1 EXP 0 66.00 8.50 10.00 1.30 11.00 203.00 4.20 11.00 57.00 1.20

DE O TTB1 EXP 1 64.00 59.00 14.00 1.20 7.30 198.00 33.00 13.00 38.00 0.77

DE R B1 BIN 0 49.00 7.00 23.00 3.70 11.00 113.00 3.10 16.00 18.00 4.50

DE R B1 BIN 1 52.00 8.50 22.00 2.30 17.00 128.00 3.80 12.00 37.00 1.70

DE R B1 EXP 0 47.00 5.20 20.00 3.10 13.00 145.00 4.20 10.00 16.00 1.70

DE R B1 EXP 1 53.00 11.00 23.00 3.70 14.00 160.00 4.80 11.00 16.00 0.77

DE R B2 BIN 0 71.00 7.60 8.30 1.00 8.30 205.00 7.10 13.00 ∞ 0.76

DE R B2 BIN 1 68.00 7.50 7.90 1.20 5.80 202.00 5.90 17.00 116.00 1.40

DE R B2 EXP 0 72.00 7.60 8.30 1.20 6.60 245.00 9.10 13.00 ∞ 0.50

DE R B2 EXP 1 70.00 7.20 7.70 1.10 6.20 230.00 6.90 17.00 16.00 0.38

DE R NS BIN 0 111.00 12.00 14.00 2.00 4.50 383.00 10.00 51.00 22.00 0.35

DE R NS BIN 1 99.00 16.00 12.00 1.90 6.00 322.00 8.80 43.00 7.90 0.30

DE R NS EXP 0 112.00 12.00 13.00 2.70 4.40 398.00 11.00 42.00 15.00 0.21

DE R NS EXP 1 101.00 14.00 12.00 1.90 5.70 332.00 10.00 50.00 15.00 0.26

DE R R1 BIN 0 89.00 89.00 10.00 2.00 4.70 302.00 7.30 21.00 ∞ 0.25

DE R R1 BIN 1 84.00 1055.00 9.30 2.00 11.00 271.00 35.00 26.00 7.20 0.42

DE R R1 EXP 0 92.00 93.00 10.00 1.20 3.20 317.00 9.00 21.00 ∞ 0.21

DE R R1 EXP 1 84.00 1065.00 11.00 2.70 14.00 282.00 134.00 26.00 7.80 0.38

DE R R2D BIN 0 66.00 7.00 12.00 3.80 6.90 262.00 6.40 24.00 57.00 0.68

DE R R2D BIN 1 73.00 11.00 13.00 5.40 6.20 266.00 6.10 27.00 22.00 0.99

DE R R2D EXP 0 67.00 6.90 7.50 4.10 7.20 277.00 8.20 27.00 116.00 0.39

DE R R2D EXP 1 69.00 21.00 8.10 4.60 7.30 284.00 7.10 25.00 ∞ 0.36

DE R R2 BIN 0 110.00 11.00 13.00 1.40 4.80 433.00 11.00 ∞ ∞ ∞
DE R R2 BIN 1 92.00 101.00 11.00 1.40 5.70 325.00 8.20 2822.00 ∞ 2.10

DE R R2 EXP 0 110.00 11.00 13.00 1.50 4.70 423.00 13.00 ∞ ∞ 3.20

DE R R2 EXP 1 93.00 99.00 11.00 1.60 6.40 329.00 8.70 ∞ ∞ 0.78

DE R TOP BIN 0 109.00 39.00 55.00 4.50 16.00 245.00 7.70 18.00 ∞ 11.00

DE R TOP BIN 1 258.00 421.00 38.00 3.20 14.00 200.00 6.50 30.00 116.00 1.20

DE R TOP EXP 0 76.00 44.00 43.00 3.80 16.00 279.00 9.10 19.00 ∞ 45.00

DE R TOP EXP 1 61.00 389.00 37.00 2.80 11.00 199.00 598.00 25.00 ∞ 1.30

DE R TTB1 BIN 0 70.00 9.50 13.00 1.30 12.00 160.00 4.60 12.00 6.40 2.50

DE R TTB1 BIN 1 66.00 58.00 14.00 1.40 13.00 161.00 135.00 12.00 5.80 1.40

DE R TTB1 EXP 0 67.00 8.30 17.00 1.30 8.70 202.00 4.20 10.00 ∞ 0.99

DE R TTB1 EXP 1 65.00 91.00 16.00 1.30 11.00 199.00 45.00 13.00 28.00 0.75

29

	Introduction
	Particle Swarm Optimization
	The Original Particle Swarm Optimization Algorithm
	Velocity Update Strategies
	Population Topologies

	Differential Evolution
	The Original Differential Evolution Algorithm
	Population Initialization Strategies
	Mutation Techniques
	Opposition-based Generation Jumping

	Experimental Setup
	Naming Convention of Algorithms
	Results
	Conclusion
	Future Work
	ECDF Graphs
	aRT Tables

