

Automated Detection of Performance
Regression in New Versions of PostGreSQL.

George-Alexander Anastasiou

Academic Supervisors: Stefan Manegold, Arno Knobbe

Centrum Wiskunde & Informatica Supervisors: Hannes Mühleisen,
Mark Raasveldt

2

Contents:

1Introduction………………………………..…………………………….....…...….5

2 Related Work………………………………………………………………...…....8

 2.1 TPC-H Benchmarking…………………………………………………..8

 2.2 PostGreSQL and Benchmarking…………………...…………..……11

 2.3 Python with combination of Database Management systems.…...13

3 Implementation and Evaluation ………………………………….………..…..14

3.1 - Analyzing the first tool and the results…………………………...…14

3.2 - Analyzing the second tool and the results…….....…………..…….30

4 Implementing Automation in Software Quality Assurance ……………..…..33

5 Conclusions and Future work ……………………………………….………...38

6 Bibliography …………………….…………………………………………….…40

7 Appendices …………………………………………..……………………...…..41

3

Dedications

This thesis is dedicated to :
Mark Raasveldt, who has been a beacon of light in the darkness and complexity of
database systems.
Michai Varga, who was always ready to unsheathe his Python sword, and help me tackle
programming problems.
Stefan Manegold, for his trust, guidance, and for accepting me into CWI.

4

Abstract:

Information Technology is an important structural part of organizations. Companies invest
large amounts of capital and man power into their IT infrastructure. The majority of those
investments are spent on maintaining and updating existing infrastructure. It is of vital
importance to update software packages in order to fix security leaks and bugs in the
software. Security leaks can cause immense damage to a firm and its business, and a loss
of trust by clients if their private information is leaked.

However, updating software packages can introduce new problems as well. Whenever a
software package is updated, the possibility of a regression occurring exists. For this
reason, companies hire large Quality Assurance (QA) departments that test before every
upgrade whether or not such regressions occur in the software. This costs companies a
large amount of manpower and money.

A regression can occur in several forms. The most common form of a regression is that a
new bug is introduced, where a workflow of a program that used to work correctly now no
longer works correctly. For this type of regression, many types of automated tests and
testing frameworks have been introduced. However, more subtle regressions also exist. In
particular, one form of regression that is currently not tested for automation is the
performance regression. This type of regression does not introduce actual faults in the
program, but rather causes existing workflows to perform less efficiently than they did
before the software update. This can cause severe problems in the business workflow, as
severe performance regressions can slow down the operational system or introduce
latency to the clients depending on where it occurs.

In this work, we focus on automatically detecting performance regressions to assist the
quality assurance departments of businesses and help prevent severe performance
regressions form occurring. In particular, we focus on Relational Database Management
Systems (RDBMSs) which are used by the majority of businesses and where low latency
is of vital importance to the business process.

5

Chapter 1

Introduction

The effectiveness of data management within firms has become more important due to the
large increases in storage information capacity and the increasing amount of data
generated by the firms. Data management includes many topics, such as data security,
sharing, governance and warehousing. Data management is crucial regarding to how
many businesses operate. To exploit the data a firm has, Relational Database
Management Systems (RDBMS) are implemented and are used for maintaining
databases, based on the relation model of data. Usually, all relationship database
systems use the Structure Query Language (SQL) to query the data. SQL was particularly
designed to address structured data that have relations between the different entities of
the data. [1]

The development and maintenance of Database systems became imperative for the all
kind of business. For example, Amazon uses an RDBMS in order to keep track of their
customer base and inventory [13]. The maintenance of business operations and processes
are mainly managed by the information systems a company has applied, in order to seize
control of opportunities in the market regarding products or supplying services. Due to this
dependence on information a firm has, the performance of those systems is of outmost
importance. More stable systems that perform better have proved to eventually assist
strategic decision making notable faster due to business intelligence, and avoiding
opportunity costs. Because of this special relationship of a firm with its data, regression in
systems can be associated with reducing the speed of processes and customer
dissatisfaction. Eventually, regression in Information Systems can affect the decision
makers and create multiple opportunity costs. An example of the impact a regression can
create in the business performance is if a database request to answer a client search
requires ten times more time to return results. This can result to an unresponsive website.
An unresponsive website creates customer dissatisfaction. 88% of online consumers are
less likely to return to a site after a bad experience and 47% of the users expect a
maximum 2 seconds loading time for a website. Websites that are loading slow or are
unresponsive cost retailers around 2.6 billion$ in lost sales [2].So, a performance
regression in the RDBMS of a firm can have dire consequences.

Companies invest in QA (Quality assurance) in order to ensure quality and steady
performance for their software products and existing infrastructure. Every new version of
software must be tested before implemented for bugs and performance regression in
different scenarios. Regarding performance regression in a software system, the
automated tools that exist are few and usually not compatible with open source systems.
The automation of the performance regression detection in an update of a software system
can lead to a reduction in multiple costs and man power.

Regarding the database industry and performance testing, in order to help customers
decide which database system performs better in a particular scenario, the Transaction
Processing Performance Council was created. The TPC benchmark was standardized,
starting with obsolete workloads for the present, like TPC-A, that kept evolving to the
industry regulations and needs. The bench marking process however, can be difficult and
time consuming. Implementing the TPC benchmark and studying the performance of a
system by using a particular database vendor in comparison with another vendor or

6

another system, can lead to wrong conclusions and hasty mistakes. There are also many
pitfalls regarding database performance comparison, such as non-reproducibility or failure
to optimize the database for bench marking [3]. For serving the purposes of this thesis, the
benchmark TPC-H will be applied. TPC-H is a decision support benchmark which consists
of business oriented ad-hoc queries and the data generated are particularly chosen to
have industry relevance. Using the TPC-H benchmark, users can come easier to a
decision on which system they should implement, regarding their own hardware or
particular scenario.

Purpose of this thesis

In this thesis, due to today’s high demand of high quality Database Systems, I propose the
automation of the bench marking process, in order to detect performance regression
between the current version of the system, and the next software update. This thesis is
focused in the database system of PostgreSQL, an open source database that can be
downloaded, installed and updated through open source version control systems, like
Github.

One of the factors that performance regression can occur is the code of the new version of
the system. More specifically, when a new commit is being pulled through GitHub, some
code files are being deleted, and some new files are being added. In this thesis, I try not
only to detect performance regression automatically, but also to specify which change of
the code implemented, actually led to a regression.

By executing the tools, users can detect if the new version causes performance regression
regarding the time of query execution, using an industry relevant data set, and choosing
the scale factor for which is closer to their needs in order to perform those tests.
Developers can recognize which particular file has led to a regression and the precise
regression in time, in comparison with the previous version of the system.

For the implementation, I use Python for the scripting language, a general purpose
scripting language that is widely used and accepted by data scientists, software engineers
and developers, due to its large existing code base for data analysis, graph plotting and
mathematics. Those combined factions make Python an ideal language for performing
efficient operations in a database without forfeiting the advantages of a scripting language.

Thesis Outline

The thesis is structured as follows. In Chapter 2, I introduce the related work that has been
implemented by the TPC Benchmarking, the most relevant research in Relational
Database Management Systems and their current ranking, the related research that has
been done in PostgreSQL Benchmarking and the strengths of python as a scripting
language for performing data analysis operations. In Chapter 3 I propose two tools in order
to detect performance regression between the software updates of the database
PostGreSQL. The first tool is producing the precise results of performance results based
on the TPC-H benchmark, and produces graphs that demonstrate the time that was
needed to execute all the twenty two queries using various hardware specifications that
were available on the Scilens cluster of CWI.

7

The second tool’s usability is to find the differences in the code between two different
versions and track down the file that caused the most performance regression, after
benchmarking and recompiling all the different test patches that are produced. In Chapter
4, I analyze the costs of Softwrare Quality Assurance of Information Systems and the
benefits of automating the process. Finally in Chapter 5, I present my conclusions
regarding the evaluation of the automated performance regression tests as well as
propositions for future expansions of this project, regarding both the QA and the IT sector.
In the Appendix, I present the twenty two queries that were used as well as the flowcharts
for the tools.

8

Chapter 2

Related work

In this section, I will present an overview of the related research that has been done in
Relational Database Management Systems regarding benchmarking. More specifically, I
will be analyzing the TPC Benchmarking process, the queries and the industry relevant
data that are being produced by the TPC data generator.

2.1 The TPC Benchmarking

In the early 1980’s, the industry started a competition that has accelerate over time, the
automation of business transactions. One of the first applications that had worldwide focus
was the Automated Teller Machine (ATM), and we have seen this online model of
computing being applied to every aspect of the business, from groceries to gas stations to
multinational companies. Users were involved for the first time in the creation of update
transactions in an online database system. Thus, an online transaction processing industry
was slowly manufactured, an industry that in the present represents billions of dollars in
annual sales. So database and computer systems vendors began to make claims on the
performance of their systems, based on the benchmark TP1, that was originally developed
by IBM, the first attempt for a civilized test, or benchmark between the competition of
which company produces the best system. As it was expected, the benchmark had flaws,
as ignoring the network and user interaction components of an OLTP (On-Line
Transaction Processing), it could generate inflated results. This situation also frustrated
the vendors, because they felt that their competitors’ claims were based on a flawed
benchmark [4].

The Transaction Processing Performance Council was created on August 1988 and has
two major organizational activities. The first is the creation of solid, reliable benchmarks
and the second is creating a good process for reviewing and monitoring those benchmarks
and their results. Those two organizational activities are quite important, because they lay
the foundation for fair competition between the companies or entities that create the
database systems. The first benchmark was created in 1989 by the TPC organization with
the name of TPC-A. This benchmark was the foundation of later benchmarks, and it
measured the total performance of a system, including the operating system, the database
management system and other related components that are also involved in the
transaction processing operation. Over the years, other TPC Benchmarks like TPC-B and
TPC-C were developed and applied. The first TPC-C result that was published in 1992 had
a 54 tpmC (Transactions per minute) with the cost per tpmC of $188.562. A bit more than
6 years later, the best result was a 52.871 tpmC with the cost of $135 per tpmC.

9

This tremendous improvement can be a reason of performance increase in hardware and
software products and vendors improving their products in order to eliminate performance
bugs that were exposed by the benchmark [6].

For the purpose of this thesis the TPC-H benchmark will be implemented for testing the
performance of the database. The TPC-H is a decision support benchmark. It includes 22
business oriented queries written in SQL, and the data that are generated are implicitly
chosen to have industry relevance. It is designed for decision support systems that have to
thoroughly search through large volumes of data. The queries are designed to have a high
degree of complexity and assist with the process of answering critical business questions.
The performance metric is Query-per-Hour (QphH@Size), and it represents the capability
of the system to process those queries. It reflects the query processing power when they
are submitted by a single stream and also when they are submitted by multiple concurrent
users. The price/performance metric is $/QphH@Size. The queries are written in SQL-92
language and are annotated to specify the rows that must be returned when needed. In
order to make the queries compatible for the PostgreSQL database management system,
they had to be rewritten, while following all the compliance rules. No new query or variant
of an existing query has been used during this project [5].

 The functionality and use of its query is as follows. Pricing summary report query (Q1),
Minimum cost supplier query (Q2), Shipping priority report query (Q3), Order priority
checking query (Q4), Local supplier volume query (Q5), Forecasting revenue change
query (Q6), Volume shipping query (Q7), National market share query (Q8), Product type
profit measure query (Q9), Returned item reporting query (Q10), Important stock
identification query (Q11), Shipping mode and order priority query (Q12), Customer
distribution query (Q13), Promotion effect query (Q14), Top supplier query (Q15),
Parts/Supplier relationship query (Q16), Small quantity order revenue query(Q17), Large
Volume customer query (Q18), Discounted revenue query(Q19), Potential part promotion
query (Q20), Suppliers who kept orders waiting query (Q21), Global Sales opportunity
query (Q22) [5]. As demonstrated, every query is business relevant and has been
designed in such a way that can represent the workloads of a company. The scale factor
of the data can be chosen by the user, in order to achieve greater connection between the
existing queries and real workloads.

An example of the business question and the code to execute it in SQL for Query 3 is as
follows:

Business Question: Q3 retrieves the shipping priority and potential revenue,(which is
defined as the sum of l_extendedprice * (1-l_discount)), of the orders who have the
largest revenue among those that had not been shipped yet, as of the given date. The
orders are listed in decreasing order of the revenue. If more than 10 not shipped orders
exist, only the 10 orders with the largest revenue are listed.

When it comes to fair bench marking, there are many common pitfalls. The first is the non-
reproducibility of the experiment. The possibility of reproducing experiments is
fundamental in science.

10

When other researchers cannot verify your results, by reproducing the experiment, your
claims regarding a benchmark are not widely accepted, because nobody can verify that
your results are indeed correct. Another pitfall is the failure to optimize the database for the
precise benchmark. Finally it is imperative that the two systems that are being compared
with the benchmark have the same functionality.

It is also important that the differentiation between the “hot” and the “cold” runs is made.
The “cold” run represents the first time that the query is executed and the data are being
loaded from a persistent storage, so it is significantly slower than the “hot” runs, which are
loaded after the first time from a buffer pool [3].

In conclusion, fair bench marking can be hard. There are many processes that must be
addressed, not only in the experiment itself and optimizing the database for the bench
marking, but also the pre-processing is the same between the systems, automatic indexing
is not turned on and the tests have been done in multiple data sets [7].

2.2 PostgreSQL and Bench marking

PostgreSQL is one of the most used open source database management system. It
currently ranks as fourth in the database industry and second when it comes to open
source database systems as shown in Figure 1.

 Figure 1: Current Ranking of Database Engines regarding usability (Source:
www.DB-Engines.com , July 2018)

Every database system is based on a model, with the exception of schema-less ones. The
model is responsible for handling the data using applications or libraries in order to
manage databases of various sizes and sorts. PostgreSQL is a relational database
system. The relational model reforms all the data to be stored by defining relationships and
related entities with unique attributes. Some of the known advantages of PostgreSQL in
comparison with other database systems are its strong and experienced community, which
can be accessed through free knowledge bases, it has a strong third party support, it can
be extended programmatically with stored procedures and finally PostgreSQL is an
objective Relational Database System, with support for nesting [8]. Some of its
disadvantages are that for simple read heavy operations PostgreSQL might perform
slightly worse than other database systems like MySQL and it is sometimes hard to find
service providers that can supply managed instances and support. For the purposes of this
thesis, my choice to work with PostgreSQL derives from its abilities to deliver reliability and
data integrity, the extensibility that it offers and the effortless integration of Python scripts.

For some cases, like the TPC-B benchmark, some tools already exist that help with the
benchmarking processes. The most popular of those tools is the PgBench. The target
areas of PgBench are the hardware of the system, the PostgreSQL core operators and the
identification of performance regression.

For TPC-H, there is no tool that allows a user to automate the process of benchmarking or
optimize the database for the benchmark. In general, while there are tools for analyzing
OLTP (Online Transaction Processing) models for measuring transactions per second,
there are no OLAP (Online Analytically Processing) tools. Usually, OLAP models are more
complicated, due to the escalated complexity of the queries and the involvement of
aggregations. For OLAP systems the response time is the most important element, and it
demonstrates how effective is the system regarding a workload, and regarding the
hardware [5], [9].

When it comes to PostgreSQL optimization, there is not a standardized way to optimize
the database system, precisely for the benchmark. Index scans are usually preferable over
sequential scans, yet again, if the “SELECT” statement will return more than 10% of all
rows in a table, a sequential scan is much faster from an index scan. The main reason for
this behavior is because an index scan can require several In/Out operations for every
row, look for the row in the index and finally retrieve the row from a heap, while a
sequential scan will require only a single In/Out for every row. Sometimes, even less,
because of the fact that a block (page) on the disk most probably contains more than one
row. There are some statements like “EXPLAIN” and “EXPLAIN ANALYZE” in order to
help you determine the approach that PostgreSQL is following to execute the queries and
the actual performance of the precise approaches. The main problem is that query plans
are not easy to read, with the information being closer to machine language. In order to
visualize the problem better, there is a tool with the name Postgres Explain Viewer (PEV)
that simplifies query plans. It demonstrates a horizontal tree with nodes representing query
plan. It provides the error amount in the planned time versus the actual execution time,
and information about the most “expensive” nodes or “bad estimates” as shown in Figure
2.

Figure 2: PostGres Explain Viewer horizontal tree

13

Another option regarding performance increase is to create views and query the views
precisely. A view is a tool for storing partial queries, and they can be treated as tables,
having to look through a much more limited amount of data. Also, a view can be
materialized, with the results being stored by PostgreSQL. The statements are “CREATE
MATERIALIZED VIEW” and “REFRESH MATERIALIZED VIEW”. So in read-heavy
operations, like the 17th query of the TPC-H benchmark, the cost of the partial query is
compensated. Materialized views are especially helpful when someone is performing
identical operations such as “SUM” or “COUNT” and when joining additional tables. In
conclusion, a materialized view is way more “cheaper” regarding the resources of the
system than a full statement [9].

For the purposes of this thesis, I have decided not to perform any other optimization
regarding the queries other than that the allowed one index per table, due to compliance
with the TPC benchmark regulations and policies

2.3 Python with combination of Database Management systems

Python is one of the most popular and widely accepted scripting language regarding
databases. One strength of python is its use with relational and also NoSQL (Not Only
SQL) databases. NoSQL databases are undergoing substantial growth in web applications
and Big Data due to their agility in permitting data to be stored in a flexible manner than
the relational model allows. On the other hand, this flexibility has its downsides such as
limited support for consistent transactions [11]

The integration features of Python are also one of its advantages. It integrates the
Enterprise Application Integration which makes it extremely convenient to develop Web
Services and call on databases by invoking COM components. As a result of Python’s
extensive libraries support and its productivity in comparison with other scripting
languages, the programming part of this thesis is mostly occupied by python, and a small
part of SQL for the creation and querying the bench marking tables.

Chapter 3

Implementation and Evaluation

All information of an organization derives from the data its produces and manipulates. The
usage of high quality Database systems is one of the most important functions that interest
any firm in any business sector. I have chosen to apply the concepts of automation in one
of the most used open sources databases, PostGreSQL. More precisely, the automation
of globally accepted and acknowledged performance tests is an attractive idea to the
current market, because of the value business intelligence adds to a firm.

The purpose of the tools is to automate the benchmarking process between the software
updates of PostGreSQL. The tools use Github in order to install and pull new updates of
PostGreSQL. They compare the performance of two versions of PostGreSQL regarding
time and produce graphical representations of each of the 22 queries from the TPC-H
organization, as well as the total Power@Size comparison. The second tool, if regression
is detected, will also track down the file that caused the most regression.

In this section, I will give an in depth description of the tools and their usability. I will be
explaining the implementation process and the decisions that the user must take regarding
the bench marking process and how those decisions will influence the results. I will be
analyzing my decisions regarding the creation and architecture of the tools. A precise
flowchart of both of the tools can be found in the appendices.

3.1 Analyzing the first tool and the results

Regarding the queries of the TPC-H benchmark, each query is defined by the business
question, the functional query definition, the substitution parameters, which describe how
to enter values that are needed to complete the syntax, and the query validation. For
example the initial syntax from TPC-H for query 13 is shown in figure 3.

Figure 3: Query 13 from the TPC-H specifications (Source : URL :
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf)

For the values “Word1” and “Word2”, the documentation of TPC-H clarifies that Word1
must be randomly selected from four possible values: “Special”, “pending”, “unusual” and
“express”. Word2 must be randomly selected from the four possible values: “packages”,
“requests”, “accounts” and “deposits”. For the sake of speed I implemented the queries
from the script made from Hannes Muehleisen for the MonetDB/PostGreSQL comparison
[10], as shown in figure 4.

Figure 4: TPC-H Query 13

All queries represent business scenarios that tend to manifest themselves in everyday

business situations and business relevant queries. The output of the queries has been

tested for correctness, as non-integer expressions including prices are expressed in
decimal notation with at least two digits behind the decimal point and dates are expressed
in a format that includes the year month and day in an integer form (YYYY-MM-DD). All
the results of the queries match the validate output of data, specified in in the TPC-H
documentation.

The first tool is focused between the current commit of PostgreSQL and the next update. It
installs PostgreSQL, if it is already installed it recognizes the installation, downloads the
TPC-H benchmark and generate the data for the tables for a scale factor that the user will
provide. The data are being generated with the use of the QGEN Program. The QGEN
program is a TPC provided software package that must be used in order for the results of
benchmarking to be considered valid. Next, the tool creates the data directory that the
tables will reside, inserts the data into the tables and runs the 22 queries, five times each.

Next, after storing the results, it drops the tables and upgrades to the next commit of
PostgreSQL by pulling it from the source on Github. After that, it recreates the tables,
regenerate the data and insert the data into the tables. The time loading the data is also
being compared between the two versions. Next, it runs the TPC-H queries again and
compares the results from the previous version of each query individually as well as the
total Power@size that it is defined by the following mathematical expression from the TPC
organization:

TPC-H Power@Size= 24√((3600*SF) / πQi(i, 0))

Where SF is the scale factor for the data to be produced from QGEN and Q is the product
of the 22 queries. TPC-H implementations represent the raw query execution power of the
system in the least amount of time [5].

The tool uses multiple Python libraries as shown in Figure 5, as NumPy which adds
support for multidimensional arrays and matrices, and is accompanied with a collection of
mathematical functions in order to be able to operate on these matrices. The
matplotlib.pyplot library was used for developing the graphical representations of the
results. Psycopg2 was used in order to establish a connection with the database
PostgreSQL.

Figure 5: Libraries used.

The adapter between the database and the Operating System based scripts is the module
Psycopg2 for establishing the initial connection and the manipulation of the database, as
creating the tables, loading the data that was generated into the tables and write the
queries as shown in Figure 6.

Figure 6: Psycopg2 connection

In order to update to the newest version of PostgreSQL, it uses the pull method from the
source of PostGre in Github. The version that is being tested is displayed. In the case of
absence of a new commit, a “sleep” command will be initiated for a small amount of time,
and then retry to update the software as shown in Figure 7.

Figure 7: Updating to the newest version

After the queries have been executed in both of the commits, the matplotlib.pyplot library is
being used to produce the graphical representation of the results and finally the TPC-H
Power@size difference between those two commits, shown in figure 8.

Figure 8: Code for graphical representations.

Hardware and computer specifications play an important role in benchmarking, so the
script was executed in the Scilens Cluster of Centrum Wiskunde & Informatica, using
various machines and specifications. The scripts were executed on the Diamonds, Stones,
Bricks and Gems configurations, each representing a different tier of hardware
specification. The precise hardware configuration follows in Table 1.

19

 Diamonds Gems Stones Bricks Rocks

Type Intel Xeon
E5-4657L

v2

Intel
Xeon e5-
2650 v2

Intel
Xeon

E5-2650
v2

Intel
Xeon
2650

Intel
Core i7-
2600k

Architecture x86_64 x86_64 x86_64 x86_64 x86_64

CPU op-
mode(s)

32-bit, 64-
bit

32-bit,
64-bit

32-bit,
64-bit

32-bit,
64-bit

32-bit,
64-bit

Byte Order Little
Endian

Little
Endian

Little
Endian

Little
Endian

Little
Endian

CPU(s) 96 32 32 32 8

Thread(s)
per core

2 2 2 2 2

Core(s) per
socket

12 8 8 8 4

Sockets 4 2 2 2 1

NUMA
node(s)

4 2 2 2 1

CPU family 6 6 6 6 6

Model 62 62 62 45 42

Stepping 4 4 4 7 7

Clockspeed 2.4 GHz 2.6 GHz 2.6 GHz 2.0 GHz 3.4 GHz

Virtualization

VT-x

VT-x VT-x VT-x VT-x

L1d cache 32 KB 32 KB 32 KB 32 KB 32 KB

L1i cache

32 KB 32 KB 32 KB 32 KB 32 KB

L2 cache

256 KB 256 KB 256 KB 256 KB 256 KB

Table 1: CWI Scilens-configuration standard (Source: URL:

https://www.monetdb.org/wiki/Scilens-configuration-standard)

20

The results of the queries are separated in “cold” and “hot” runs. The “cold” run represents
the first time a query is being executed after the tables are created and populated. It takes
CPU time to figure out how to run a query. That is because PostGre needs to compile an
execution plan in order to figure out the best way to run the query. PostGreSQL uses
memory to cache execution plans in order to save time the next time the same query is
executed. A “hot” run of a query is considered a query execution, when the query has
been executed already in the past. Therefore there is no CPU time loss to execute the
query, because there is no need to compile an execution plan again.

Two versions of PostGre were selected randomly in order to execute the test and present
the results for the first tool. The versions are
“f9fe269ca21808c1f6a3d0d239365fa4eaf2b389” and
“af63926cf577f4c30q43b7651e93e3a5eaa262e0”. The tool was executed in all tiers of the
Scilens cluster for scale factor 1, which means that the data that are being produced by
the QGEN software will have a size of 1 Gigabyte. The results in the diamonds tier, for the
commits regarding the “cold run and “hot” runs average differences are represented in
table 2:

21

 Version:
f9fe269ca21808c1f6a3d0d239365fa4

eaf2b389

Version:
af63926cf577f4c30q43b7651e93e3

a5eaa262e0

 “Hot”
Run”(seconds)

“Cold” Run
(seconds)

“Hot”
Run(seconds)

“Cold” Run
(seconds)

Query 1 5.746 5.967 5.773 5.789

Query 2 8.158 8.259 6.156 6.265

Query 3 1.194 1.795 1.183 1.96

Query 4 1.145 1.245 1.145 1.258

Query 5 2.624 2.683 2.645 2.696

Query 6 8.528 8.565 0.526 0.696

Query 7 9.598 9.696 9.540 10.129

Query 8 8.713 8.769 6.708 6.968

Query 9 2.893 2.963 2.118 2.369

Query 10 0.842 0.965 0.872 0.963

Query 11 0.189 0.192 0.199 0.269

Query 12 0.624 0.631 0.662 0.774

Query 13 0.565 0.567 0.560 0.591

Query 14 0.535 0.597 0.540 0.553

Query 15 1.215 1.369 1.116 1.124

Query 16 0.974 1.236 0.933 1.124

Query 17 0.212 0.458 0.212 0.365

Query 18 5.130 5.362 5.328 5.698

Query 19 0.180 0.189 0.093 0.154

Query 20 0.081 0.096 0.001 0.0013

Query 21 3.045 3.178 3.058 3.069

Query 22 0.313 0.369 0.296 0.495

Time Loading
data

52.397 60.803

Table 2

22

The results for the stones tier are represented in Table 3:

 Version:
f9fe269ca21808c1f6a3d0d239365fa4

eaf2b389

Version:
af63926cf577f4c30q43b7651e93e3

a5eaa262e0

 “Hot”
Run”(seconds)

“Cold” Run
(seconds)

“Hot”
Run(seconds)

“Cold” Run
(seconds)

Query 1 5.127 5.569 5.369 5.698

Query 2 7.945 8.693 7.536 7.969

Query 3 1.096 1.125 1.140 1.254

Query 4 1.006 1.012 1.014 1.019

Query 5 2.216 2.396 2.225 2.239

Query 6 0.391 0.478 0.399 0.475

Query 7 8.453 9.019 8.597 8.602

Query 8 0.511 0.698 0.512 0.632

Query 9 1.629 1.785 1.596 1.637

Query 10 0.659 0.796 0.658 0.661

Query 11 0.145 0.249 0.149 0.178

Query 12 0.485 0.501 0.478 0.511

Query 13 0.447 0.494 0.569 0.571

Query 14 0.389 0.391 0.201 0.421

Query 15 0.852 0.969 0.365 0.474

Query 16 0.747 0.878 1.092 1.147

Query 17 0.169 0.256 0.009 0.019

Query 18 4.211 4.563 4.107 4.117

Query 19 0.071 0.124 0.009 0.017

Query 20 0.002 0.003 0.087 0.103

Query 21 2.501 2.695 2.963 3.145

Query 22 0.225 0.334 0.109 0.295

Time Loading
data

49.329 51.968

Table 3

23

The results for the bricks tier are represented in Table 4:

 Version:
f9fe269ca21808c1f6a3d0d239365fa4

eaf2b389

Version:
af63926cf577f4c30q43b7651e93e3

a5eaa262e0

 “Hot”
Run”(seconds)

“Cold” Run
(seconds)

“Hot”
Run(seconds)

“Cold” Run
(seconds)

Query 1 5.890 5.920 5.891 5.930

Query 2 0.150 0.154 0.147 0.154

Query 3 1.077 1.093 1.081 1.129

Query 4 1.069 1.075 1.069 1.095

Query 5 2.768 2.801 2.741 2.894

Query 6 0.451 0.453 0.463 0.465

Query 7 10.868 11.410 10.510 10.671

Query 8 0.617 0.638 0.632 0.682

Query 9 1.974 2.003 2.082 2.083

Query 10 0.784 0.799 0.806 0.813

Query 11 0.169 0.714 0.173 0.174

Query 12 0.559 0.564 0.579 0.580

Query 13 0.563 0.573 0.582 0.589

Query 14 0.455 0.457 0.470 0.474

Query 15 1.030 1.114 1.022 1.034

Query 16 0.924 1.009 0.926 0.906

Query 17 0.212 0.258 0.216 0.250

Query 18 4.937 5.125 4.843 5.134

Query 19 0.057 0.060 0.059 0.062

Query 20 0.001 0.003 0.002 0.003

Query 21 3.065 3.094 3.127 3.107

Query 22 0.242 0.274 0.279 0.283

Time Loading
data

228.103 195.719

 Table 4

24

The results for the rocks tier are represented in Table 5:

 Version:
f9fe269ca21808c1f6a3d0d239365fa4

eaf2b389

Version:
af63926cf577f4c30q43b7651e93e3

a5eaa262e0

 “Hot”
Run”(seconds)

“Cold” Run
(seconds)

“Hot”
Run(seconds)

“Cold” Run
(seconds)

Query 1 4.536 4.896 4.566 4.573

Query 2 0.095 0.110 0.094 0.100

Query 3 0.816 0.832 0.783 0.783

Query 4 0.776 0.778 0.776 0.778

Query 5 2.109 2.116 2.110 2.119

Query 6 0.327 0.328 0.329 0.336

Query 7 7.770 7.780 7.812 7.889

Query 8 0.449 0.558 0.454 0.460

Query 9 1.507 1.514 1.518 1.523

Query 10 0.538 0.584 0.591 0.584

Query 11 0.122 0.122 0.122 0.122

Query 12 0.405 0.407 0.407 0.430

Query 13 0.426 0.445 0.429 0.430

Query 14 0.321 0.322 0.320 0.328

Query 15 0.718 0.726 0.717 0.722

Query 16 0.615 0.623 0.606 0.614

Query 17 0.144 0.172 0.144 0.170

Query 18 3.669 3.703 3.705 3.801

Query 19 0.050 0.049 0.050 0.059

Query 20 0.001 0.001 0.001 0.001

Query 21 2.257 2.240 2.821 2.258

Query 22 0.192 0.206 0.203 0.217

Time Loading
data

53.251 56.551

 Table 5

The results are being represented in the form of graphical representations for the user, for
each query separately and the total Power@Size comparison between the two versions.
For the sake of the reader’s interest I will present the results of only two queries that where
selected randomly, for the gems tier of the CWI Scilens Cluster. The versions of PostGre
that are being examined are “f9fe269ca21808c1f6a3d0d239365fa4eaf2b389” and
“af63926cf577f4c30q43b7651e93e3a5eaa262e0” and the results represent query number
seven and query number two. The results represent the “cold run” of the query, the
minimum of the “hot” runs, the maximum of the “hot” runs and the average of the “hot” runs
as shown in Figure 10 and 11. The scale factor selected is 1:

Figure 10: Query 2 performance regression test on Gems tier for scale factor 1

Figure 11: Query 7 performance regression test on Gems tier for scale factor 1.

The tool was executed for a scale factor of ten in the stones and bricks tier. Again I
present the results for query number two and seven, so the reader can make a
comparison regarding different workloads. The results are demonstrated in figures 12-15.

Figure 12: Query 2 performance regression test between 2 commits on Stones tier.

Figure 13: Query 2 performance regression test between 2 commits on Bricks tier.

Figure 14: Query 7 performance regression test between 2 commits on the Stones tier.

Figure 15: Query 7 performance regression test between 2 commits on the Bricks tier.

An interesting observation regarding the TPC-H queries is regarding the query number
seventeen. The TPC organization is very strict regarding partitioning and indexing plans
that a vendor can use in order to produce valid results. While this is to some point
understandable because some techniques like materialized views would be used in order
to tune the workload. While the standard allows the database to automatically pick index
types, for example MySQL automatically creates indexes in any column that is declared as
foreign key, it is not allowed to create join indexes, materialized views or indexed views
and computed columns. The results of the 17th query on the Diamonds tier without
indexing the table lineitem can be seen in figure 16.

Figure 16: Query 17 results without indexes on Diamonds tier for scale factor 1.

After adding a B-tree index on the l_partkey column, the results were tremendously faster,
as shown in figure 17:

Figure 17: Query 17 results after indexing the l_partkey column for scale factor 1 on
Diamonds tier.

Following the same policy for the other queries, there was no major difference regarding
time performance, with the exception of Query two, that was executed significantly faster
for scale factor 1 in the Diamonds tier, as shown in figures 18 and 19.

Figure 18: Query 2 before using a B-tree index for scale factor 1 on Diamonds tier.

F

Figure 19: Query 2 after using a B-tree index for scale factor 1 on Diamonds tier.

Finally, after producing the graphical representations for each query the tool will create the
final comparison of the versions regarding the Power@Size each version “cold” run and
“hot” runs as shown in Figure 20.

Figure 20: TPCH-H Power@Size comparison between two versions of PostGre

The precise code for the first tool can be found at:

URL: https://github.com/GAlexAnastasiou/PostGreAutomatedBenchmarking

3.2 Analyzing the second tool

The second tool has the function of initially tracking time regression between two versions
of PostGre. In case that regression is detected, it will track down the change of the code
that caused the regression. The purpose of this tool is to help testers and DevOps track
down the file of the code that caused regression in the system faster and make the
necessary changes. After following the initial installation procedure of PostgreSQL and
producing the data with the QGEN program, it will count the total versions that have been
uploaded in the source in Github at the past, allowing the user to choose how many
versions he would like to roll back in order to test for regression as shown in Figure 21:

Figure 21: Total current versions, and the rolling back option.

The twenty-two queries are executed separately for every commit, six times each. The
“cold” and the “hot” runs are printed for each of the versions. The comparison and the
results are stored in a file for every two versions, moving forward. Every time that a new
version is tested, the tables are dropped and recreated, in order to compare the loading
time of the data sets. After the older version has been tested against the new one for
regression regarding time, the script calculates if there was indeed regression while
executing the queries and loading the data into the tables.

After we have obtained the benchmark results for a new release we have to automatically
decide whether or not a performance regression has occurred. This sounds easy, but it is
not. The new version of the software could perform worse simply because of a random
variance. This risk increases when we test more queries, as the chance that the software
will perform worse on any single one of the queries increases with the amount of queries
we test. Another consideration is that the measurements itself can be imprecise. The
timers use to measure only have a certain time resolution, and when we measure queries
that take only several milliseconds to run the timer itself can introduce variance as well.

For this reason, I take the standard deviation of the five runs into account when attempting
to classify whether or not a particular version introduces a performance regression. When
the difference between the new version and the old version exceeds the standard
deviation I consider that a performance regression as shown in Figure 22.

Figure 22: Performance regression detection between two versions and the number of files
of differences in those versions.

In case of a regression detection the tool starts analyzing the changes that occured
between the versions. More precisely, it will produce the differences between the code
lines of those versions, delete the last change of the differences and try to recompile
PostgreSQL. In case of a successful recompilation, the queries are run again, and the time
that was needed to execute them is once more compared with the initial commit. If the

difference between the new version and the old version exceeds the standard deviation,
the changes of the code are being stored in a file, as well as the commit name. Eventually,
the file of the changes of the code that was responsible for most of the regression in
comparison with the other files between those 2 versions is stored in the file:

\

Figure 29: The file that caused performance regression for version
“56b4da8c9d11f685f1fe2e11cf015e850913b6b8”

32

Same policies with the first tool are being applied regarding indexing the tables. Finally,
after storing the file that caused the most regression into a file with the version name, the
tool proceeds to the next version, repeating the same procedure, until it reaches the final
commit of PostgreSQL in Github. A flowchart of the tool can be found in the appendix.

The code for the second tool can be found at: URL:
https://github.com/GAlexAnastasiou/PostGreSQL-Benchmarking-automated-detection-of-

regression-file

4. Implementing automation in Software Quality Assurance

The above tools can be used in implementing automation in the testing of the newest
software releases. The department that is responsible for testing the software before
approving it for production status is the Software Quality Assurance department. The
software is being tested for security and for complying with standards and certain policies.

According to Capgemini, Sogeti and Hewlett Packard, 35% of the IT investments of any
firm are directed in testing. The prediction for the end of 2018 is that testing will claim 40%
of the total IT investments as shown in Figure 30 [14]. The survey found 39% of
respondents to declare that the reliance on manual testing is the most important
technological challenge in application development.

Figure 30: Proportion of IT budget spend in Quality Assurance (Source: Statista 2018)

The last release of World Quality Report 2018-19 most important finding is that end user
satisfaction is now at the top of the testing strategy goals. Testing is becoming increasingly
aligned with the business goals of firms. The second important finding was that 99% of the
respondents use DevOps in at least some of their projects. The DevOp title derives from
development and operations and aims in unifying software integration, testing, and
infrastructure management. DevOps aim to deliver value to the end user as fast as
possible, while keeping quality high.

34

The benefits of Software Quality Assurance in an organization are the higher reliability on
software products, the reduced cost of overall software lifecycle and providing greater
customer satisfaction while gradually reducing the maintenance costs. The main principles
of Software Quality Assurance are “fir for purpose” and “right at the first time”. In order to
achieve those two principles, cooperation with development is essential. The depth of
testing is categorized in three levels. The first level is called “Black box” testing, which only
tests if the functionality works as planned. The second level is called White Box texting, in
which the internal structure of the software is tested, with code reviews. The third level is
called Gray Box Testing, in which the testers have knowledge of the internal data
structures and have designed the tests for that particular data structures. The tests are
executed at user level. Two methodologies are currently being used. The first is Scrum, in
which each part of the software is tested differently and after integration the whole product
is tested. The second is the Waterfall or the V-Model, in which everything is tested at the
end.

The costs that are associated with Software Quality Assurance are separated in two major
types: Conformance costs and non-conformance costs. The costs of Conformance are
costs of prevention of defects before they happen and the appraisal costs that include
measuring and evaluating the software products in order to assure quality standards are
implemented. For the prevention process, examples of costs are the training of staff in
design methodologies and quality improvement meetings. Examples of appraisal costs are
code inspections and testing activities. So, the conformance costs are mostly associated
with the amount invested to achieve quality software products. The non-conformance
costs are all the expenses that are included when things do not go as planned. Those are

the costs in reprogramming and retesting [15].

So, in order to reduce the costs in Software Quality Assurance, Campanella proposes to
remove the failure costs by investing in prevention activities and continue to evaluate and
alter preventative efforts [16]. The approach of this idea is that software failure costs can
be reduced by identifying and permanently fixing defects early in the software lifecycle
because the cost of corrections increases the later the defect is recognized. The activities
that are proposed in order to remove the failure costs are the creation of lifecycle
development standards, the creation of detailed documentation and finally the
implementation of automation in software configuration and testing processes.

Implementing automation in testing is usually done after manual testing. Manual testing
includes several testers executing scenarios without using any automation tools. It is
considered primitive as a method, but it is necessary in order to track unique bugs in a
software system and eventually lead to an automated test. The main goal of manual
testing is functionality, in all requirements. The use of automated tools is for test cases that
would normally require a big amount of human intervention for the execution as well as

reducing the labor force on this field.

35

According to most Software Quality Assurance related firms like Intland Software [17] the
best practices regarding automation are test cases that are executed repeatedly, test
cases that are tedious or difficult to perform manually and test cases that are time
consuming. The cases that are to be avoided in automation are the cases that the

requirements are changed frequently.

The tools that were created for the automation of benchmarking of PostGreSQL Database
in this thesis followed this precise model. Executing 22 queries manually and
benchmarking them in comparison with the newer update of the software is tedious to
perform. Also testing for different scenarios and different workloads within two versions of
a system is difficult to accomplish manually, since it is time consuming to test for a large
amount of data, like a scale factor of 100. The process of creating the tables manually and
implementing indexes on them, insert the data into the system and then run all the queries
5 times in a row while gathering the precise results regarding time performance, is time
consuming and mostly repetitive. Yet it is necessary in order to provide a quality software
product to the users. The tools provide a precise result for the time of execution of each
query regarding the comparison of the current and previous model of the software as well
as the total Power@Size. The second tool also provides an answer as to where the
performance regression can be tracked in the file of the code, saving time for the testers
from manually tracking down the file. The main purpose of the tools are speeding up the
testing process and reduce the human labor that is required to test for performance

regression.

The benefits of automation in benchmarking with those tools are the following. First and
most important the optimization of time required for testers. The frequency of updates can
reach two or three updates per day, which usually, the last update is a fix for the previous
one. For frequent execution manual testing takes even more time for bigger systems. The
testing team can be deployed in the results of the tool, rather than handle repetitive tests.
The second benefit is the increase of efficiency by reducing the human error possibility.
Manual testing can be mundane, and can wear testers out. The automation of the test can
allow the execution without user interaction. Instead, testers can now focus on the results.
The third benefit is the increase of the test coverage by allowing the user to choose how
many versions of the system he would like to examine. The fourth benefit is the user
environment simulation by allowing the tester to choose the scale factor. This way the
tester can also simulate user satisfaction, regarding on the user’s work load. Finally , the
last benefit of the tools is the reusability of the tests, while the TPC-H benchmarking is still

considered relevant.

The need of automation in testing processes continues to rise. However, automation is the
biggest bottleneck in Software Quality Assurance. While testing was initially designed in
order to purely remove bugs and evaluate the functionality of a software system, with the
use of automation in repetitive tests, testers can now focus on the customer experience

and business functions of the system.

36

The current suggestion from is the use of DevOps when possible. Testers need to be
involved earlier in the processes and be more aligned with the development team, in order
to be able to create automated tests for different scenarios. However the implementation
of DevOps for Software Quality Assurance is part of the Agile methodology. Software
Quality Assurance is currently following the Waterfall mode. The Waterfall model has five
stages in software development life cycle, which are the requirements definition, the
system design, the implementation, the integration and finally the operation and
maintenance of the system. The Software Quality Assurances role in the Waterfall model
starts after the implementation with code reviews and inspections. Using the Agile model,
Software Quality Assurance has to take an active role earlier in the stages of development.
The Agile model has three stages, which are the Requirement definitions and the system
design using stories, the implementation and the integration. Testing must be performed in
every stage of the development life cycle. In the first stage with customer feedback, in the
second stage with code reviews and meetings and in the third stage by ensuring that all
the functionality requirements are met [18]. That, as a consequence can increase the costs
of Software Quality Assurance teams. By applying automation in the initial stages of the
development, using previous test cases and user stories, can reduce the costs of Software
Quality Assurance. According to Alberts, design errors in the start of the development life
cycle have double the impact than do coding errors as shown in table [number]. He
supports that usually the 66,% of errors in development life cycle is a product of poor

design, 16,6% of errors are logic errors and 16,5% of errors are Syntax Errors [19].

Error type % Total Errors Severity %Total cost of error

Design 66% 2.5 83%

Logic 16,5% 1 8%

Syntax 16,5% 1 8%

 Development phase Operations phase Both

% of Total Life Costs 47,5% 50% 97,5%

%Costs Due to
Errors

48% 50% -

% of Total Life Cycle
Costs attributed to

errors

22,6% 25% 47,6%

Table 6: Errors and Software Life Cycle Costs [19]

37

Based on those estimations the return of investing in better design and earlier Sofware
Quality Assurance involvement is a multiplicative factor of five. For example, a euro more
spend in design and gathering user stories and automated cases from the start of the
development life cycle would have saved five euros spent on corrections and maintenance
at later stages of the software life cycle. This is also visible in the Database system
PostGreSQL. The regression that can be accidentally implemented with a new patch can
have severe consequences in the time required to execute queries in large data sets,
which will lead to slower processes and ultimately harm the user satisfaction. By tracking
the regression before the newer version is implemented using the automated tools, the
testers or DevOps can make the necessary changes, and avoid the costs of creating
another patch, which is usually a quick fix for the previous patch. Using the automated
tools, they can also get an indication of which code file caused the most regression, so

they can focus their efforts in a much more targeted part of the code.

38

5. Conclusions and Future Work

5.1 Conclusion

As it was discussed, performance evaluation of databases is something deeply dependent
on hardware, indexing and generally database optimization. Arriving to a conclusion
regarding which database performs better, tends to be difficult and it is always correlated
with the precise scenario and workload the performance test is associated with. For
business in all kind of sectors, quality database systems and RDBMS’s is a necessity due
to the large value they add regarding information processing, market analysis and

assisting management in the decision making process.

While automation of bench marking is a subject that can be controversial because of
today’s current market distribution, automated tools that provide testing with valid results
and detailed reports, that apply different scenarios which are globally acknowledged and
accepted, can shift the current trends and redistribute the database industry financially.
Therefore, the automation of database bench marking can provide rapid results and
acquire significantly less manpower in order to conclude which database is the best for the
firm’s workload and everyday querying scenarios. This decision is important to any
organization since the Big Data concept started to be applied. The value of better
performance in database systems is translated to faster processes, reduction of
opportunity costs, better managerial decisions and ultimately customer satisfaction and
loyalty.

5.2 Future work

Our approach for classifying results as performance regressions is simple and effective,
but still has some problems. As we only ever compare two adjacent versions for
performance regressions and we have a margin for error on detecting them, performance
regressions could silently bypass our system if every consecutive version very slightly
reduces the performance of a query. If we do not detect a one millisecond difference in two
consecutive versions as performance regression, for example, every version could reduce
the performance of a query by 1 millisecond until a significant performance regression is
introduced. To avoid this we would have to take account the performance of a query over
time instead of just looking at consecutive versions and detecting if performance
regressions slowly occur.

These regressions are more difficult to detect. It is especially challenging to find out which
code is responsible for the regression, as likely many minor changes have introduced
many small performance regressions instead of a single line or body of code causing the

problem.

Another improvement that could be made is the amount of times we run the benchmarks.
Currently we run the queries six times in the first tool and five times in the second tool,
since the extra run was not necessary for the second tool. However we could choose how
many queries to run adaptively based on the standard deviation. If after five runs the
performance is still volatile, we might want to perform more runs. On the other hand, if
three runs have exactly the same time, maybe we can already stop running the query.

While those tools can detect the regression between the new versions of the database and
eventually track down the difference that added the most regression in time performance
of PostGreSQL, there is also the possibility of difference files to cause regression in a
precise combination. For example, file number two showed no regression between the two
commits, but the combination of file two and nine may have caused most of the
regression. Also, if the order that the files are listed is of importance, because of
compilation problems, the permutations must be analyzed. The mathematical expression
of determining the permutations within a list of files is shown below [12]:

An example for applying the above mathematical type in the case of permutation with
repetition inside a list that contain ten files and the user chooses to detect regression for
the combination of three files, the total possibilities will be one thousand. In the case of
permutations without allowing the repetition of the files, the possibilities that are produced
are still of a large number. For example, a typical file that contains the differences between
the commits can easily amount to sixteen differences. If the user chooses to test for
regression for that particular file that contains sixteen differences and choose to test for
permutations that group up to three differences, the possibilities that will be produced are
3.360. Keeping in mind that every time the new test version of PostGreSQL has to be
recompiled, all the tables dropped and reloaded again and executing the twenty-two
queries of the TPC-H benchmark five times each, the completion of the script can take a
large amount of time. An interesting research question would be to determine a valid way
to produce this test including the combinations and permutations of the differences
between the commits regarding the time that the script has to conclude and the
mathematical and programming validity of this idea.

40

Bibliography

[1] Chatham, Mark (2012). Structured Query Language By Example - Volume I: Data

Query Language

[2] URL : https://www.sweor.com/firstimpressions

[3] Mark Raasveldt, Pedro Holanda, Tim Gubner & Hannes Mühleisen. 2018. Fair
Benchmarking Considered Difficult: Common Pitfalls In Database Performance Testing. In
Proceedings of 7th International Workshop on Testing Database Systems (DBTEST’18).
ACM, New York, NY, USA

[4] Darrell Huff and Irving Geis. 1993. How to Lie With Statistics. W. W. Norton &Company.

[5] TPC Benchmark H (decision support), Standard Specification, Revision 2.17.3,
Transaction Processing Performance Council

[6] Jim Gray. 1992. Benchmark Handbook: For Database and Transaction Processing
Systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

[7] Jean-Yves Le Boudec. 2010. Performance Evaluation of Computer and Communication
Systems. EPFL Press.

[8] URL: https://www.postgresql.org/docs/

[9] PostgreSQL Server Programming Krosing, Hannu ; Roybal, Kirk Mlodgenski, Jim
Olton: Packt Publishing 25 June 2013

[10] Monetdb Postgre compare, Hannes Muehleisen , URL:
https://github.com/MonetDB/monetdb-postgres-compare

[11] URL: https://docs.python.org/

[12] Permutation, Matrices and generalized young Tableaux, Donald E. Knuth, Pacific
Journal of Mathematics

[13] URL: https://aws.amazon.com/rds/

[14] URL : https://www.capgemini.com/service/world-quality-report-2017-18/

[15] Evaluating the Cost of Software Quality, (Sandra A. Slaughter,Donald E. Harter, and
Mayuram S. Krishnan)]

[16] Campanella, J. Principles of Quality Costs, 2nd ed., ASQC Press, Milwaukee,1990.

[17] URL : https://intland.com/quality-assurance-software-testing/

[18] Software Quality and Agile Methods Ming Huo, June Verner, Liming Zhu, Muhammad
Ali Babar National ICT Australia Ltd. and University of New South Wales, Australia

[19] The economics of software quality assurance by David S. Alberts, The Mitre
Corporation McLean, Virginia

Appendices

Appendix A

TPC Membership (April 2017)

In this appendix all the firms and organizations that are of full membership status to the
TPC organization are presented in Figure 31 while the associate members are presented
in Figure 32.

Figure 31 – Full status membership firms of the organization TPC.

Figure 32 – Associate status firms of the TPC organization.

Appendix B

TPC-H Queries Business Questions and Functional Definitions

In this appendix I present all the queries business questions representations and all the
queries functional definitions for PostGreSQL [10].

Query 1 Business Question: The Pricing Summary Report Query provides a summary
pricing report for all lineitems shipped as of a given date. The date is within 60 - 120 days
of the greatest ship date contained in the database. The query lists totals for extended
price, discounted extended price, discounted extended price plus tax, average quantity,
average extended price, and average discount. These aggregates are grouped by
RETURNFLAG and LINESTATUS, and listed in ascending order of RETURNFLAG and
LINESTATUS. A count of the number of lineitems in each group is included.

Query 1 Functional definition:

Query 2 Business Question: The Minimum Cost Supplier Query finds, in a given region, for
each part of a certain type and size, the supplier who can supply it at minimum cost. If
several suppliers in that region offer the desired part type and size at the same (minimum)
cost, the query lists the parts from suppliers with the 100 highest account balances. For
each supplier, the query lists the supplier's account balance, name and nation; the part's
number and manufacturer; the supplier's address, phone number and comment
information.

Query 2 Functional definition:

Query 3 Business Question: The Shipping Priority Query retrieves the shipping priority and
potential revenue, defined as the sum of l_extendedprice * (1-l_discount), of the orders
having the largest revenue among those that had not been shipped as of a given date.
Orders are listed in decreasing order of revenue. If more than 10 unshipped orders exist,
only the 10 orders with the largest revenue are listed

Query 3 Functional definition:

Query 4 Business Question: The Order Priority Checking Query counts the number of
orders ordered in a given quarter of a given year in which at least one lineitem was
received by the customer later than its committed date. The query lists the count of such
orders for each order priority sorted in ascending priority order.

Query 4 Functional definition:

Query 5 Business Question: The Local Supplier Volume Query lists for each nation in a
region the revenue volume that resulted from lineitem transactions in which the customer
ordering parts and the supplier filling them were both within that nation. The query is run in
order to determine whether to institute local distribution centers in a given region. The
query considers only parts ordered in a given year. The query displays the nations and
revenue volume in descending order by revenue. Revenue volume for all qualifying
lineitems in a particular nation is defined as sum(l_extendedprice * (1 - l_discount)).

Query 5 Functional definition:

Query 6 Business Question: The Forecasting Revenue Change Query considers all the
lineitems shipped in a given year with discounts between DISCOUNT-0.01 and
DISCOUNT+0.01. The query lists the amount by which the total revenue would have
increased if these discounts had been eliminated for lineitems with l_quantity less than
quantity. Note that the potential revenue increase is equal to the sum of [l_extendedprice *
l_discount] for all lineitems with discounts and quantities in the qualifying range

Query 6 Functional definition:

Query 7 Business Question: The Volume Shipping Query finds, for two given nations, the
gross discounted revenues derived from lineitems in which parts were shipped from a
supplier in either nation to a customer in the other nation during 1995 and 1996. The query
lists the supplier nation, the customer nation, the year, and the revenue from shipments
that took place in that year. The query orders the answer by Supplier nation, Customer
nation, and year (all ascending).

Query 7 Functional definition:

Query 8 Business Question: The market share for a given nation within a given region is
defined as the fraction of the revenue, the sum of [l_extendedprice * (1-l_discount)], from
the products of a specified type in that region that was supplied by suppliers from the given
nation. The query determines this for the years 1995 and 1996 presented in this order.

Query 8 Functional definition:

Query 9 Business Question: The Product Type Profit Measure Query finds, for each nation
and each year, the profit for all parts ordered in that year that contain a specified substring
in their names and that were filled by a supplier in that nation. The profit is defined as the
sum of [(l_extendedprice*(1-l_discount)) - (ps_supplycost * l_quantity)] for all lineitems
describing parts in the specified line. The query lists the nations in ascending alphabetical
order and, for each nation, the year and profit in descending order by year (most recent
first).

Query 9 Functional definition:

Query 10 Business Question: The Returned Item Reporting Query finds the top 20
customers, in terms of their effect on lost revenue for a given quarter, who have returned
parts. The query considers only parts that were ordered in the specified quarter. The query
lists the customer's name, address, nation, phone number, account balance, comment
information and revenue lost. The customers are listed in descending order of lost
revenue. Revenue lost is defined as sum(l_extendedprice*(1-l_discount)) for all qualifying
lineitems.

Query 10 Functional definition:

Query 11 Business Question: The Important Stock Identification Query finds, from
scanning the available stock of suppliers in a given nation, all the parts that represent a
significant percentage of the total value of all available parts. The query displays the part
number and the value of those parts in descending order of value.

Query 11 Functional definition:

Query 12 Business Question: The Shipping Modes and Order Priority Query counts, by
ship mode, for lineitems actually received by customers in a given year, the number of
lineitems belonging to orders for which the l_receiptdate exceeds the l_commitdate for two
different specified ship modes. Only lineitems that were actually shipped before the
l_commitdate are considered. The late lineitems are partitioned into two groups, those with
priority URGENT or HIGH, and those with a priority other than URGENT or HIGH.

Query 12 Functional definition:

Query 13 Business Question: This query determines the distribution of customers by the
number of orders they have made, including customers who have no record of orders, past
or present. It counts and reports how many customers have no orders, how many have 1,
2, 3, etc. A check is made to ensure that the orders counted do not fall into one of several
special categories of orders. Special categories are identified in the order comment
column by looking for a particular pattern.

Query 13 Functional Definition:

Query 14 Business Question: The Promotion Effect Query determines what percentage of
the revenue in a given year and month was derived from promotional parts. The query
considers only parts actually shipped in that month and gives the percentage. Revenue is
defined as (l_extendedprice * (1-l_discount)).

Query 14 Functional definition:

Query 15 Business Question: The Top Supplier Query finds the supplier who contributed
the most to the overall revenue for parts shipped during a given quarter of a given year. In
case of a tie, the query lists all suppliers whose contribution was equal to the maximum,
presented in supplier number order.

Query 15 Functional definition:

Query 16 Business Question: The Parts/Supplier Relationship Query counts the number of
suppliers who can supply parts that satisfy a particular customer's requirements. The
customer is interested in parts of eight different sizes as long as they are not of a given
type, not of a given brand, and not from a supplier who has had complaints registered at
the Better Business Bureau. Results must be presented in descending count and
ascending brand, type, and size.

Query 16 Functional definition:

Query 17 Business Question: The Small-Quantity-Order Revenue Query considers parts
of a given brand and with a given container type and determines the average lineitem
quantity of such parts ordered for all orders (past and pending) in the 7-year database.
What would be the average yearly gross (undiscounted) loss in revenue if orders for these
parts with a quantity of less than 20% of this average were no longer taken?

Query 17 Functional definition:

Query 18 Business Question: The Large Volume Customer Query finds a list of the top
100 customers who have ever placed large quantity orders. The query lists the customer
name, customer key, the order key, date and total price and the quantity for the order.

Query 18 Functional definition:

Query 19 Business Question: The Discounted Revenue query finds the gross discounted
revenue for all orders for three different types of parts that were shipped by air and
delivered in person. Parts are selected based on the combination of specific brands, a list
of containers, and a range of sizes.

Query 19 Functional definition:

Query 20 Business Question: The Potential Part Promotion query identifies suppliers who
have an excess of a given part available; an excess is defined to be more than 50% of the
parts like the given part that the supplier shipped in a given year for a given nation. Only
parts whose names share a certain naming convention are considered.

Query 20 Functional definition:

Query 21 Business Question: The Suppliers Who Kept Orders Waiting query identifies
suppliers, for a given nation, whose product was part of a multi-supplier order (with current
status of 'F') where they were the only supplier who failed to meet the committed delivery
date.

Query 21 Functional definition:

Query 22 Business Question: this query counts how many customers within a specific
range of country codes have not placed orders for 7 years but who have a greater than
average “positive” account balance. It also reflects the magnitude of that balance. Country
code is defined as the first two characters of c_phone.

Query 22 Functional definition:

Appendix C

Flowcharts of the tools

Tool 1:

Tool 2:

