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Abstract— Cross-modal correspondence research typically
studies the association between shape and sound in separate
experiments. This research aimed to explore these associations
when they are integrated into a single form. Characteristics
like acuteness, brightness and size of shapes were used as
variables for creating an animated shape in an interactive
questionnaire. Participants were asked to choose one shape
out of three which they found most appropriate for the sound
they heard. Analysis of the data shows that certain variables
were weakly but significantly correlated to sound features,
while others could not be predicted. These results provide a
framework for further research both from a scientific and
artistic perspective.

1. INTRODUCTION

Music visualization attempts to represent music by map-
ping metrics like spectral information and loudness to some
visual representation such as color and shape. These visual
characteristics are defined by the programmer or artist ac-
cording to their own preferences. There are however no
approaches that use knowledge from research on associations
between sound and shape. These findings would allow for
the generation of representations of music that relate more
directly to peoples perceptions of music that might have not
yet been explored in other music visualization solutions. The
question is how to implement these findings into a visual-
ization and how to map these music. This paper presents
a possible framework for approaching this challenge. First
it describes the research on which this approach is based,
then how it was integrated into a single design. Afterwards
the musical features that were used to a extract meaningful
information from music are described and a method for map-
ping these features on to visual characteristics is presented.

1-1 Cross-modal correspondence research

The notion that people match certain sounds with certain
shapes has been around since the late 1920s. Sapir (1929)
found that there is a contrast between the associations people
have between made up names containing the vowels a and i,
such as mal and mil. When asked to give these names to two
objects which differed in size, people consistently assigned
the names with a vowels to the larger values and the ones
containing the i vowel with the smaller object.

One of the most well known cross-modal correspondences
(CMC) the Bouba/Kiki effect first observed by Wolfgang
Khler in 1929 and reproduced by Ramachandran and Hub-
bard (2001). The study asked both American and Indian
students to match the nonsense names Bouba and Kiki to
either a rounded shape or an angular shape (right). In 95-98%
of the cases participants assigned Kiki to the angular shape

and Bouba to the rounded one. This suggested that people
associate information from the two modalities of speech and
vision in a consistent way.

Fig. 1. Shapes used in the Ramachandran and Hubbard (2001) study

The effects of CMCs on human information processing
can be seen during a speeded classification task. In these
kinds of tasks participants are asked to indicate whether a
presented stimulus has one characteristic or another (e.g. is
this shape angular or rounded) using a method that allows
for quick responses (e.g. two buttons). When two stimuli in
different modalities are presented, like a shape and a sound,
participants will take slightly but consistently longer to
respond if the stimuli are incongruent. For example if a high
pitched sound is presented together with a rounded shape,
participants will take longer to classify the characteristic of
the shape than if the stimuli are congruent, e.g. a high pitch
and an angular shape. Figure 2 shows the experimental setup
from Gallace and Spence (2006) in which participants would
be presented with a fixation point for 300 milliseconds, an
empty screen and the first visual stimulus without sound
for 300 ms. After 500 ms, the same or a different visual
stimulus would be presented for 80 ms. The task is to
indicate whether the two visual stimuli (called disks in
this example) were the same size or different sizes. The
second time the visual stimulus was presented, a congruent,
incongruent or no sound stimulus was also presented. The
Reaction Times (RT) for the participants are shown to the
right of the setup. The researchers measured the lowest
RT for the congruent pairs of stimuli, indicating that this
facilitates the performance on the task.

From these kinds of researches four correspondences have
been chosen that are most suited to be integrated in a single
entity:

• Angularity: sharp shapes correspond to high pitched



Fig. 2. Common setup for a speeded classification task

sounds and rounded shapes to low pitched sounds
(Marks, 1987)

• Brightness: bright lights correspond to high pitched
sounds and dim lights correspond with low pitched
sounds (Marks, 1987).

• Position: high positions of stimuli correspond with
high pitched sounds and low position with low pitched
sounds (Evans & Treisman, 2010).

• Size: smaller stimuli correspond to higher pitches and
larger stimuli to lower pitches (Evans & Treisman,
2010).

1-2 Spectromorphology

CMCs are studied in the field of psychology but in
musicology attempts have been made to transcribe sounds
that vary in qualities that are more complex than classical
instruments. Compositions for a piano or violin can be
represented as a set of pitches over time with some additional
information about duration and strength. Electronically gen-
erated sounds used in compositions vary in characteristics
like timbre and can be comprised of sound samples that
are difficult to represent in a direct way. The field of spec-
tromorphology attempts to create a system for expressing
these characteristics visually (Paton, 2007). While spectro-
morphology is mostly preoccupied with the representation
of live compositions of electroacoustic music, the practice
of music visualization attempts to represent recorded music
by mapping metrics like spectral information and loudness to
some visual representation. Today visualization software is

easily obtainable and often incorporated into software music
players.

1-3 Current research

This research aims to investigate to what degree the
findings from CMC research are replicable when the shape
characteristics are integrated into a single shape and the
sound stimulus is a music clip. The challenge here is that
music is comprised of many sound characteristics that
change over time, unlike the controlled stimuli used in
CMC research. To explore these relations effective music
features will be sought and extracted. These features must
represent characteristics that are related to the CMC research
mentioned above. This research also explores other sound
features that might might help elucidate the relation between
auditory and visual perception.The following hypothesis
is established regarding the relation between the shape
characteristics and the music features:

Higher average music clip pitch is associated with more
angular shapes, brighter shapes and smaller shapes.

Position was not incorporated into the design because in
CMC research the stimuli are presented one at a time with
a clear fixation point in the middle, while in this research
three are presented next to each other. Rather, the design of
the shapes focus more on motion, an attribute that has, to
our knowledge, not been studied in CMC research. For this
motion, relevant sound features will be sought since it might



Fig. 3. Example of a questionnaire trial

not be related to pitch..

2. METHODS

Processing 3 was used to generate the animated shapes,
play the sound clips and export the data to .txt files of
analysis. The Processing sketch runs at a resolution of
1920x1080 and a refresh rate of 60 Hz and headphones
were used for the sound. It starts with instructions on how
to take the test, including that there are no right or wrong
answers to encourage participants to use intuition rather than
systematic judgment. Afterwards participants are shown the
first question asking them to choose an appropriate shape for
the sound clip that they hear. They are presented with three
animated shapes and a single sound clip and have the option
to repeat the animation and sound simultaneously as many
times as they need to make a decision. When they are sure
of their choice they check the box beneath the chosen shape
and press the submit button (Fig 3). The combinations of
variables used to create the shapes in the first 36 (practice)
trials were recorded and presented again (repeat trials) after
the 64th trial, in order to check the consistency of participants
judgments. After completing all 100 shape sound matches
the data is written to a .txt file and they are instructed to
announce that they are done.

The audio clips used in this study were obtained from
a purchased copy of Enas Binaural album. This was chosen
for the albums use of textures rather than pitched instruments
which is more representative of the kind of electroacoustic
music researched in spectromorphology. This unconvention-
ality would also lessen participants habitual interpretations
that they have with tonal music. Four songs were used in this
project, with sixteen one second long samples being taken
from each one. Because rhythm was beyond the scope of this

research the sound clips did not span a full bar of music but
were clipped to an arbitrary length of one second. This was
long enough for participants to hear enough sound to make
an informed decision but short enough for them not to linger
on it. The sound clips were taken from the beginning of the
song at intervals of 16 measures. The total amount of 100
sound clips were split into two data sets of 64 clips each: one
containing the first 36 clips (referred to as ”practice trials”)
and one containing the last 36 (referred to as ”repeat trials”,
as they were repeats of the shapes and sound clips from the
practice trials). The 28 trials in the middle were present in
both data sets. The feature of sound most often used in CMC
research is the pitch of a sound. In those cases the sounds
are created and controlled by the experimenters. In the case
of this research, some useful pitch information had to be
extracted along with other features that might be useful in
representing the qualities of the sound. The tool used for the
feature extraction was the LibROSA 0.6 library for Python.

2-1 Inspiration for shapes

To incorporate the characteristics of shapes that are associ-
ated with sound such as angularity, brightness and motion, a
flexible and easily modifiable solution was sought that would
work within the performance boundaries of the Processing 3
program. For this reason, the shapes presented to participants
are inspired by Lissajous curves made with oscilloscopes.
The curves result from plotting the values of two periodic
oscillations, one on the X axis and one on the Y axis. If
the oscillations are quick enough the curves drawn on the
oscilloscope leave a trace on the phosphor coated inside
of the screen giving the impression of a solid shape. The
interaction between the separate curves in time and the
emergent and unexpected shapes created this way inspired



Fig. 4. Example of a Lissajous figure displayed on an oscilloscope

the design and variables that were used in this project.
They were not derived from previous research, but were
designed to mimic the oscilloscopes image look by rotating
a elongated polygon around its center and varying its length,
position on the screen and amount of color fill.

2-2 Shape variables

Angularity (spikiness) is achieved by changing the length
of the polygon according to the value of a sine function.
Looping through the first half of the sine wave values creates
a round convex shape and a round concave spiky shape
with the second half. The intermediate shape is made by
halving the time of the loop. Brightness is determined by
the fill() function of Processing, higher values make the
shape more white. Movement is modulated by transposing
the coordinates of the polygon in a repetitive manner using
sine waves. Other variables include the frequency at which
the polygon moves vertically or horizontally and the amount
of trail left by the polygon during movement (this is achieved
by placing a black rectangle over the entire polygon and
varying the alpha channel of its fill). It is important to note
that the motion of the shapes is not synchronized to the
music. In total, 9 variables were used in the generation of
the shapes and in the subsequent analysis.

When interpreting values during analysis, the following
should be taken into consideration:

• Angularity: The higher the value, the more angular the
shape is.

• Brightness: Higher value, brighter shape.
• Horizontal and vertical motion: higher value, greater

motion.
• Horizontal and vertical speed: higher value, higher

speed.
• (Counter)clockwise motion: a value of -1 result in a

counterclockwise rotation, a value of 0 in no rotation
and a value of 1 in a clockwise rotation.

• Fade: this value indicates the amount by which the
brightness of the shape fades to black during each frame

that it is drawn, the higher the value, the quicker it fades
and less trail it leaves.

2-3 Motion

As mentioned, position is not utilized in the visualization
but motion is integrated into it. This motion is not syn-
chronized to the tempo of the music, rather three possible
values are used to vary the speed of the motion and three
others to vary the size of the screen over which the motion
takes place. It was chosen to arbitrarily pick these values and
randomly distribute them over every sound clip presented to
participants and to see during analysis whether the related to
the any of the sound features.

Fig. 5. Three shapes drawn with three different angularity values

Fig. 6. Three shapes drawn with different angularity and brightness values

Fig. 7. Three shapes with three different horizontal motion size values

2-4 Combinations of values per variable

To define the shapes that are presented to the participants
certain parameters had to be chosen for the variables. Figure
5 shows the three different values for the variable angularity
ranging from rounded to angular with all other variables
being equal. Note that the rightmost shape is somewhat
smaller than the two to its left. This unintended effect will
be discussed in the discussion (section 4).

Figure 7 shows three shapes with varying horizontal mo-
tion sizes, from low to high. These motion sizes influence to a
high degree the resulting total shapes. Figure 6 shows shapes
with the same values for all variables except angularity (low



to high) and brightness values ranging from the minimum to
the maximum.

For every variable three values have been chosen that
intuitively differentiate the shapes enough from one another.
Before a new set of three shapes are presented, the three
values are randomly sampled without replacement for each
variable, meaning that no value will be used twice in a single
trial. This was done in order to explore as many combinations
as possible for the shapes. As mentioned in 2.2, the motion
of the shapes is not synced to the music, there are 3 speed
and 3 movement size values that are randomly distributed
per trial.

Fig. 8. A time series of MFCC’s

2-5 Sound feature analysis
The simplest approach to comparing sound clips based on

their frequency content is taking the average of all pitches
beyond a certain frequency cutoff point. The issue is that
there is no indication of where that cut off point should be
in order to legitimately separate low pitches form high ones.
An attempt was made with an arbitrary cutoff point at 1000
Hz using the obspy.signal.filter.highpass (Fig 9, 10).

Another solution is to use the average of the most prevalent
frequency (pitch) in the analysed section of the sound, and
is related to the perception of brightness of a sound (Grey
& Gordon, 1978). Taking the average of all the sections in
the sound clip would therefore offer a dominant frequency
for the entire clip.

Spectral flatness is a measure that indicates to what extent
the power of a frequency spectrum is equally distributed over
all the frequency bands versus concentrated around a few
bands. This measure is used to indicate the amount of noise
versus tones (Dubnov, 2004). Considering the the average of
spectral flatness scores was taken over the entire clip, this
offers an amount to which the entire clip resembles noise.

The Mel Frequency Cepstrum Coefficient (MFCC) is a
audio feature representation that is used in music information
retrieval and speech recognition. The computation of the
MFCC is quite complicated but its important characteristic
is that it represents sound features in a way that is close
to how humans process audio information. This feature is
usually used in combination in a machine learning approach
to sound analysis and this research has attempted to use it
as well.

Harmonic salience is used to detect pitch (defined here
as fundamental frequency) as an alternative to the spectral

Fig. 9. Normal log power spectrogram

Fig. 10. Log power spectrogram of the same sound clip using a high pass
filter (cutoff 1000 Hz)

centroid approach. This method results in an approximation
of pitch that does not rely on frequency magnitudes and
thus is less sensitive to timbre differences than the spectral
centroid (Degani, Leonardi, Migliorati & Peeters, 2014)
Onset detection indicates at what frames in the sound clip a
new note or audio event begins based on sudden changes in
the signal. For the autocorrelation analysis, which represents
repetitive patterns in the sound signal and when graphed
looks like a oscillating signal itself, the resulting set of num-
bers were analysed using a periodogram. Taking the weighted
mean of these numbers indicates the dominant periodicity
of the autocorrelation. Depending on the analyzed sound
signal, the resulting numbers indicate the repetitiveness of
percussive or harmonic sounds.

Median-filtering harmonic percussive source separation
was applied with the rationale that the harmonic (tonal) part
of the soundclip might be related to the variables angularity,
brightness and size like in CMC research. The percussive
part of the signal (comparable to tempo) was expected to
relate to motion of the shape.



Fig. 11. Above: a time series of spectral centroids, below: a log power
spectrogram of the same sound clip

Fig. 12. A graph indicating the magnitudes of correlation by the amount
of lag in the compared sound signals

3. RESULTS

3-1 Investigating the task data

The sample consisted of mostly students recruited through
the MediaTech program or through acquaintances. A total of
25 participants completed the task. Analyses were conducted
using IBM SPSS version 25. The reasoning behind this sepa-
ration is that participants would need some time to get used
to the task (during the practice trials) and that they might
form preferences the more they practiced it. The frequency
distributions of the values chosen by participants for the 9
shape variables were analysed as well as their correlations
with the sound features extracted from the sound clips.
Additionally, correlations between shape variables were also
checked.

Shapes with no rotation (coded as a value of 0) were
removed from the analysis because of their drastic modula-
tion of the entire shape, possibly masking the other variables
representation.

Figure 13 shows two shapes with the same values for

all variables except the rotation variable, which is 0 in
the second image. Removing this variable from analyses
resulted in more consistent findings, supporting that this
metric negated the effect of other variables.

Observation of the frequency distributions suggest that in
general participants chose certain values more often than
others. To find the direction of the asymmetrical distribution,
skewness was assessed for each variable. The low amount of
skewness (within -.5 and .5) only shows small asymmetry.
The interpretation of this test is somewhat counterintuitive:
negative skewness means that the mass of the distribution
curve is concentrated more to the right of the figure and
vice versa for positive values. The values that show negative
skewness suggest that participants chose in general: more
vertical movement (-.123), faster moving vertical shapes
(-.120), more horizontal movement (-.0.98) and brighter
shapes (-.073). The positive skewness values suggest that
participants in general chose more rounded shapes (.30),
quicker fading shapes and more often counter-clockwise
motion (.111). Analyses between variables show negative
correlations between vertical motion and horizontal motion
(r(1065) = −.063, p < .05), angularity and vertical
motion size(r(1065 = −.064, p < .05) and brightness with
vertical motion speed (r(1065) = −.070, p < .05). This
suggests that participants chose either vertical moving shapes
or horizontal moving shapes, but not both. Large vertical
movement was less often chosen together with angular
shapes and more rapid vertical movement less often with
brighter shapes. Analyses of the practice and repeat trials,
which were identical in shapes and sounds, offer insight
into consistency in participants choices. Larger skewness
scores on the practice trials suggest that participants had
more pronounced preferences for horizontal motion speed
(skewness difference of .25) horizontal motion size (.20),
clockwise/counterclockwise rotation (.31) and to a lesser
degree vertical motion size (.15), fade (.10), and angularity
(.10). Brightness (.01) and size (.01) seem to have remained
consistent between the two trial blocks. Examination of the
correlations between shape variables in the two blocks reveal
that the only correlation from the practice trials between
vertical and horizontal motion size r(544) = 089, p < .05
is flipped for the repeat trials r(609) = −0.091, p < .05,
suggesting that participants were more likely to choose more

Fig. 13. Difference between two shapes with clockwise movement (left)
and with a (counter) clockwise movement of 0 (left)



vertical and horizontal motion together in the practice trials
but less in the repeat trials.

3-2 Data processing for SPSS analysis

Because the participants choices are recorded per audio
clip, the audio features must also represent the sound quali-
ties of the entire sound clip. This means that there must be a
single data point per clip in order to be statistically analyzed
in SPSS. The feature extraction in libROSA however, returns
time series data. It chops sound clips up into smaller win-
dows (usually a few milliseconds long) and analyzes them
in order from the beginning to end of the audio. In order to
extract a single data point for the entire clip, the average of
all the values for all the time windows were taken per clip for
some analyses. The spectral centroid for example, is returned
as a series of numbers that represent the dominant frequency
in an analysed window. Taking the average of all these
frequencies will offer an average dominant frequency for the
entire sound clip and would therefore allow sound clips to be
compared on that basis (e.g. the average dominant frequency
for sound clip 10 is 722 Hz and 915 Hz for sound clip 4,
therefore clip 4 is higher in pitch than clip 10). Other values
such as the numeric output from a mel frequency cepstrum
coefficient (MFCC) is returned as magnitudes per coefficient
bin at every window in the sound clip (13 coefficient bins
x 61 windows = 793 data points). To represent these data

as a single number, the coefficient bins were weighted by
their corresponding magnitudes for all windows, yielding
a weighted average of the MFCC. For the autocorrelation
analysis, that represents repetitive patterns in the sound signal
and when graphed looks like a oscillating signal itself, the
resulting set of numbers were analysed using a periodogram.
Taking the weighted mean of these numbers indicates the
dominant periodicity of the autocorrelation. Depending on
the analyzed sound signal, the resulting numbers indicate
the repetitiveness of percussive sounds or harmonic sounds.
Median-filtering harmonic percussive source separation was
applied with the rationale that the harmonic (tonal) part of
the soundclip might be related to the variables angularity,
brightness and size like in CMC research. The percussive
part of the signal (comparable to tempo) was expected to
relate to motion of the shape. As the task of finding one
number to represent an entire sound clip is quite reductive,
we attempted several feature extractions to see if there were
correlations between these extractions and any visual features
of the shapes. The following section is an explanation of
each method which was used which yielded significant
correlations, as well as an explanation of the method.

3-3 Sound feature analysis correlations

Averaged spectral centroids correlate with horizontal mo-
tion size (r(1065) = .087, p = .005), angularity (r(1065) =



Fig. 14. Plot of angularity and spectral centroid values

.079, p < .05) and brightness (r(1065) = .065, p <
0.05). Spectral centroid means for the percussive components
of the sound clips correlate with horizontal motion size
(r(1065) = .088, p < .005) and with brightness (r(1065) =
.083, p < .05). This feature was expected to relate to
the angularity and brightness characteristics, as it is an
indicator of average pitch height. Its relation to horizontal
motion size is an unexpected result similar to the averaged
highpass magnitudes. Spectral flatness this feature correlates
with brightness (r(1065) = .064, p < .05), suggesting that
more noise like sounds are associated with brighter shapes.
MFCC An analysis was conducted with the open source
machine learning suite using the sound features, including
the MFCC however the analyses could not yield useful
models for describing the data. Instead, the Weighted average
of the MFC coefficients were used in the multiple regression
analyses (discussed later). This feature did not correlate with
any shape characteristics on its own. Harmonic salience
correlates with horizontal motion size (r(1065) = .081,
p < .05). Weighted mean harmonic salience also correlates
with angularity (r(1065) = .077, p < .05) and brightness
(r(1065) = .071, p < .05). These findings are in line
with the spectral centroid findings. This might be due to
the fact that both features are indicators of average pitch.
The amount of detected onsets was summed for every clip
and correlated with size (r(1065) = .062, p < .05). This
is an unexpected finding considering that size is expected to

relate to pitch and not temporal/rhythmic attributes. Autocor-
relation periodogram weighted averages (APWA) correlated
with with horizontal motion speed (r(1065) = −.083,
p < .05), and percussive APWA correlated with horizontal
motion speed (r(1065) = −.08, p < .05) and angularity
(r(1065) = .063, p < .05). Harmonic APWA correlated with
with horizontal motion speed (r(1065) = −.083, p < .05)
and size (r(1065) = .064, p < .05). Since autocorrelation
is also used to find the fundamental pitch of a signal there
is a possibility that it is detecting some pitch information
especially when only using the harmonic components of the
signal. Assuming this is true and keeping the assumption in
mind that CMC research has found high pitch to be related
to small size, the correlation should be negative.

3-4 Sound feature analysis multiple regression

Multiple regression analyses were run to predict the shape
characteristics variables from as many sound features as
possible. All sound features were introduced into the analysis
and insignificant contributors were excluded from the mod-
els. Angularity was significantly predicted from from the har-
monic spectral centroid averages and MFCC weighted means
F (2, 1064) = 5.390, p = .005, R2 = .01. Brightness was
predicted from the weighted harmonic salience F (2, 1064) =
5.431, p < .05, R2 =.005. Size was predicted from the har-
monic autocorrelation and onset count F (2, 1064) = 4.611,
p < .05, R2 = .009. Horizontal motion speed was predicted
from the harmonic autocorrelation F (2, 1065) = 7.360,



Fig. 15. Plot of shape size means and onset count values

p < .05, R2 = .007 and horizontal motion size was predicted
from the spectral centroid average, harmonic autocorrelation
and the highpass magnitude average F (3, 1063) = 5.463;
p < .005, R2 = .015. The highpass average together with
the harmonic salience also predicted the vertical motion
size F (2, 1064) = 4.419, p < .05, R2 = .008. Vertical
motion speed, clockwise/counterclockwise motion and fade
could not be significantly predicted from the sound features.
Table 2 shows all the relevant multiple regression results.
The R2 value obtained from a multiple regression is a
metric of how much variance in the dependent variable
(angularity for example) is explained by the independent
variables (harmonic spectral centroid averages and MFCC
weighted means). In percentages, a R2 value of .01 means
that 1% of the total variance of the variable angularity can be
accounted for by the independent variables. Possible reasons
for these observations are offered in the discussion segment.

Plotting the means of the shape values and the sound
features that correlate with them for every sound clip shows
their relation. Figure 14 the angularity and spectral centroid
averages plotted on the y-axis and x-axis respectively. Figure
15 shows the correlation between shape size and the onset
count. This relation is less strong than the one in Figure 14
as can be seen in the R2 values (.099 versus .079).

4. DISCUSSION

This research attempted to integrate findings from CMC
research into a single design. Due to oversights in this design
and the challenge of extracting useful sound features from

music, the research has to a great degree focused on finding
relevant sound features for the chosen design of the shapes.
The results show that using the features from the libROSA
python library to predict all but three variables (vertical
motion speed, clockwise/counterclockwise motion and fade)
was successful to the degree that the experiment design
allows. These results set in place a framework for predicting
shape characteristics associated with sound features. Based
on these findings the hypothesis drawn from CMC research
that more angular, brighter shapes are associated with higher
pitch is supported. The hypothesis that smaller sizes are
associated with higher pitches cannot be accepted, due to
the fact that it could not be predicted from the averaged
pitch features. The perceptual relation between angularity
and brightness and overall pitch have also been mentioned by
the participants. On multiple occasions they remark that they
consistently chose brighter, more spiky shapes with higher
sounds and the results from the music features seem to reflect
these statements. There were some unexpected results such
as the high passed signal magnitudes correlating significantly
with movement but not with other shape variables. Also,
features that would presumably represent temporal phenom-
ena like onset amount and autocorrelation periods did not
effectively predict movement characteristics. The low but
significant correlations and R2 values are believed to result
from the distribution of variable values across the shapes
when they are presented to the participants. For example
the likelihood of a shape that is completely congruent to



high pitch in all its characteristics (high angularity, bright
and small) is very small and participants will likely make a
compromises that lead to their choices containing incongru-
ent values. As for the generative application of this project,
a framework for generating new shapes has been defined.
The analyses show that six out of the nine variables can
be predicted from the audio features. The directions of the
associations and the range for the extracted sound features
can be used to define a model for predicting the shape
corresponding to a sound clip (this will be demonstrated
during the presentation of this thesis).

5. LIMITATIONS AND FURTHER RESEARCH

Multiple participants indicated that once they were fa-
miliar with the procedure they had distinct preferences for
brighter and more angular shapes when the sounds were
higher, which might explain the consistency of the corre-
lation between these variables and the measures of pitch.
This does also suggest that these measures do represent the
perception of pitch well. Participants remarks also indicated
that there were trials on which the choice of shape was
directly and unequivocally certain. Unfortunately, no clear
way of identifying these clips was available for analysis. For
further research following this framework, a timer could be
used to keep track of the amount of time that participants
take to choose a shape, the shorter it is, the more certain the
participants choices is. Alternatively, a confidence of choice
measurement can be included. Recording the values of the
shapes that were not chosen would also offer more useful
data on what sound features participants do not associate
shapes with. The angularity also seems to have consistently
influenced the overall size of the shape. This is due to an
oversight during the design phase of the project and might
have contributed to a lesser ability to predict the shape from
the sound features. Seeing that high pitch is congruent with
small shapes and angular shapes, this oversight makes it
difficult to discern the difference in predictiveness of the
sound features. Motion seems to have also been an important
factor to participants and one that might have not been
represented in a manner that is easily quantified or accurate.
Larger motion sizes and speeds affect the characteristics
of the generated shape to a large degree. Despite this,
angularity and brightness remain relatively well predicted by
the pitch features. It remains unclear what role motion plays
in these interactions, however. In future research using this
framework, snapshots of the shapes state could be recorded
and matched to time series data from the audio analyses. A
note onset in time could be matched with a shapes position
at a certain moment perhaps. In general using an approach
that changes the total shape due to the horizontal and vertical
motion might offer a clearer view into the predictive qualities
of the sound features for each shape characteristic. This
research set out to recreate findings from CMC research
within a holistic design. To a certain degree, this has been
achieved, with results pointing in the same direction for two
of the three target variables (angularity, brightness, but not
size). In the process, the foundation of how to represent

sound in a meaningful way for these purposes has been
created.

6. CONCLUSION

Music visualization typically uses a mapping between
visual characteristics and musical features which are defined
by the artist rather than associations found through research
on the correspondences between the modes of sight and
sound. This research aimed to integrate multiple of these
findings into a singular design and test whether the asso-
ciations between shape and sound still hold. It also aimed
to explore what methods of analysing sound can be used to
map these findings on to sound features. The results show
that some expectations were confirmed, but not all and that
there seem to be music features that relate to the visual
perception of sound. Future research should aim to avoid
the methodological mistakes this one has made by limiting
the unpredictable range of behaviors the visualization can
exhibit and use a more controlled sound for analysis. This
research shows that there is a workable alternative to musical
representations that are dictated by personal preference only.

REFERENCES

Degani, A., Leonardi, R., Migliorati, P., & Peeters, G. (2014, September).
A Pitch Salience Function Derived from Harmonic Frequency Deviations
for Polyphonic Music Analysis. In DAFx (pp. 195-201).

Dubnov, S. (2004). Generalization of spectral flatness measure for non-
gaussian linear processes. IEEE Signal Processing Letters, 11(8), 698-701.

Evans, K. K., & Treisman, A. (2010). Natural cross-modal mappings
between visual and auditory features. Journal of Vision, 10(1), 6:112.

Fitzgerald, D. (2010) Harmonic/Percussive Separation using Median
Filtering. 13th International Conference on Digital Audio Effects
(DAFX10), Graz, Austria, 2010.

Gallace, A., & Spence, C. (2006). Multisensory synesthetic interactions
in the speeded classification of visual size. Perception & Psychophysics,
68, 11911203.

Grey, J. M., & Gordon, J. W. (1978). Perceptual effects of spectral
modifications on musical timbres. The Journal of the Acoustical Society
of America, 63(5), 1493-1500.

Marks, L. E. (1987). On cross-modal similarity: Auditoryvisual
interactions in speeded discrimination. Journal of Experimental
Psychology: Human Perception and Performance, 13, 384394.

Patton, K. (2007). Morphological notation for interactive electroacoustic
music. Organised Sound, 12(2), 123-128.

Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia–a window
into perception, thought and language. Journal of consciousness studies,
8(12), 3-34.

Sapir, E. (1929). A study in phonetic symbolism. Journal of Experimental
Psychology, 12, 225239.

Spence, C. (2011). Crossmodal correspondences: A tutorial review. Atten-
tion, Perception, & Psychophysics, 73(4), 971-995.


