
Uniqueness in Air-Drawing of Symbols

Georgios Bouzias
Graduation Thesis, June 2018

Media Technology MSc program, Leiden University
Supervisors: Edwin van der Heide & Peter van der Putten

g.bouzias@umail.leidenuniv.nl

Abstract— For this research we did build and evaluate
classification models trained with air-drawings of a simple
symbol with the purpose of identity verification. For the task,
we first collected air-drawing data from 16 participants with a
software application that utilizes the depth camera of a Kinect
v2. With the data, we trained two one-class classifiers for each
of our users: an one-class SVM and an Isolation Forest. We
then evaluated the models with AUC score across different
groups of features. For the feature construction process, we
made multiple features with a process tailored to the symbol
of our focus. As far as the results are concerned, for their best
performing features group, the one-class SVM and IF had AUC
scores of 0.988 and 0.977 respectively. These AUC scores have
been computed by the mean ROC curve of the 16 participants.
The corresponding EERs were 4.05% for one-class SVM and
and 7.2% for IF. Conclusively, we would say that given the
performance, a verification system as discussed in this study,
could possibly be a reality in cases that do not have very high
security requirements. More research and advancements are
needed to be considered as reliable in more sensitive cases such
as a scenario of locking or unlocking the house door.

I. INTRODUCTION

The purpose of this study is to research whether the air-
drawing of a simple symbol can be an adequate behavioral
biometric that could be used for user verification. To address
that, in this project we focus on a specific symbol (that of
Figure 1) and a motivation scenario, on top of which we
collect a dataset of air-drawings, that we use in order to
evaluate various classification models.

Our goal then is to test the performance of the system
among different users as well as the effectiveness of the
different classification algorithms that we use. In addition to
that, we also aim to experiment with different features and
find out the ones that perform best. The way we conduct
the research to answer those things, is by following a typical
pipeline such systems usually do [1], [2]. After collecting
the data, the process is first to do some pre-processing with
them, then to construct higher level features and finally to
train several classification models.

As far as existing research goes which we mainly discuss
in the following section, there does not seem to be any study
that is completely in line with our case here. Instead, it seems
that researchers have focused in online signature verification,
though one can say that it is essentially the same thing but
with a more complicated symbol. Also, in this signature
verification branch, there are some cases where the signature
is drawn in the air, similarly to our case, but it is safe to say

Fig. 1: A lock symbol that could potentially be air-drawn to
open a door. This is the same symbol that was shown to the
users during data collection as the ”ideal” lock.

that 2D signatures are much more well researched.
Next in the introduction section we discuss a motivation

scenario, our reasoning behind methodological choices in
data collection and classification process, some concerns
regarding behavioral biometrics, and we also outline our
research questions according to the purpose of our research.
In section II we discuss most of the previous work done in
air-drawing verification that we were able to find, as well
as some leading studies in signature verification and also
verification with Behavioral Biometrics in the broader sense.

Following that, in section III we outline how we conducted
data collection that has to do with the lab environment and
the application we developed for that purpose. In section
IV we discuss the methods that we used to build the
classification system, and in section V we present these
classification results. Furthermore, in section VI we discuss
the outcomes of this study, avenues for feature work and
limitations of this project. While discussing the outcomes, we
also compare our work with leading behavioural biometric

approaches that we discuss in section II. Finally, in section
VII we summarize our conclusions.

A. Motivation Scenario

Theoretically, verification by someone’s air-drawings
should be possible given the uniqueness of one’s behavior.
However it is important to discuss why this could be useful
and motivate for a context in which it could be studied.
The latter is needed mainly because the air-drawings could
potentially be of many symbols and produced with different
types of movement.

In the case of this research, motivation comes from the
potential of communicating messages to items, with symbols
drawn in the air. The core concept is that the items can
probably know a list of affordances and that if they receive a
drawing of a symbol, then they can perform a certain action.
These affordances can be simple actions like ’open’ if it is
for a door or a lamp, or ’start’ for a washing machine etc.

In that context, a potential application could have items
(e.g. lamps or doors) sensing the environment with a depth
camera in order to capture drawings in space. That is not
very applicable though, given that there is not real incentive
for simple items like a lamp, to become that much more com-
plicated and also cameras everywhere might not omit a very
nice feeling. Another scenario could be that a user makes
air-drawings with his finger while having an accelerometer
mounted to his nail. In this case a system in the user’s hand
should compile the drawing and send it to the item. A similar
thing could be achieved if the user is making the drawing
with his phone.

A system like the ones described could potentially be
owned by a user. In the first case, cameras could be set up in
somewhere like doors. In the second case an accelerometer
could be mounted on the nail and stream acceleration data
to a device with computing power like the user’s phone or
watch. Our research refers to a system like that, that is owned
by a user and tries to explore the possibility of verifying the
user’s identity by air-drawings of a given symbol.

This study is elaborated based on this concept. However,
in order to approach it in a meaningful manner we had to
focus on specifications in three areas:

• The application to capture the drawings,
• a communication scenario and,
• the interaction with the application.

The application we focused on was the one that involves
depth cameras, the communication scenario was the opening
of a door with a lock symbol like the one of Figure 1, and
the interaction was simply set as drawing the lock with the
finger while standing.

Application: Both of the applications that are being men-
tioned earlier in the section could potentially be suitable to
use in this research. In this research we will go with the
scenario that uses depth cameras to capture the air-drawings
in space. We recognize, however, that probably a system with
accelerometers could have bigger potential, given that it does
not include a camera to be integrated in an item for it to be
available for communication.

There are several reasons that we are taking this direction
that we will discuss here. First of all, a major aspect is the
freedom of movement that the depth camera allows. This
enables us to study the behavior in a natural and intuitive
interaction which makes sense. If we were to use an Inertial
Measurement Unit (IMU) and a microprocessor, it would
be much harder to achieve the same level of freedom of
movement with the same resources.

In addition to that, with positional data that the depth
camera provides, there is potential to create features that
have to do with our perception of the lock. That is not the
case though with the acceleration space that is much more
unintuitive. Also because of that, with the acceleration data
it is harder to visualize the drawing for making sure that it
is indeed a lock and for training the user with our system.
As we discuss later on, the first is needed to make sure that
we train our models only with locks, and the second mainly
because the users need to understand what they are doing
and familiarize themselves with the application.

Furthermore, for depth sensing there are several technolo-
gies and complementary tools that can produce very good
accuracies that are relatively easy to use in the context of
data collection sessions where a participant needs to interact
with a software application. In that regard, another thing
that encourages the use of such tools is that other studies
in signature verification by air-drawing have produced good
results with them [3], [4].

Communication Scenario and Selected Symbol: The
communication scenario is the scenario with which we will
study the air-drawing as behavioral biometric and how we
will introduce the people we will collect drawings from, to
the concept. Simply because the whole idea of verification
is mostly needed for security, we think that the scenario of
locking/unlocking a door with a lock symbol would be a very
suitable one to go with. Other scenarios could be to start
the washing machine, to open a lamp, perhaps by drawing
a whirlwind or a lamp respectively. The exact lock symbol
that we used and showed to the participants can be seen in
Figure 1.

Regarding the lock symbol, besides the intuitive connec-
tion as a lock/unlock icon, there is another reason that also
makes it appealing. That is because, given the fact that
symbols differ in complexity, a simple enough symbol such
as the lock will presumably be a tougher task for a model
than a more complex one. A simpler symbol would also be
preferred by the user for any task since it is quick and easy
to draw and remember. In addition to that, given our focus to
a particular symbol, we can construct some symbol specific
features that we can try for classification.

Interaction: The interaction with the application is a key
area a for the research since it is about the way the drawing
is being produced. That is because we are looking for
behavioral uniqueness in the drawing process as expressed
in the drawing trace. However, if the process is different in
each participant (or in each drawing), then the variability
might be because of that. Difference in the drawing process
we can see because of a choice the user made for drawing, or

because of other more complex things like the environment
or the person’s mental state.

In this research we try to control some choices the
participants make, in order to have traces that are produced
by behaviors that are different only in the domain of uncon-
scious natural movement. For the same reason we also try
to control the environment to the extend we can, by keeping
it in the same condition for all participants. However, there
is little we can do for more intangible things that can also
vary, like mental states. Also, despite any efforts to control
things, since the main concern is to have lock drawings in
the most natural way possible, we wanted the participants to
draw completely free from the shoulder and onwards without
any constraints.

In regards to the choices one makes when it comes to
making a drawing, there might be many possibilities, with
some choices having bigger impact potential than others. For
example one choice could be whether to make the drawing
with a finger or with a pen, and another choice could be a
decision for where to lift the arm to start drawing, or with
what speed. In this research we will try to control all the
big choices that usually come after a cognitive process and
we will treat all the others as part of a behavioral continuum
that we are trying to study.

In that sense, while collecting the data we ask the users to
do the drawing with the index finger of their right hand, to
start drawing from the bottom left corner of the shape, and
to stand straight a hundred and thirty centimeters in front of
the Kinect camera. Also, only people with a dominant right
hand were considered. Despite of that, it is important to keep
in mind that users would conduct themselves differently in
the real world where they could make all kinds of choices.
This would probably add variability between different people
but also between the drawings of the same person as we also
discuss later on.

As far as making the drawing with the finger or some
other tool (something like a stick) goes, despite the fact that
we instructed the users to go with the finger, a wand or a
stick could also be an appealing choice. The main advantage
of using another tool instead of simply the finger, is that it
probably adds more variability to the movement as there are
some extra variables involved. That is due to the fact that in
a sense the tool adds something like an extra joint. However,
using the finger can probably be more convenient to the user
in a real world scenario. Also, this is something that could
not be demanded by the application and we had to make sure
that this was the case on site during data collection.

Controlling other undesirable factors that are causes of the
unwanted part of all possible behavioral variability like the
environment or the mental states is also a target. In the case
of environment, to the extend we can, we keep things the
same for all participants as the data collection happens in the
same lab room with the same setting for everyone. However,
as we said earlier what happens in the psychological side of
the participant we cannot control.

B. Choice of Methods for Data Collection

The problem of verifying the identity of a user by his
air-drawings as has been described in the previous section
can be approached in multiple ways. Our task for this
research has two main parts. First we aim to collect some
data of air-drawings, and then to create and evaluate a
classification system that adequately does the verification for
a claimed identity. For both of those things we have chosen
a methodology that is explained more thoroughly in sections
III and IV. In this section we will discuss our motivation
behind our choices for some of our methods in regards to
the first big part of the research, the data collection.

More specifically, the choices we had to make about
building the dataset were:

• How to get the data (with what technology) and,
• how to make sure that the data is of the kind we want

(lock drawings and not any other symbol).
As we discuss in this section, we extract positional data with
an application that utilizes the depth camera of a Kinect v2,
and we manually annotated which of the drawings were locks
post-processing.

Getting the Data: Given that we have already discussed
the context in which the data should be acquired, in this
section we mostly aim to motivate on what technology we
will be using to collect positional data and why. Microsoft
Kinect v2 and Leap Motion Controller (LMC) devices are
used in two separate and quite similar studies that examine
verification by air-drawing [3], [4]. The LMC however allows
for a very small interaction space compared to our needs, as
it has a pyramidic field of view of 150 degrees with a range
up to 1 meter [4].

The Kinect v2 on the other hand offers quite a large
interaction space, up to 4.5 meters deep, a field of view
of 70 × 60 degrees [5]. It makes use of a Time-of-Flight
technique that gives it a tracking accuracy of 2mm in its
prime tracking area [6]. Two more parameters that enhance
the suitability of Kinect are its accessibility as an of-the-shelf
device and the open source libraries that we could use with
Processing 3.0 [7] to access its depth image [8].

The fact that we can use these open source libraries makes
it even easier to use it in the context of a data collection
session and by making an interactive application where some
user can draw locks with his finger and have the trace
captured. Apart from the ease of integrating the Kinect to
our application, with the Processing language we can add
visuals and cues that can dictate the flow of a session where
a user can understand when it is time to make a drawing, or
when to rest his hand etc.

Furthermore, it should be mentioned that besides the
technologies mentioned here, there are also others that in-
corporate depth cameras. Different approaches with LIDAR,
RADAR, sonar techniques or others with structured light,
are all being used for tracking purposes [9]. However, to a
different degree each one, seems to be lacking compared to
the Kinect in the aforementioned areas.

In a final note, it would maybe be interesting to discuss the

use of IMUs as a way to acquire positional data, given that it
was one of the application scenarios that we have discussed
earlier and much of the reason that made them less appealing
was that the data we could collect with them would be in
the rather unintuitive space of acceleration, with which we
cannot make plots, create instinctual features, or train our
participants.

However, we can also get positional data from acceleration
if we integrate data from a 9DOF IMU twice to go from
acceleration, to velocity and to position. The issue with this
though, is that the small integration errors accumulate over
time, which results to a well known problem of drift [10]. It
also appears that techniques that filter out the drift are still
a matter of scientific research [11], and that it is quite hard
to get very good accuracies with of-the-shelf sensors.

Symbol Recognition: Another thing we need to discuss
about the data collection process, is how can we make
sure that the drawings we receive from the participants are
indeed locks. In our broader description of the problem,
the verification system receives a lock and, prior to finding
out who did it, it needs to find what the symbol is about
(it needs to be a lock in our case). That is because the
verification process might require that knowledge (which it
does in our case), apart from the item’s need for knowing
what the intended action should be.

However, for this research this concern is simply out of
scope as it greatly increases the complexity. Indeed, adding a
robust symbol recognition feature would be a hard task, but
it is also necessary especially for a real world system that
would probably support many symbols. Nevertheless, since
we only want to study verification, and we only have one
symbol and not too much data, it seems that this issue poses
no real obstacle if we can manually check the symbols before
the feature construction or the training process. Checking
the symbols is very important not only for the algorithms
to not be trained with bad data, but also for the way we
are constructing features, that are based on the shape of the
drawing.

Moreover, despite the fact that we are dealing with user
verification it can be said that image recognition is not a
very different kind of problem. The key distinction for a
classification algorithm for that purpose, is that the labels
instead of being different persons (drawing the same shape)
would be different shapes (drawn by multiple individuals).
For the latter, a great deal of different algorithms and
techniques have been applied on the MNIST dataset [12],
which is a database of images of handwritten digits. Another
technique is applied by Vikram et al. in a relevant context,
where they attempt to recognize - on the fly - handwriting
made in the air [13].

C. Choice of Methods for the Classification Process

In continuation from the previous section, here we will
discuss our motivation behind our choices for some of
the methods we are using that are about the classification
process. In that sense, some of the decisions we had to take
were for:

• The learning strategy,
• the classification techniques and,
• how to evaluate our system.

In short, we used a Writer Dependent strategy, with models
that we trained for each user separately. These models were
one-class SVMs and Isolation Forests, and we evaluated
them based on their Area Under the Curve (AUC) score and
Equal Error Rate (EER). Also, the classification process is
discussed more thoroughly in section IV.

Classifier Learning Strategy: The first important distinc-
tion that we have to make as far as classification methods
go, is about the learning strategy for building a classifier.
According to signature verification literature, there are two
main ways to go about it, a Writer Dependent (WD) Sys-
tem and a Writer Independent (WI) one [14], [15]. Writer
Dependent (WD), means that there is a specific classifier
trained separately for each user we want enrolled and Writer
Independent (WI) indicates that the system is connected to
a database of templates, and when a user makes a query and
claims an identity, both the query sample and one or more
templates are used to make the final judgment [14], [15].

For our case we think that the most suitable way to go is
with a Writer Dependent system, mainly because it fits better
with our description of the problem. That is because in the
cases that this system might be used, there will probably
be the drawing of only one user available. In addition to
that, WD systems have been employed successfully in other
areas of behavioral biometrics [1], [16] but not so much in
air-drawing, which makes it worth exploring.

Classification Methods: As far as which models we will
be using in this research, it will be one-class SVMs [17]
and Isolation Forests [18], [19]. These are one class models,
that can learn to model a given training set of drawings
(represented by more high level features). They do this
by either learning a decision boundary (one-class SVM) or
by creating anomaly scores (Isolation Forest). Such model-
based approaches, heavily rely on the features that describe
the drawings. Also, in our understanding according to [2],
model-based approaches are mostly the case in signature
verification literature when it comes to Writer Dependent
systems.

This connection with the learning strategy is the main
reason that we selected a model-based approach instead
of a distance based one. Also, the models are one-class
mainly because of the absence of the negative class in a
practical case. In addition to that, the choice of one-class
SVM and Isolation Forest is well connected with our goal
of evaluating different kinds of features, since we can train
the models with various sets of features and see with which
set the models perform best. It would also be interesting to
see the performance difference of the two models with the
various sets of features or if there are differences between
participants.

In addition to that, it needs to be stressed that even in
the case where there was a dataset with the negative class,
probably the one-class models would still be the better
choice. That is because the negative class is theoretically

huge if we would account in it all the people that can
successfully make an air-drawing, which would make it
really hard for the negative class to be represented. Finally,
among one class models, one-class SVM and Isolation Forest
seem to be among the most powerful - even with high
dimensional data - and among the easiest to use since there
are some clear and robust implementations in open source
libraries.

Evaluation Methods: According to our research in signa-
ture verification and other behavioral biometrics, the typical
evaluation of such models is usually being done with False
Rejection Rate (FRR) and False Acceptance Rate (FAR).
The former refers to type I error which is also called False
Negative Rate (FNR) and the latter refers to type II error
or False Positive Rate (FPR) [2]. Because the two types are
highly related since by trying to drop one the other increases,
usually the Equal Error Rate (EER) is considered as the
overall error of the system, that is the error of the system
when the FRR is equal to FAR [2].

According to reviews like [20] and [2], more recently in
online signature verification the Receiver Operating Char-
acteristic (ROC) curve seems to be widely endorsed for
evaluating performance, which has True Positive Rate (TPR)
plotted against False Positive Rate (FPR) for different thresh-
old values [21]. That is mainly due to the probabilistic
interpretation of the Area Under the ROC Curve (AUC),
which is also the metric we will be mostly using in this
study [2], [21], [20].

The AUC score is interpreted as the probability that a
model will score a random positive sample higher than
a random negative one and not as the probability for an
instance to be classified correctly [21]. That thing makes
AUC an adequate metric to assess the performance of models
but in order for the models to be used in practice, a suitable
threshold needs to be selected as well. In addition to that, be-
cause the ROC curve is expressed in ratios of only positives
(True Positive Rate) and only negatives (False Positive Rate)
in the two axis, its corresponding AUC remains unaffected
from highly skewed test sets [21], which is also the case in
this research.

In addition to that, there are three other interesting metrics
that are sometimes being reported: accuracy, precision and
recall. Accuracy is simply the percentage of the correct
predictions to all the predictions made, precision is the ratio
of True Positives to all predicted as Positives (meaning
how many of the predicted positives are indeed positives)
and recall the ratio between True Positives to all Positives
(including those that were predicted as Negatives) [21]. The
main reason that we will not be using any of these three
metrics is because our dataset for every participant is heavily
skewed with locks of the negative class (which is all the other
participants).

D. Major Concerns

Due to the nature of the study of behavioral biometrics
which is the area this research belongs, as well as our
scope and given resources, we had some concerns under

which our results need to be looked at. The key issue is
that behavior can change over time for various reasons or
simply be inconsistent for whatever reason. For example a
user might learn the system better and change his behavior,
or he might just be inconsistent for any number of random
reasons that have to do with the environment or his state of
mind. In this section we discuss inconsistency under these
two perspectives.

The Learning Factor: One can easily see how a learning
factor is involved in such a system by thinking how people
naturally can improve at any task over time. It is also the case
that a system like that makes sense only when its users have
some familiarity with it (first and foremost, locks need to
look like locks). For that reason, before the data collection,
we had a training session with all participants in order to
make sure that they understand how the system works, how
they can do the drawings, and also to improve the drawing
skills up to a point that their lock is acceptably close to the
lock of Figure 1. However, it is important to ask what is the
impact of this factor to our problem more broadly and over
time?

In terms of performance, it is difficult to judge how
the learning factor would impact the performance of the
models. One could argue that a more experienced user will be
more consistent and therefore his model will perform best.
However the user might learn the shape very well and he
might have very few characteristics and nuances to it, which
would make it very similar with all the other experienced
users. A dystopian - and probably the most challenging -
scenario in that sense, is one where the system gets adopted
by a group of people, matures within their community and
that leads to all users start making very good locks, closely
resembling the one in Figure 1. Then it would potentially
become much harder for any model to decide whether a
given drawing is by the user it is trained on, or someone
else.

From that, it seems that the classification results should be
interpreted in light of the experience of the user group where
the classification is performed. Partially because of that, in
this study we tried to train every participant to a level that
he can start making acceptable locks, by holding training
sessions prior to the data collection session for about 10 to
15 minutes, and we avoided having participants with more
or less experience than that. The training was with visual
feedback of the user’s drawing trace, in order for people to
quickly pick up their mistakes and correct themselves - we
discuss training more thoroughly later on. Another reason
for going with lightly trained participants is time constraints
as the aforementioned challenging scenario requires working
closely over long periods of time with the users to improve
their drawing skills.

Besides of the impact of the learning factor on the per-
formance of the system given the environment (and how
other users become better at drawing the same shape), it
is important to see that the performance of the individual
system is also subject to change, according to how the system
updates its models or its knowledge of the user while he

is learning. Given that with learned behavior we refer to
stable behavior that is acquired by a user based on his
understanding of the shape and the process, it would be
possible for the models to adapt to a user’s new pattern by
re-training themselves in light of more data. In this research
however, we do not deal with this issue at all, given that we
collect data from one session only. It simply seems logical
though, that as long as there are such stable behavioral
changes they could be easily assimilated.

Drawing Consistency: In addition to the learning factor, a
very close related issue - albeit quite distinct - is the drawing
consistency users might have over long periods of time. This
might have to do with the user just being inconsistent or if
the user forgot the drawing after some time not practicing
it etc. This is different from the stable behavioral change
acquired by learning that we discuss above, although the
learning factor might also have an impact on this issue in
case the more someone learns the less other things effect his
behavior.

It is possible that participants make very different drawings
each time that they are using the system. This can happen as
we said merely from the different choices they make from
time to time, or because of environmental and psychological
factors. A user can for example choose to draw with a
prolonged arm one day, and with the arm close to the chest
the other day. Or someone’s typographic styling might be
different each time according to his mood or other things.
Nonetheless, this issue is out of our scope in this research
as it would require long term monitoring of the participants
behavior for which would need to largely increase the scale
of this project.

Our study does not take these factors into account and
of course the results need to be interpreted under this per-
spective. In fact our results will rather display the capability
of such a system to verify a user, given that the intra-
person variability in the drawings within a session is not
much different than the drawings between two days or even
longer periods of time. In order to leak as much intra-
person variability into the drawings as possible though, and
to avoid users mechanically standardize their drawings in
every iteration, we made sure that during the data collection
sessions the participants would reset their positions multiple
times - as we will also discuss in a later section.

Research in permanence of behavior in similar cases shows
weak signs that such permanence exists. In [22], a very close
related study was conducted for online signature verification
where the participants were verified by the signature that
they were drawing mid-air with their smart-phone device.
In that study there were eight users that participated in 20
sessions over a period of two months and signature samples
were collected from them. The authors then conducted a per-
manence analysis with some dynamic techniques, in order to
see the extent to which the participants retain their behavior.
In the end, it seemed that there were two prominent groups
of users: one where participants were consistent in repeating
their signature, and another one where there were significant
differences between drawings of the same participant in

different sessions.
The same problem is apparent to other cases regarding

behavioral biometrics. For example in [23], identification
is attempted by measuring the arm-swing acceleration and
the motion of the same person fluctuates even among trials.
Also, in a 2004 review [24], where different biometrics are
ranked in various characteristics, two prominent behavioral
biometrics like Keystrokes and signature making are ranked
as ’Low’ when it comes to permanence.

While the analysis in [22] and [23], or the review in [24]
shed some light into what happens, they do not go into why
it happens which is probably the harder and more complex
question. Given that we knew the circumstances under which
permanence could be achieved, we would study air-drawing
under such circumstances. However, since this is not a very
well studied area and as we said this issue is out of scope
for this study, we will proceed with the assumption that
permanence is possible.

E. Research Questions

In order to be clear and methodical in approaching this
problem, we need to be explicit in terms of extending the
purpose of this study that we outlined earlier, into a research
question we can quantifiably answer. Such a question would
be: ”Can someone be verified accurately by the way that
person air-draws a not too complex symbol like a lock?
And if so what are the right features, the right model and
how much data do the models need to converge?”. That is
decomposed into the following four elementary questions
which we will try to answer:

Question 1 - To what extent a user can be verified to
have made a lock (Figure 1) drawing in the air ?: In order
to find out how accurately we can do verification, we will
use the locks we get out of 16 participants and train one-
class classification models with them. We will then measure
their performances with Area Under the ROC Curve (AUC)
metric [21] as well as Equal Error Rate (EER) and we will
use them in order to draw conclusions.

Question 2 - How do different kinds of features help
the system perform ?: For this question we need to make
various different sets of features. Then the aim is to test them
in isolation or combine them in groups and find how they
impact the performance of the models. Also, it is maybe
important to stress here, that our goal is to evaluate the
different features and not the method by which we acquired
them which is in many cases custom made for the lock shape.

Question 3 - How do different classification methods
compare to each other ?: In this research we will try
out two different types of models, an one-class Support
Vector Machine (SVM) [17] and an Isolation Forest [18],
[19]. For each model we will see its performance in all the
aforementioned cases (the different users and sets of features
as well as its convergence rate), and we will try to identify
the areas one method might have the edge over another.

Question 4 - How fast does a classifier learns the
model of a user ?: For this question we will be making
a convergence rate analysis. For that we will train models

with different numbers of samples and see the performance
in terms of AUC while the samples increase. Also, besides
the participants that we already have referred to, we have
data of 590 drawings from one extra participant that we will
also use for the convergence rate analysis.

II. PREVIOUS WORK

The two main challenges of this research were to first
build the dataset of air-drawings, and then train and evaluate
classification models with that data. As far as building the
dataset goes, this involves capturing the trace of a drawing as
a time-series of positions with a Kinect v2. For training and
evaluation, we took into consideration previous research on
the matter to find out the ideal models to build and compare.
Given our research goals, as mentioned earlier, we went with
one-class classification models, and used the one-class SVM
[17] and Isolation Forest [18], [19].

We will more explicitly discuss the methods we are using
in the following sections. In this section we will discuss
other research on the topic of air-drawing, online signature
verification, and a little more general in terms of behavioral
biometrics. We will mainly try to highlight similarities and
differences with this study and others. In addition to that,
when it comes to air-drawing we will also discuss potential
uses of the Kinect in research. Before looking more into the
specific studies though, it is worth making an overview over
the classification methods that are being most used in the
bibliography.

For signature verification by air-drawing, the most popular
method seems to be Dynamic Time Warping (DTW). The
studies that are referred to here are in fact all using DTW
[3], [4], [22] one way or the other. In [4] the DTW approach
is compared with another approach based on Hidden Markov
Models (HMM) and in [22] again a DTW approach is
compared with one using an HMM and another one using
a statistical (Bayesian) classifier. In both studies the DTW
approach seems superior. The area though is largely under-
researched and not too many methods have been tested.

On the other hand, online signature verification is much
more well researched. A late review in [2] mention plenty of
methods. However, it is hard to pinpoint the best performing
method or study, because of the different datasets, features
and also the evaluation methods that are being used. In
spite of that, it is fair to say that DTW and HMMs seem
to be the most popular techniques. DTW refers to distance
based methods, and HMM to model-based ones. Later in this
section we will discuss more closely some interesting cases.

In addition to that, it should probably also mentioned here
that in some cases in bibliography the term authentication
appears instead of verification. This is sometimes the case
in more recent studies. To our understanding the terms are
being used interchangeably and we hereby stick to the term
verification (unless we are quoting the original text). That is
mainly because it seems to be consistently used for a longer
period of time across signature verification and air-drawing
research.

A. Research in Air-drawing and Drawing Trace Capturing

Research on the exact topic of verifying an individual by
air-drawing is sparse but not non-existent. In [3] an air-drawn
signature is captured by the depth camera of a Kinect v2.
The signature is being drawn by the index finger as the tip
of the finger is tracked, just like our case. Also, it is fair
to say that signatures are in general more complicated than
the simple lock shape of Figure 1 that we are using. After
capturing the trace, verification is attempted by the means of
DTW in a Writer Independent classifier style. The precision
and recall rates of this study are 100% and 70% (worst-case
scenario) respectively. This research, besides its methodology
for classification, is very similar to our case as they also
build a software application to capture the signatures with,
that goes by the name KinWrite.

Another study that utilizes a depth camera to get the data
for verification is [4]. Similarly to the previous research, the
verification is also between signatures but the technology
used to capture the trace is a Leap Motion Controller (LMC).
Yet again, the signatures are drawn in the air by the index
finger. A concern one might have in regards to the use
of LMC is that due to its narrower field of view than
for example the Kinect’s, it poses some constraints for the
drawing size a user is allowed to make. This, does not cause
any problem though, as the users familiarize themselves
with the system and the drawing box with a visualizer,
similar to our case. In terms of the verification methods,
two approaches are followed, a DTW one and a HMM
one, with accuracies of 95.5% and 90.0% respectively. Both
approaches use some higher level features constructed by the
lower XYZ points from LMC.

The two previous studies capture the air-drawn trace by
depth cameras. However, this is not always the case since
there is some research for signature verification drawn in
the air that captures the trace with Inertial Measurement
Units (IMUs). In [22], users cast their signatures mid-air
with a smart phone, and the acceleration trace by the phone’s
IMU is tracked. For the classification part, three methods
are used, an HMM, a statistical - Bayesian - classifier with
mathematical features, and DTW. The Equal Error Rates
(EER) of each method is reported which corresponds to
5.96%, 14.09% and 4.58% in the stress situation of impostors
signatures; notably the models or templates were trained with
only up to five instances.

In terms of the technology we use in this study to capture
the drawn trace, we have already stated that it is Kinect v2 for
Windows. This technology besides that it has already been
used successfully in an air-drawing authentication scenario in
[3], it is also being used in other fields such as robotics [25],
Sign Language recognition [9] and others. In [25], Kinect
allows a visual servoing robot do visual tracking. In [9],
Kinect is used for sign language recognition and is compared
with another technology for the same purpose that involves
IMUs combined with color tracking.

B. Research in Online Signature Verification

Research in the field of Online Signature Verification is
well documented in a series of reviews done in 1989, 1993,
2000, 2008, 2012 and 2014 [26], [27], [28], [29], [20], [2].
From the systems that are discussed in the reviews, the ones
that build models for users separately, are the ones closest
to our case (sometimes called Writer Dependent systems).
Systems that take a distance based approach are very popular
though, similar with the air-drawing literature of the previous
section. In addition to that, given that research in online
signature verification refers to different types of forgeries,
and in our case the lock symbol is always the same for all
users, the approaches that refer to skilled forgeries are the
most relevant to us.

As far as some interesting studies of online signature
verification goes, in 2004 the SVC2004 competition was
held, with teams competing into the same dataset at two
different tasks [30]. The first task included only positional
data and the second also had pen orientation and pressure
data. The best approach when tested with skilled forgeries
achieved an EER of 2.84% and 2.89% for the first and second
task respectively. When tested with random forgeries, the
EER score for the first task was 2.79% and for the second
2.51%.

The methods that have been used from the winning team
are described in [31], where they are also evaluated with
another dataset. In short, the features were constructed with
the help of DTW and then the problem is treated as a
two-class classification one. In that sense, a linear classifier
combined with Principal Component Analysis (PCA) is
compared with a Bayesian classifier and a two-class SVM.
The aforementioned linear classifier in conjunction with the
PCA method seems to be performing best with the dataset of
[31], with a FRR and FAR of 1.64% and 1.28% respectively,
and is also the method used in the competition [30].

In [32], a Discrete Wavelet Transform (DWT) method is
used to decompose an online signature into sub-bands from
which individual features are extracted. According to those,
for enrollment a template is created and for verification an
Adaptive Signal Processing technique is utilized to capture
the similarity of a processed signature with the template.
According to the similarity, a decision is taken with a non-
linear function for whether the new signature is genuine
or forgery. The reported EER of this approach is 4% on
a dataset collected for this research.

In [33], a three stage verification technique is used, where
distances from three templates are found for three different
kinds of features (global, local and point-to-point matching).
A decision for whether a signature is genuine or forgery is
taken independently in each stage with a different decision
function. The stages are applied in a sequence and a signature
is accepted as genuine when it passes all three stages. A FRR
of 5.8 and a FAR of 0% is reported on a dataset collected
for the purpose of the study.

All the aforementioned studies are characterized as
distance-based by [2]. That is because there is an enrollment

phase where a template is created, and according to the
method used each time, for any new signature the distance to
the claimed user’s template is calculated. Then, a classifica-
tion technique is applied to make a decision on whether the
distance is too high to characterize the new signature forgery,
or too low to call it genuine. In the case of [31] where a two-
class SVM model is used to take the final decision, one could
say that the model is trained to model the similarity for when
it is too high or too low according to all users in database
and the specific feature used. That is different with our case
where we are using one-class SVM models, to model user
behavior according to parameters.

Despite the seemingly good performance of the distance-
based approaches, according to [2] it is systems that build
models for each participant separately, and do not construct
templates that have the edge in performance. In this study
our approach is also model-based, as we train and evaluate
one-class SVMs and Isolation Forests across our participants.
However, our models are based on parameters and not on
functions as it is usually the case in the model-based studies
of online signature verification. Two of the model-based
approaches that seem to have the better results in [2] are
[34] that models functions and [35] that models parameters.

More specifically, in [34] an HMM model is build for ev-
ery user based on 5 initial signals of the training samples, that
are captured from the data collection device. These signals
refer to position (x,y), pressure, inclination and altitude as a
function of time. The average EER across all participants on
skilled forgeries is 0.35% when a user-depended threshold
is used for the decision function.

In [35] instead of signals, global and local features are
combined for user-dependent models. There are 23 global
features, that have to do with statistical properties of the
signature data, like total time, length-to-width ratio and
others, that are used to build a statistical model for each
participant. We also use global features in this research but
they are quite different than these ones. As far as the local
features go, they are created after segmenting the signature
into parts that characterize each state of an HMM. After
combining the information by the two models that rely on the
global and local features, the EER reported by the research
is 2.5%, as evaluated on a proprietary database.

C. Research in the broader topic of Behavioral Biometrics

In terms of the larger area of Behavioral Biometrics, there
are some lengthy taxonomies such as [36], and it is not very
feasible to present a comprehensive view in a few paragraphs.
However, research in keyboard and mouse dynamics, seems
to be the most relevant and interesting for our case. It is
also true that very similar methods to the ones of signature
verification are used in general for the various verification
systems.

By cherry picking studies that display good performance
and are relevant for their methodology to ours, we would
say that [1] is a mouse dynamics study that effectively
leverages Principal Component Analysis (PCA) and an one-
class SVM among other things, to achieve an FAR of 8.74%

and an FRR of 7.96% in 11.8 seconds authentication time
and 32 samples by users. However, this result can be greatly
reduced to 0.87% FAR and 0.69% FRR by increasing the
authentication time and the samples produced by the user
to 800. Additionally, [16] is a keyboard dynamics research
using an one-class SVM among other algorithms and various
features for which it achieves EERs as low as 1%.

III. DATA COLLECTION

The first step of this research was to collect data from
different participants that we could make models for. In order
to do that we made a software application that utilized MS
Kinect v2, and can capture the drawing trace of a finger.
Then, we used that system in the context of several data
collection sessions in order to acquire the data.

The reason to make the application and conduct data
collection sessions was to meet the specifications of our
problem both in terms of the data but also the process that
would produce them. Specifications that to our knowledge
we could not meet easier (e.g. with a ready made dataset).
More specifically we wanted:

• the positional data to a format that we could process in
order to find features and plot in order to decide if the
lock is indeed a lock or not,

• a frictionless interaction as we have described it previ-
ously,

• a way to be able to use the system in a training
mode where users could correct themselves with visual
feedback on the locks they are making.

By taking these things into account we made a data
acquisition system (the aforementioned application) that we
used in the context of some data collection session, in order
to answer our research questions. In this section we will
explain how we made that software, and how we conducted
the sessions with it.

A. Application and Drawing Trace Capturing

As it has already been said, in order to capture the drawing
trace we are using Microsoft Kinect v2. The purpose of the
system is to produce a csv file with a timeseries of XYZ
points that plotted together in sequence can reproduce a lock
that a participant drew. We also aimed for ease of use since
we expected the user to manipulate the system in a slightly
theatrical manner to produce the locks. The manipulation
is along the context of the data collection sessions that
is described later on. Most importantly, the system should
facilitate capturing the instance, give some visual feedback
of the drawing trace, and work in two modes, one for training
and one for capturing locks.

In order to build the system, we used the Processing
language [7] and the Open Kinect for Processing library [8].
From that library we got the Kinect’s depth image in every
frame. We also used g4p controls [37], to get an additional
display window in the Processing environment. In order for
the Open Kinect library to interface with the device, we used
the libfreenect2 drivers [38]. In terms of hardware, besides
the Kinect v2 device, we used two monitors (one laptop

monitor 13” and one standalone monitor 22”). From the
Kinect we used its depth camera, that has a field of view
of 70 × 60 degrees, a depth image resolution of 512 × 424
and has a reach of 0.5 to 4.5 meters [5].

The laptop monitor displayed a ”console screen” (left side
of Figure 2) which facilitated the training process since it
showed the depth image by Kinect and most importantly
the drawing trace a given participant was producing. That
monitor was available to the user only during training. Also,
the software application was run on that laptop and the other
monitor along with the Kinect were attached to it.

The other monitor was the user’s monitor that displayed
only the lock of Figure 1. It was used to co-ordinate the
flow of the session so the participant can know what do
to when. The display screen can be seen in the right side
of Figure 2 and signaled three things: when the status was
idle and there was no recording (Figure 2a), when the trace
was being recorded (Figure 2b), and when the recording was
completed successfully (Figure 2c).

Besides giving feedback to the monitors, the main purpose
of the software was to listen for a gestural signal by a user
and to keep track of the closest point once the signal gesture
was made. A signal could be made by holding someone’s
finger still in front of the Kinect, given that the finger is the
closest thing to it, which it was because it was taken care of
from the set up of the environment as well as the intention
of the participant (for which he was instructed to).

When the software was to find out that the closest point
did not move for a couple of seconds, it would immediately,
remove the lock from the main monitor and start recording
the position of the finger (given that it remains the closest
point while drawing). When the user was to make the signal
again, then the software would drop the trace into a csv and
conclude the documentation of an instance. Then the user
would have to reset his finger, and signal again for the next
drawing.

In that sense, the basic cycle of moves the participant
would have to do to make a lock would be 1) signal to
start, 2) draw, 3) signal to save, 4) reset the hand. Resetting
the hand was happening to avoid mechanistic drawing and
capture the natural intra-person variability as we have men-
tioned earlier. Screens from different stages of this cycle as
captured by both the feedback monitors can be seen in Figure
2.

During the drawing part of the cycle, the application was
designed to make the symbol disappear from the user’s mon-
itor. That was the case for three main reasons. First, because
this serves as feedback to the user to start the movement, and
also because it prevents cheating (by following the drawing
with the hand). Another reason was because it is closer to a
real world situation. For the same reason we did not allow the
participants to see the console screen during the production
of locks.

Another important aspect of the software application is
the representation of the data in the resulting csv. From the
OpenKinect depth image object, we were getting the raw
depth that corresponds to every pixel of the image and has a

(a) Console (left) and display (right) screens of the application before making the signal to start drawing.

(b) Console (left) and display (right) screens of the application just after making the signal to start drawing.

(c) Left: Console screen that shows someone that has just completed the lock drawing. Right: Display screen that shows the celebratory
feedback that the lock has been saved successfully - this happens a moment after the drawing csv is saved.

Fig. 2: The console (left) and display (right) screens in various phases of the data collection cycle.

range from 500mm to 4500mm, at 30 Frames per Second [8].
Also, the same library had some functionality to translate the
x, and y pixel of the depth image to the real world dimensions
given that the Kinect camera is the start of the axis. That
translation was based on specifications of the Kinect physical
device. In order to leverage this functionality to construct the
csv with the drawing trace, for every frame where we had
updated values from the Kinect, we were taking the x, y, z
and a timestamp values and we were storing them in a row.
Afterwards, with the user’s signal that he finished drawing,
we would produce the file.

Finally, another issue we had to deal with when building

the software was to make sure that we get hold of the correct
pixel in every frame - which corresponds to the closest point
to the camera. That is not as straight forward as looking at
every pixel of the OpenKinect depth image object, because
there is noise in the form of random pixels that usually are
at the edge of the screen. They sometimes appear to have a
value remarkably close to the camera. However, since these
pixels only sparsely appear to the depth image, the way we
dealt with it was by checking a pixel’s neighboring pixels
before crowning it as the closest.

B. Lab Environment Setup

In terms of the setup of the lab environment, we used a
spacious room where we put a camera four meters from a
wall. The users were instructed to sit 1.3 meters away from
the camera, behind a line that was drawn on the ground.
Such a position, forces the drawing to happen in the area
where the Kinect is most accurate [6]. A crucial part of the
process was to familiarize the users with the system and how
their drawings looked like, until they were to find a drawing
rhythm that felt comfortable with all interaction aspects and
the entire process. After some training the data collection
process would start.

The interaction was confined within the lines of a straight
standing pose with the movement freedom to start from the
shoulder and onwards. Furthermore, we instructed the users
to start drawing from the bottom left corner of the shape
(green point in Figure 3b), which was a fixed point for every
participant because as we have already said we wanted to
remove the element of choice in the non-behavioral aspects.

In order to train the users we used the console window
(right side of Figure 2) and we showed them some visual
feedback of their trace. We then guided them on how to
use the system and we encouraged them to play with it by
making some locks or other shapes that would help them
get a feel for it. When the users felt comfortable with the
application, we stopped the training process and started the
lock collection session. We then asked each user to make at
least 60 locks with their index finger.

In addition to that, between every drawing, the participants
were also asked to reset their hand in order to make a
complete movement all from the beginning. In addition to
that, four times during the session - approximately when a
batch of 15 locks was completed - they were asked to pause
lock making for a while and take a walk in order to have a
break. The users are also encouraged in beforehand to target
the camera like a door they want to open and to keep the
rest of the fingers in a fist due to the fact that what gets
tracked is the closest thing to the camera and therefore the
index finger needs to stick out.

The data collection sessions were held in the span of
five days with up to five users per day (a total of 16 users
participated). All users were right handed, aged between 21
and 44, and among them there were 8 women and 8 men.
Each person contributed from 71 to 104 drawings, from
which not all were good locks. From each participant we
ended up using 60 good locks to build models.

In addition to that, we had one extra participant (not in the
pool of 16) that made 590 drawings within the span of four
sessions that we would use when making the convergence
rate analysis for the models. That person was not considered
among the 16 for any other experiments because he was
much more experienced than them. Finally, the conditions in
the room regarding camera placement, drawing position etc
were kept the same for all sessions.

IV. DATA ANALYSIS

After having the raw data for 16 participants we did our
testing in three basic steps. First, we did some pre-processing
on the raw lock data, then we constructed some high level
features that we grouped up in various combinations, and
finally we trained and evaluated a number of models on how
they can predict locks from both the positive and the negative
class. Also, in addition to the 16 participants that gave us at
least 60 locks each, we had and an extra participant that gave
us 590 drawings with which we analyzed how many training
samples do the models we used require to converge. We did
not include any data of that participant in any other case
though, because he had much more experience in drawing
than the other 16.

For the final step which is the model construction, we
trained an one-class SVM and a Isolation Forest, for every
participant and for every group of features. For the Research
Questions 1, 2 and 3, we trained models with data from the
16 individuals (one one-class SVM and one Isolation Forest
per user and feature group), and evaluated them with positive
and negative samples. The positive ones were locks of the
same person that were not used for training, and the negative
ones were all the remaining locks from the other 15 users.
More specifically, what we did for each of the first three
questions was:

RQ 1: For the first question we looked into the perfor-
mance of each user across the different feature
groups that were used, to see the ability of a model
to verify a user.

RQ 2: In the case of question 2 we looked at the groups
of features and tried to identify the best performing
ones.

RQ 3: Regarding question 3 we looked at the difference
between the performances of one-class SVM and
Isolation Forest across all models.

At the model construction of the fourth question the
approach was a little different. Our goal was to investigate the
extent to which the models become better with more training
samples. The problem was that with the samples from any
of the existing 16 participants, we could only see it as far
as 40 training samples (because we would at least need the
remaining 20 positive samples to test with).

For that reason, as we explain later on, the data that we
used for the convergence analysis was from the one addi-
tional participant that had contributed 590 drawings. Also,
we did run the analysis under all the different feature groups,
for it would be interesting to see how does the convergence
rate fares in cases with high and low dimensional data.

A. Pre-processing
Before getting into the analysis of the data, the first step

was to do some pre-processing in order to prepare them for
the feature construction step. Given that the data already
came in a nice format as we explained earlier we did not
do more than four operations on the raw data. In addition to
that, in this step we had to make make a first manual scan
of the locks to see that they are indeed locks.

As a matter of fact the pre-processing steps that we took
for every raw lock file were:

1) We reseted the coordinates of the data points so that
the start of the axis was the front-bottom left corner
of the interaction box,

2) chopped the front and the back tail of the drawing
trace,

3) removed the duplicate points,
4) interpolated some values that were very much off

the mark (sometimes there were glitches in the data
collections that we accounted with this step)

Our process for the preprocessing step was very straight
forward. By going through the locks of every participant
separately, we were performing those actions for every lock.
Afterwards we were plotting the lock, and we were judging
whether to keep it or not. The decision was according to our
intuition in regards to the extent some of our criteria were
satisfied.

There were two criteria that we had for keeping a lock
instance or not. The first was that the shape was indeed a
lock (because there were some miss-drawings during the data
collection process that we knew we had to toss out). The
second one was that some Points of Interest (PoIs) that we
were finding later in order to create features were correctly
identified. We had to inspect the files for that, because our
method to create those PoIs was not very robust and we
could not be sure that it would work in all cases (in the end,
in very few cases - less than 1% - it did not work).

It is out of this process that we created the dataset that had
the locks we deemed eligible to train with. In the following
paragraphs we will try to explain more in detail what we did
for each pre-processing step, and also how did the selection
looked like and how it worked out.

Step 1 - Coordinate reset: The reasoning behind the
first step of the operations that we applied on the data, was
only to make them easier to work with - be that plotting or
making calculations. As has already been said, the raw data
came with the physical device of the Kinect as the center
of axis. In order to change that, we used the functionality
of the OpenKinect library [8] to find the x dimension of the
interaction box, and added half this value as offset value.
Afterwards, we did the same for the y axis, but instead
of adding we subtracted the y offset and took its absolute
values. The process was different because the raw y axis
was inverted.

Step 2 - Chopping the sides of the trace: The reason
chopping the sides is important, is that as we explain before,
the way to capture a trace is by having a user signaling
to the system by keeping the finger steady for roughly 2
seconds. Some users, however, do not respond immediately
and hold their hand longer. Because of that, there is the fear
of leaking the reaction time as a characteristic in some of our
features like for example the ’total drawing time’. However,
the reaction time is a behavioral aspect we do not want
because it refers to the response time and not the drawing
behavior.

For that reason, in order to account for the response time
which is between the start of the signal and the start of the
actual drawing, we chopped a varying amount of points from
the lock shape of each drawing. In order to find the correct
amount of points to drop we made use of the fact that the
person, while idling, is still holding the finger still. We set
a threshold of 20mm and by going through the points of
the trace (from the second and onwards), we would stop at
the point whose euclidean distance with the very first point
of the trace exceeds that threshold. Then, in order to not
accidentally throw away any relevant information we tossed
the trace up to three points behind the point with the high
distance.

The way we set the threshold and took the decision what
to toss was mainly through trial and error. Our main objective
was to chop only when necessary and not throw away part
of the trace that was relevant. In addition to the front chop
we also made a back chop that was a fixed 50 lines. That
was because they were redundant since they represented the
signal that was ’closing’ the lock (Figure 2c) and they were
not part of the drawing.

Step 3 - Duplicate points removal: The third pre-
processing step that we took was to remove the duplicate
points. Sometimes the Kinect would produce the same exact
point in different timestamps. In those cases we kept the
oldest point and threw away the other. The main reason that
we did this was because it made calculations easier and also
helped the filter to perform quite better when it came to the
next step which was smoothing. We also had a concern that
by removing the duplicate points we might slightly impact
a few features that come out of the simple distributions of
the pre-processed points. However the impact should be very
small and it is hard to say if it would be for the better or
worse.

Step 4 - Interpolation on wrong values: The final
operation on the data was interpolation. That was because
in some cases there were glitches and the Kinect would pick
an off point in the wrist or if someone extended slightly one
of his other fingers for a brief moment or something like
that. In these cases where one or two points in a row were
very off we could use an interpolation technique to restore
the shape of the lock. That way we could use more samples,
and we could also improve others that we would have used
in any case.

In order to do that, we made a new lock shape with a g-h
filter [39] and we superimposed it on the raw data. Then by
going through the points of the drawing traces one by one,
we were finding the cases where the distance between the
same point in the smooth image and the raw image was too
large. Next, if the distance was large enough (over 3mm)
we were finding a new position for that point, according to
its adjacent points. Finally, if the distance between the new
and the old positions would be substantial (over 20mm) we
would go on with the interpolation.

The filter that we used had g parameter of 0.9 and h
parameter of 0.9 so it only very slightly, in cases of big
anomaly (like a very abrupt glitch as the one of Figure 3a),

(a) The raw lock in blue and the superimposed smoothened (almost
on top of each other) in light green, with the red details which are
points found to need interpolation.

(b) The interpolated lock with the points of interest (the small red
point being the interpolated point).

Fig. 3: Images that determined the eligibility of a lock drawing for the final dataset.

it deviated substantially from the raw trace. Also, by looking
at the conditions that we had set to make an interpolation,
one can see that in a given drawing very few changes would
be made - which was our goal. In fact with this smoothing
technique less than 10% of the drawings received changes,
and there was no image that had more than four of its points
altered.

Selecting the eligible locks: After having processed an
image out of these four steps, we made a software tool that
displayed the images as shown in Figure 3. The tool then
allowed to separate the good images from the bad ones with
a yes/no user input. Only the good images were used going
further.

In the images we can clearly see if the drawing is a lock
in the first place, how the interpolation worked and how did
our functionality for finding some Points of Interest (PoIs)
worked. These PoIs were very important for the next section
where we wanted to construct features. As we have said
before, there was room for error in finding those points and
that is part of the reason why checking manually if they were
found correctly was important.

The criteria for selecting a drawing for the dataset that
will be used later on, are exactly the qualities mentioned
above. Mainly the drawing has to look like a lock and not
garbage, and the PoIs algorithm needs to work. All in all we
dropped 334 images out of the 1422 that we collected. In
Figure 5 we can see a random sample of 12 locks that have
been dropped.

On a final note, we need to mention that because we had

more or less a varying number of locks for each participants,
very rarely, we dropped drawings that were not too bad for
the sake of better ones from the same participant. When this
process was over, for each participant we had at least 60
locks and at most 79. In Figure 4 we can see examples of
locks that were kept from four different participants as they
were formed after pre-processing.

B. Feature construction

The next step after getting the pre-processed data was
to extract more high-level features in order to do the clas-
sification with. As we have already said, the features we
extracted used the geometric and temporal information of
our data and we used them in different batches - in the
end we tried 26 different groups as we explain below. The
three main categories of groupings were: the global features,
the distances, and the ratios. By all the groupings and
experimentations we also aimed to find the most powerful
kind of features for this particular problem.

The way we went to combine the different groups of
features is the following. Based on the three aforementioned
categories of features, we made 11 very basic groupings,
which are for the most part clearly distinct from each other.
Seven of those groups were from the global features as we
derived them from the plain distributions of the points in the
processed csv file. Two groups were comprised from distance
measurements of some special points in the drawing that
could describe it as lock (we hereby refer to those points as
Points of Interest). Finally, the other two groups were ratios
of the aforementioned distances.

(a) Participant 4. (b) Participant 5. (c) Participant 8. (d) Participant 13.

Fig. 4: Lock drawings that were kept from 4 different participants after pre-processing (different user in each column).

Fig. 5: Raw lock drawings that were tossed from various participants sampled at random.

On top of these 11 basic groups, we tried combinations
according to their performance. For example if we would
see that group 4 and 5 have a good score we would try
them together, or if group 13 performs well but is very
high dimensional we would try to see if a subgroup could
also perform well. All in all, we experimented with 15
combinations of the 11 basic groups, which resulted in trying
26 groups of features in total. The details of each one can
also be seen in Table I, where the groups of basic features
are in bold letters.

In addition to that, we evaluated each group of features
by their mean AUC performance across our participants, and
we also tried to see if there were different participants per-
forming better with different groups in particular. Following
up with this section we will go to more specifics as to how
we calculated the features of the groups of each category.

The Global Features: The reason we call this category
’the global features’ is because in order to make those
features, we just used the plain distributions of the xs, the
ys and the zs from the entire csv of a lock drawing. We
also made the distributions of their intervals, and then by
dividing the intervals with the time differential (from the
timestamp column) we got the speed distributions. All that

resulted in 9 distributions. In addition to that, in the case
of the position intervals and the speed intervals, we also
calculated the magnitudes as ||m|| =

√
x2 + y2 + z2, which

gave us two additional distributions (a total of 11).
The way we turned each distribution into features, was

by calculating 9 or 10 statistics for it: the mean, median,
variance, standard deviation, kurtosis, skewness, min value,
max value and range (sum was also included for the four
distributions of intervals). With the 11 distributions we
mention above, we made 7 basic groups of features for the
global features category (Table I).

As can be seen in Table I, for the first basic group of
features we used the statistics from the simple positional
distributions of x, y and z, for the second we took the
4 corresponding intervals distributions, and for the third
group we used the 4 speed distributions. Afterwards, we
recombined all those features for four more basic groups.
For group 4 we used the aforementioned features that refer
to the x axis, then for group 5, 6 and 7 the ones that are
about the y axis, z axis and magnitudes respectively.

The Distance Features: For the second category of fea-
tures, inspired by the structure of the lock shape, we identi-
fied some points on it that are important to our perception.

Category Groups Features Description

global Group 1 27 Positional features from the distributions of x, y and z points of a drawing.
global Group 2 40 Features from the distributions of the position intervals of the x, y, z and magnitude.
global Group 3 36 Features from the distributions of the position intervals of the x, y, z and magnitude,

combined with temporal information.
global Group 4 28 All the features from groups 1, 2 and 3 that refer to the x axis.
global Group 5 28 All the features from groups 1, 2 and 3 that refer to the y axis.
global Group 6 28 All the features from groups 1, 2 and 3 that refer to the z axis.
global Group 7 19 All the features from groups 2 and 3 that refer to magnitude.
global Group 8 56 The fine performing groups of features regarding x and y (groups 4 and 5).
global Group 9 103 All the unique, global features of groups 1, 2, 3, 4, 5, 6, 7, 8.

distances Group 10 28 Distances that correspond to euclidean distance between the Points of Interest.
distances Group 11 28 Distances that correspond to temporal distance between the Points of Interest.
distances Group 12 56 All the distances of groups 10 and 11.

ratios Group 13 378 Ratios that correspond to all possible ratios of the euclidean distances of Group 10.
ratios Group 14 378 Ratios that correspond to all possible ratios of the temporal distances of Group 11.
ratios Group 15 756 All ratios of groups 13 and 14.
ratios Group 16 30 The best ratios of group 13 as found by a feature importance assessment based on

multi-class classification with Random Forest.
ratios Group 17 30 The best ratios of group 14 as found by a feature importance assessment based on

multi-class classification with Random Forest.
ratios Group 18 60 All the best ratios of groups 16 and 17.

mix Group 19 83 The positional features of group 1 together with the distances of group 12.
mix Group 20 112 The x and y features of group 8 together with the distances of group 12.
mix Group 21 87 The positional features of group 1 together with the best ratios of group 18.
mix Group 22 116 The x and y features of group 8 together with the best ratios of group 18.
mix Group 23 116 The distances of group 12 together with the best ratios of group 18.
mix Group 24 143 The positional features of group 1 together with the distances of group 12 and the

best ratios of group 18.
mix Group 25 172 The x and y features of group 8 together with the distances of group 12 and the

best ratios of group 18.
mix Group 26 916 All the unique, features of all other groups.

TABLE I: Performance of the different feature groups as the mean AUC score over 16 participants.

These are points where the motion has to change, or points
at the edge of the circle that far enough from each other
and should have some symmetry. We identified 8 of those
points that can be seen in the lock of Figures 3b and 4, as
big colored dots (green, yellow and red).

To find those points we made an algorithm tailored to
our case and our kind of data, and we manually checked it
in every lock that it works, else we dropped the drawing.
However, in the end, from the locks that were dropped,
none of them was dropped because the algorithm failed, but
rather because they had other issues like deformations. Also,
regarding the algorithm, it was made of simple instructions
like locating the highest point in the drawing, the left-most
or right-most point in the circle and so on.

Moreover, the reason we have different color-coding in
the pictures, and not just yellow to every PoI, is because the
green signals where the drawing starts and the red where the
drawing ends. In the ideal lock of Figure 1, the green and
the red should be the same exact point but in our case they

were treated as different, because in practice it is extremely
rare that a user would close the lock perfectly. Having those
points we can then construct

(
8
2

)
euclidean distances and

another
(
8
2

)
time intervals, as two basic groups of features

(each of the groups would then have 28 features).

The Ratio Features: Following that, two additional basic
groups can be made by computing the ratios between those
distances to extract even more features. That is

(
28
2

)
features

for each of the aforementioned distance groups, which is
equal to 378 features for each case (both the euclidean and
the temporal distances). One concern we had at that point
was that such a feature space is very high dimensional, and
that might cause problems into training the algorithms. For
that reason we tried to reduce the space by finding the most
effective ratio features according to a feature importance
assessment of of a multi-class classification with a Random
Forest [40].

As can be seen in Figure 6 where the results of the
feature assessment are displayed, in both the euclidean and

the temporal ratio cases the importance quickly falls off after
the first 20% of the features. In the euclidean ratios case,
features after 30 quickly drop below 0.006 importance or
0.004 in the temporal ratio case. For that reason we feel
confident that using less features would not have a dramatic
impact on the performance - since the impact of each one is
so small.

Also, between many of these features there is high degree
of correlation with each other and to a large extent they can
predict one another - so probably not all of them are needed.
However, one could say that due to the fact that we used
multi-class classification, we are biased towards the features
that perform best in our group and that these importances
would not necessarily generalize with the broader population.
So in a sense, selecting the best features here is kind of a
subtle way of overfitting.

That criticism would be correct but given the fact that this
is one-class classification that we are doing here, there might
be a particular group of ratios a user is most consistent with,
and if we had larger amounts of data and a way to identify
these features (perhaps by training many models) we could
legitimately use them for training. However, there is still no
guarantee for how long they will remain as the best ratios if
the behavioral patterns change as we have said early on. That
being said, it would be interesting to see the performance of
the smaller group, but take these results with a grain of salt.

Feature Construction Step in Practice: As has been said
before, the entire amount of features that we made to describe
a lock was 916. The outcome of the feature construction

process was a csv file for each participant with rows equal to
the number of the person’s locks, and 916 columns for every
feature. We then used these files for the next step which was
classification. To try different combinations of features we
sub-sampled these files.

C. Classification

In this study it is two kinds of models that we used for
classification: one-class SVM [17] and Isolation Forest [18].
For the one-class SVM we used the popular LIBSVM im-
plementation [41] through the sklearn API [42]; for Isolation
Forest we also used the implementation in sklearn [42]. For
every participant and every group of features, we built these
two kinds of models to be able to compare them. The way
we evaluated them was mostly with Area Under the ROC
Curve (AUC) [21] or with some error rate like EER, FRR,
FAR.

The main difference between the two models is that the
one-class SVM aims to find a decision boundary within
which the observations of the correct class should be falling.
In other words it is trying to find an area at the input space
where the underlying probability density of the class lies
[17]. On the other hand, instead of looking to profile the
distribution of a class, Isolation Forest works by looking
for anomalies into the way instances get isolated by a tree.
It works under the premise, that the earlier an instance is
isolated, by a binary tree, the more probable it is that it is
an outlier [18], [19]. In that sense, the final anomaly score
is computed by multiple tree estimators that produce shorter
path lengths for when an instance is isolated [18], [19].

(a) Feature importances of euclidean ratios. Top: All 378 ratios.
Bottom: 40 best ratios.

(b) Feature importances of temporal ratios. Top: All 378 ratios.
Bottom: 40 best ratios.

Fig. 6: Feature importances for euclidean ratios (on the left) and temporal ratios (on the right).

Usually the two algorithms are mentioned in the context of
novelty detection - mostly for one-class SVM - and anomaly
or outlier detection - mostly for Isolation Forest [18]. The
difference is that in the anomaly or outlier detection the
train set is ’contaminated’ with outliers/anomalies, but the
terms sometimes are also used interchangeably [43]. Here
our context is closer to novelty detection - and therefore one-
class SVM - as we do have clean train sets. Isolation Forest
however, according to the authors [18], can also perform well
with train sets that do not have any anomalies.

To do classification, the data that we used for almost every
case (except in the convergence rate analysis where we used
data from the extra user) was 60 drawings from each of the
16 participants. In the cases where for some participants we
had more than 60 samples available, we sampled randomly
60 drawings and dropped the others. The same sampling
we used across all the different feature groups. Furthermore,
because we also had to test with positive samples, and 60 is
not too much data, we decided to use 5-fold cross-validation
instead of splitting the dataset into something like 30-30 for
train and test (or even further if we also wanted a validation
set).

The way we implemented the cross-validation for each
model was first by splitting the 60 positive samples into 5
folds of 48+12 locks and then we used the 48 samples to
train and the 12 to test. In the case of negative samples we
had plenty of drawings since we used all the locks from
the remaining 15 participants in each fold (which was 900
drawings). The final step was to get the mean ROC curve
out of the 5 curves and that represented the curve for a
participant. The mean ROC curve was also calculated in
cases where we wanted to see the performance across all
participants.

In addition to that, before training any models, we tried
to tune them in order to build them in the most efficient
way. In order to do that we first specified the kind of
parameters we needed to tune, and then we selected potential
values. The combinations of those values represented a grid
of possible parameters. Then by comparing models with
parameter values across the grid, we could find the best
performing set of parameters. We did this kind of grid search
in two steps due to the large number of possible parameter
sets. The first step was to make the search on a coarse set
of parameters and then a finer one.

The way one set of parameters was selected was by
comparing the mean of the FRR and FAR of the model
trained with that set, with other models trained with different
sets of parameters - we also used cross validation for finding
the FRR and FAR of each model. One issue that we had with
this kind of grid search was with which participant should
we try to optimize, and with which feature set, because it
seemed that each case could have slightly different results. In
the end we made a long winded search across 10 feature sets
(including all the 7 basic feature sets) and all participants and
we selected the values that reported the lowest error across
all combinations of settings (160 different models for each
set of parameters).

More specifically in terms of which parameters we looked
at, for one-class SVM we used the ’rbf’ kernel, and we
searched a grid of different values for the parameters nu
and gamma. The best combination we found to be was
0.1 for nu and 0.001 for gamma. In the case of isolation
forest the parameters that we investigated were the number of
estimators (which is the number of trees), the contamination
level and max features. The best parameters were found to
be 350 estimators, 0.15 contamination and 1.0 max features.

In addition to cross-validation and parameter tuning, an-
other aspect of the classification process was scaling the data.
We did that before building any model. Prior to feeding the
data to every model, the process was to train a scalar object
with the data we would use to train the model itself, and then
we transformed the positive and negative data accordingly.
The scalar was trained to map the values for every feature
between 0 and 1 based on the minimum and maximum value
of that feature on the train set. The main reason we did that,
was because not all our features were in the same metric
(in some cases we had euclidean distances and in sometimes
temporal).

Convergence Rate Analysis: When it comes to the meth-
ods that we used for the fourth research question which is the
analysis of how fast the algorithms converge to the optimal
performance, from the aforementioned techniques of cross-
validation and scaling we only used scaling. We avoided
cross-validation because we had plenty of data to train and
test with, since we used the drawings of another participant
from whom we collected 590 locks. Also, we always eval-
uated the algorithms under the optimal parameters as found
from the preceding grid search.

The way we went by with the process, was by building
models trained with sample counts from 1 until 400, and then
finding their AUC scores. In every case, for testing we used
190 positive samples and 1088 negative samples which is
all the samples we had in total for the other 16 participants.
Also, to avoid the randomness of sampling too good or too
bad locks - especially in the cases where sample count was
low - we repeated the process multiple times for each sample
count and we kept the mean AUC score.

The latter means that in a case where for example we
are trying to evaluate models with 6 samples, we would
randomly pick 6 train and 190 test samples (the negative
samples were fixed to 1088) to evaluate a model, and then
repeat this process to finally have a mean AUC score of
several models that have been trained with the same number
of samples. We run 20 and 4 repetitions for one-class
SVM and Isolation Forest convergence rates respectively.
The reason we were running less repetitions for Isolation
Forest was because it was much more expensive to run. The
result of less repetitions is for the convergence rate to be
somewhat more coarse because the AUC estimation of each
point is from a smaller sample of models.

V. RESULTS

In this section we will try to present the results in a way
that they, as directly as possible, answer back to the research

Feature Groups

Global Distances all Ratios

Participants 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Participant 1 0.88 0.86 0.86 0.90 0.88 0.75 0.82 0.91 0.90 0.96 0.86 0.97 0.98 0.78 0.97
Participant 2 0.98 0.85 0.81 0.94 0.89 0.85 0.79 0.96 0.95 0.98 0.86 0.98 0.97 0.70 0.95
Participant 3 0.95 0.89 0.87 0.89 0.96 0.78 0.81 0.97 0.95 0.97 0.91 0.98 0.95 0.82 0.93
Participant 4 0.98 0.95 0.89 0.93 0.97 0.81 0.92 0.98 0.98 0.98 0.96 0.99 0.99 0.95 0.99
Participant 5 0.97 0.96 0.95 0.97 0.97 0.90 0.93 0.98 0.97 0.96 0.91 0.99 0.83 0.64 0.79
Participant 6 0.98 0.88 0.80 0.95 0.93 0.84 0.78 0.96 0.95 0.95 0.35 0.91 0.90 0.63 0.85
Participant 7 0.94 0.82 0.77 0.88 0.81 0.82 0.70 0.89 0.88 0.83 0.92 0.94 0.99 0.92 0.99
Participant 8 0.79 0.76 0.73 0.74 0.72 0.76 0.68 0.75 0.78 0.81 0.86 0.88 0.99 0.81 0.99
Participant 9 0.97 0.95 0.93 0.97 0.93 0.89 0.93 0.97 0.98 0.95 0.89 0.98 0.96 0.81 0.95

Participant 10 0.99 0.95 0.93 0.96 0.92 0.96 0.94 0.97 0.97 0.96 0.94 0.97 0.96 0.93 0.98
Participant 11 0.91 0.87 0.86 0.79 0.90 0.84 0.81 0.91 0.92 0.96 0.81 0.96 0.93 0.76 0.92
Participant 12 0.98 0.96 0.95 0.96 0.95 0.97 0.93 0.97 0.98 0.94 0.90 0.98 0.89 0.89 0.95
Participant 13 0.93 0.78 0.81 0.80 0.87 0.79 0.83 0.88 0.91 0.91 0.91 0.97 0.91 0.75 0.90
Participant 14 0.96 0.90 0.92 0.92 0.94 0.94 0.91 0.95 0.96 0.95 0.88 0.97 0.95 0.72 0.92
Participant 15 0.98 0.91 0.88 0.91 0.91 0.95 0.87 0.95 0.97 0.96 0.89 0.97 0.93 0.79 0.93
Participant 16 0.98 0.94 0.91 0.95 0.98 0.64 0.94 0.99 0.98 0.96 0.91 0.99 0.94 0.86 0.92

Group Avg. 0.95 0.89 0.87 0.90 0.91 0.84 0.85 0.94 0.94 0.94 0.86 0.96 0.94 0.80 0.93

TABLE II: Performance of the different participants with one-class SVM in terms of AUC.

Feature Groups

best Ratios best Combinations all

Participants 16 17 18 19 20 21 22 23 24 25 26 mean score

Participant 1 0.97 0.85 0.99 0.96 0.95 0.99 0.98 0.99 0.99 0.99 0.98 0.920 (0.069)
Participant 2 0.95 0.70 0.96 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.98 0.922 (0.087)
Participant 3 0.95 0.74 0.91 0.98 0.98 0.96 0.97 0.97 0.98 0.98 0.96 0.924 (0.066)
Participant 4 0.99 0.91 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.965 (0.042)
Participant 5 0.89 0.68 0.89 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.927 (0.093)
Participant 6 0.89 0.68 0.90 0.95 0.95 0.98 0.97 0.96 0.97 0.97 0.93 0.877 (0.137)
Participant 7 0.99 0.90 0.99 0.95 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.916 (0.080)
Participant 8 0.99 0.83 0.99 0.90 0.89 0.99 0.99 0.99 0.99 0.98 0.98 0.868 (0.107)
Participant 9 0.97 0.80 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.951 (0.051)

Participant 10 0.92 0.92 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.964 (0.024)
Participant 11 0.95 0.75 0.94 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.904 (0.069)
Participant 12 0.81 0.85 0.91 0.98 0.98 0.97 0.98 0.97 0.98 0.98 0.98 0.946 (0.044)
Participant 13 0.83 0.74 0.83 0.97 0.95 0.94 0.93 0.97 0.97 0.96 0.96 0.885 (0.072)
Participant 14 0.96 0.70 0.94 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.95 0.930 (0.069)
Participant 15 0.95 0.76 0.94 0.99 0.98 0.98 0.98 0.98 0.99 0.98 0.96 0.934 (0.057)
Participant 16 0.98 0.70 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.934 (0.085)

Group Avg. 0.94 0.78 0.94 0.97 0.97 0.98 0.98 0.98 0.99 0.98 0.97 0.923 (0.028)

TABLE II: Performance of the different participants with one-class SVM in terms of AUC. (Continuation)

questions we have set in section I. In that sense, in order to
answer to the first question which asks for the extent to which
we can verify a user with our system, we need to look at
the models we made for each one of the participants, which
is 52 models per person. Of those, 26 were one-class SVMs
and 26 were Isolation forests. Also, each of those 26 in both

algorithms is on a different group of features.

In tables II & III we can see the results for one-class
SVM and Isolation Forest respectively. Each Table displays
the AUC score of every one of the participants in each of the
feature groups. Given that if building a system like that, we
would build it with the best performing feature group, we

Feature Groups

Global Distances all Ratios

Participants 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Participant 1 0.92 0.81 0.83 0.88 0.88 0.73 0.82 0.90 0.89 0.96 0.85 0.97 0.95 0.78 0.93
Participant 2 0.93 0.81 0.81 0.91 0.85 0.81 0.78 0.92 0.90 0.97 0.89 0.96 0.95 0.73 0.88
Participant 3 0.93 0.88 0.87 0.87 0.93 0.78 0.82 0.95 0.93 0.97 0.89 0.97 0.93 0.77 0.88
Participant 4 0.96 0.88 0.82 0.88 0.93 0.82 0.87 0.94 0.92 0.97 0.94 0.98 0.99 0.95 0.99
Participant 5 0.97 0.96 0.96 0.96 0.95 0.95 0.94 0.97 0.97 0.97 0.92 0.99 0.83 0.75 0.84
Participant 6 0.97 0.86 0.83 0.95 0.94 0.79 0.82 0.96 0.95 0.96 0.78 0.93 0.87 0.65 0.81
Participant 7 0.95 0.79 0.76 0.87 0.84 0.80 0.75 0.89 0.86 0.85 0.92 0.93 0.98 0.91 0.97
Participant 8 0.83 0.76 0.77 0.79 0.80 0.70 0.70 0.82 0.81 0.90 0.84 0.90 0.98 0.79 0.94
Participant 9 0.96 0.87 0.90 0.96 0.93 0.82 0.88 0.97 0.96 0.94 0.91 0.98 0.94 0.83 0.93

Participant 10 0.93 0.92 0.90 0.91 0.91 0.93 0.90 0.95 0.95 0.95 0.89 0.95 0.95 0.91 0.97
Participant 11 0.89 0.84 0.84 0.82 0.88 0.83 0.80 0.91 0.90 0.96 0.79 0.93 0.92 0.72 0.90
Participant 12 0.97 0.96 0.96 0.97 0.95 0.95 0.93 0.98 0.97 0.94 0.87 0.96 0.87 0.83 0.89
Participant 13 0.92 0.78 0.75 0.83 0.87 0.75 0.77 0.88 0.87 0.93 0.89 0.96 0.92 0.76 0.88
Participant 14 0.93 0.92 0.94 0.89 0.93 0.93 0.92 0.95 0.96 0.95 0.91 0.97 0.94 0.67 0.87
Participant 15 0.98 0.89 0.84 0.88 0.89 0.94 0.83 0.95 0.96 0.97 0.90 0.97 0.95 0.85 0.96
Participant 16 0.97 0.92 0.91 0.94 0.96 0.83 0.92 0.97 0.95 0.98 0.91 0.98 0.94 0.83 0.92

Group Avg. 0.94 0.87 0.86 0.89 0.90 0.84 0.84 0.93 0.92 0.95 0.88 0.96 0.93 0.80 0.91

TABLE III: Performance of the different participants with Isolation Forest in terms of AUC.

Feature Groups

best Ratios best Combinations all

Participants 16 17 18 19 20 21 22 23 24 25 26 mean score

Participant 1 0.96 0.84 0.95 0.97 0.96 0.97 0.96 0.99 0.99 0.98 0.95 0.909 (0.070)
Participant 2 0.95 0.71 0.92 0.97 0.97 0.94 0.94 0.96 0.97 0.97 0.91 0.897 (0.076)
Participant 3 0.92 0.71 0.87 0.97 0.98 0.91 0.94 0.95 0.96 0.98 0.94 0.904 (0.068)
Participant 4 0.99 0.92 0.98 0.98 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.947 (0.052)
Participant 5 0.90 0.76 0.88 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.95 0.935 (0.067)
Participant 6 0.90 0.67 0.88 0.96 0.95 0.96 0.97 0.92 0.95 0.95 0.88 0.887 (0.088)
Participant 7 0.99 0.86 0.97 0.95 0.95 0.99 0.98 0.98 0.99 0.98 0.97 0.911 (0.075)
Participant 8 0.99 0.82 0.94 0.93 0.91 0.96 0.95 0.96 0.95 0.95 0.96 0.871 (0.087)
Participant 9 0.97 0.80 0.94 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.97 0.937 (0.055)

Participant 10 0.92 0.93 0.97 0.95 0.97 0.98 0.98 0.98 0.98 0.99 0.98 0.944 (0.030)
Participant 11 0.95 0.71 0.90 0.94 0.94 0.93 0.93 0.93 0.94 0.95 0.92 0.884 (0.068)
Participant 12 0.83 0.79 0.87 0.97 0.98 0.97 0.98 0.96 0.98 0.98 0.96 0.934 (0.055)
Participant 13 0.88 0.72 0.84 0.97 0.95 0.92 0.92 0.95 0.96 0.96 0.92 0.875 (0.075)
Participant 14 0.95 0.61 0.90 0.98 0.98 0.94 0.96 0.97 0.97 0.98 0.93 0.917 (0.085)
Participant 15 0.95 0.83 0.94 0.98 0.98 0.98 0.97 0.98 0.99 0.99 0.98 0.936 (0.052)
Participant 16 0.98 0.75 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.943 (0.058)

Group Avg. 0.94 0.78 0.92 0.97 0.97 0.96 0.96 0.97 0.98 0.98 0.95 0.914 (0.025)

TABLE III: Performance of the different participants with Isolation Forest in terms of AUC. (Continuation)

should look at the performance per participant on the best
group only. According to Table IV the best groups are group
24 for one-class SVMs and group 25 for Isolation Forest.

In the case of one-class SVM that is displayed in Table
II, we can see that for group 24, 10 out of 16 users have
an AUC score of 0.99 and the remaining 6 users score 0.97

or higher. Not much different is the case of Isolation Forest
where for group 25, 6 out of the 16 users have an AUC score
of 0.99, and the remaining 10 participants score at least 0.95.

The mean AUC score across all participants for group 24
with one-class SVM is 0.986, and for group 25 with Isolation
Forest is 0.977. The respective Equal Error Rates (EERs) for

Basic Feature Sets mean AUC scores (std inc.)

Feature Groups po
sit

ion
al

int
erv

als
(po

s)

sp
ee

d
x ax

is
fea

tur
es

y ax
is

fea
tur

es

z ax
is

fea
tur

es

mag
nit

ud
e fea

tur
es

eu
c dis

tan
ce

s

tem
p dis

tan
ce

s

eu
c rat

ios

tem
p rat

ios

oc-SVM IF

Group 1 + 0.948 (0.051) 0.939 (0.037)
Group 2 + 0.889 (0.061) 0.865 (0.061)
Group 3 + 0.867 (0.064) 0.856 (0.064)
Group 4 + 0.904 (0.066) 0.894 (0.051)
Group 5 + 0.908 (0.066) 0.903 (0.045)
Group 6 + 0.843 (0.088) 0.835 (0.078)
Group 7 + 0.850 (0.083) 0.841 (0.069)
Group 8 + + 0.936 (0.058) 0.931 (0.042)
Group 9 + + + + + + + 0.939 (0.052) 0.921 (0.045)

Group 10 + 0.940 (0.048) 0.946 (0.031)
Group 11 + 0.861 (0.137) 0.882 (0.044)
Group 12 + + 0.963 (0.029) 0.959 (0.023)
Group 13 + 0.942 (0.043) 0.932 (0.042)
Group 14 + 0.798 (0.094) 0.796 (0.083)
Group 15 + + 0.933 (0.052) 0.910 (0.049)
Group 16 + 0.938 (0.054) 0.939 (0.044)
Group 17 + 0.782 (0.081) 0.778 (0.085)
Group 18 + + 0.943 (0.044) 0.920 (0.041)
Group 19 + + + 0.972 (0.022) 0.968 (0.017)
Group 20 + + + + 0.966 (0.025) 0.965 (0.021)
Group 21 + + + 0.982 (0.015) 0.963 (0.025)
Group 22 + + + + 0.979 (0.016) 0.963 (0.021)
Group 23 + + + + 0.983 (0.011) 0.969 (0.021)
Group 24 + + + + + 0.986 (0.008) 0.975 (0.016)
Group 25 + + + + + + 0.983 (0.011) 0.977 (0.015)
Group 26 + + + + + + + + + + + 0.972 (0.017) 0.949 (0.029)

Mean scores: 0.923 (0.057) 0.914 (0.055)

TABLE IV: Performance of the different feature groups as the mean AUC score over 16 participants.

the two cases are 4.7% and 7.2%. This, except for question
one, also answers the research questions two and three to
some extent. That is because the two best groups of features
are identified as 24 and 25, and because one-class SVM
seems to have the edge over Isolation Forest.

However that is not the best we can do. Earlier we have
said that we run our one-class SVM models with the ’rbf’
kernel, 0.1 nu and 0.001 gamma, which was a result of a
tuning process across many groups of features and all users.
But given that we know the best performing feature group
we could also tune the models specifically with that group.
When we did that for the one-class SVM specifically for
group 24, we found out that with kernel ’rbf’, and the nu,
and gamma parameters set to 0.001 and 0.15 respectively, the
AUC score could improve to 0.988 and the EER to 4.05%.

Moreover, it also needs to be mentioned here that when we
attempted to do tuning specifically for with Isolation Forest
and group 25, we did not manage to get a better result

than the one we had with the previous set of parameters.
Part of the reason is that it was maybe harder to find these
parameters, but it is also the case that the implementation
of Isolation Forest that we used was more expensive to
run in terms of time complexity, and we could not run it
with as many parameter sets. One additional thing as far as
tuning goes for both algorithms, is that we could also tune
the models specifically for each user, but according to the
logs of the tunning process, there was hardly any variation
between the AUC scores of the same users with different
sets of parameters.

Another way to answer research question 1, would be to
look at each participant under his best performing group.
That would be interesting in case we were building a system
while knowing the best performing feature group for each
person. However that means that we would have to make a
feature group analysis for every user we enroll which might
not be as efficient. It would be interesting though to see the

extent of the improvement, if there is any.
For that case we can look at the best AUC scores for a

participant across all groups of features. In Tables II and
III we can see that 10 out of 16 users have at least one
group of features with AUC score of 0.99. Also, for the other
6 users there is at least a group of features with an AUC
score of 0.97. Not much different is the case of Isolation
Forest where 9 out of the 16 participants have at least a
group of features with 0.99 AUC score, and the remaining 7
participants have at least a group of features with AUC score
of 0.96. In comparison with the case where we selected the
same feature group for everyone, it seems that by selecting
someone’s best group separately, the performance increase
is very small for either algorithm.

Furthermore, among our 16 participants there does not
seem to be any individual that performs better in the one
category of features or the other in isolation although there
are a few exceptions. There are some isolated incidents
like participant 8 who performs poorly with distances but
performs excellently with ratios - which is against the norm.
However all these differences are ameliorated when it comes
to the mixed feature groups where all participants seem to
perform best.

In addition to that, it would be interesting to see the locks
of the most and least successful participants and speculate
for what might make a participant successful or not. In that
sense, probably the most successful participant across all
categories of features is participant 4, and the least successful
is participant 8. By looking at a hand-picked sample - where
we aimed for a representative pick - of each one’s drawings
in Figure 4, we can tell that the displayed locks of participant
4 clearly seem more consistent than the ones of participant
8.

Moreover, specifically for participant 8, it seems that
distances are not such a good group, but ratios are; so among
his drawing inconsistency, he is keeping some things stable.
Opposite to that, participant 5 (whose locks can be seen in
Figure 4b), is the worst performer when it comes to ratios and
among the best in the case of distances, while most people
perform better in distances than ratios. These are interesting
cases that show that not all the participants will perform best
at the same group of features. On the other hand, they are
very isolated cases in a small pool of participants where it
clearly seems that most people perform well at specific sets
of features.

In terms of the second research question, as we have
already mentioned while discussing question one, the best
feature groups seem to be group 24 for one-class SVM and
group 25 for Isolation Forest. The results across all groups
as well as the components of each group are summarized in
Table IV - as we have said most of the feature groups are
combinations of some basic feature groups. As discussed
earlier, the description of the features of each group are
summarized in Table I.

In that sense, looking at the results of Table IV, which
are the mean scores across participants, we can see first of
all that the global features are lagging behind the others,

except when it comes to simple positional features (group
1), the combination of xs and ys (group 8), and all the global
features together (group 9). Notably the positional features
of group 1, perform better than when we add the speed and
interval information for group 9.

Moving to the distance features, the euclidean distances
(group 10) seem to do quite well. Also, the euclidean
distances along with the temporal distances of group 11,
seem to complement each other well with a performance
of around 0.96 (in both models) for group 12. Ratios in
groups 13-18 perform also ok but slightly worse than the
distances - by 0.02 or more. Also, it seems that the euclidean
and temporal ratios, do not combine well when it comes
to the very high dimensional groups, as adding the 378
euclidean rations with the 378 temporal ones (group 15)
performs worse than the euclidean alone (group 13). Even
in the lower dimension ratio groups (the ones selected by
a feature assessment from multi-class classification as the
30 best), adding the temporal ratios does not account for a
significant improvement in performance.

The best performance all across the features board though,
comes from the combinations of the best performing groups
that have been tried and can be seen at the Table IV as
groups 19, 20, 21, 22, 23, 24, 25 and 26. For these groups we
combined group 1 (x, y, z positional distributions), group 8
(features for x and y axis), group 12 (the distances) and group
18 (selected best ratios) into the possible combinations, and
the best seemed to be the cases of using groups 1, 12 and
18 for one-class SVM and 8, 12 and 18 for Isolation Forest
with respective AUC scores of 0.986 and 0.977 as has already
been mentioned.

The main takeaways from the feature group analysis is that
the simple positional features, the distances and ratios are
very good features for this problem, and when combined they
are complementary to each other. In addition to that it seems
that temporal distances are worse predictors than euclidean
ones, but they can be complementary for each other. That is
not the case though when it comes to ratios. Also it seems
that sometimes there are feature groups that perform much
better or worse with one or two participants in particular,
but they are not as good with the others. That is not a very
frequent occasion though.

By all the discussion for the two questions so far, it seems
that research question three has been partially answered as
well. In general it seems that across all models, the one-class
SVM performs very slightly better and as we will discuss
later on, the algorithms have no real difference in terms of
converging to their best score with more training samples.
Regarding the performance though, in order to give a more
comprehensive answer we need to look at the performance
of the two algorithms across the participants and across
the different feature groups. That way we could see if an
algorithm performs better than the other in let’s say high
dimensional feature groups, or in a specific participant for
some reason.

However, that doesn’t seem to be the case when we look
at the mean performance across participants in Tables II and

III. More specifically, we can see that one-class SVM has
the edge on 11 of them and the Isolation Forest performs
better only in 5 cases. The differences when one-class SVM
is better are around 0.015 and for Isolation Forest they
are around 0.006. This small superiority of one-class SVM
can also be seen by the mean of the mean scores of the
participants in the two tables, where one-class SVM scores
0.923 and Isolation Forest 0.914.

When it comes to the performance of the two algorithms
across feature groups, the situation as we can see in Table
IV is quite similar. From the 26 different feature groups
perspective, Isolation Forest has a very slight edge only in 3
of them (for around 0.009), while one-class SVM performs
better for a very small margin in the remaining 23 groups
(for a mean margin of 0.011). That is also reflected if we
take the mean scores (of the mean scores for each group),
where one-class SVM seems to score 0.923 and Isolation
Forest 0.914. That is the same score with the participants
case, with the only difference that it has a somewhat bigger
standard deviation.

Despite the fact that all across the board one-class SVM
seems to be better, all the differences are so small that
probably a more in-depth parameter tuning could wipe out. In
that sense, and given both the algorithms ability to converge
fast, we would say that while one-class SVM seems very
slightly better, there is no clear winner as far as performance
goes from the two algorithms.

Finally, for the fourth and final research question, we will
be looking at the evaluations of the models we built for an
additional participant that is not among the 16 - as we have
described in previous sections. With the drawings of that
user, we looked for the convergence rate of the AUC score
across all 26 groups of features as we have discussed earlier.
In Figure 7 there are the curves for the AUC convergence of
the one-class SVM and Isolation Forest for 6 of those groups
that are indicative for the remaining groups. Because of the
fact though that this is another user, there might be small
differences with the results we have discussed so far that are
computed for across the participants. For example in Figure
7a we can see that for him the Isolation Forest performs
better than the one-class SVM which is not the case for the
other participants.

The first and most impressing thing that we observe from
those plots is with how few samples the algorithms converge.
In most cases the algorithm needs no more than 5 samples
to converge, and in the worst cases no more than 10 to 15
are needed. In general, between the two kinds of models we
do not see any big difference in terms of one converging
faster than the other although the one-class SVM seems to
have a small edge by converging in most cases with about 5
samples, whereas the Isolation Forest needs around 10.

One peculiar thing we do notice though, is that in the
case of the Isolation Forest, the convergence is very coarse
at the beginning and it always dips down in the fourth
sample. Finally, another thing that seems remarkable is that
the extremely high dimensionality does not prolong the
conversion rate whatsoever. This becomes evident in Figures

7a & 7f that refer to groups with 27 and 916 features
respectively and they both converge with about 5-10 samples.

VI. DISCUSSION AND FUTURE WORK

In this section we will discuss the contribution of this
research, potential areas for future work and limitations we
came across for this research. Our goal regarding the dis-
cussion is mainly to discuss some thoughts and expectations
and to put our findings into a perspective relative to other
work close to this field.

A. Contribution of this Research

The contribution of this research is to show that a simple
air-drawn symbol could be considered as a behavioral bio-
metric with comparable results. For that reason we set out our
research questions the way we did in section I. In agreement
with those questions, the displayed results of the previous
section report that it is possible to build a verification system
for a simple symbol such as the lock of Figure 1 with an EER
of approximately 4.05%, by using a certain set of features
and an one-class SVM model. It also seems that no more than
5 samples are needed to get near optimal performance of such
a model and that, in general, one-class SVM outperforms
Isolation Forest by a little.

As have been already mentioned, the 4.05% EER is
achieved with parameter tuning specifically for the best
performing group of features across all participants (group
24 of Table I). It would also be possible to tune the model
parameters separately for each participant. That could also be
realistic for a practical application, but we would first need to
have enough data for that participant. However, by observing
the logs of the tuning for the features of group 24 across all
participants, it seems that the performance improvement of
tuning for a specific participant would be extremely small,
if any.

As far as features go, from the three categories of features
that we used here (global, distances and ratios), the best kind
of features appeared to be the distances. These distances
were between points on the lock shape that are important
to our perception (the large colored points in Figures 3b and
4). However, given the fact that behavioral biometrics suffer
from consistency issues as we mention earlier, one could say
that the size of the drawing would be the first thing someone
is inconsistent with (e.g. if the user is tired he might make a
smaller drawing). Ratios (of those distances) on the other
hand, could be a better kind of feature since they might
be more robust to behavioral changes. In any case we did
not take samples over many sessions with each participant,
which would probably increase the intra person variability
and could probably bring this issue to the surface.

Finally, we think that the results presented here show that
a simple air-drawing such the one we experiment with, could
be thought of as a suitable biometric that can potentially yield
similar results to the ones seen in online signature verification
and keyboard or mouse dynamics. In Table V we summarize
the results of some of the leading studies in these Behavioral

(a) Trained with 27 features of group 1. (b) Trained with 56 features of group 12.

(c) Trained with 60 features of group 18. (d) Trained with 143 features of group 24.

(e) Trained with 172 features of group 25. (f) Trained with 916 features of group 26 (all features).

Fig. 7: Convergence rate of one-class SVM and Isolation Forest.

Error Rate Score

Signatures in 2-d

SVC2004 [30] 2.84% (EER) -
Kholmatov, Alisher, and Berrin Yanikoglu (SVC2004 winners) [31] 1.64 (FRR)% & -

1.28% (FAR)
Nakanishi, Isao, et al. [32] 4% (EER) -
Nyssen, Edgard, Hichen Sahli, and Kui Zhang [33] 5.8% (FRR) & -

0% (FAR)
Ortega-Garcia, Javier, et al. [34] 0.35% (EER) -
Kashi, Ramanujan S., et al. [35] 2.5% (EER) -

Air-drawn signatures

Tian, Jing, et al.[3] - 100% (precision) &
70% (recall)

Behera, Santosh Kumar, Debi Prosad Dogra, and Partha Pratim Roy[4] - 95.5% (accuracy)
Bailador, Gonzalo, et al. [22] 4.58% (EER) -

Air-drawn Characters

Our approach 4.05% (EER) -

Keyboard Dynamics

Hwang, Seong-seob, Hyoung-joo Lee, and Sungzoon Cho [16] 1% (EER) -

Mouse Dynamics

Shen, Chao, et al. [1] 7.96% (FRR) & -
8.74% (FAR),

in 11.8 seconds*

*The FRR and FAR in [1] can be greatly reduced even below 1%, with more samples and increased authentication time up to 10 mins.

TABLE V: Performance of leading studies in different areas of Behavioral Biometrics.

Biometric areas. We have also discussed those studies in
section II.

More specifically, it seems that our approach is in the same
ballpark with the air-drawn signatures, but falls short when
it comes to the performances in 2-d signatures or keyboard
dynamics. The referenced mouse dynamics approach seems
to do worse than our approach, but given an increased
number of samples and more time for verification their
results improve significantly (even below 1% but that comes
with almost 10 minutes of authentication) [1]. However, it
should also be noted that these areas are much more well
researched and plenty of techniques have been applied before
the error rates to be dropped so low. As a result, we think that
given more data or some other improvements, such results
are not far off for simple air-drawn symbols as well.

B. Suggestions for Future Work

As far as directions for future work, the possibilities are
numerous. That is because air-drawing is not very much
thought of as a behavioral biometric that could be used
practically, given that there is no other application for it.
However, about the lock symbol that we have used, the
most obvious suggestion for further research would be to
investigate more techniques and features that would increase

the performance from 4.05% EER. That could be features
that exploit symmetries, function based techniques and much
more things that have been tried for signature verification and
other neighboring fields.

As far as more features is concerned, that would probably
require more kinds of data. Two obvious kinds of data are
acceleration and inclination which would probably require
the data collection to be done with IMUs. However, that
introduces some other kinds of problems such as possible
movement restrictions due to the fact that the accelerometer
would have to be mounted on the nail or the issue of drift
when turning the acceleration into position that we have
discussed earlier. In addition to that, more features could
be extracted even from the positional data that we had. For
example since the lock shape is a circle on top of a triangle,
we could use its angles, centroids and other things.

Another suggestion would be to see how starting drawing
from anywhere could impact the results. Such a thing might
improve the results because there is an additional choice
from each participant which adds variability, but it might
add to drawing inconsistency over time, since the user
has more things to deal with, that require making extra
choices that might influence the behavior. Except from choice
though, other thing that might influence change of behavior

in the long term could be posture changes or the different
psychological states whose impact is also worth exploring.

Furthermore, in terms of adding complexity, it would be
interesting to see if the results improve in the case where
the drawing is not made by the finger but with a pen-like
tool or what would be the impact of drawing a different,
more complex, symbol than the lock. As far as the tool goes,
it would probably have a positive impact on performance
since there is an additional joint that makes the movement
more complex. Similarly, a more complex symbol (e.g. a
G-clef instead of a lock) would most likely increase the
drawing variability between the participants, and therefore
it would also have a positive effect on performance. In fact
this hypothesized correlation between shape complexity and
performance would be interesting to be explored further.

In addition to that, it would also be interesting to see if,
for a given participant, there are other participants that are
consistently being miss-interpreted. Such a ’relatedness’ be-
tween a group of participants could probably reveal families
of drawing styles. However, probably a lot of data would be
needed for such a thing. On a final note, another hard but
interesting task would be to make a more generic algorithm
that could find the Points of Interest by itself in any given
shape. That seems like a difficult problem for the computer to
solve though, given that these points are important to human
perception.

C. Limitations

The two main limitations of this study come from the fact
that generally in behavioral biometrics there is the issue of
inconsistency over long periods of time and also because of
the fact that our data comes from a lab environment which
might be different to the real world. The latter is usually the
case in such studies. Other than that, there were also some
issues that might have affected the results of the research
and they have to do with the data collecting device.

As far the drawing inconsistency that we also discussed in
the introduction section, it is an issue intrinsic to behavioral
biometrics. Some studies like [22] try to collect data from
the same participants over prolonged periods and make a
permanence analysis. However, in our case due to time
and budget limitations we could not do that. Our efforts
in inducing this intra-person variability were confined in
reseting the process after each drawing for each participant
but always within the same session.

In that sense our results are useful to the extent that each
user is consistent with the drawings, which might not always
be the case. In spite of that though, it seems that this effect of
consistency is not very well studied, and that there are some
evidence that show both stability and instability of behavior.
That is the case for example in [22], where according to the
permanence analysis the makers of air-drawn signatures are
split into two groups, one that tends to keep a stable pattern
and another that does not.

In addition to that, for our research it needs to be men-
tioned that the data was collected in a controlled environment
which is different than the real world where there might be

all kinds of causes to influence the behavior. Environmental
factors such are the distance from the object a user is casting
on, the presence of others and other things might have an
impact on the behavior that we could not see in the lab. In
addition to that psychological factors such as mood or the
state of mind of the participant might also affect the behavior.
This might also be interconnected with the consistency issue
we raised earlier.

Finally, there were two issues with the Kinect device that
might had some small impact on the results. First of all the
Kinect followed the closest point and not the finger, which
meant that the users had to have the finger prolonged and
that put a small constraint in their movement in the sense
that they had to have the rest of the fingers in a fist and
were instructed to avoid some extreme angles with the elbow.
Moreover the Kinect was a little noisy, especially in terms
of the z axis which probably had some effect on the results.

VII. CONCLUSIONS

Air-drawing as a behavioral biometric has a lot of potential
the smarter items around us are getting. In this research, we
studied a simple lock symbol and the possibility to verify
the person who did its drawing. We have also proposed that
a system like that could potentially be used from a person
to open a door. Our results report an EER of 4.05% that
was achieved by an one-class SVM across a sample of 16
participants. The AUC score of the mean ROC curve across
all participants from which the EER was calculated was
0.988. This seems quite promising, however more evidence
needs to support such systems before they come close to
becoming reality. More important than that though, would be
the existence of connected items that allow such messaging.

Also, depending of the task, the demands for security can
be quite different. A very secure system would be needed
in order to be trusted with giving access to a private space
through a door, but that is not so much the case when it
comes to communicating to a lamp to open, or to ask the
coffee machine to make coffee. Also, the utility of such a
system could be extended to not only give a command, but
to also make sure that the other device, e.g. the coffee maker,
knows who made the symbol and therefore probably know
what kind of coffee to make. That can potentially be extended
further into other things though, such as items to be able to
understand someone’s mood, or whether that person is in a
hurry by the way of the drawings.

In our approach we first collected the data with an applica-
tion that we made for this purpose and then we built a user-
dependent verification system that we used with 16 users.
More specifically, from the data of each user we created
simple features with which we trained models for each partic-
ipant. In that sense, we did not make use of template related
techniques that is often the case for behavioral biometrics.
In addition to that, along with testing the models for their
performance across users, we also tested various groups of
features to find the most important ones. The features we
used were made either by the raw distributions of the points
of the drawing trace, or by the distances and ratios that

we could produce by some Points of Interest we identified
for that purpose. These Points of Interest are points on the
drawing that are important for our perception of the lock.

As this study shows, features that have to do with those
Points of Interest that are important to our perception of
the symbol, can yield good results. Also, it seems that there
is small differences between one-class SVMs and Isolation
Forests, with the SVM to have a slight edge in most cases.
In addition to that, both those algorithms seem to need
incredibly few samples to learn a pattern of such a drawing,
even when it comes to very high dimensional features (up to
5 samples for the one-class SVM and 10 for IF). Finally, it
seems that verification by the drawing of a simple symbol,
with a mean EER of 4.05% across participants, is in par with
other kinds of biometrics such as online signature verification
or mouse and keyboard dynamics.

REFERENCES

[1] Shen, Chao, et al. ”User authentication through mouse dynamics.”
IEEE Transactions on Information Forensics and Security 8.1 (2013):
16-30.

[2] Plamondon, Rjean, Giuseppe Pirlo, and Donato Impedovo. ”Online
signature verification.” Handbook of Document Image Processing and
Recognition. Springer London, 2014. 917-947.

[3] Tian, Jing, et al. ”KinWrite: Handwriting-Based Authentication Using
Kinect.” NDSS. 2013.

[4] Behera, Santosh Kumar, Debi Prosad Dogra, and Partha Pratim Roy.
”Analysis of 3D signatures recorded using leap motion sensor.”
Multimedia Tools and Applications (2017): 1-26.

[5] Lachat, E., et al. ”First experiences with Kinect v2 sensor for close
range 3D modelling.” The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences 40.5 (2015): 93.

[6] Yang, Lin, et al. ”Evaluating and improving the depth accuracy of
Kinect for Windows v2.” IEEE Sensors Journal 15.8 (2015): 4275-
4285.

[7] Reas, Casey, and Ben Fry. ”Processing: programming for the media
arts.” AI & SOCIETY 20.4 (2006): 526-538.

[8] ”OpenKinect Repository” GitHub. 21 May 2018.
https://github.com/shiffman/OpenKinect-for-Processing

[9] Zafrulla, Zahoor, et al. ”American sign language recognition with
the kinect.” Proceedings of the 13th international conference on
multimodal interfaces. ACM, 2011.

[10] Thong, Y. K., et al. ”Numerical double integration of acceleration
measurements in noise.” Measurement 36.1 (2004): 73-92.

[11] Roetenberg, Daniel, Per J. Slycke, and Peter H. Veltink. ”Ambulatory
position and orientation tracking fusing magnetic and inertial sensing.”
IEEE Transactions on Biomedical Engineering 54.5 (2007): 883-890.

[12] LeCun, Yann, et al. ”Gradient-based learning applied to document
recognition.” Proceedings of the IEEE 86.11 (1998): 2278-2324.

[13] Vikram, Sharad, Lei Li, and Stuart Russell. ”Handwriting and Gestures
in the Air, Recognizing on the Fly.” Proceedings of the CHI. Vol. 13.
2013.

[14] Srihari, Sargur N., Aihua Xu, and Meenakshi K. Kalera. ”Learning
strategies and classification methods for off-line signature verification.”
Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth
International Workshop on. IEEE, 2004.

[15] Eskander, George S., Robert Sabourin, and Eric Granger. ”Hybrid
writer-independentwriter-dependent offline signature verification sys-
tem.” IET biometrics 2.4 (2013): 169-181.

[16] Hwang, Seong-seob, Hyoung-joo Lee, and Sungzoon Cho. ”Improving
authentication accuracy using artificial rhythms and cues for keystroke
dynamics-based authentication.” Expert Systems with Applications
36.7 (2009): 10649-10656.

[17] Schlkopf, Bernhard, et al. ”Estimating the support of a high-
dimensional distribution.” Neural computation 13.7 (2001): 1443-
1471.

[18] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. ”Isolation forest.”
Data Mining, 2008. ICDM’08. Eighth IEEE International Conference
on. IEEE, 2008.

[19] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. ”Isolation-based
anomaly detection.” ACM Transactions on Knowledge Discovery from
Data (TKDD) 6.1 (2012): 3.

[20] Impedovo, Donato, Giuseppe Pirlo, and Rejean Plamondon. ”Hand-
written signature verification: New advancements and open issues.”
Frontiers in Handwriting Recognition (ICFHR), 2012 International
Conference on. IEEE, 2012.

[21] Fawcett, Tom. ”An introduction to ROC analysis.” Pattern recognition
letters 27.8 (2006): 861-874.

[22] Bailador, Gonzalo, et al. ”Analysis of pattern recognition techniques
for in-air signature biometrics.” Pattern Recognition 44.10 (2011):
2468-2478.

[23] Matsuo, Kenji, et al. ”Arm swing identification method with template
update for long term stability.” International Conference on Biometrics.
Springer, Berlin, Heidelberg, 2007.

[24] Jain, Anil K., Arun Ross, and Salil Prabhakar. ”An introduction to
biometric recognition.” IEEE Transactions on circuits and systems for
video technology 14.1 (2004): 4-20.

[25] Siradjuddin, Indrazno, et al. ”A position based visual tracking system
for a 7 DOF robot manipulator using a Kinect camera.” Neural
Networks (IJCNN), The 2012 International Joint Conference on. IEEE,
2012.

[26] Plamondon, Rejean, and Guy Lorette. ”Automatic signature verifica-
tion and writer identificationthe state of the art.” Pattern recognition
22.2 (1989): 107-131.

[27] Leclerc, Franck, and Rejean Plamondon. ”Automatic signature verifi-
cation: The state of the art19891993.” International journal of pattern
recognition and artificial intelligence 8.03 (1994): 643-660.

[28] Plamondon, Rjean, and Sargur N. Srihari. ”Online and off-line hand-
writing recognition: a comprehensive survey.” IEEE Transactions on
pattern analysis and machine intelligence 22.1 (2000): 63-84.

[29] Impedovo, Donato, and Giuseppe Pirlo. ”Automatic signature verifi-
cation: The state of the art.” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38.5 (2008): 609-635.

[30] Yeung, Dit-Yan, et al. ”SVC2004: First international signature ver-
ification competition.” Biometric Authentication. Springer, Berlin,
Heidelberg, 2004. 16-22.

[31] Kholmatov, Alisher, and Berrin Yanikoglu. ”Identity authentication us-
ing improved online signature verification method.” Pattern recognition
letters 26.15 (2005): 2400-2408.

[32] Nakanishi, Isao, et al. ”On-line signature verification based on discrete
wavelet domain adaptive signal processing.” Biometric Authentication.
Springer, Berlin, Heidelberg, 2004. 584-591.

[33] Nyssen, Edgard, Hichen Sahli, and Kui Zhang. ”A multi-stage online
signature verification system.” Pattern Analysis & Applications 5.3
(2002): 288-295.

[34] Ortega-Garcia, Javier, et al. ”Complete signal modeling and score
normalization for function-based dynamic signature verification.” In-
ternational Conference on Audio-and Video-Based Biometric Person
Authentication. Springer, Berlin, Heidelberg, 2003.

[35] Kashi, Ramanujan S., et al. ”On-line handwritten signature verification
using hidden Markov model features.” Document Analysis and Recog-
nition, 1997., Proceedings of the Fourth International conference on.
Vol. 1. IEEE, 1997.

[36] Yampolskiy, Roman V., and Venu Govindaraju. ”Taxonomy of be-
havioural biometrics.” Behavioral Biometrics for Human Identifica-
tion: Intelligent Applications (2009): 1.

[37] Lager, Peter. ”G4P”. 31 May 2018. http://www.lagers.org.uk/g4p/
[38] ”libfreenect2”. 31 May 2018. https://github.com/OpenKinect/libfreenect2
[39] Labbe, R. R. ”Kalman and bayesian filters in python.” (2014).
[40] Breiman, Leo. ”Random forests.” Machine learning 45.1 (2001): 5-32.
[41] Chang, Chih-Chung, and Chih-Jen Lin. ”LIBSVM: a library for

support vector machines.” ACM transactions on intelligent systems
and technology (TIST) 2.3 (2011): 27.

[42] Pedregosa, Fabian, et al. ”Scikit-learn: Machine learning in Python.”
Journal of machine learning research 12.Oct (2011): 2825-2830.

[43] Pimentel, Marco AF, et al. ”A review of novelty detection.” Signal
Processing 99 (2014): 215-249.

