
T.J. Smeding

Fast Large-Integer Matrix Multiplication

Bachelor thesis

11 July 2018

Thesis supervisors: dr. P.J. Bruin
dr. K.F.D. Rietveld

Leiden University
Mathematical Institute

Leiden Institute of Advanced Computer Science

Abstract

This thesis provides two perspectives on fast large-integer matrix multiplication.
First, we will cover the complexity theory underlying recent developments in fast
matrix multiplication algorithms by developing the theory behind, and proving,
Schönhage’s τ -theorem. The theorems will be proved for matrix multiplication
over commutative rings. Afterwards, we will discuss two newly developed programs
for large-integer matrix multiplication using Strassen’s algorithm, one on the
CPU and one on the GPU. Code from the GMP library is used on both of these
platforms. We will discuss these implementations and evaluate their performance,
and find that multi-core CPU platforms remain the most suited for large-integer
matrix multiplication.

2

Contents

1 Introduction 4

2 Complexity Theory 5
2.1 Matrix Multiplication . 5
2.2 Computation . 5
2.3 Tensors . 6

2.3.1 Reduction of Abstraction . 6
2.3.2 Cost . 7
2.3.3 Rank . 8

2.4 Divisions & Rank . 10
2.5 Tensors & Rank . 13

2.5.1 Tensor Properties . 15
2.5.2 Rank Properties . 16

2.6 Matrix Multiplication Exponent . 17
2.7 Border Rank . 21

2.7.1 Schönhage’s τ -Theorem . 23
2.7.2 A Simple Application . 26

3 Performance 27
3.1 Introduction . 27

3.1.1 Input Data Set . 27
3.2 Large-Integer Arithmetic . 28

3.2.1 Multiplication Algorithms . 28
3.3 Implementations . 30

3.3.1 Recursive Algorithms . 30
3.3.2 CPU . 31
3.3.3 GPU . 33
3.3.4 GMP on the GPU . 34

3.4 Experimental Setup . 36
3.5 CPU Results . 36

3.5.1 Algorithm Choice . 37
3.5.2 A Model . 38
3.5.3 Comparison to Existing CPU Implementations 39

3.6 GPU Results . 41
3.6.1 Analysis . 42
3.6.2 GPU Performance Bottleneck . 43

3.7 Results for Irregular Matrices . 44
3.8 Comparison of Results . 45
3.9 Conclusion . 45
3.10 Future Research . 45

4 Reflection 47

References 48

A Appendix: CPU Tables 50

B Appendix: GPU Tables 54

3

1 Introduction

Matrix multiplication is the core operation in linear algebra, and this branch of mathematics
has earned its place as one of the most practically applicable in computer science: while the
field of computer graphics thrives on fast small matrix multiplication, numerical simulations,
machine learning and some graph-theoretic algorithms often deal with larger matrices. Fast
dense matrix multiplication over floating-point numbers has enjoyed much attention in academic
research, partly due to its applicability, partly because it is a simple but non-trivial problem to
test optimisation and parallelisation techniques on. However, the same cannot be said about
large-integer matrix multiplication.

When looking for a fast program performing a specific task, we are aided by complexity theory
on the theoretical side and optimisation techniques on the practical side. Often these are comple-
mentary, the road to success being selection of an optimal algorithm followed by optimisation of
an implementation of that algorithm. In the case of matrix multiplication, complexity theory
yields a variety of algorithms, the most naive using O(n3) and the most sophisticated (at the time
of writing) using O(n2.3728639) [13] element multiplications. (It is conjectured that algorithms
exist with O(n2+ε) element multiplications for all ε > 0, but the required techniques remain
elusive [1].) However, the proofs of existence of these low-complexity algorithms are in general
non-constructive, and no evidence has been found that such an implementation exists or would
be feasible to make.

To multiply large-integer matrices in practice, we first need to know how to multiply large
integers efficiently. However, this is largely a solved problem: even though no known-optimal
algorithm has been found yet, it is clear that multiplication of two n-bit numbers takes at least
Ω(n) steps, and there are algorithms that miss this bound by only logarithmic factors (e.g. the
Schönhage–Strassen algorithm [22], which takes O(n log n log log n) steps for n-bit numbers).
Practical implementations like the GMP library have a variety of finely tuned algorithms [8].
Therefore, at least when the subject concerns complexity theory, we will only focus our attention
on the question of matrix multiplication itself.

With exception of new group-theoretic developments (e.g. [4]), most modern results, starting with
Coppersmith and Winograd in 1987 [5], build upon the so-called “τ -theorem” (or: asymptotic
sum inequality) proved by Schönhage in 1981 [21]. The proof given there is long and assumes
much background knowledge; other sources either provide no proofs of this and its theoretical
background and refer to previous papers (e.g. [13], [28] (corrects conference version [27])) or give
comprehensive, though imperfect or informal accounts (e.g. [3], [7]). Finally, the found sources
state the theorems over a field, while they can also be proved using just commutative rings. To
understand the theoretical perspective on the topic of matrix multiplication, the first part of this
thesis aims to give an accessible and rigorous proof of the τ -theorem and its supporting theory
over commutative rings.

Having understood what complexity theory yields on the question of fast matrix multiplication,
the focus shifts to more practical issues. For large integer multiplication, we will use, and in some
cases adapt, the GMP library as mentioned; for matrix multiplication, we will use Strassen’s
algorithm (with O(n2.81) element multiplications). We will compare various implementations
of this combination on both the CPU and the GPU. The second part of this thesis aims to
describe and optimise implementations for large-integer matrix multiplication and to evaluate
their performance.

The theoretical part will be covered in Section 2, and the practical part in Section 3. Having
explored both sides of the topic, we will compare their methods and results in Section 4.

4

2 Complexity Theory

2.1 Matrix Multiplication

Consider a k×m matrix X = (xκµ)1≤κ≤k
1≤µ≤m and an m× n matrix Y = (yµν)1≤µ≤m

1≤ν≤n over some ring
R. Multiplied together, we get a k×n matrix Z = XY = (zκν)1≤κ≤k

1≤ν≤n, where the entries are given
by:

zκν =
m∑
µ=1

xκµyµν

We would like to know how many arithmetic operations are sufficient to compute this matrix
product. By computing each entry naively, we get O(kmn) multiplications and O(kmn) additions.
If we take all dimensions to be equal to n, this means we can multiply matrices in O(n3) arithmetic
operations. But can we do better?

Note: The order of presentation of the material and a number of proofs in Section 2 are inspired
by [3]. Whenever a proof is not original, this is indicated with a citation after the word “Proof.”

2.2 Computation

To be able to reason correctly about arithmetic operations, we need to define exactly what we
mean by those.

Definition 2.2.1 (Computational Structure). A computational structure is a tuple (M,Φ, ¢)
where M is a set, Φ is a set of functions ϕ : M s →M of a certain arity s (dependent on ϕ), and
¢ : Φ→ {0, 1, 2, . . .} assigns a cost to each of the functions in Φ.

In a computational structure, we want to compute things.

Definition 2.2.2 (Computation). A computation in a computational structure (M,Φ, ¢) is a
pair (β,X), where β is a sequence of length m and X ⊆ M is a set of inputs. (If the set X
is understood or irrelevant, we may omit it and write just β for the computation.) For each
1 ≤ i ≤ m, the i’th item of β is either a singleton (wi), where wi ∈ X, or an (s+ 2)-tuple of the
form (wi, ϕi, j

i
1, . . . , j

i
s), where wi ∈M , ϕi ∈ Φ, s is the arity of ϕi, and 1 ≤ jik < i for 1 ≤ k ≤ s.

We require that wi = ϕi(wji1
, . . . , wjis). Furthermore:

• We say that β computes a set Y ⊆M if for all y ∈ Y , we have y = wi for some 1 ≤ i ≤ m.

• The cost C(β) of β is Γ(β) :=
∑

i∈I ¢(ϕi), where I ⊆ {1, . . . ,m} is the subset of indices i
where βi is not a singleton.

In other words, in a computation, each item must either be an input, or be computable in one
step from previously calculated items. The kind of computation defined here is closest to the
usual concept of a “straight-line program”, since we do not allow conditional branching. This
allows us to represent these computations in a more structured way later on.

Definition 2.2.3 (Complexity). The complexity of the set Y given X is C(Y,X) := min{Γ(β) :
β computes Y and has inputs X}.

If there is any computation (β,X) that computes Y (in other words, if Y only “depends on” X with
respect to the operations in Φ), then the set in Definition 2.2.3 is non-empty, so since the naturals
are well-ordered, C(Y,X) exists. This existence then exhibits at least one optimal computation:
a computation of Y from X with cost equal to the complexity of Y given X.

5

2.3 Tensors

Recall that if X = (xκµ)1≤κ≤k
1≤µ≤m and Y = (yµν)

1≤µ≤m
1≤ν≤n , that for Z = XY = (zκν)

1≤κ≤k
1≤ν≤n we then

have:

zκν =
m∑
µ=1

xκµyµν

From the km ·mn possible products of an entry from X and an entry from Y , this sum contains
exactlym terms, each with weight 1. Now consider an n1×n2 matrix A as just a collection of n1 ·n2

entries, numbered a1, . . . , an1·n2 . Then we can give a three-dimensional array of km×mn× kn
numbers, say ti1i2i3 , such that for all 1 ≤ i3 ≤ kn:

zi3 =

km∑
i1=1

mn∑
i2=1

ti1i2i3xi1yi2 (1)

Such a three-dimensional array of numbers we will call a tensor. In this case, we have t ∈
Rkm×mn×kn. (In the more usual definition of a tensor, Rkm×mn×kn corresponds with the R-
module M∗k,m ⊗M∗m,n ⊗Mk,n, where Ma,b is the R-module of a × b matrices and M∗ denotes
the R-dual of M .) Note that a tensor encodes an array of bilinear forms, and in the case of the
matrix product, each of these forms computes one entry of the product matrix.

Definition 2.3.1. For k,m, n ∈ N, the matrix multiplication tensor is the tensor defined above,
i.e. the t ∈ Rkm×mn×kn such that, if xi and yi are the coefficients of, respectively, a k×m matrix
X and an m× n matrix Y , the values given by Eq. 1 are the coefficients of the k× n matrix XY .
This tensor is written 〈k,m, n〉.

Remark 2.3.2. Let t = 〈k,m, n〉. If we index t using double indices, ranging from t11,11,11 to
tkm,mn,kn, we find that tii′,jj′,``′ = δi′jδi`δj′`′ (where δ is the Kronecker delta).

Later, in Section 2.5, this notation 〈k,m, n〉 will return and be of importance.

2.3.1 Reduction of Abstraction

In practice, we will specialise our definition of a computation as follows. The work will be based
on the computational structure (R,Φ, ¢), where R is a commutative ring such that R 6= {0},
and Φ is the following set: Φ0 := {+,−, ·} ∪ {(x 7→ r · x) : r ∈ R} ∪ R. (The first set contains
binary functions, the second unary functions, and the third nullary functions (i.e. functions
without arguments).) Operations of the type (x 7→ r · x) for some constant r ∈ R will be called
constant-multiplications to distinguish them from the usual multiplication (·). Note that all
operations are basic ring operations and are thus respected by ring homomorphisms.

Note that our requirement that R 6= {0} is not particularly limiting: if R = {0}, all matrices are
zero matrices and we have nothing to compute.

The reason we focus on commutative rings and not on rings in general is that dividing out a
commutative ring over a maximal ideal produces a field. This means that an algorithm working
on R will also work on that smaller field, and being able to reason about fields will give us some
leverage to prove things later on.

As a cost function, we will always set ¢(r) = 0 for r ∈ R. The cost of the three binary operations
and of constant-multiplication will vary, but usually, we will use a modified Ostrowski model :
here, we assign cost 1 to multiplication, and cost zero to addition, subtraction and constant-
multiplication. This cost function will play an important role once we are ready to turn to
low-complexity algorithms for matrix multiplication.

6

The actual Ostrowski model assumes that we are working over a field K and division is one of
the operations, which then gets cost 1 like multiplication. In Section 2.4 we will see that if K is
infinite, we can eliminate divisions without impacting cost, so we can do without them anyway; if
K is finite, we might not be able to eliminate divisions, but we can replace them with at most
a constant number of multiplications (dependent on #K), so because we will be using big-O
notation later, we can still eliminate divisions without problems.

2.3.2 Cost

The operations in Φ0 above are, besides constant introduction, all natural ring operations, and
thus restrictions of the same operations on a polynomial ring of R. Let Φ̃0 be the set of operations
{+,−, ·} ∪ {(x 7→ r · x) : r ∈ R} ∪R, which are now to be taken as functions on some polynomial
ring over R. Which polynomial ring exactly will depend on context, but the use of Φ̃0 will never be
ambiguous. (We denote the polynomial ring over R in the variables x1, . . . , xn by R[x1, . . . , xn].)

Using Φ̃0, the number of operations needed to calculate a set of quadratic forms may be captured
as follows.

Definition 2.3.3. For a set of quadratic forms F = {f1, . . . , fk} (fκ =
∑N

µ,ν=1 tµνκxµxν), we
define its cost C(F) with respect to the computational structure (R,Φ0, ¢) (with R a commutative
ring) as its complexity C(F, {x1, . . . , xN}) in the computational structure (R[x1, . . . , xN], Φ̃0, ¢).

In the definition, we do not provide the values of the elements of the vector x as inputs, but only
the abstract variables corresponding to those elements. Considering the operations in Φ̃0, all
computation steps can only yield polynomials in the input variables, which is why a polynomial
ring is used as M in the computational structure. In this manner, we guarantee that the required
values are computed for any given input values, since the calculation cannot “depend” on properties
that only hold for certain input values. However, this definition may not be intuitive at first; an
alternative that does capture the requirement that the computation must work for all inputs, is
having no inputs and letting computation steps be functions with N arguments. The operations
would then construct functions from functions. This captures the intuition of actually computing
with values, but makes it harder to reason about computation steps since functions are opaque.
Since these functions would in practice be represented by polynomial expressions anyway, we
choose to use polynomials directly.

The result of this choice is that we do not actually “compute” in our computations, we merely
find a way to build a specific set of polynomials, usually a set of bilinear forms, in as few steps as
possible. Since the things we can do without cost are introduction of constants and inputs (in
our case, x1, . . . , xN) and forming linear combinations, we will build them up from degree ≤ 1
polynomials.

Definition 2.3.4. We call the tensor t in Definition 2.3.3 the tensor corresponding to F . It
is clear that we can identify sets of bilinear forms and their corresponding tensors, since one
uniquely identifies the other.

For brevity, we will denote by C ···(F) the cost of the set of quadratic forms F where the operations
listed in the superscript have cost 1 and the other operations have cost 0. For example, the
Ostrowski cost of F is C∗/(F) (which only works over a field and if we add division to Φ), and
the modified Ostrowski cost of F is C∗(F) (which works over commutative rings).

We will see later that our choice of the (modified) Ostrowski model (i.e. ignoring linear operations)
is not completely arbitrary; in the light of the algorithms we will study later, it will be most

7

natural to use Ostrowski, but more importantly, we will see that penalising additions and
constant-multiplications will make no difference in the overall algorithmic complexity in our case.

2.3.3 Rank

Introduce the notation linR{A1, . . . , An} := {λ1A1 + · · · + λnAn : λ1, . . . , λn ∈ R}, the linear
combinations of the elements A1, . . . , An of an R-module. If the ring is understood, “linR” may
be written “lin”. Note that lin∅ = {0}.

We make the following definition in relation to quadratic forms.

Definition 2.3.5. For a set of quadratic forms F = {f1, . . . , fk} (fκ =
∑n

i,j=1 tijκxixj), define its
rank Rquad(F) as the minimal nonnegative integer ` such that there exist products P1, . . . , P` of
the form Pi =

(∑n
j=1 uijxj

)(∑n
j=1 vijxj

)
for certain uij , vij ∈ K such that F ⊆ lin{P1, . . . , P`}.

In light of what we will do later, it makes sense make an analogous definition for bilinear forms
with a more specific representation.

Definition 2.3.6. For a set of bilinear forms F = {f1, . . . , fk} (fκ =
∑m

i=1

∑n
j=1 tκijxiyj), define

its rank R(F) as the minimal nonnegative integer ` such that there exist products P1, . . . , P` of
the form Pi =

(∑m
j=1 uijxj

)(∑n
j=1 vijyj

)
for certain uij , vij ∈ K such that F ⊆ lin{P1, . . . , P`}.

Note that for the bilinear rank we also want the individual products to be bilinear, while such a
requirement would not make sense in the case of quadratic forms.

Since a bilinear form is also a quadratic form, a set of bilinear forms F not only has a defined
R(F) but also a defined Rquad(F). As the next lemma shows, they differ at most by a factor 2.

Lemma 2.3.7. For a set of bilinear forms F as in Definition 2.3.6, we have:

Rquad(F) ≤ R(F) ≤ 2Rquad(F)

Proof. (After [3, Th. 4.7]) Since bilinear products are also quadratic products, we have the first
inequality: Rquad(F) ≤ R(F).

For the second inequality, we have by Definition 2.3.5: (for certain wi, uij , u′ij , vij , v
′
ij ∈ R)

fκ =

Rquad(F)∑
i=1

wi

 m∑
j=1

uijxj +
n∑
j=1

u′ijyj

 m∑
j=1

vijxj +
n∑
j=1

v′ijyj

=

Rquad(F)∑
i=1

wi

 m∑
j=1

uijxj

 n∑
j=1

v′ijyj

+

Rquad(F)∑
i=1

wi

 n∑
j=1

vijxj

 m∑
j=1

u′ijyj

+ (· · ·)︸︷︷︸
=0

We can ensure that the terms (· · ·) all have degree at least 2 in either x or y; then they are
zero because fκ is a bilinear form in the vectors x and y. But here we have written down
2Rquad(F) products of the form required by Definition 2.3.6 that suffice to produce F , so we find
R(F) ≤ 2Rquad(F). �

Since it seems unproductive to multiply terms of degree > 1 when computing quadratic forms,
we might guess that C∗(F) = Rquad(F). In fact, this can be proved, but like a number of other
proofs here it may require more gymnastics than expected.

8

Theorem 2.3.8. For a set of quadratic forms F as in Definition 2.3.5 we have C∗(F) = Rquad(F).

Proof. We have C∗(F) ≤ Rquad(F) because by definition we have an algorithm with Rquad(F)
multiplications, so below we prove that Rquad(F) ≤ C∗(F).

Let c = C∗(F), and consider a computation β that computes F using c multiplications. Note
that β cannot use divisions, since we are working over a ring. Each of the c multiplications in β
produces a polynomial in x1, . . . , xm; call them P1, . . . , Pc. Then by the nature of our cost model,
each fκ is a polynomial of degree ≤ 1 plus a linear combination of these Pi.

For a polynomial P , let Hj(P) be the homogeneous part of degree j of P , i.e. the sum of all
monomials of degree j in P .

Remark (?). If at some point in a computation we have computed a polynomial P , then we can
calculate without cost the polynomials H0(P), H1(P) and H≥2(P), where H≥n(P) indicates the
sum of all monomials in P with degree ≥ n. Indeed, the first two can be computed without cost
using addition, constant-multiplication, introduction of ring constants and reference of inputs,
and the third can be computed by subtracting the first two from P .

The left and right inputs of each multiplication are linear combinations of the previous multipli-
cation results, plus possibly any terms that can be computed without cost. In other words, for
each i we have:

Pi =

(i−1∑
j=1

ui,jPj +

n∑
j=1

vi,jxj + wi

)
︸ ︷︷ ︸

Li

(i−1∑
j=1

u′i,jPj +

n∑
j=1

v′i,jxj + w′i

)
︸ ︷︷ ︸

Ri

for certain ui,j , u′i,j , vi,j , v
′
i,j , wi, w

′
i in R.

If for a particular i,
∑i−1

j=1 ui,jPj or
∑i−1

j=1 u
′
i,jPj is a nonzero constant, the computation can be

changed such that this constant is part of wi or w′i instead and the relevant linear combination of
previous Pj in Pi is zero. So without loss of generality, we can assume that the linear combinations
of previous Pj are either zero or have degree ≥ 1. Therefore, we can extract wi and w′i from Li
and Ri by (?), so without loss of generality we can take wi = w′i = 0 for all i. (Otherwise, using
some constant-multiplications and extra additions, we could construct an alternative computation
with an equal number of products that does have wi = w′i = 0 for all i by multiplying the wi’s and
w′i’s out.) Using induction on i, one can then show that H0(Pi) = H1(Pi) = 0 for all i (because
H0(Li) = H0(Ri) = 0). This means (by (?)) that for all i we can separate Li into

∑i−1
j=1 ui,jPj

and
∑n

j=1 vi,jxj , and Ri into analogous parts. But that means we can separate each Pi into
H2(Pi) and H≥3(Pi), where H2(Pi) only depends on the linear combination of inputs in Li and
Ri and not on the previous products.

Since the polynomials in F are homogeneous of degree 2, we have F ⊆ lin{H2(P1), . . . ,H2(Pc)}.
By working inductively backwards, we find that we only need H2(Pi) for each i (and not H≥3(Pi)),
so we can let ui,j = u′i,j = 0 in each Pi. This way, each of the Pi becomes a product of two linear
combinations of input variables, which means that β had at least Rquad(F) multiplications in the
beginning. Therefore, Rquad(F) ≤ c = C∗(F). �

Corollary 2.3.9. For F a set of bilinear forms as in Definition 2.3.6, C∗(F) ≤ R(F) ≤ 2C∗(F).

Proof. Follows from Lemma 2.3.7 and Theorem 2.3.8. �

9

2.4 Divisions & Rank

If our commutative ring R is actually a fieldK, we should also be able to divide in our computations.
Intuitively, even if we have divisions, it seems unnecessary to use them to calculate bilinear forms.
If K is finite, say #K = q, then x/y = x · yq−2 for x ∈ K and y ∈ K∗. So we can actually
eliminate divisions from the computation while keeping cost within a constant factor of the
original cost. This means that later, when in Definition 2.6.3 we look at the big-O growth order
of the cost, this constant factor gets discarded, and adding divisions did not in fact help at all.

If K is infinite, this trick does not work, but there is a more involved argument that we can use
to prove that in this case, adding divisions does not even impact cost at all. This is what we
will do in the rest of this section. We will measure complexity in a computational structure with
M = K(x1, . . . , xN) (as opposed to R[x1, . . . , xN]).

One potential issue about allowing divisions is worth noting: since division is only a partial
operation, it being impossible to divide by zero, care must be taken that a computation using
divisions is actually defined on all input matrices. Since in a computation with divisions there is
at least one division (namely, the first one) that has a polynomial in the inputs as its denominator,
this problem of definition is particularly striking when K is an algebraically closed field, where
every polynomial of degree ≥ 1 has a root. Any computation with divisions will, however, have a
subset of input values S ⊆ RN for which no division by zero is attempted. For such a computation,
Theorem 2.4.3 below constructs a new computation without divisions that, naturally, provides
the same answers when input values are chosen in S. However, the above is not a problem in the
theorem as stated, because in our computational structure, no actual values are ever plugged into
the computation.

We will first study more general quadratic forms instead of bilinear forms, because in that case
we can derive a more natural special form of the calculation as well.

First we need two lemmas that do not depend on the fact that K is infinite. For a polynomial ϕ
in multiple variables, let degϕ denote its total degree.

Lemma 2.4.1. Let K be any field and let S ⊆ K be a subset. If ϕ1, . . . , ϕn ∈ K[x1, . . . , xN]
are nonzero polynomials and #S >

∑n
i=1 degϕi, then there are α1, . . . , αN ∈ S such that

ϕi(α1, . . . , αN) 6= 0 for all i.

Proof. Let ϕ =
∏n
i=1 ϕi. Then ϕ is still nonzero and d = degϕ =

∑n
i=1 degϕi < #S. The

lemma for n = 1 then immediately proves the result, so we just consider the case n = 1. We use
induction on N .

If N = 1, then ϕ has at most d < #S roots, so there is an α1 ∈ S such that ϕ(α1) 6= 0.

If N > 1, assuming that the lemma holds for any polynomial in K[x1, . . . , xN−1], we write
ϕ =

∑d
j=1 x

j
1ψj(x2, . . . , xN). Let k > 0 be the largest index such that ψk is nonzero. (This k

exists since ϕ is nonzero.) Since ψk has degree at most d− k < d, we have #S > degϕ > degψk,
so by the induction hypothesis there are α2, . . . , αN ∈ K such that ψk(α2, . . . , αN) 6= 0.

But now ϕ(x1, α2, . . . , αN) is an element of K[x1] of degree at most d < #S, and it is nonzero
since the term xk1 has a nonzero coefficient (namely, ψk(α2, . . . , αN)). Using the induction base
case, we obtain an α1 ∈ S such that ϕ(α1, . . . , αN) 6= 0. �

10

Lemma 2.4.2. For any field K, the formal power series
∑∞

i=0 aiz
i ∈ K[[z]] is invertible if and

only if a0 6= 0. Then its inverse is equal to 1
a0

(1 + q + q2 + · · ·) where q = −
∑∞

i=1
ai
a0
zi.

Proof. In K[[z]] we have the equality: 1
1−q = 1 + q + q2 + · · · . If a0 6= 0, we have:(∞∑

i=0

aiz
i

)
· 1

a0
(1 + q + q2 + · · ·) =

(∞∑
i=0

aiz
i

)
· 1

a0

1

1 +
∑∞

i=1
ai
a0
zi

=

∑∞
i=0

ai
a0

1 +
∑∞

i=1
ai
a0
zi

= 1

so the series is indeed invertible. On the other hand, if a0 = 0, any power series
∑∞

i=0 biz
i

multiplied by the given series (which is then equal to
∑∞

i=1 aiz
i) will give as product the series

z
(∑∞

i=0 ai+1z
i
) (∑∞

i=0 biz
i
)
, which can never equal 1. �

Now we can prove the theorem about quadratic forms, which is originally due to Strassen [25].

Theorem 2.4.3 (Strassen). Let F be a set of quadratic forms as in Definition 2.3.5. If K is an
infinite field, then we have C∗(F) = C∗/(F).

Proof. (After [3, Th. 4.1]) We will prove that there is a computation that computes F with no
divisions and C∗/(F) multiplications.

Since zero is a linear combination of any set of numbers, we assume without loss of generality
that 0 6∈ F . Let β be an optimal computation for F (in the Ostrowski model), and let L be the
length of β.

Recall that Hj(g) is the homogeneous part of degree j of g. Note that by the allowed operations
in our computational structure, we can write wi = gi/hi for all 1 ≤ i ≤ L, where gi, hi ∈
K[x1, . . . , xN] and hi 6= 0. We would first like to achieve in some way that H0(hi) 6= 0 for all i.

Let α1, . . . , αN ∈ K be constants whose values are yet to be determined. Define the polynomials
ḡi, h̄i ∈ K[x1, . . . , xN] (for each i) given by ḡi(x1, . . . , xN) = gi(x1 + α1, . . . , xN + αN) and
h̄i(x1, . . . , xN) = hi(x1 +α1, . . . , xN +αN). Let w̄i = ḡi/h̄i. Replace all values in the computation
β (the “wi”) by the values w̄i; the result, call it β̄, is still a computation since the inputs
have been substituted in the entire computation. However, this new computation β̄ has inputs
X̄ := {x1 + α1, . . . , xN + αN}. But since we can calculate X̄ from X without cost (with a few
additions) it suffices to achieve our goal (eliminating divisions) using X̄ as input set instead.

β computed F = {f1, . . . , fk} from X with fκ =
∑N

µ,ν=1 tµνκxµxν , so β̄ computes the set
F̄ := {f̄1, . . . , f̄k} from X̄ with

f̄κ :=
N∑

µ,ν=1

tµνκ(xµ + αµ)(xν + αν) = fκ + (terms of degree ≤ 1 in x1, . . . , xN)

Since terms of degree ≤ 1 can be computed without cost in the Ostrowski model by introduction
of inputs, introduction of constants, constant-multiplication and addition, fκ can be computed
from f̄κ without cost for each κ. This means that it suffices to achieve our goal (eliminating
divisions) using F̄ as goal instead, since to the alternative computation that uses no divisions we
can just append some steps that calculate F without cost from the computed values F̄ . So we
will now continue to eliminate divisions from β̄.

So why did we introduce those αi everywhere in our computation? By Lemma 2.4.1, since
K is infinite, we can choose α1, . . . , αN in such a way that H0(h̄i) = H0(hi(x1 + α1, . . . , xN +
αN)) = hi(α1, . . . , αN) 6= 0 for all 1 ≤ i ≤ L. (Note that L is also the length of β̄.) Now
define g̃i, h̃i ∈ K[x1, . . . , xN][[z]] (for each i) given by g̃i(x1, . . . , xN , z) = ḡi(x1z, . . . , xNz) and

11

h̃i(x1, . . . , xN , z) = h̄i(x1z, . . . , xNz). These are of the form:

g̃i = H0(ḡi) +H1(ḡi)z +H2(ḡi)z
2 + · · ·

h̃i = H0(h̄i) +H1(h̄i)z +H2(h̄i)z
2 + · · ·

since the total degree of a single term of either g̃i or h̃i is exactly the number of xi’s present in
that term, which is equal to the exponent of the z in that term. (In fact, these power series are
still finite, but that does not matter.) Since we obtained that H0(h̄i) 6= 0, by Lemma 2.4.2, h̃i
has an inverse in K(x1, . . . , xN)[[z]] (which contains K[x1, . . . , xN][[z]]). This means that we can
define w̃i := g̃i/h̃i ∈ K(x1, . . . , xN)[[z]]. Note that we do not put these values in a computation.

So we can write w̃i = ci + c′iz + c′′i z
2 + · · · for certain ci, c′i, c

′′
i ∈ K(x1, . . . , xN). Since we are

computing a set of quadratic forms, for the final answers, terms with powers of z greater than
2 do not matter. Note that each w̃i either comes from an input xj + αj for some j (and is
therefore equal to (xj + αj)z), or is the sum, difference, product, quotient, or constant-multiple
of earlier w̃j . We will now transform our computation β̄ (still the one over K(x1, . . . , xN)) to a
new computation, β3. For each item (xj +αj) in β̄, i.e. a reference to an input, copy that item to
β3 unchanged; for each item (w̄i, ϕi, j

i
1, . . . , j

i
s) in β̄, we will insert a number of items calculating,

with cost equal to ¢(ϕi), the values ci, c′i and c
′′
i assuming that of the referenced items in β̄ these

three polynomials have already been calculated. Exact management of indices is left to the reader.
The result of this is a longer computation β3 that correctly calculates the first three coefficients of
all power series w̃i, and among those, the first three coefficients of the power series corresponding
to f̄κ for 1 ≤ κ ≤ k. Since evaluating the power series w̃i at z = 1 gives the original w̄i, and we
have have seen that the terms with degree three or higher will be or have become zero by the
time the computation reaches f̄κ, we can compute f̄κ at the end of β3 with two additions, which
have cost zero. This means that we will have proved that there is a computation that does not
use divisions and has the same complexity as the original (optimal) computation that computes
the polynomials F̄ from X̄; we have previously shown that this is sufficient.

To construct these items corresponding to each (w̄i, ϕi, j
i
1, . . . , j

i
s), we first note the following. For

each i, the ci, c′i and c
′′
i are homogeneous polynomials in the input variables x1, . . . , xN of total

degree respectively 0, 1 and 2. (Note that the αi are just constants, which we have already given
a value above.) Regardless of ϕi, ci and c′i can always be calculated without cost in the Ostrowski
model since they have degree ≤ 1, like earlier with the f̄κ. It remains to calculate c′′i with cost
equal to the original ϕi.

So perform the following case analysis on (ϕi, j
i
1, . . . , j

i
s):

• Case (+, j, k). c′′i can be computed using just addition of the earlier values c′′j and c′′k, which
is free of cost.

• Case (−, j, k). Analogously.

• Case (·, j, k). We have:

w̃i = (cj + c′jz + c′′j z
2 + · · ·)(ck + c′kz + c′′kz

2)

= cjck + (cjc
′
k + c′jck)z + (c′′j ck + c′jc

′
k + cjc

′′
k)z

2 + · · ·

So c′′i = c′′j ck + c′jc
′
k + cjc

′′
k. Since cj and ck are constants in K, the products c′′j ck and cjc′′k

are just constant-multiplications, which are free of cost, just like additions; this means that
the only costing operation is the multiplication c′jc

′
k, which has cost 1, like the original

operation.

12

• Case (/, j, k). We have, using Lemma 2.4.2:

w̃i =
cj + c′jz + c′′j z

2 + · · ·
ck + c′kz + c′′kz

2 + · · ·

=
(
cj + c′jz + c′′j z

2 + o
(
z3
)) 1

ck

(
1−

(
c′k
ck
z +

c′′k
ck
z2 + o

(
z3
))

+

(
c′k
ck
z + o

(
z2
))2

+ o
(
z3
))

=
(
cj + c′jz + c′′j z

2 + o
(
z3
))(1

ck
−
c′k
c2
k

z +

(
−
c′′k
c2
k

+
(c′k)

2

c3
k

)
z2 + o

(
z3
))

=
cj
ck

+

(
c′j
ck
−
cjc
′
k

c2
k

)
z +

(
c′′j
ck
−
c′jc
′
k

c2
k

+ cj

(
−
c′′k
c2
k

+
(c′k)

2

c3
k

))
z2 + o

(
z3
)

So c′′i = 1
ck
c′′j − 1

c2k
c′jc
′
k −

cj
c2k
c′′k +

cj
c3k
c′kc
′
k = 1

ck
c′′j −

cj
c2k
c′′k +

(
− 1
c2k
c′j +

cj
c3k
c′k
)
· c′k, which can be

calculated with a number of constant-multiplications (since expressions consisting of cj and
ck are known elements of K), additions, and subtractions, and one actual multiplication
(indicated with “·”). This means that the resulting computation has cost 1, which is equal
to the original cost 1 of the division.

• Case (λ·, j). Three constant-multiplications cost the same as one constant-multiplication,
i.e. zero.

By the argument before the case analysis, this proves the theorem. �

Theorem 2.4.3 gives us that C∗(F) = C∗/(F). Clearly we have C∗(F) ≥ C∗/(F), so the interesting
statement is that C∗(F) ≤ C∗/(F), i.e. divisions do not help to give a lower cost. Since a field is
also a commutative ring, by Theorem 2.3.8 it follows that C∗/(F) = C∗(F) = Rquad(F). And if
F was actually a set of bilinear forms, we can use Lemma 2.3.7 to give the following.

Corollary 2.4.4. For F a set of bilinear forms as in Definition 2.3.6, C∗/(F) ≤ R(F) ≤ 2C∗/(F).

Proof. Clear from the above. �

2.5 Tensors & Rank

We have now found that the rank of a set of bilinear forms is related to the complexity of that set:
C∗(F) ≤ R(F) ≤ 2C∗(F) if F is a set of bilinear forms as in Definition 2.3.6. In the previous
section we have seen that in addition, if R is actually a field and we also allow divisions (with
cost 1), the complexity is still bounded within a factor 2 about R(F). So proving bounds on the
rank of a set of bilinear forms is a good way of proving bounds on the complexity of that set
(since constant factors disappear in big-O notation).

But we would like to work towards tensors only and forget about the bilinear forms that they
correspond to. To start in that direction we will define the rank of a tensor and connect that to
the rank of a set of bilinear forms.

Earlier, we defined a tensor to be a three-dimensional array of numbers. Most occurrences of
tensors will be three-dimensional here, but it is worth knowing that there is nothing special about
the number three.

Definition 2.5.1 (Tensor). An n-tensor, or simply tensor, over a ring R is an n-dimensional
array of elements of R. Its size is given by a vector in Nn, say (s1, . . . , sn). Then the tensor is an
element of Rs1×s2×···×sn .

13

For example, any n×m matrix is also a 2-tensor with size vector (n,m). If t and t′ are tensors
with the same size vector, they can be added (t + t′) and multiplied (t · t′) elementwise, but
tensors also have natural non-elementwise addition and multiplication operators.

Definition 2.5.2. The tensor sum of two n-tensors t (sizes (s1, . . . , sn)) and t′ (sizes (s′1, . . . , s
′
n))

is the n-tensor t⊕ t′ (sizes (s1 + s′1, . . . , sn + s′n)), given by:

(t⊕ t′)i1...in =

ti1...in , i1 ≤ s1 ∧ · · · ∧ in ≤ sn,
t′(i1−s1)...(in−sn), i1 > s1 ∧ · · · ∧ in > sn,

0, otherwise.

The tensor product of an n-tensor t (sizes (s1, . . . , sn)) and an m-tensor t′ (sizes (s′1, . . . , s
′
m)) is

the (n+m)-tensor t⊗ t′ (sizes (s1, . . . , sn, s
′
1, . . . , s

′
n)), given by (t⊗ t′)i1...inj1...jm = ti1...int

′
j1...jm

.

For m ≥ 0, the m’th tensor power of a tensor t is t⊗m =
⊗m

i=1 t.

The tensor sum is most easily understood by visualising t and t′ as blocks which are placed
corner-to-corner in an n-dimensional hypercube.

According to the above definition, the tensor product of two 3-tensors is a 6-tensor; in practice,
however, we will also regard it as a 3-tensor by “merging” the corresponding indices. Effectively,
we identify them via the bijection that sends the 6-tensor t, sizes (s1, . . . , s6), to the 3-tensor
t̄, sizes (s1s4, s2s5, s3s6), given by t̄((i4−1)s1+i1)((i5−1)s2+i2)((i6−1)s3+i3) = ti1i2i3i4i5i6 (with the
natural ranges for the indices). This new 3-tensor t̄ we can index using double indices, i.e. use
t̄κκ′,µµ′,νν′ = tκµνκ′µ′ν′ .

Definition 2.5.3. The rank of an n-tensor t, written R(t), is the least number r ∈ N such that
there exist 1-tensors (i.e. vectors) ui,j (1 ≤ i ≤ r, 1 ≤ j ≤ n) such that t =

∑r
i=1

⊗n
j=1 ui,j .

In the special case of 3-tensors, this expression becomes t =
∑r

i=1 ui ⊗ vi ⊗ wi for 1-tensors
ui, vi, wi. Note that the tensor u⊗ v ⊗ w is given by (u⊗ v ⊗ w)ijk = uivjwk.

For matrices, we already knew a concept of rank, and fortunately, the definition given in Definition
2.5.3 (for n = 2) agrees: the rank of a matrix is indeed exactly the minimal number of rank-one
matrices needed to produce (when added elementwise) the original matrix. In the world of
3-tensors, we now have a rank of a set of bilinear forms as well as of the corresponding tensor.
Luckily, these are also equal, as the following theorem shows.

Theorem 2.5.4. For a set of bilinear forms F as in Definition 2.3.6 and the corresponding tensor
t, we have R(F) = R(t).

Proof. [3, below Def. 4.4] We will prove that R(F) ≤ r ⇔ R(t) ≤ r for all r. Indeed, R(F) ≤ r is
equivalent to the existence of linear forms u1, . . . , ur in the variables x1, . . . , xm and linear forms
v1, . . . , vr in the variables y1, . . . , yn such that F ⊆ lin{u1v1, . . . , urvr}. But this is equivalent to
the existence of coefficients wκ,i, ui,j1 and vi,j2 (1 ≤ κ ≤ k, 1 ≤ i ≤ r, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ n)
such that fκ =

∑r
i=1wκ,i

(∑m
j1
ui,j1xj1

)(∑n
j2
vi,j2yj2

)
.

Since fκ =
∑m

j1=1

∑n
j2=1 tj1j2κxj1yj2 , the previous is again equivalent to the statement tj1j2κ =∑r

i=1wκ,iui,j1vi,j2 . This is equivalent to saying that there exist vectors wi (length k), ui (lengthm)
and vi (length n) such that tj1j2κ =

∑r
i=1(wi)κ(ui)j1(vi)j2 , which is to say that t =

∑r
i=1 ui⊗vi⊗wi.

But the existence of such vectors (1-tensors) is equivalent to R(t) ≤ r, as required. �

Note that using the above proof, one can manually do the actual translation between sets of
bilinear forms and their corresponding tensors. Given e.g. the standard formulation of Strassen’s
matrix multiplication algorithm [24], which can be written as a set of bilinear forms, it is fairly
easy to construct the corresponding tensor and its decomposition.

14

2.5.1 Tensor Properties

We will analyse the behaviour of tensor rank under some transformations of the tensor. Let S3

be the symmetric group over 3 elements.

Definition 2.5.5. For a 3-tensor t ∈ Rn1×n2×n3 and for any π ∈ S3, define the 3-tensor
πt ∈ Rnπ−1(1)×nπ−1(2)×nπ−1(3) by (πt)i1i2i3 := tiπ(1)iπ(2)iπ(3) . In other words, permute the indices
using π.

Example 2.5.6. Let t ∈ Rk×m×n and π = (1 2 3). Then πt ∈ Rn×k×m given by (πt)i1i2i3 = ti2i3i1 .
Indeed, the ranges 1 ≤ i2 ≤ k, 1 ≤ i3 ≤ m and 1 ≤ i1 ≤ n are valid for both t and πt in last
equation. Then if t = u1 ⊗ u2 ⊗ u3, we get (πt)i1i2i3 = ti2i3i1 = u1

i2
u2
i3
u3
i1

= u3
i1
u1
i2
u2
i3
, so

πt = u3 ⊗ u1 ⊗ u2. In general for τ ∈ S3, we have τt = uτ
−1(1) ⊗ uτ−1(2) ⊗ uτ−1(3).

Note that for any k,m, n ≥ 0, this gives a left group action of S3 on the space Rk×m×n of
3-tensors, since the group elements are really permutations on the set of 3 “index slices” of the
tensor. In the next lemma we see that the rank is invariant under this group action.

Lemma 2.5.7. For any π ∈ S3 and any 3-tensor t, we have R(t) = R(πt).

Proof. We prove only R(πt) ≤ R(t), since equality then follows using π−1.

By definition of rank, we have t =
∑R(t)

j=1 u1,j ⊗ u2,j ⊗ u3,j for certain vectors u`,j . But then

πt =
∑R(t)

j=1 uπ−1(1),j ⊗ uπ−1(2),j ⊗ uπ−1(3),j , so indeed R(πt) ≤ R(t). �

The tensor product u⊗ v ⊗ w of three vectors u, v, w is called a triad.

Definition 2.5.8. For a triad u ⊗ v ⊗ w ∈ Rk×m×n and homomorphisms A : Rk → Rk
′ ,

B : Rm → Rm
′ and C : Rn → Rn

′ , define (A⊗B ⊗C)(u⊗ v ⊗w) = A(u)⊗B(v)⊗C(w). For a
3-tensor t =

∑r
i=1 ui ⊗ vi ⊗ wi, define (A⊗B ⊗ C)t :=

∑r
i=1A(ui)⊗B(vi)⊗ C(wi).

Lemma 2.5.9. “(A⊗B⊗C)t :=
∑r

i=1A(ui)⊗B(vi)⊗C(wi)” in Definition 2.5.8 is independent
of decomposition, so Definition 2.5.8 is valid.

Proof. Observe that any triad u⊗ v ⊗ w ∈ Rk×m×n can be written with respect to the standard
basis as:u1

...
uk

⊗
 v1

...
vm

⊗
w1

...
wn

 = (u1e1 + · · ·+ ukek)⊗ (v1e1 + · · ·+ vmem)⊗ (w1e1 + · · ·+ wnen)

=

k∑
a=1

m∑
b=1

n∑
c=1

uavbwc ea ⊗ eb ⊗ ec

SinceA,B,C are homomorphisms, we must have
∑k

a=1

∑m
b=1

∑n
c=1 uavbwc A(ea)⊗B(eb)⊗C(ec) =

A(u)⊗B(v)⊗ C(w).

Suppose t is written t =
∑

a,b,c λa,b,c ea ⊗ eb ⊗ ec against the standard basis, and suppose
t =

∑r
i=1 ui ⊗ vi ⊗ wi is an expansion in triads. Then each triad ui ⊗ vi ⊗ wi can be written

against the standard basis; the sum of these basis expansions should be the basis expansion of t
by unicity in a vector space. Thus since A,B,C are homomorphisms, taking (A⊗B ⊗ C) of the
basis expansion of t yields the same result as taking that of each of the triads and summing the
results; since this holds for any expansion of t in triads, we have proved that the definition is
independent of the decomposition. �

15

Lemma 2.5.10. For all homomorphisms A : Rk → Rk
′ , B : Rm → Rm

′ and C : Rn → Rn
′ and

t ∈ Rk×m×n, we have R
(
(A⊗B ⊗ C)t

)
≤ R(t). If A,B,C are isomorphisms, we have equality.

Proof. By definition, if R(t) ≤ r then R
(
(A⊗B ⊗ C)t

)
≤ r, so R

(
(A⊗B ⊗ C)t

)
≤ R(t).

If A, B and C are invertible, we have (A−1 ⊗ B−1 ⊗ C−1)(A ⊗ B ⊗ C)t = t, and thus R(t) =
R
(
(A−1 ⊗B−1 ⊗ C−1)(A⊗B ⊗ C)t

)
≤ R

(
(A⊗B ⊗ C)t

)
≤ R(t), so we have equality. �

Using these two operations, we can now show that matrix multiplication does not get any harder
when we swap sizes around. Recall the notation 〈k,m, n〉 from Section 2.3.

Lemma 2.5.11. For any k,m, n ≥ 1, we have R(〈k,m, n〉) = R(〈n, k,m〉).

Proof. We use double indices to index t := 〈k,m, n〉, so t ranges from t11,11,11 to tkm,mn,kn. From
Remark 2.3.2 we know that tii′,jj′,``′ = δi′jδi`δj′`′ . By permuting the basis vectors of Rkn, we can
swap the indices in the “third slice” of t to produce t′, so that t′ii′,jj′,`′` = tii′,jj′,``′ . This operation
is an automorphism, so R(t) = R(t′) by Lemma 2.5.10.

Then use π = (1 2 3) ∈ S3 to permute t′ to t′′ := πt′. Then we have t′′ii′,jj′,`′` = t′jj′,`′`,ii′ (compare
Example 2.5.6) and R(t′′) = R(t′) by Lemma 2.5.7. Again swapping the indices of the third slice
of t′′ to produce t′′′ (again R(t′′′) = R(t′′)), we get:

t′′′ii′,jj′,``′ = t′′ii′,jj′,`′` = t′jj′,`′`,ii′ = tjj′,`′`,i′i = δj′`′δji′δ`i = δi′jδi`δj′`′

Since t ∈ K(k×m)×(m×n)×(k×n), we have t′′′ ∈ K(n×k)×(k×m)×(n×m), which is the same space
〈n, k,m〉 is an element of. Since the coordinates of t′′′ and 〈n, k,m〉 are given by the same expression
with Kronecker deltas, we have t′′′ = 〈n, k,m〉 and therefore R(〈n, k,m〉) = R(〈k,m, n〉). �

Lemma 2.5.12. For any k,m, n ≥ 1, we have R(〈k,m, n〉) = R(〈n,m, k〉).

Proof. Again use double indices and t := 〈k,m, n〉, and tii′,jj′,``′ = δi′jδi`δj′`′ . Apply the permuta-
tion (1 2) to obtain t′ given by t′ii′,jj′,``′ = tjj′,ii′,``′ . Then swap indices in each slice to obtain t′′

given by t′′ii′,jj′,``′ = t′i′i,j′j,`′` = tj′j,i′i,`′` = δji′δj′`′δi` = δi′jδi`δj′`′ . Since t ∈ K(k×m)×(m×n)×(k×n),
we have t′′ ∈ K(n×m)×(m×k)×(n×k), so t′′ = 〈n,m, k〉. Therefore, R(〈n,m, k〉) = R(〈k,m, n〉). �

Corollary 2.5.13. For any k,m, n ≥ 1, permuting matrix sizes does not influence the rank:

R(〈k,m, n〉) = R(〈k, n,m〉) = R(〈m, k, n〉) = R(〈m,n, k〉) = R(〈n, k,m〉) = R(〈n,m, k〉)

Proof. [3, Lem. 5.5] Follows from Lemma 2.5.11 and Lemma 2.5.12. �

2.5.2 Rank Properties

The easiest form of matrix tensor rank to look at is R(〈n, n, n〉) for some n. This is what we
will base most of our work on, but besides it being nice to also be able to multiply non-square
matrices, later algorithms will also not necessarily be for square matrices. But note that we can
combine matrix tensors into a larger matrix tensor as follows:

Lemma 2.5.14. We have 〈k,m, n〉 ⊗ 〈k′,m′, n′〉 = 〈kk′,mm′, nn′〉, where we see the tensor
product of two 3-tensors as a 3-tensor again, as explained below Definition 2.5.2.

Proof. Use indices 〈k,m, n〉κκ̄,µµ̄,νν̄ and 〈k′,m′, n′〉κ′κ̄′,µ′µ̄′,ν′ν̄′ . We have:

(〈k,m, n〉 ⊗ 〈k′,m′, n′〉)(κκ̄,κ′κ̄′),(µµ̄,µ′µ̄′),(νν̄,ν′ν̄′) = δκ̄µδκνδµ̄ν̄δκ̄′µ′δκ′ν′δµ̄′ν̄′

= δ(κ̄,κ̄′)(µ,µ′)δ(κ,κ′)(ν,ν′)δ(µ̄,µ̄′)(ν̄,ν̄′) = 〈kk′,mm′, nn′〉(κκ′,κ̄κ̄′),(µµ′,µ̄µ̄′),(νν′,ν̄ν̄′)

16

Because the sizes also coincide, the lemma follows. �

So if we could say something about the rank of a tensor product in terms of the ranks of
the arguments, we would be able to deduce statements about the complexity of square matrix
multiplication from algorithms for specific, non-square matrix sizes.

Lemma 2.5.15. For 3-tensors t and t′, we have R(t⊗ t′) ≤ R(t)R(t′).

Proof. [3, Lem. 5.8] For r = R(t) and r′ = R(t′), we have the expansions t =
∑r

p=1 up ⊗ vp ⊗ wp
and t′ =

∑r′

p′=1 u
′
p′ ⊗ v′p′ ⊗ w′p′ for certain up′ ∈ Rk etc. Now for each 1 ≤ p ≤ r and 1 ≤ p′ ≤ r′,

we define ūpp′ ∈ Rkk
′ , v̄pp′ ∈ Rmm

′ and w̄pp′ ∈ Rnn
′ given by ūpp′,ii′ = upiu

′
p′i′ , v̄pp′,jj′ = vpjv

′
p′j′

and w̄pp′,``′ = wp`w
′
p′`′ . Enumerate t⊗ t′ with double indices as explained under Definition 2.5.2.

Then:

(t⊗ t′)ii′,jj′,``′ =

 r∑
p=1

upivpjwp`

 r′∑
p′=1

u′p′i′v
′
p′j′w

′
p′`′

=

r∑
p=1

r′∑
p′=1

ūpp′,ii′ v̄pp′,jj′w̄pp′,``′ =

 r∑
p=1

r′∑
p′=1

ūpp′ ⊗ v̄pp′ ⊗ w̄pp′

ii′,jj′,``′

So we have R(t⊗ t′) ≤ rr′ = R(t)R(t′). �

A similar statement holds for the tensor sum.

Lemma 2.5.16. For 3-tensors t and t′, we have R(t⊕ t′) ≤ R(t) +R(t′).

Proof. [3, Lem. 5.6] For r = R(t) and r′ = R(t′), we have the expansions t =
∑r

p=1 up ⊗ vp ⊗ wp
and t′ =

∑r′

p=1 u
′
p ⊗ v′p ⊗ w′p for certain up ∈ Rk etc. Define ūp = (up1, . . . , upk, 0, . . . , 0) ∈ Rk+k′

and ū′p = (0, . . . , 0, u′p1, . . . , u
′
pk′) ∈ Rk+k′ for each p, and v̄, v̄′, w̄, w̄′ analogously. Then we have

(t⊕ t′)ij` =
∑r

p=1 ūpiv̄pjw̄p` +
∑r′

p=1 ū
′
piv̄
′
pkw̄

′
p`, which proves the lemma as before. �

Armed with this knowledge, we can now define the matrix multiplication exponent and begin
proving results about it.

2.6 Matrix Multiplication Exponent

Recall from Definition 2.3.1 that the matrix multiplication tensor 〈k,m, n〉 is the tensor t ∈
Rkn×km×mn such that, if we enumerate its indices with pairs of numbers, the tensor t has 0’s
everywhere except for 1’s at the coordinates with indices of the form (κ, µ), (µ, ν), (κ, ν) for
1 ≤ κ ≤ k, 1 ≤ µ ≤ m, 1 ≤ ν ≤ n. It is the tensor corresponding to the set of bilinear forms
making up matrix multiplication of a k ×m matrix with an m× n matrix.

In Corollary 2.3.9 (or Corollary 2.4.4 if you like fields) and Theorem 2.5.4, we made a connection
between the rank of a tensor t and the modified Ostrowski complexity of its corresponding set F
of bilinear forms: C∗(F) ≤ R(F) = R(t) ≤ 2C∗(F). This means that if we want to bound the
complexity of matrix multiplication, it suffices to bound the rank of the corresponding tensor. In
the future, we will be concerned with proving upper bounds on R(〈k,m, n〉) to get upper bounds
on complexity of matrix multiplication. To do that, however, we sometimes need the following
lower bound, which on first sight may be trivial, but has a reasonably technical proof.

17

We first prove the result if R is actually a field K, and then use a theorem about maximal ideals
to lift the result to commutative rings.

Lemma 2.6.1. If the commutative ring R is a field K and n ≥ 2, then R(〈n, n, n〉) > n2.

Proof. We first prove (?): if S, T ⊆ Mat(n,K), {MN : M ∈ S,N ∈ T} = Mat(n,K), and F is a
set of bilinear forms that, when evaluated on two matrices M ∈ S and N ∈ T , gives the entries
of MN , then R(F) ≥ n2.

Suppose that R(F) ≤ n2 − 1. By Definition 2.3.6, we then have products P1, . . . , Pn2−1

(Pi =
(∑n2

j=1 ui,jxj
)(∑n2

j=1 vi,jyj
)
) and coefficients wi,j ∈ K such that if (M,N) ∈ S × T and

x and y are respectively the entries of M and N , then zi =
∑n2−1

j=1 wi,jPj are the entries of
MN . In the vector space Kn2−1, the n2 vectors (w1,1, . . . , w1,n2−1), . . . , (wn2,1, . . . , wn2,n2−1)
must be linearly dependent, so there are coefficients k1, . . . , kn2 ∈ K (not all zero) such that
for all j, we have

∑n2

i=1 kiwi,j = 0. Since {MN : M ∈ S,N ∈ T} = Mat(n,K), the entries
z1, . . . , zn2 of any matrix Z ∈ Mat(n,K) will then obey

∑n2

i=1 kizi =
∑n2

i=1 ki
∑n2−1

j=1 wi,jPj =∑n2−1
j=1 Pj

∑n2

i=1 kiwi,j = 0. Since not all ki are zero, there is a matrix in Mat(n,K) such that
this linear dependency is not fulfilled, which is a contradiction. The claim follows.

If we apply (?) to S = T = Mat(n,K) and take for F the set corresponding to 〈n, n, n〉, by
Theorem 2.5.4, we get R(〈n, n, n〉) ≥ n2.

Then assume that R(〈n, n, n〉) = n2. Then the elements of the result matrix are linear combi-
nations of products P1, . . . , Pn2 of the form Pi =

(∑mi,1
j=1 ui,jaki,j

)(∑mi,2
j=1 vi,jb`i,j

)
(where a1...n2

and b1...n2 are the coefficients of the two input matrices, respectively) for certain coefficients
ui,j , vi,j ∈ K that are all nonzero (for zero coefficients, just remove them from the list and
decrease mi,1 or mi,2 appropriately) and for indices ki,j and `i,j such that ki,j1 = ki,j2 ⇔ j1 = j2
and `i,j1 = `i,j2 ⇔ j2 = j2. (This last requirement just ensures that a single linear combination
only adds distinct inputs.)

• If any valuemi,1 is zero, we may discard that product and use (?) to arrive at a contradiction.

• If all values mi,1 are one, then Pi = ui,1aki,1
(∑mi,2

j=1 vi,jb`i,j
)
for all i. So for some i, ki,1

must indicate an element off the main diagonal, since each entry in the left input matrix
should appear in some product and since n ≥ 2. Taking the identity matrix as left argument
to the matrix multiplication then makes aki,1 = 0, discarding product i; but even with the
identity matrix as one argument, matrix multiplication is still surjective, so (?) may again
be used to arrive at a contradiction.

• Otherwise, there is an i such that mi,1 ≥ 2. We claim there is an invertible matrix A such
that aki,1 = −

∑mi,1
j=2 ui,jaki,j =: α. If there is, matrix multiplication with the restriction

that the left argument to the i’th product is zero is still surjective (since for any matrix C,
we have A ·A−1C = C); but then again (?) applies, so we arrive at a contradiction.

Suppose ki,1 is off the main diagonal. Then the identity matrix with aki,1 replaced by α
is row-equivalent to the identity matrix, and is therefore invertible. Otherwise, ki,1 is on
the main diagonal. If (e1, . . . , en) is the standard basis of Kn, consider the matrix B with
rows e2, . . . , en, e1. This matrix is invertible, and since n ≥ 2, the entry aki,1 in B is off the
“shifted diagonal”, so replacing it with α yields a matrix that is row-equivalent to B and
thus invertible.

In each case we arrive at a contradiction, so together with (?), we have R(〈n, n, n〉) > n2. �

18

Theorem 2.6.2. If n ≥ 2, then R(〈n, n, n〉) > n2.

Proof. Since R is a ring not equal to {0}, it has a maximal ideal, say I ⊆ R. Since R is in fact a
commutative ring, the quotient K := R/I is a field. Now suppose that R(〈n, n, n〉) ≤ n2. Then
the at most n2 bilinear products that should then produce the product of two matrices should
also produce the product of two matrices over K = R/I, since the canonical map R → K is a
ring homomorphism (and all our operations are respected by ring homomorphisms). Therefore,
we would conclude that we also have R(〈n, n, n〉) ≤ n2 over the field K, which is a contradiction
with Lemma 2.6.1. The theorem follows. �

The rank of a matrix multiplication tensor is what we will be looking at; in particular, we will
focus on proving upper bounds for the following value.

Definition 2.6.3 (Matrix Multiplication Exponent). For a commutative ring R, the exponent
of matrix multiplication is defined as ωR := inf{β : (n 7→ R(〈n, n, n〉)) ∈ O(nβ)}, where
〈n, n, n〉 ∈ Rn2×n2×n2 is a matrix multiplication tensor over R.

A priori, this value ωR is dependent on the chosen commutative ring R. However, the theorems
providing upper bounds (e.g. Theorem 2.6.6) and lower bounds (Theorem 2.6.2) hold for all
commutative rings R. Since R is a fixed (but arbitrary) commutative ring in this thesis, we will
leave out the subscript and simply write ω.

As definition of the big-O notation here, we use that f(n) ∈ O(g(n)) iff lim sup
n→∞

|f(n)|
g(n) <∞. In the

case of ω, (n 7→ R(〈n, n, n〉)) is positive for n ≥ 1, so we can drop the absolute value function. Note
that the function (n 7→ R(〈n, n, n〉)) is also increasing, i.e. R(〈n, n, n〉) ≤ R(〈n+ 1, n+ 1, n+ 1〉),
since we can pad smaller matrices with zeros to produce matrices suitable for larger multiplication
algorithms. We will use this later.

Note that the complexity of a specific instance of matrix multiplication and the rank of the
corresponding tensor are within a factor 2 apart, so since constants disappear in big-O notation
(i.e. in the outcome of the limit for which we only require finiteness), usage of either would give
the same ω. Since we want to work with tensors, we choose the rank.

By Theorem 2.6.2 we know that ω ≥ 2, and since the naive algorithm has complexity O(n3), we
know that ω ∈ [2, 3]. Strassen’s algorithm already gave a nontrivial upper bound of log2(7) ≈ 2.81
on ω, and better upper bounds have been proved; at the time of writing, the best result is
ω < 2.3728639 [13].

The fact that ω is defined as an infimum means that if we prove that ω ≤ β for some β ∈ R, we
do not necessarily have an algorithm for matrix multiplication with O(nβ) multiplications; we do,
however, know that for each ε > 0, there is a sequence of algorithms that perform n× n matrix
multiplication for each n ≥ 1 and for which the number of multiplications required is in O(nβ+ε).
This is an illustration of the fact that this construction is a theoretical exercise, rather than a
way to practically speed up matrix multiplication.

But to at least instill a bit more confidence in this ω, which only considers multiplications, we
will now show that also giving addition, subtraction and constant-multiplication cost 1 does not
change the exponent.

Recall cost from Definition 2.3.3. Let Call(F) denote the cost of the set of bilinear forms F with
the usual M and Φ, but with ¢(±) = ¢(·) = ¢(λ·) = 1.

19

Theorem 2.6.4. Let ω̃ := inf{β : (n 7→ Call(Fn)) ∈ O(nβ)}, where Fn is the set of bilinear forms
corresponding to 〈n, n, n〉. Then ω = ω̃.

Proof. [3, Th. 5.2] Since also punishing additions and constant-multiplications can only increase
the cost, we clearly have ω ≤ ω̃. For the reverse inequality, we use the existence of an algorithm
with O(nω+ε) multiplications to give a sequence of algorithms with Call-cost O(nω+ε+δ) with δ
approaching zero. Since we do this for all ε, the theorem will then follow.

So let an ε > 0 be arbitrary. By definition of ω, we have ∀ε̃ > 0 : R(〈n, n, n〉) ∈ O(nω+ε̃), so:

∀ε̃ > 0 : ∃α > 0,m0 ≥ 1 : ∀m ≥ m0 : R(〈m,m,m〉) ≤ αmω+ε̃

Let α and m0 be such that ∀m ≥ m0 : r := R(〈m,m,m〉) ≤ αmω+ε. Now take some arbitrary
m ≥ m0. Our algorithm fills the input matrices up with zeros until the problem is reduced to
〈mi,mi,mi〉 for some i ∈ N, then recursively solves the problem by applying the algorithm with
r multiplications. Suppose this input algorithm uses, besides its r multiplications, c additions,
subtractions and constant-multiplications. Then for the number of arithmetic operations A(i)
used for multiplying two mi ×mi matrices, we have the following:

A(i) ≤ rA(i− 1) + c(mi−1)2

because the r multiplications involve a recursive call to the algorithm and the c elementwise
operations have to be performed with mi−1 ×mi−1 matrices as elements. Solving this inequality
recursively, we get:

A(i) ≤ riA(0) + ri−1c+ ri−2cm2 + · · ·+ cm2(i−1) = riA(0) + c

i∑
j=1

ri−jm2(j−1)

= riA(0) +
cri

m2

i∑
j=1

(
m2

r

)j
(?)
= riA(0) +

cri

m2

m2

r

1−
(
m2

r

)i
1− m2

r

= riA(0) + cri
1− m2i

ri

r −m2

= ri
(
A(0) +

c

r −m2

)
− cm2i

r −m2

(??)

≤ ri
(
A(0) +

c

r −m2

)
︸ ︷︷ ︸

constant in i

∈ O(ri)

Note that Theorem 2.6.2 gives us that r > m2. This ensures that in the step marked (?) we do
not divide by zero and that the inequality at (??) is valid. (The O(ri) concerns functions of i as
i→∞.)

Since we can add zeros to matrices to expand their size, we have the inequality Call(〈n, n, n〉) ≤
Call(〈n′, n′, n′〉) if n ≤ n′. So for any n ≥ 1:

Call(〈n, n, n〉) ≤ Call
(〈
mdlogm ne,mdlogm ne,mdlogm ne

〉)
= A(dlogm ne)

∈ O(rdlogm ne) ⊆ O(r1+logm n) = O(rlogm n) = O(nlogm r)

(The O-notations concern functions of n as n→∞.) Since we knew that r ≤ αmω+ε, we have
Call(〈n, n, n〉) ∈ O(nω+ε+logm α), so ω̃ ≤ ω + ε + logm α. Since this holds for all m ≥ m0, and
limm→∞ logm α = 0, we have ω̃ ≤ ω + ε.

The above holds for any ε > 0, so we have ω̃ ≤ ω, which remained to prove. �

Using the machinery in Section 2.5, we can now prove certain upper bounds on ω given algorithms
for particular matrix sizes. To complete these proofs, we will use the following lemma.

20

Lemma 2.6.5. If N ∈ Z≥2, r ∈ R>0 and R(〈N i, N i, N i〉) ≤ N ir for all i ∈ Z≥1, then ω ≤ r.

Proof. Assume the contrary, that ω > r. Then (n 7→ R(〈n, n, n〉)) 6∈ O(nr), so we have:

¬
(
∃α > 0, n0 ≥ 1 : ∀n ≥ n0 : R(〈n, n, n〉) ≤ αnr

)
or in other words:

∀α > 0, n0 ≥ 1 : ∃n ≥ n0 : R(〈n, n, n〉) > αnr

Take α = N r and n0 = N + 1. Then we have an n ≥ N + 1 such that R(〈n, n, n〉) > N rnr. Now
choose an i ≥ 1 such that N i < n ≤ N i+1. Then R(〈n, n, n〉) > N rnr > N r(N i)r = N (i+1)r,
but since n ≤ N i+1 we also have R(〈n, n, n〉) ≤ R(〈N i+1, N i+1, N i+1〉) ≤ N (i+1)r. This is a
contradiction, so we conclude that ω ≤ r. �

Theorem 2.6.6. We have ω ≤ 3 · logkmnR(〈k,m, n〉) for all k,m, n ≥ 1, kmn ≥ 2. In particular,
we also have ω ≤ lognR(〈n, n, n〉) for all n ≥ 2.

Proof. [3, Th. 5.9] We have:

R(〈(kmn)i, (kmn)i, (kmn)i〉) = R
(
(〈k,m, n〉 ⊗ 〈m,n, k〉 ⊗ 〈n, k,m〉)⊗i

)
≤ R(〈k,m, n〉)iR(〈m,n, k〉)iR(〈n, k,m〉)i = R(〈k,m, n〉)3i

where the first equality is Lemma 2.5.14, the inequality is Lemma 2.5.15 and the last equality is
Corollary 2.5.13.

So taking N = kmn and r = R(〈k,m, n〉), we have R(〈N i, N i, N i〉) ≤ r3i = N3i logN r; which
by Lemma 2.6.5 (since N ≥ 2) implies that ω ≤ 3 logN r. The second statement follows since
3 logn3 x = logn x. �

Example 2.6.7. From the bilinear algorithm given by Strassen [24] we know that R(〈2, 2, 2〉) ≤ 7,
and Winograd [29] confirmed that R(〈2, 2, 2〉) = 7. Using Theorem 2.6.6, we obtain the bound
ω ≤ log2 7 ≈ 2.81, which is the complexity obtained when using Strassen’s algorithm recursively
on 2× 2 block matrices.

2.7 Border Rank

The concept of “rank” of a tensor has let us set up some amount of theory, but it has been
found that rank alone will not get us good improvements on the matrix multiplication exponent.
We use a peculiar feature of the rank of a 3-tensor that does not appear when working with
2-tensors (more commonly known as “matrices”), which is that the rank of the limit of a sequence
of 3-tensors need not equal the limit of the ranks of the tensors.

This means that sometimes we can get arbitrarily close to a certain tensor using r multiplications,
while we would need r + 1 for the tensor itself. This means that this tensor has rank r + 1, but
border rank r, as we will soon define.

Intuitively, we want to not compute the tensor t, but instead εht+ o(εh+1) for arbitrarily small ε
and a certain constant h ≥ 0. Of course, this only works in normed fields, but we can define a
more general analogue.

Definition 2.7.1. For a 3-tensor t ∈ Rk×m×n and an integer h ≥ 0, define Rh(t) to be the minimal
integer r ≥ 0 such that there exist u1, . . . , ur ∈ R[ε]k, v1, . . . , vr ∈ R[ε]m, w1, . . . , wr ∈ R[ε]n and
a tensor t′ ∈ R[ε]k×m×n for which we have

∑r
i=1 ui ⊗ vi ⊗ wi = εht+ εh+1t′.

21

Definition 2.7.2 (Border Rank). For a 3-tensor t, define the border rank of t: R(t) := min
h
Rh(t).

Remark 2.7.3. Some properties of Rh(t) and R(t) are evident from their definition.

1. We have R(t) = R0(t) ≥ R1(t) ≥ · · · ≥ Rh(t) = R(t) for some h.

2. For Rh(t), it is sufficient to consider ui, vi, wi with degree in ε no higher than h: any higher
terms can be safely omitted anyway.

3. We have ∀π ∈ S3 : Rh(t) = Rh(πt) (completely analogous to Lemma 2.5.7)

4. Corollary 2.5.13 extends to Rh, i.e. Rh(〈k,m, n〉) = · · · = Rh(〈n,m, k〉).

Another property is to be expected, but less obvious.

Lemma 2.7.4. For 3-tensors t and t′, Rh+h′(t⊗ t′) ≤ Rh(t)Rh′(t
′).

Proof. [3, Th. 6.3(3)] Suppose there are approximate expansions for t and t′ as follows:

r∑
i=1

ui ⊗ vi ⊗ wi = εht+ εh+1s and
r′∑
i=1

u′i ⊗ v′i ⊗ w′i = εh
′
t′ + εh

′+1s′

where t ∈ Rk×m×n ⊆ R[ε]k×m×n 3 s and t′ ∈ Rk
′×m′×n′ ⊆ R[ε]k

′×m′×n′ 3 s′. Using the
bilinearity of the tensor product, we can take the tensor product of the two sums above and get
as a result an expansion (with Rh(t)Rh′(t

′) items) of t′′ := (εht+ εh+1s)⊗ (εh
′
t′ + εh

′+1s′), which
has entries:

t′′ii′,jj′,``′ = (εhtij` + εh+1sij`)(ε
h′t′i′j′`′ + εh

′+1s′i′j′`′) = εh+h′tij`t
′
i′j′`′ + εh+h′+1s′′

= εh+h′(t⊗ t′)ii′,jj′,``′ + εh+h′+1s′′

for some tensor s′′ ∈ R[ε]kk
′×mm′×nn. So the constructed expansion was actually an approximate

expansion for t⊗ t′, so we have Rh+h′(t⊗ t′) ≤ Rh(t)Rh′(t
′) as required. �

Fortunately, we can turn approximate computations into actual computations; however, we do
need to take into account a possible polynomial growth of the rank.

Lemma 2.7.5. There are constants ch ≤
(
h+2

2

)
such that for all 3-tensors t, R(t) ≤ chRh(t).

Proof. [3, Lem. 6.4] Assume that R(t) = Rh(t) = r. Then there is an expansion of t ∈ Rk×m×n
as follows:

r∑
i=1

(
h∑
a=0

εauia

)
⊗

(
h∑
b=0

εbvib

)
⊗

(
h∑
c=0

εcwic

)
= εht+ εh+1t′

(for some tensor t′ ∈ R[ε]k×m×n) with uia ∈ Rk etc. (It is sufficient to look at powers of ε up to
h by Remark 2.7.3(2).)

The left-hand side is equal to the following:

r∑
i=1

h∑
a=0

h∑
b=0

h∑
c=0

εa+b+cuia ⊗ vib ⊗ wic

Since #{a, b, c ∈ {0, . . . , h} : a + b + c = h} =
(
h+2

2

)
, for each i, at most

(
h+2

2

)
terms have the

right degree in ε to contribute to t. So to compute t exactly, r ·
(
h+2

2

)
products suffice. �

22

An obtained upper bound on Rh(t) can be turned into a statement about R(t) immediately using
Lemma 2.7.5, but because ch is only polynomial in h, it is often better to first tensor up and only
then, in the limit case, convert back to an exact computation. This works because the polynomial
growth of ch is negligible against the exponential growth of the ranks. Using Theorem 2.6.6, we
can prove its border rank analogue.

Theorem 2.7.6. We have ω ≤ 3 · logkmnR(〈k,m, n〉) for all k,m, n ≥ 1, kmn ≥ 2.

Proof. [3, Th. 6.6] Define N = kmn ≥ 2, and let h be such that rh := Rh(〈k,m, n〉) = R(〈k,m, n〉).
(Such an h exists by Remark 2.7.3(1).) By Lemma 2.5.14, Remark 2.7.3(4) and Lemma 2.7.4 we
have R3hi(〈N i, N i, N i〉) ≤ R3h(〈N,N,N〉)i ≤ r3i

h for all i ≥ 1.

We also have by Lemma 2.7.5: (note that c3hi is polynomial in h and i)

logN i R(〈N i, N i, N i〉) ≤ logN i

(
R3hi(〈N i, N i, N i〉) c3hi

)
= 3 logN rh +

1

i
logN poly(h, i)

Take k′ = m′ = n′ = N i ≥ 2. Then 3 logk′m′n′ R(〈k′,m′, n′〉) = logN i R(〈N i, N i, N i〉), so by
Theorem 2.6.6 we get ω ≤ 3 logN rh+ 1

i logN poly(h, i). If we let i→∞, then 1
i logN poly(h, i)→ 0,

so we get ω ≤ 3 logN rh as required. �

2.7.1 Schönhage’s τ-Theorem

The τ -theorem is a very productive theorem by Arnold Schönhage that lets us give bounds on ω
using bounds on the border rank of basically arbitrary matrix-tensor-like objects. We will use it
to obtain a significant improvement over Strassen’s algorithm in terms of complexity. First we
need some extra notes on tensors.

Definition 2.7.7. Denote by 〈r〉 the tensor in Rr×r×r given by 〈r〉ij` = 1 if i = j = `, else 0.

Definition 2.7.8. For 3-tensors t and t′, t is a restriction of t′, or t ≤ t′, if there exist R-module
homomorphisms A : Rk → Rk

′ , B : Rm → Rm
′ , C : Rn → Rn

′ such that t = (A ⊗ B ⊗ C)t′. t
and t′ are said to be isomorphic, or t ∼= t′, if A,B,C are isomorphisms.

Intuitively, t ≤ t′ means that t cannot be harder to compute than t′: after all, an expansion of t′

can be turned into one for t by just applying A⊗B ⊗ C to it.

Lemma 2.7.9. R(t) ≤ r ⇔ t ≤ 〈r〉.

Proof. Note that 〈r〉 =
∑r

i=1 ei ⊗ ei ⊗ ei, where (e1, . . . , er) is the standard basis of Rr.

[⇐] Since t ≤ 〈r〉, there are homomorphisms A,B,C such that t = (A⊗B⊗C)〈r〉 =
∑r

i=1A(ei)⊗
B(ei)⊗ C(ei), so indeed R(t) ≤ r.

[⇒] Since R(t) ≤ r, we have t =
∑r

i=1 ui ⊗ vi ⊗ wi for certain vectors ui ∈ Rk, vi ∈ Rm,
wi ∈ Rn. Define homomorphisms A(ei) = ui, B(ei) = vi and C(ei) = wi, with which we get
(A⊗B ⊗ C)〈r〉 =

∑r
i=1A(ei)⊗B(ei)⊗ C(ei) =

∑r
i=1 ui ⊗ vi ⊗ wi = t. �

Lemma 2.7.10. For three N -tensors t ∈ Rn, t′ ∈ Rn′ and s ∈ Rm, the following holds:

1. t⊕ t′ ∼= t′ ⊕ t

2. t⊗ t′ ∼= t′ ⊗ t

3. s⊕ (t⊕ t′) = (s⊕ t)⊕ t′

4. s⊗ (t⊗ t′) = (s⊗ t)⊗ t′

23

5. s⊗ (t⊕ t′) = (s⊗ t)⊕ (s⊗ t′)

6. 〈0〉 ⊕ t = t; 〈1〉 ⊗ t = t; 〈0〉 ⊗ t = 〈0〉.

Any required isomorphisms are basis permutations.

Proof. We will prove the six statements for 1-tensors, after which the given isomorphisms (the
identity map in cases (3)–(6)) can be applied in all N dimensions to obtain the lemma. Note that
this works because when computing t⊗ t′, their i’th indices merge for each i, meaning that each of
their N indices can be viewed independently. Write a basis permutation of Rk as a permutation
of {1, . . . , k}. A permutation given by a, b, c 7→ d, e, f should be read as the function sending
a 7→ d, b 7→ e and c 7→ f .

1. The permutation 1, . . . , n, n+ 1, . . . , n+ n′ 7→ n′ + 1, . . . , n′ + n, 1, . . . , n′ suffices.

2. We have tit′j = (t⊗ t′)n(j−1)+i = (t′ ⊗ t)n′(i−1)+j . We can build a permutation by mapping
n(j − 1) + i 7→ n′(i− 1) + j for each (i, j) ∈ {1, . . . , n} × {1, . . . , n′}, and this permutation
gives the required isomorphism.

3. Clear from the definition.

4. We have tjt′k = (t⊗ t′)n(k−1)+j and sitj = (s⊗ t)m(j−1)+i, so:

sitjt
′
k = (s⊗ (t⊗ t′))m(n(k−1)+j−1)+i = (s⊗ (t⊗ t′))mn(k−1)+m(j−1)+i

sitjt
′
k = ((s⊗ t)⊗ t′)mn(k−1)+(m(j−1)+i)

So indeed s⊗ (t⊗ t′) = (s⊗ t)⊗ t′.

5. Note that for 1 ≤ i ≤ m and 1 ≤ j ≤ n+ n′:

(s⊗ (t⊕ t′))m(j−1)+i = si(t⊕ t′)j =

sitj , 1 ≤ j ≤ n,
sit
′
j−n, n+ 1 ≤ j ≤ n+ n′,

0, otherwise

((s⊗ t)⊕ (s⊗ t′))m(j−1)+i =

(s⊗ t)m(j−1)+i = sitj , 1 ≤ j ≤ n,
(s⊗ t′)m(j−n−1)+i = sit

′
j−n, n+ 1 ≤ j ≤ n+ n′,

0, otherwise

So indeed s⊗ (t⊕ t′) = (s⊗ t)⊕ (s⊗ t′).

6. Clear from the definition. �

Remark 2.7.11. This means that we can use 3-tensors under ⊕ and ⊗ as if they form a
commutative semiring, provided that we always only assume equivalence under isomorphism
instead of equality. In particular, by Lemma 2.5.10, if t ∼= t′ then R(t) = R(t′).

We first need two technical lemmas, then we can prove Schönhage’s theorem. WriteN�t :=
⊕N

i=1 t
for N ≥ 0 and any 3-tensor t.

Lemma 2.7.12. If N, s ≥ 1 and R(N � 〈k,m, n〉) ≤ b, then R(N � 〈ks,ms, ns〉) ≤ d bN e
s ·N .

Proof. Use induction on s. If s = 1 then the result is b ≤ d bN e ·N . Otherwise we assume that
R(N � 〈ks,ms, ns〉) ≤ d bN e

s ·N as induction hypothesis and prove the statement for s+ 1. We
have, using the distributivity and ⊗-commutativity properties ((5) and (2)) of Lemma 2.7.10:

N � 〈ks+1,ms+1, ns+1〉
(2.5.14)
∼= (N � 〈k,m, n〉)⊗ 〈ks,ms, ns〉

(2.7.9)

≤ 〈b〉 ⊗ 〈ks,ms, ns〉
(?)∼= b� 〈ks,ms, ns〉

24

where (?) holds since 〈b〉 = b� 〈1〉. Therefore, we have:

R(N � 〈ks+1,ms+1, ns+1〉)
(2.5.10)

≤ R(b� 〈ks,ms, ns〉) ≤ R
(⌈

b

N

⌉
·N � 〈ks,ms, ns〉

)
≤
⌈
b

N

⌉
·R(N � 〈ks,ms, ns〉)

(IH)
≤
⌈
b

N

⌉
·
⌈
b

N

⌉s
·N =

⌈
b

N

⌉s+1

·N

This completes the induction. �

Lemma 2.7.13. If N ≥ 1 and R(N � 〈k,m, n〉) ≤ b, then ω ≤ 3·logd b
N
e

log(kmn) . (k,m, n ≥ 1, kmn ≥ 2.)

Proof. (After [3, Lem. 7.7]) For all s ≥ 1, we have by Theorem 2.6.6 (since kmn ≥ 2):

ω ≤ log(kmn)s R(〈(kmn)s, (kmn)s, (kmn)s〉)
(2.5.14)

= log(kmn)s R(〈ks,ms, ns〉 ⊗ 〈ms, ns, ks〉 ⊗ 〈ns, ks,ms〉)
(2.5.13, 2.5.15)

≤ log(kmn)s R(〈ks,ms, ns〉)3

(N≥1)

≤ log(kmn)s R(N � 〈ks,ms, ns〉)3
(2.7.12)
≤ log(kmn)s

(⌈
b

N

⌉s
·N
)3

=
3

s

(
logkmn

⌈
b

N

⌉s
+ logkmnN

)
=

3 logd bN e+ 3
s logN

log(kmn)

Letting s→∞, we get ω ≤ 3 logd b
N
e

log(kmn) , which we needed to prove. �

Theorem 2.7.14 (Schönhage’s τ -theorem). If R
(⊕p

i=1〈ki,mi, ni〉
)
≤ r with r > p ≥ 1 and if for

all i we have ki,mi, ni ≥ 1 and kimini ≥ 2, then ω ≤ 3τ where τ is defined by
∑p

i=1(kimini)
τ = r.

Proof. (After [3, Th. 7.5]) If p = 1, this is Theorem 2.7.6; otherwise, we have p > 1.

There is an h such that Rh
(⊕p

i=1〈ki,mi, ni〉
)
≤ r. By Lemma 2.7.4, for s ≥ 1 we have that

Rhs

((⊕p
i=1〈ki,mi, ni〉

)⊗s) ≤ rs, or written out using multinomial coefficients:

Rhs

(⊕
σ1+···+σp=s

σi≥0

s!

σ1! · · ·σp!
�

〈
p∏
i=1

kσii︸ ︷︷ ︸
k′(~σ)

,

p∏
i=1

mσi
i︸ ︷︷ ︸

m′(~σ)

,

p∏
i=1

nσii︸ ︷︷ ︸
n′(~σ)

〉)
≤ rs

(These ranks are equal by Remark 2.7.11.) Use Lemma 2.7.5 to obtain:

R

(⊕
σ1+···+σp=s

σi≥0

s!

σ1! · · ·σp!
� 〈k′(~σ),m′(~σ), n′(~σ)〉

)
≤ rschs (2)

Raising
∑p

i=1(kimini)
τ = r to the s’th power (s ≥ 1), we get:∑

σ1+···+σp=s
σi≥0

s!

σ1! · · ·σp!
(
k′(~σ)m′(~σ)n′(~σ)

)τ
︸ ︷︷ ︸

(?)

= rs (3)

This sum has
(
s+p−1
p−1

)
= s+p−1

p−1 · · ·
s+1

1 ≤ (s+ 1)p−1 terms. Pick values of σ1, . . . , σp such that (?)
is maximal. Then ~σ is a constant vector. Define:

N =
s!

σ1! · · ·σp!
, b = rschs, k = k′(~σ), m = m′(~σ), n = n′(~σ).

25

Now clearly:

R

(
s!

σ1! · · ·σp!
� 〈k′(~σ),m′(~σ), n′(~σ)〉

)
≤ R

(⊕
σ1+···+σp=s

σi≥0

s!

σ1! · · ·σp!
� 〈k′(~σ),m′(~σ), n′(~σ)〉

)

which is ≤ rschs = b by (2), so R(N � 〈k,m, n〉) ≤ b. Since the sum in (3) contained at
most (s + 1)p−1 terms, we have N · (kmn)τ · (s + 1)p−1 ≥ rs, so rs

N ≤ (kmn)τ (s + 1)p−1 and
(kmn)τ ≥ rs

N ·(s+1)p−1 , and therefore:⌈
b

N

⌉
≤ rschs

N
+ 1 ≤ chs(kmn)τ (s+ 1)p−1 + 1, and (4)

(kmn)τ ≥ rs

ps · (s+ 1)p−1
(since N ≤ ps (multinomial theorem)) (5)

For s ≥ 1, we have N ≥ 1 and R(N � 〈k,m, n〉) ≤ b. Now since s ≥ 1, there is a j such that
σj ≥ 1. Since kjmjnj ≥ 2 by assumption, we get kmn = k′(~σ)m′(~σ)n′(~σ) =

∏p
i=1(kimini)

σi ≥ 2.

Therefore we get by Lemma 2.7.13 that ω ≤ 3·logd b
N
e

log(kmn) . Since this works for all s ≥ 1, we can take
the limit s→∞ and obtain: (note that k,m, n depend on s)

ω
(4)
≤ lim

s→∞
3 · log(chs(kmn)τ (s+ 1)p−1 + 1)

log(kmn)

(?1)
= lim

s→∞
3 · log(chs(kmn)τ (s+ 1)p−1)

log(kmn)

= lim
s→∞

3 · log chs + τ log(kmn) + (p− 1) log(s+ 1)

log(kmn)
= 3τ + 3 lim

s→∞

log chs + (p− 1) log(s+ 1)

log(kmn)

and:

lim
s→∞

log chs + (p− 1) log(s+ 1)

log(kmn)

(?2)

≤ lim
s→∞

log poly(s) + (p− 1) log(s+ 1)

s · log r−log p
τ

= lim
s→∞

O(log(s))

O(s)
= 0

where:

(?1) holds because chs and kmn are positive integers (i.e. ≥ 1) and τ and p are constants with
p > 1, so chs(kmn)τ (s+ 1)p−1 →∞ as s→∞;

(?2) holds because:

log(kmn) =
1

τ
log((kmn)τ)

(5)
≥ s

τ
log r − s

τ
log p− p− 1

τ
log(s+ 1) ≥ s · log r − log p

τ

and log r − log p > 0 (since r > p by assumption).

Therefore, ω ≤ 3τ . �

2.7.2 A Simple Application

From [21, Lem. 6.1], we know that R(〈k, 1, n〉 ⊕ 〈1, (k − 1)(n − 1), 1〉) ≤ kn + 1 for k, n ≥ 2.
Using the τ -theorem, Theorem 2.7.14, yields ω ≤ 3τ where (kn)τ + ((k − 1)(n− 1))τ = kn+ 1;
the resulting value for τ is smallest for k = n = 4, which gives τ < 0.849332, or ω < 2.548.
This means that matrix multiplication of n× n matrices is in O(n2.548). While this is not yet
close to the state of the art (O(n2.3728639) [13]), it is a significant improvement over the Strassen
algorithm, which has complexity O(n2.81). However, the downside is that this improved bound
on ω does not come with an explicitly constructed algorithm, so in practice, Strassen remains the
preferred choice.

26

3 Performance

3.1 Introduction

In this section, we will look at the practical execution of large-integer matrix multiplication. We
will describe and optimise a CPU and a GPU implementation and evaluate their performance to
determine which platform is most suitable. Large-integer matrix multiplication separates into two
components: multiplying matrices efficiently in general, and multiplying large integers efficiently.
The second component is largely solved by existing large-integer libraries like GMP [9], and on
the CPU platform we will use this library unchanged. On the GPU, we make a selection of
functionality and implement an extension to support an interleaved representation of numbers.
In Section 3.2, we will describe the GMP implementation on a high level, and explain the GPU
adaptation and extensions.

The first component is less completely solved; dense matrix multiplication over floating-point
numbers is well-studied (e.g. [2]), since that is the common case and it has hardware support
on modern architectures, which provide wide vector units for performing multiple floating-point
operations in parallel. On the other hand, matrix multiplication over different elements, in
this case large integers, has not enjoyed as much attention. On the CPU platform, there are
implementations in number theoretic libraries like FLINT [11] and NTL [23] and in software
packages like PARI/GP [10]; here, a custom one will be developed, both for CPU and GPU, for
full parametrisability.

An alternative method of multiplying large-integer matrices is to reduce the matrix elements using
repeated applications of the Chinese Remainder Theorem to transform the matrix multiplication
into many small-integer matrix multiplications, which can be executed using native machine
integers. This approach is also called using “multi-modular reduction”, and is taken for large
enough matrices by libraries like FLINT, but is considered out of scope here due to time constraints.
Therefore, we will look only at directly multiplying matrices over large integers.

A comparison of our CPU implementation to the existing CPU libraries mentioned above is in
Section 3.5.3.

3.1.1 Input Data Set

The degrees of freedom in an input to a large-integer matrix multiplication program are the
matrix sizes and the distribution of sizes of the elements of these matrices. We choose to not
measure the results of irregular distributions of the element sizes, so in each test case, we draw
elements uniformly from the set {−2b+1, . . . , 2b−1} for some b ∈ Z≥1, the bitsize of the elements.
Considering expected use cases, and because of the time required to calculate products with very
large input parameters, the following matrix sizes and bitsizes are used:

• Matrix sizes: 32, 64, 128, 512, 1024, 2048 (number of elements along a side)

• Bitsizes: 16, 512, 1024, 2048

Small parameters were also included to be able to judge tradeoffs introduced by constant overheads
like the set-up and teardown of a GPU context, or the creation and destruction of CPU threads.
The choice of powers of 2 for the bitsizes is to cover a large range of bitsizes with few data points,
but the choice of powers of two for the matrix sizes is due to the fact that the implementations
work most naturally on these inputs. However, since it is unreasonable to only be able to multiply
square matrices with size a power of 2, we consider irregular input sizes in Section 3.7.

27

The set of input matrices consists of one pair of randomly generated matrices for each combination
of a matrix size and a bitsize listed above. The same pair of input matrices is used for each test
that combines the same matrix size and bitsize.

3.2 Large-Integer Arithmetic

In GMP, and in many other large-integer arithmetic libraries, a large integer is represented as
an array of limbs, each of which is typically a normal unsigned hardware-native integer. For
example, on a modern 64-bit CPU, each of these limbs would be a 64-bit integer, capable of
representing the nonnegative integers < 264. We assume that the hardware in question operates
with two’s-complement base-2 arithmetic. If b is the number of limb bits (in the example, b = 64)
and the array of limbs that makes up the large integer is (a0, . . . , an−1), then if the library uses
little-endian representation (which is usual), the represented value is

∑n−1
i=0 ai2

bi. In GMP, the
structure that stores a large integer contains a pointer to a dynamically allocated array of limbs,
a field for number of limbs allocated (“alloc”), and a field for the number of limbs currently in use
in the array (“size”). Negative numbers are represented using a negative size field. In the text
below, we will use the terms alloc and size for respectively the capacity and usage of the limb
array of a large integer.

To perform arithmetic with these structures, GMP contains functions that implement the usual
arithmetic operations (addition, subtraction, multiplication, division), as well as more specialised
operations (taking of square roots, computing the greatest common divisor, etc.). If at some
point, the array storing the limbs of the destination number is too small to contain the entire
result, this array is enlarged with a reallocation and the structure is updated.

The core of GMP’s logic is in the internal mpn (Multi-Precision Naturals) module, which
implements basic unsigned large-integer operations on arrays. This module is then used by
the public mpz (Multi-Precision Z) module, which uses the structure mentioned above and
implements allocation and negative (signed) integer handling. (GMP contains other modules for
multi-precision rationals (mpq) and floating-point numbers (mpf), but these are not relevant to
the subject at hand.)

3.2.1 Multiplication Algorithms

The arithmetic operations we use are addition, subtraction, multiplication, and their combinations
“addmul” (c = c+ a · b) and “submul” (c = c− a · b). Addition and subtraction use the normal
linear algorithms, but multiplication has a more complicated implementation, using a variety of
algorithms for increasing sizes of the input numbers. Generally, for large-integer multiplication
algorithms, the better its asymptotic complexity, the higher the constant factor in the actual
number of native arithmetic operations. Therefore, the lower-complexity algorithms are chosen
for larger input sizes, and simpler algorithms for smaller input sizes.

The algorithms implemented by GMP are the following: [8]

• Basecase multiplication. This is the naive O(km) algorithm (if k and m are the sizes of
the input numbers) that is simple and very efficient on modern hardware, using vectorised
instructions.

• The Toom family of algorithms. This includes Karatsuba’s algorithm as toom22, and
generalised variants of Karatsuba as toom33, toom44, toom6h and toom8h.

• FFT multiplication (the Schönhage–Strassen algorithm [22]), which is only used for very
large operands.

28

The thresholds for switching between these algorithms depend on the machine GMP is tuned for,
but as a general indication, one such set of thresholds is given. After tuning the thresholds in
GMP 6.1.2 on an the processor used for the CPU tests (on which GMP uses 64-bit limbs), toom22,
toom33, toom44, toom6h and toom8h are respectively used starting at 20 limbs (1280 bits), 65
limbs (4160 bits), 172 limbs (11008 bits), 274 limbs (17536 bits) and 357 limbs (22848 bits).
FFT multiplication starts at 4736 limbs (303104 bits). The determination of these thresholds is
approximate, since since the crossover points are usually not sharp; and in the case of unbalanced
multiplication (where one of the multiplication operands is significantly larger than the other),
GMP includes a number of Toom-inspired algorithms that are specially constructed for varying
degrees of imbalance, and these have their own list of thresholds.

The basecase algorithm performs naive multiplication of the two operands as follows. Assume
that the product c = a · b is to be calculated, where c (alloc n), a (size k) and b (size m) are
large integers with limb arrays indexed respectively as ci, ai and bi. Assume that n ≥ k +m+ 1,
otherwise a reallocation is needed to ensure this is true. Then the multiplication proceeds as
follows:

1 C ← 0
2 for j = 0 to k − 1 do
3 cj ← ajb0 + C, carry in C
4 ck ← C
5 for i = 1 to m− 1 do
6 C ← 0
7 for j = 0 to k − 1 do
8 ci+j ← ci+j + ajbi + C, carry in C
9 ci+k ← C

Where a multiplication of limbs is performed, the result is two limbs in size. The lower result
limb is returned as usual, but the higher result limb is taken as carry and stored in C in the
above pseudocode. Note that a limb, plus a product of two limbs, plus the carry of a product of
two limbs, always fits within two limbs; this means that the above algorithm is well-defined. As
mentioned, this algorithm has complexity O(km); however, the constant factor is very low (i.e.
few extra arithmetic operations are hidden by the big-O notation), so the algorithm is optimal in
practice for small enough numbers.

All other algorithms are recursive algorithms: they reduce the multiplication of two large integers
to a number of smaller multiplications, each of which is executed using the same or a different
algorithm. This recursion always terminates at basecase multiplication.

The first of these recursive algorithms is toom22, also known as Karatsuba’s algorithm. In essence,
this is an algorithm to multiply two degree-one polynomials with three coefficient multiplications
instead of four: given a0 + a1X and b0 + b1X, the product polynomial is a0b0 + (a0b1 + a1b0)X +
a1b1X

2. The middle coefficient can be calculated as (a0 + a1)(b0 + b1)− a0b0 − a1b1, yielding the
coefficients of the product in just three multiplications. This is applied to multiplication of the
(nonnegative) large integers a and b by choosing some value k (typically half the number of bits in
one of the operands) and writing a = a0 + 2ka1 with 0 ≤ a0 < 2k, and b = b0 + 2kb1 analogously.
Then using four additions and three multiplications on operands that are half as long as the
original values a and b, the above algorithm gives c0, c1 and c2 such that a · b = c0 + 2kc1 + 22kc2.
Since multiplications by 2k are especially cheap in large-integer implementations with a limb size
that is a power of 2, the product can be then calculated efficiently using another two additions.

Toom22 splits the operands in two pieces and makes linear combinations of the parts to save
sub-multiplications. The higher Toom variants split the operands in more pieces to save a larger
fraction of the multiplications, at the cost of even more additions. All Toom algorithms can be
interpreted as evaluation and interpolation of polynomials; for a description, see e.g. [8]. The

29

final algorithm, Schönhage–Strassen, uses fast Fourier transforms to perform the multiplication
of two n-bit numbers in time O(n log n log log n); for a description, see technical notes for GMP
[8] or the original text [22].

3.3 Implementations

Two main implementations have been created:1 one that computes the product using a CPU,
and one that computes the product using a GPU for the main computations. Each of these
implementations has parameters that can be varied, and the goal is to identify the platform that is
most suited to multiplying large-integer matrices quickly, and with what parameter settings that
optimum is reached. Traditionally, the CPU is the platform of choice for this kind of operation,
but the GPU is tried as well because of the inherent parallelism in matrix multiplication: each of
the target matrix elements can in principle be calculated independently from the others.

In both cases, the core small-matrix multiplication code uses the naive algorithm with three
nested loops and can handle matrices of any size (barring memory constraints), but the recursive
divide-and-conquer algorithms used to speed up multiplication of larger matrices assume that all
matrices are square with side length a power of two. This simplifies and speeds up the subdivision
code in these algorithms. The routines that implement these algorithms are wrapped in a function
that subdivides the input matrices into submatrices that are either square with side length a
value with enough factors of 2, or small enough to multiply directly with the core routines that
can handle rectangular matrices. This ensures that matrices of any (compatible) sizes can be
multiplied, while the recursive algorithms do not need to cope with the difficulties introduced by
non-square matrices.

We will first detail how the used recursive algorithms work in theory, and then how the specific
implementations for the CPU and GPU use these algorithms to multiply the matrices.

3.3.1 Recursive Algorithms

If the product of two matrices A and B is a matrix C, then A, B and C should have dimensions
k×m, m× n and k× n for certain k,m, n ∈ Z≥1, as also set out in Section 2. In this subsection,
we index matrix A as follows:

A =

A11 · · · A1m
...

. . .
...

Ak1 · · · Akm

and matrix B and C analogously. The core multiplication procedure is the naive algorithm,
represented in pseudocode as follows:

1 for i = 1 to k do
2 for j = 1 to n do
3 Cij ← Ai1B1j

4 for ` = 2 to m do
5 Cij ← Cij +AimBmj

When applying this algorithm to block matrices of 2 × 2 blocks each, this gives a recursive
algorithm that turns one large matrix multiplication into 8 smaller matrix multiplications and
4 additions. This will be called the naive recursive algorithm. It gives no improvement in
complexity whatsoever, but permits distribution of work with the characteristic that the created

1The code for the implementations can be found at https://github.com/tomsmeding/bachelor-thesis.

30

https://github.com/tomsmeding/bachelor-thesis

jobs have a more localised memory access pattern. This is one of the possible algorithms used in
the CPU implementation to distribute work over processors.

However, the multiplication of 2× 2 matrices can be accomplished in 7 element multiplications
(which may be smaller matrix multiplications), although 7 is the minimum for 2× 2 matrices [29].
The traditional algorithm with 7 multiplications is Strassen’s algorithm, and it performs the
following multiplication: (

A11 A12

A21 A22

)
·
(
B11 B12

B21 B22

)
=

(
C11 C12

C21 C22

)
using the calculations given below: [24]

P1 = (A11 +A22)(B11 +B22) P5 = (A11 +A12)B22

P2 = (A21 +A22)B11 P6 = (−A11 +A21)(B11 +B12)
P3 = A11(B12 −B22) P7 = (A12 −A22)(B21 +B22)
P4 = A22(−B11 +B21)

C11 = P1 + P4 − P5 + P7 C21 = P2 + P4 C12 = P3 + P5 C22 = P1 + P3 − P2 + P6

On each recursion level it uses 18 additions.

There is a variant (called Winograd here) of Strassen’s algorithm due to Shmuel Winograd
that accomplishes the multiplication of 2× 2 matrices in 7 multiplications and only 15 additions
[20, Lemma 17]. For 7 multiplications, this number of additions is optimal [20]. The algorithm
performs the same matrix multiplication as above using the following calculations:

P1 = A21 +A22 Q1 = P2P6 R1 = Q3 +Q2 C11 = R1

P2 = P1 −A11 Q2 = A11B11 R2 = Q1 +Q2 C21 = R6

P3 = A11 −A21 Q3 = A12B21 R3 = R2 +Q4 C12 = R5

P4 = A12 − P2 Q4 = P3P7 R4 = R2 +Q5 C22 = R7

P5 = B12 −B11 Q5 = P1P5 R5 = R4 +Q6

P6 = B22 − P5 Q6 = P4B22 R6 = R3 −Q7

P7 = B22 −B12 Q7 = A22P8 R7 = R3 +Q5

P8 = P6 −B21

3.3.2 CPU

The CPU implementation is in the C language and has three parameters that we vary in the
experiments. The values assigned to the parameters are given below:

• algorithm: Strassen, Winograd, naive/Winograd

• baseblocksize: 16, 32, 64

• jobblocksize: n/2, n/4, n/8 (where n is the matrix size); but only those for which
baseblocksize ≤ jobblocksize

The program functions as follows. We will first describe how square and power-of-2 sized matrices
are multiplied, and afterwards how arbitrarily sized input matrices are subdivided to be able to
multiply them in parts using the procedure specified here.

Assume two n× n (n = 2k for some k ∈ Z≥0) matrices A and B are given, and their product C
needs to be calculated. One of the three recursive algorithms from Section 3.3.1 is used to divide
A and B in smaller and smaller matrices until the size of the small matrices is no more than
jobblocksize. All matrix operations that need to be performed for this subdivision to work, i.e.
all additions, subtractions and (smaller) multiplications, are registered in a job system including

31

all of their dependencies on previous jobs. (See below for the workings of the job system.) The
addition and subtraction jobs execute the required operations without further subdivision, while
the multiplication jobs perform another few recursion steps to subdivide the matrices, potentially
using a different recursive algorithm (from Section 3.3.1) than before. This recursion process
happens entirely in one CPU thread and does not suffer from job distribution overhead, so the
size of the smallest multiplications produced can be much smaller than would be reasonable when
using the job system for this process. The second recursion process continues until the small
multiplications are no larger than baseblocksize, at which point the core multiplication routines
(see Section 3.3.1) perform the final small multiplication. It is clear that we have a requirement
that baseblocksize ≤ jobblocksize.

For the above process, two algorithm choices must be made: one for job distribution and one
for thread-local recursion. The algorithm parameter determines which are chosen: the Strassen
and Winograd options use those respective algorithms for both job distribution and thread-local
recursion, while the naive/Winograd option uses naive recursion for job distribution and Winograd
for thread-local recursion. The third option is included since it allows complete parallelism without
needing a lot of extra memory, while using the most efficient implemented algorithm for the
thread-local calculations; it is therefore attractive in many-core scenarios.

The description above mentions the use of a job system: this is a simple module that accepts
jobs in the form of a function pointer and a list of dependency jobs, and registers them for
execution later. When all jobs are registered, the job system starts a number of threads (specified
by the number of CPU threads allocated to the multiplication using a parameter) and starts
distributing jobs to these threads. Jobs of which all dependencies have been run to completion
are egligible for execution, and the system attempts to keep all threads busy with executable
jobs as much as possible. The benefit of using a job system as described here, as opposed to
explicit parallelism in the subdivision algorithms, is that any number of threads may be used
effectively. Implementations that attempt “perfect” parallelism (e.g. [2]) can typically only make
use of a thread count that is a power of 7, stemming from the usage of a Strassen-like algorithm
for the recursion steps. The author knows of no production CPU that has a power-of-7 core count
greater than 1.

Note that while we assumed that n is a power of 2 in the above, the process actually works for any
n = b2p for b, p ∈ Z≥0 with 1 ≤ b ≤ baseblocksize. If this is the case, the recursion processes
are always able to divide n by two when they need to, so no unexpected conditions occur. This is
used in the squarify function that generates jobs for multiplication of arbitrarily (but compatibly)
sized matrices: this function first checks whether the input matrices are square with side length
b2p as before, and if so, directly calls into the recursive procedure outlined above. If the matrix
sizes are less than baseblocksize, only one job is created using the core matrix multiplication
routine. Otherwise, the input matrices are k ×m and m× n. The largest p ∈ Z≥0 is found such
that 2p ≤ min{k,m, n}. Both matrices are then subdivided into four submatrices as follows:

A =

2p

2p

k − 2p

m− 2p

B =

2p

2p

m− 2p

n− 2p

These submatrices are then multiplied using the naive recursive algorithm. (The more complicated
Strassen algorithms in general only work for square and even-sized matrices, but can be made to
work with irregularly sized matrices using a lot of bookkeeping and extra loop conditions; the
decision was made to not implement this and stay with naive recursion.) Each of the smaller

32

multiplications is again handled by the squarify function, which might then choose to directly
perform the multiplication or to subdivide further.

Arithmetic on the large integers in the matrices to be multiplied is performed using the GMP
library [9]. This library was tuned for the target machine using the tuneup program bundled
with GMP; furthermore, it it statically linked into the executable to eliminate any function call
overhead arising from dynamic linking.

3.3.3 GPU

For the GPU implementation, we have chosen to use only one GPU and consider multi-GPU
parallelism out of scope. On the topic of multi-GPU processing, it has been found that when
exploiting the massive parallelism of multi-GPU setups, the advantages of using Strassen-like
algorithms diminish and it may be faster to use naive multiplication directly [30]. Because
the individual element multiplications for large-integer matrices are relatively costly for their
memory footprint increase (since the large-integer multiplication algorithms used are not linear
in complexity), in this case we expect the conclusion from [30] to remain valid, albeit only for
even larger amounts of parallel hardware.

The GPU implementation uses the CUDA framework, and is therefore written in CUDA C++

and runs on compatible NVIDIA GPU’s. All core multiplications are executed on the GPU, but
the recursion steps are executed on the CPU: the leaves of the recursion tree are kernel launches.
Unlike the CPU version, no parallelism in the recursion tree is exploited, since the multiplication
kernels themselves already use the parallelism that the GPU offers. (In particular, we do not
use multiple CUDA streams to execute kernels concurrently, since in practice this was found to
decrease, instead of increase, performance.) The implementation has three parameters that we
vary in the experiments. The values assigned to the parameters are given below:

• algorithm: Strassen, Winograd

• interleaved: yes, no

• gputhreadblock: width 8, 16, 32, 64, 128, 256; height 2, 4, 8, 16, 32, 64

Since no recursion-tree parallelism is used, unlike in the CPU version, it is unnecessary to consider
naive recursion in addition to Strassen-like recursion. The interleaved parameter indicates
whether digit interleaving is performed on the matrix elements; this will be detailed later. The
gputhreadblock parameter determines the GPU thread block size used. (For information about
the details of the GPU programming model including thread blocks, see e.g. the NVIDIA CUDA
Programming Guide [18, §2 Programming Model].) The specifics of the GPU kernels and their
register usage result in a maximum thread block size of 512 (when restricting the dimensions to
powers of 2), after which the maximal thread block dimensions follow directly from the minimum
dimensions. Due to this maximum thread block size, there are 36 valid values for gputhreadblock.

The core GPU kernels can multiply arbitrarily (but compatibly) sized matrices, being limited
only by GPU memory capacity. They are used for the small multiplications needed by the
recursive algorithms. Like in the CPU implementation, the recursive subdivision code in the
GPU implementation assumes square and power-of-2 sized matrices, where an allowance is made
for matrix sizes that have enough factors 2 such that they can be evenly subdivided into small
enough matrices. A squarify-like function is included that allows these procedures to be used with
arbitrarily sized matrices (see the previous section). Note that in the current implementation,
interleaved is incompatible with squarify, which means that irregularly sized matrices cannot
be multiplied in interleaved mode. In the following, the code will be described that works under
the assumption of square and power-of-2 sized matrices, like in the previous section.

33

A number of recursion steps with the specified algorithm are performed until the matrix size
is at most the global constant TRANSFER_SIZE. At this point, the matrices are copied to GPU
memory. The reason this is not done with the initial matrices is that these may not fit in GPU
memory, and subdivision may be necessary for them to fit. This constant is not varied in the
experiments because a higher value, if admissible with the amount of GPU memory available, will
always induce less overhead and will therefore be faster. In the tested implementation, we have
chosen the value TRANSFER_SIZE = 512. Using Winograd on 2048× 2048 matrices with bitsize
2048, this results in a peak GPU memory usage of 867MiB. A higher limit was possible, but only
a negligible speedup is expected, with memory transfers already taking less than 2% of the run
time according to nvprof.

After the transfer, another few recursion steps with the algorithm are performed until the
matrices are no larger than BASE_SIZE (in the tested implementation, BASE_SIZE = 256), at
which point the multiplication is executed directly with the naive GPU kernel. We have found
that selecting a smaller BASE_SIZE is not beneficial for the total run time, so this constant is
taken.

To multiply matrices over large integers on a GPU, we need to be able to multiply large integers
on a GPU. The next section details how this was accomplished.

3.3.4 GMP on the GPU

While no research could be found concerning large-integer matrix multiplication on the GPU,
performing large-integer multiplication itself on the GPU has been studied before. In [6], hand-
optimised PTX assembly routines were used to multiply separate large integers on the GPU.
The only multiplication algorithm implemented is Schönhage–Strassen FFT multiplication, and
measurement results are reported for 384K bits and higher. While the speedups compared to the
CPU are promising (2.2× at 384K bits to 5.8× at 16384K bits), our focus on smaller bitsizes
means the code for this work is likely not directly useful here.

In [19], a different approach was taken, while the focus was also on separate large-integer
multiplications of sizes larger than we consider here (they perform multiplication tests with
bitsizes between 1024K and 131072K bits). The CUDA library cuFFT was used to evaluate
the fast Fourier transforms necessary for Schönhage–Strassen, which means that presumably,
the FFT code is well-optimised. However, cuFFT is a floating-point FFT library, so barring
extensive error analysis of the computations and measures to prevent such errors, the results will
be inaccurate; and indeed, it is reported [19, Table 5.5] that for e.g. 1024K-bit multiplication
(which takes operands on the order of 21048576), the relative error between the GPU results and
accurate GMP results on the CPU is 1.21 · 10−6 ± 5.52 · 10−6, which can mean that most of the
bits are incorrect. While they also report that for the majority of the calculations, the relative
error was zero [19, Figure 5.5], the possibility of errors of this magnitude is not acceptable for our
purposes.

In [15], a floating-point FFT is also used, resulting in inaccurate multiplication results. Improve-
ments over CPU processing were found for bitsizes larger than 65536 bits. An alternative to FFT
multiplication is given in [12], which uses a novel data structure they call a “product digit table”
to parallelise the multiplication; results are reported for bitsizes of 8192 bits and higher.

Summarising the above, FFT multiplication techniques will not be suitable for our purposes, and
results on other techniques for large-integer multiplication on the GPU are scarce. Furthermore,
the found sources all parallelise a single large-integer multiplication, while we can get parallelism
from just executing many multiplications in parallel. Since in addition, our bitsize range is
outside the ranges for which results are reported in the found sources, we choose to create a new

34

implementation for performing large-integer arithmetic on the GPU.

On the CPU, we used the GMP library to perform large-integer arithmetic, but this library is large
and not directly usable on the GPU, even with CUDA, because of the use of dynamically-sized
limb buffers and heap allocations to manage these buffers. Since GMP contains optimised code
written in platform-independent C code, we would still like to use the algorithms contained
therein for our GPU implementation. Therefore, a number of source files from the GMP 6.1.2
source distribution (the newest at the time of writing) are extracted and modified to create a
small library that can be directly compiled using the NVIDIA CUDA C++ compiler (nvcc). The
extraction is performed by selecting the files implementing the basic arithmetic functions needed
for our algorithms from the GMP mpz module (addition, subtraction, multiplication, addmul
(c = c+ a · b) and submul), including their transitive dependencies in the GMP source tree. A
custom, reduced header file gmp.h was also created, merging the relevant parts of gmp.h and
gmp-impl.h from the GMP source distribution. All defined types and functions are renamed by
prefixing them with gpu_ to enable linking a normal CPU GMP library into an application using
our GPU large-integer library.

The large-integer data structure in the original GMP library contains three fields: a pointer to an
array of limbs, the allocated size of that array, and the currently used size of that array. In our
library, we replace the pointer and the allocated size by a single limb array of a statically-known
size. This means that the library enforces a static limit on the bitsize of the integers represented,
but this static limit can be set to any desired value with a recompilation. The advantage to this
static representation is that a fixed amount of storage is sufficient for each integer and no heap
allocations are performed. Therefore, a matrix of large integers is one contiguous buffer, which is
amenable to efficient transfers between main memory and GPU memory.

For multiplication, the basecase algorithm and the toom22 algorithm are ported, and all integers
above the toom22 threshold are multiplied using the toom22 algorithm. (See Section 3.2.1 for
details on the multiplication algorithms.) The reason for not porting the other lower-complexity
algorithms is that they are more involved and need much more code; the amount of time necessary
for porting these algorithms was considered too large for the expected negligible return. However,
this should be kept in mind when reading the experiment results, because this may put the GPU
at a slight disadvantage to the CPU for the largest bitsizes, even though the CPU should also not
use algorithms above toom22. Note that the ported library uses 32-bit limbs, instead of 64-bit
limbs like the CPU version, since there is no efficient way to multiply two 64-bit integers and
access the full 128-bit result on a GPU.

On the GPU used for testing, data is fetched from GPU memory in blocks of 256 bits, regardless
of the size of the memory fetch instructions in the code. Since the limbs used are 32 bits long,
and in a direct port to the GPU the matrix elements are put in memory as a whole, this means
that memory bandwidth efficiency is about 12.5%. During development, this was also observed
using the nvprof tool. To improve on this, the necessary ported GMP functions were duplicated
and altered to assume the limbs of their arguments are not adjacent in memory, but rather are
further apart; the offset of the next limb to the previous limb, counted in limb sizes, is called
the stride of the large integer. Having these functions allows interleaving the limbs of adjacent
matrix elements so that the first limbs of the numbers are adjacent and followed by all the second
limbs, etc. This interleaving is performed in blocks of INTERLEAVE_BLOCK_SIZE elements, which
in the tested implementation is chosen equal to BASE_SIZE. This optimisation requires pre- and
post-processing on the CPU to interleave and de-interleave the matrix elements, but improves
memory efficiency on the GPU by allowing the hardware to perform memory access coalescing [17,
§9.2.1 Coalesced Access to Global Memory]. The interleaved parameter determines whether
this interleaved implementation is used. Note again that this implementation requires the matrix
size (and all subdivided matrices) to be a multiple of INTERLEAVE_BLOCK_SIZE, and will only be

35

used with square power-of-2 sized matrices in the experiments.

Note that we have not compared the performance of our implementation with the existing
implementations referenced above, because drawing conclusions from a comparison between an
implementation that derives parallelism only from performing multiple multiplations at once
(ours) and an implementation that performs one multiplication in parallel (those mentioned
above) would be very hard. To still illustrate the relative performance of our implementation as
described above, it was run on the CPU and compared to the vanilla tuned CPU GMP library.
For bitsizes in the input data range, the code is about 8 times as slow as the tuned GMP code.
This factor is of course large, but the speedup of the original GMP code can be attributed to
the super-optimised assembly code in the basecase multiplication routine and the use of 64-bit
limbs instead of 32-bit. Since doing the former with PTX assembly is out of scope due to time
constraints and the latter is necessary, we assume that our GPU code is performant enough to
justify CPU and GPU comparison.

3.4 Experimental Setup

For the CPU tests, the following system properties and versions apply:

• GMP version: 6.1.2; tuned using tuneup on the testing machine and statically linked into
the executable

• Source compiled using gcc -O3 -flto -march=native -mtune=native; GCC version 5.4.0

• Platform: Ubuntu 16.04.4 LTS on Linux 4.4.0

• Processor: 2 sockets, each an Intel Xeon E5-2667 v2 at 3.30Ghz. 8 cores per socket, two
threads per core, for a total of 32 virtual cores. 48GiB memory.

For the GPU tests, the setup is as follows:

• GMP version from which code was extracted: 6.1.2

• Source compiled using nvcc -O3 with GCC version 5.4.0; CUDA release 8.0, V8.0.61

• Platform: Ubuntu 16.04.4 LTS on Linux 4.4.0

• Processor: Intel Core i7-6950X at 3.00Ghz. 10 cores, two threads per core, for a total of 20
virtual cores. 48GiB memory.

• GPU: NVIDIA Titan X Pascal

3.5 CPU Results

Because of the hardware parallelism of the machine on which the CPU tests were run, the tested
thread counts are 1, 2, 4, 8, 16 and 32.

Three variables are realistically out of control of the implementor: matrix size, bitsize and thread
count, the latter because the maximum thread count is dictated by the hardware parallelism of
the used machine and starting more threads than necessary incurs only a near-constant overhead.
These three variables are called input conditions in this section. For example, when we say “for
each input condition”, we mean for each combination of matrix size, bitsize and thread count,
where each varies in its designated set: {1, 2, 4, 8, 16, 32} for the thread count, and the sets given
in Section 3.1.1 for the other variables.

36

1 2 4 8 16 32
10−3

10−2

10−1

100

101

102

103

104

16 bits

1 2 4 8 16 32

512 bits

1 2 4 8 16 32

1024 bits

1 2 4 8 16 32

ti
m

e
[s

ec
on

d
s]

number of threads

2048 bits

n = 2048

n = 1024

n = 512

n = 128

n = 64

n = 32

Winograd

Strassen

naive/Win.

Figure 3.1: (log–log) Time taken and optimal algorithm chosen for given bitsize and matrix
size (colour). The dashed lines indicate ideal timings if work division scaled perfectly with the

number of threads.

The variables algorithm, baseblocksize and jobblocksize can be tuned by the implementor,
and these are called parameters in this section.

For each input condition, each possible parameter set was enumerated, and a matrix multiplication
was executed with this input condition and parameter set. The measured time is the entire
multiplication, without I/O. The data set of the resulting timings is analysed below. For
quantification of the measurement error, each test case (one for each pair of an input condition
and a parameter set) of which the original timing was less than 2 seconds was re-run twice, and of
the other test cases, 20% was randomly selected to be re-run twice as well. For each input condition,
the optimal parameter set was determined by selecting the parameter set with the minimal run
time. These optimal sets can be found in Table A.1. There, and in the rest of this section, the
notation “St 16 /2” indicates the parameter set algorithm = Strassen, baseblocksize = 16 and
jobblocksize = n

2 , where n is the matrix size. The algorithms Winograd and naive/Winograd
are respectively indicated with “Wi” and “nW”.

The timings corresponding to the optimal parameter sets are in Table A.2, and the maximum
relative errors of the re-runs compared to the original timings for each input condition are in
Table A.3. The relative error of a re-run timing t1 compared to an original timing t0 is computed
as |t1−t0|t0

; such a computation will always be meant when “relative error” is used. (Table A.3
should be read with the absolute times in Table A.2 in mind; small timings fluctuate more, but
are also less important in the analysis below.)

3.5.1 Algorithm Choice

The naive/Winograd algorithm provides the most parallelism of the three algorithms, while
Winograd trades less memory usage and fewer additions for less parallelism. Strassen is somewhere
between these two algorithms in all dimensions. This means that we expect Winograd to perform
best with 1 thread, and that Strassen, and later naive/Winograd, will overtake Winograd as the
number of available threads increases.

For each input condition, there is a data point in Figure 3.1, which contains a frame for each
tested bitsize and within each frame a colour for each tested matrix size. The different markers
indicate which algorithm was optimal in that case. (The chosen block sizes are not shown here.)
The dashed, coloured lines indicate for each matrix size and bitsize what the theoretical ideal
runtimes would be for higher thread counts: they are calculated by dividing the runtime for 1
thread by the number of threads.

What we see is that, apart from the smallest multiplications which take only a few milliseconds,
the Winograd algorithm is indeed fastest for 1 thread, naive/Winograd is fastest for large numbers
of threads, and Strassen is best for some number of thread counts in between, possibly zero. The

37

early flattening of the data series at the bottom of the 16 bits graph is due to the overhead of
setting up all the threads and distributing work between them, which at that size dominates the
runtime.

It is clear that at least with the input sizes tested, there is a limit on the amount of parallelism
that can be effectively extracted from the computation. For larger matrices, effective speedups
are in general only obtained for up to 8 threads, after which the graph flattens. If the individual
element multiplications are expensive enough, i.e. for large bitsizes, using 16 threads can still
provide a respectable speedup. (For example: for matrix size and bitsize equal to 2048, the best
8-thread timing is about 415 seconds, while the best 16-thread timing is about 270 seconds; see
Table A.2.) We observe that using 32 threads never provides a speedup, and in most cases is even
somewhat slower than 16 threads. (In the 2048/2048 case, the best 32-thread timing is about 305
seconds.) This should not be surprising, since the machine used for testing has 32 virtual CPU
cores but only 16 physical cores, and the GMP library uses hand-optimised assembly code to
utilise the CPU core’s functional units as well as possible. Using hyperthreading, which shares a
core’s functional units between multiple threads, is therefore suboptimal as observed.

3.5.2 A Model

The job distribution over the allocated threads is non-deterministic, since small timing differences
may influence the exact order in which the jobs are issued: whether all a job’s dependencies have
been completed at the time of a new job issue might change between runs. Although the block
size choices can in general make a large difference in performance, the optimal block sizes are
often only a few percent ahead of the next-best choices in the collected measurement data set:

1. In about 49% of the cases, the timings for the best and worst block size choices, everything
else being constant, are at least 50% (factor 1.5) apart;

2. In about 42% of the cases, the timings for the best and second-best block size choices,
everything else being constant, are at most 5% (factor 1.05) apart.

Together, this means that barring many reruns of the test suite (which is impractical because
of the long runtime of the large test cases), it is hard to draw exact conclusions about optimal
parameter settings. Indeed, since the job distribution introduces some volatility in the timings,
there might not be a single best setting.

However, after acknowledging that the measurements are not exact, a few conclusions can still
be drawn. First, reading point (2.) above, it should be noted that the optimal parameters in
Table A.1 are not necessarily the only best answers. To be able to judge how significant various
differences in timings are, the relative errors in Table A.3 can be used. Since the relative errors
are often larger than 5%, it is clear that the specific optimal settings given will not give us a good
understanding of what good parameter settings are. What we can do, is try to construct a simple
model that, at least in the input condition ranges tested, predicts what parameter setting will
produce good performance. This model can then be evaluated by computing the relative error to
the measured optimal parameter settings and verifying that this error does not grow large.

Consider the following model, where b is the bitsize, n the matrix size and C the thread count:

• For C = 1, use Wi 16 /2.

• For 2 ≤ C ≤ 8, or 16 ≤ C and b = 16, use nW 16 /2.

• For 16 ≤ C and 512 ≤ b, use nW 16 /4.

The relative errors of always using Wi 16 /2 compared to the optimal parameter settings are
shown in Table A.4, those of nW 16 /2 in Table A.5 and those of nW 16 /4 in Table A.6. In

38

those tables, the input conditions for which the optimal time is less than 2 seconds are coloured
to indicate which results may be unreliable. From these three tables, it can be read that applying
the above model for the chosen input condition ranges yields performance losses that are no
more than the largest observed measurement inaccuracies for the input conditions for which the
optimal time is at least 2 seconds. Therefore, at least for the tested input condition ranges and
parameter ranges, we can conclude that this model gives good results. (The cases where the data
indicates the model might not be a good fit are cases where our data is too unreliable to prove or
disprove the statement.)

There are, however, trends in the data that are not captured by the above model. Correctly
captured is the algorithm choice trend already analysed in Section 3.5.1, but looking at the
data in Table A.1, we see that as the matrix size increases, the optimal ratio of matrix size to
jobblocksize increases as well; this can be explained by noticing that the larger the matrices
are, the less overhead results from creating many jobs, so the the better use can be made from
the concurrency offered by the allocated threads. With more data, we expect to see this trend
continue, and expect that a better model would incorporate this trend as well.

Additionally, it can be expected that as the bitsize increases, the optimal baseblocksize should
decrease: after all, the reason why baseblocksize = 1 is far from optimal at these bitsizes is
that element multiplications are not sufficiently more expensive than element additions. Looking
at the data in Table A.1, this trend is visible by looking at the baseblocksize values for larger
matrices for increasing bitsizes. However, with the chosen parameter range for baseblocksize
(i.e. ≥ 16), this trend is not significant enough to consider a conclusion.

Finally, we note that the results above should be correct in the general sense, but the specific
boundary values may vary because of the inaccuracies in the measurement results.

3.5.3 Comparison to Existing CPU Implementations

As mentioned in Section 3.1, there are existing libraries that can perform, among other operations,
large-integer matrix multiplication on the CPU. Examples are the C library FLINT [11], the C++

library NTL [23] and the C library and programmable calculator PARI/GP [10]. In this section,
we will compare the performance of our implementation and these three implementations (in this
section: the alternatives) on a small set of test cases: for each combination of (square) matrix size
in the set {128, 256, 512, 1024} and bitsize in the set {512, 1024}, each of the following programs
is run and the multiplication timing recorded.

• A C program using FLINT that reads in two large-integer matrices into variables of
type fmpz_mat_t and multiplies those with the function fmpz_mat_mul. The call to
fmpz_mat_mul is timed.

• A C++ program using NTL that reads the matrices into variables of type Mat<ZZ> and
multiplies those with the function mul(mat_ZZ&, const mat_ZZ&, const mat_ZZ&) from
the NTL/mat_ZZ.h header file. The call to mul is timed.

• A GP script that reads in the matrices from two files and then multiplies them using the state-
ment C = A * B;. (The matrices are read in using matconcat(readvec("file.txt")~);.)
PARI/GP is usable both as a library (libpari) and as a scripting language (GP); we
used the scripting language here. Since in GP, the multiplication of the two matrices
can be performed with a single operator, we do not believe that using libpari would
give a significant speedup for the matrix multiplication compared to GP, apart from a
small constant-time overhead. Possible overheads for reading in the input matrices are
not problematic, since only the multiplication is timed, like in the other tests. To be able

39

128 256 512 1024

10−1

100

101

102

512 bits

128 256 512 1024

ti
m

e
[s

ec
on

d
s]

matrix size

1024 bits

NTL

PARI/GP

FLINT

cpu 1 thread

cpu 4 threads

cpu 8 threads

Figure 3.2: (log–log) Average timings over three runs for different implementations with the
test cases described in Section 3.5.3. “cpu” refers to our CPU implementation.

to multiply the largest matrices in this test, the PARI memory usage limit (parisize) is
raised to 8’000’000’000.

• Our CPU implementation, using 1 thread, parameter set Wi 16 /1 (i.e. the Winograd
algorithm, baseblocksize = 16 and jobblocksize = n

1 = n, where n is the matrix size).
As in all other tests in this thesis, only the multiplication is timed.

• Our CPU implementation, using 4 threads, parameter set nW 16 /2.

• Our CPU implementation, using 8 threads, parameter set nW 16 /2.

The measurements are performed on the same machine as the main CPU tests, which is the first
machine described in Section 3.4. The versions used are FLINT 2.5.2, NTL 11.2.0 and PARI/GP
2.9.5. Each measurement was performed 6 times, and the maximum relative and absolute errors
can be found in Table A.7. (The measurement errors do not influence the rankings between
implementations.) The average values are plotted in Figure 3.2, where our program has dotted
lines and the alternatives have unbroken lines. Note that the tests for the alternatives are all
single-threaded.

The relative performance of our implementation for different thread counts is in line with the
results earlier in Section 3.5. Below we will compare the alternative implementations to our
implementation in terms of performance and algorithm.

FLINT is faster than our implementation on a single thread, but when using multiple threads, we
overtake FLINT on the bitcounts tested. However, the graph appears to show that FLINT uses an
asymptotically better algorithm than our implementation. On inspection of the FLINT 2.5.2 source
code, the function fmpz_mat_mul switches to multi-modular matrix multiplication for matrix
sizes larger than a certain bound depending on the bitsize; in the cases tested here, multi-modular
multiplication is always used. This is performed in the function _fmpz_mat_mul_multi_mod,
which generates a list of sequential primes (say p1, . . . , pN) and then builds N new pairs of
matrices, the i’th pair being the original input matrices with elements reduced modulo pi. Using
N matrix multiplications, these pairs are multiplied, and the element at position (i, j) in the result
matrix is then reconstructed from the elements at position (i, j) in the N calculated matrices.
This reconstruction is possible using the Chinese Remainder Theorem, because the moduli are
pairwise coprime. The N matrix multiplications over smaller integers (in FLINT, N is chosen
such that these are typically about two limbs large) are performed using Winograd’s algorithm.
In addition, when a modular matrix multiplication has matrix size ≥ 20, the second matrix is
first transposed before the actual multiplication is performed.

Since FLINT uses the same matrix multiplication algorithm as our implementation, i.e. Winograd,

40

the only algorithmic difference (thus discarding constant-factor optimisations) is using the multi-
modular technique to gain small and constant-size matrix elements at the cost of pre- and
post-processing work quadratic in the matrix size and having to perform O(bitsize) matrix
multiplications instead of 1. Despite being faster for the tested sizes in practice, this should only
improve the algorithmic complexity with respect to the bitsize, not the matrix size.

NTL is slower than our implementation on a single thread, and the distance increases as the
matrix size grows in the cases tested here. On inspection of the NTL 11.2.0 source code, only
naive matrix multiplication is performed without Strassen or multi-modular optimisations. This
means that performance should scale as O(n3), where n is the matrix size, instead of O(n2.81)
like our implementation does using a Strassen-like algorithm. This explains the difference in
performance shown in the graph.

PARI/GP scales similarly to our single-threaded code, being on average about 17% slower.
(A constant difference on a log-plot is a constant ratio between the y-values.) Inspecting the
PARI/GP 2.9.5 source code, the path taken for matrices over large integers uses Winograd’s
algorithm without further optimisations, which the same as our implementation. The measured
speed difference can probably be attributed to invoking the PARI garbage collector between
sub-multiplications to clean up temporaries.

Of the three alternatives listed, only PARI/GP has an implementation comparable to ours, and
compared to PARI/GP our implementation is about 17% faster for the matrix sizes and bitsizes
tested in this section. Fortunately, our implementation is also faster than NTL, which does
not use a Strassen-like algorithm. On the other hand, the multi-modular multiplication used
in FLINT is superior to our code. On the “Development” page on the FLINT website [11], the
authors list that implementing multithreaded matrix multiplication is a possible enhancement;
based on the results above, we expect that this will be a very effective speedup.

3.6 GPU Results

In this section, an input condition is a pair of a matrix size and a bitsize, and a parameter set is
a combination of a chosen algorithm, whether it is in interleaved mode, the GPU thread block
width (gputhreadblock_width) and the GPU thread block height (gputhreadblock_height).
In the GPU tables and in the implementation, being in interleaved mode is a property of the
algorithm, so in this case there will generally be four algorithms (Strassen, Winograd, Strassen
strided and Winograd strided — strided meaning “interleaved mode”); with this convention, there
are three components to a parameter set (algorithm, width and height).

As before, for each input condition, each possible parameter set was enumerated and a matrix
multiplication was executed with this input condition and parameter set. A test case is again a
pair of an input condition and a parameter set. The measured time is the entire multiplication
including possible pre- or post-processing for interleaving, but without I/O. Each test case of
which the original timing was less than 2 seconds was re-run twice, and of the other test cases
20% was randomly selected to be re-run twice as well. The optimal parameter sets are in Table
B.1, the corresponding timings in Table B.2 and the maximum relative errors of the re-runs
compared to the original run in Table B.3. Short notation for parameter sets will be e.g. “Wi
64 2”, meaning the Winograd algorithm with GPU thread block size 64 × 2. (The algorithms
Strassen, Winograd, Strassen strided and Winograd strided are respectively indicated using St,
Wi, SS and WS.) Looking at Tables B.2 and B.3, it should be noted that for input conditions
with optimal timings of at least 2 seconds, the relative re-run errors are all less than 1%, giving
confidence that these values are very reliable. However, the data for the other input conditions,
and especially those with timings less than 10ms, is too unreliable to use.

41

Bitsize 16 64 256 512 1024 2048
gld_efficiency 46.22% 44.50% 34.57% 27.83% 22.12% 18.19%
gst_efficiency 43.01% 46.60% 49.34% 50.31% 51.38% 52.96%

Table 3.1: Memory efficiency of Winograd strided, as reported by nvprof.

Because we focus on one GPU only, there are no parallelism or memory usage motivations to
prefer Strassen over Winograd; since Winograd uses fewer additions than Strassen, it therefore
seems unlikely that it is beneficial to use Strassen at all. In Table B.1, there are a few input
conditions where a parameter set with the Strassen algorithm is optimal, but this is deceptive:
when restricting the parameter space to only Winograd-based algorithms (i.e. Winograd and
Winograd strided), the relative error of the new optimal parameter set compared to the original
optimal set does not exceed 3% on all input conditions, and does not exceed 0.7% on the reliable
subset. These relative errors are shown in Table B.4. We conclude that we can indeed disregard
Strassen-based algorithms and focus only on Winograd-based algorithms.

GPU thread block size optimisation is in general a non-trivial problem [26], but in this case we
find that, in many cases but within certain bounds, the thread block size has little impact on
performance. For each combination of matrix size, bitsize and algorithm choice, we compare the
timing for the optimal block size with each of the tested block sizes for that combination. The
fraction of block sizes that is then within 3% of the optimal block size is shown in Table B.5.
Since each combination has 21 possible block sizes, we see that in each of the combinations, at
least 3 block sizes yield timings within 3% of the optimal timing for that combination. On the
other hand, in most other cases, half or more of the possible block sizes show no significant (here:
> 3%) slowdown compared to the optimal block size.

To find a good block size to use, we consider the parameter set (i.e. algorithm and block size) with
the least maximum relative error over all the input conditions. This parameter set is Winograd
with block size 8×4, with a maximum relative error of 17%, which occurs at bitsize 16 and matrix
size 2048. When excluding this input condition from the maximum relative error calculation, this
parameter set is still optimal with a maximum relative error of 8%. The relative errors of this
parameter set (Wi 8 4) are shown in Table B.6.

Especially for small bitsizes, Wi 8 4 works very well, but the data indicates that for larger bitsizes
this block size is suboptimal: in Table B.6, relative errors increase as the bitsize increases. Indeed,
choosing Wi 32 2 or Wi 32 16 improves performance for larger bitsizes, as suggested by the
optimal sets in Table B.1, but the collected data is not sufficient to give confidence about these
alternate block sizes.

3.6.1 Analysis

For the non-interleaved algorithms, the GPU profiler nvprof reports very low memory bandwidth
efficiency (12.5% for global loads and stores) because memory accesses cannot be effectively
coalesced. To remedy this, the interleaved variants were made, and indeed the memory efficiency
is higher with these variants, but not as much as expected, and the improvement varies with
bitsize.

In Table 3.1, the global memory load and store efficiency (respectively gld_efficiency and
gst_efficiency) as reported by nvprof for the Winograd strided algorithm are shown for various
bitsizes. While it is clear that these figures are better than the 12.5% for plain Winograd, the
cause for this suboptimality has not been found; the NVIDIA Visual Profiler (nvvp) does not
give insight as to where the non-coalesced memory accesses occur.

Added to this suboptimality is the need to pre-process the matrix memory on the CPU to

42

Metric name Description Min Max Avg
issue_slot_utilization Issue Slot Ut. 9.79% 9.79% 9.79%

tex_utilization Unified Cache Ut. Low (1) Low (1) Low (1)
l2_utilization L2 Cache Ut. Low (3) Low (3) Low (3)

shared_utilization Shared Memory Ut. Idle (0) Idle (0) Idle (0)
ldst_fu_utilization Load/Store Function Unit Ut. Low (1) Low (1) Low (1)

cf_fu_utilization Control-Flow Function Unit Ut. Low (1) Low (1) Low (1)
special_fu_utilization Special Function Unit Ut. Low (1) Low (1) Low (1)

tex_fu_utilization Texture Function Unit Ut. Low (2) Low (2) Low (2)
single_precision_fu_utilization Single-Precision Function Unit Ut. Low (1) Low (1) Low (1)
double_precision_fu_utilization Double-Precision Function Unit Ut. Idle (0) Idle (0) Idle (0)

Table 3.2: nvprof metrics for 256× 256 matrices, bitsize 512, and its optimal parameter set Wi
16 32. The metrics using WS 16 32 only differ in issue slot utilisation, which becomes 9.10%.

interleave the numbers before running the GPU multiplication algorithm, and to post-process the
result to deinterleave the product matrix elements. This incurs an O(n2) cost (as opposed to the
multiplication algorithm with cost between O(n2.81) and O(n3)), so theoretically, as the matrix
size increases, this CPU work should become less relevant, and favourability of the interleaved
algorithms should increase. Together with the memory efficiencies reported in Table 3.1, it is not
surprising that the one tested input condition for which an interleaved algorithm is optimal, is
the largest matrix size (n = 2048) with the smallest bitsize (b = 16) (see Table B.1). If the input
matrices have integers of at most 16 bits, a better approach would clearly be to use native data
types instead of turning to a big integer library; but we note that the memory efficiency does not
decline much yet at 64 bits, where using native data types does not suffice anymore. (Current
GPU’s do not have a native 256-bit integer type, and product matrix elements can get larger
than 128 bits with 64-bit inputs).

In Table B.7, we see the effect described above: interleaved algorithms are more favourable for
smaller bitsizes, but also for larger matrix sizes. We predict that for even larger matrix sizes than
tested here (and small bitsizes), interleaved algorithms will eventually overtake non-interleaved
versions.

3.6.2 GPU Performance Bottleneck

Results from nvvp indicate that the matrix multiplication kernel is limited by arithmetic and
memory latency. This is evidenced by the metrics collected using nvprof, shown in Table 3.2, and
the fact that nvvp reports that in “PC sampling” (i.e. frequently sampling the current instruction
execution state), 88.7% of the time, the current instruction is stalled on a memory dependency,
and in a further 5.6% of the time the current instruction is stalled on an execution dependency.
The low issue slot utilisation and function unit utilisation in Table 3.2 also point to stalls as a
performance inhibitor, reinforcing the results from nvvp. This means that memory latency is the
largest bottleneck of the GPU kernel, with arithmetic latency a much smaller but still present
problem.

Methods for reducing memory latency issues may be further improving memory access coalescing,
or making use of shared memory on the GPU, which is faster but smaller than global memory.
Arithmetic latency is most likely caused by an insufficient number of integer multipliers on the
GPU that was used; because most current GPU’s are aimed at consumer gaming or machine
learning, the most abundant functional units are floating-point arithmetic units. These could
potentially be used by further reducing the large integer limb size such that the limbs, and
potentially their products, fit in the mantissa part of a single-precision floating-point number.
However, reducing the limb size also carries a performance penalty, if only a constant factor.

43

Matrix sizes Bitsize CPU 1 thread CPU 2 threads CPU 4 threads CPU 8 threads
〈768, 790, 1023〉 1024 nW 16 512 (102.0) nW 16 512 (53.34) Wi 16 512 (28.91) Wi 16 128 (16.32)
〈445, 271, 1034〉 500 Wi 16 128 (8.427) nW 16 512 (4.611) Wi 32 512 (2.627) nW 32 512 (1.525)
〈221, 598, 1468〉 1000 nW 16 512 (37.53) Wi 16 128 (20.35) Wi 16 256 (12.17) nW 16 128 (7.905)
〈1466, 800, 841〉 1500 nW 16 512 (259.5) nW 16 512 (132.9) Wi 16 256 (69.41) Wi 16 128 (38.43)
〈679, 1128, 734〉 2000 Wi 16 128 (244.1) Wi 16 256 (125.3) Wi 16 256 (65.27) Wi 16 256 (34.7)

Matrix sizes Bitsize GPU
〈768, 790, 1023〉 1024 Wi 16 32 (34.77)
〈445, 271, 1034〉 500 Wi 16 2 (9.502)
〈221, 598, 1468〉 1000 St 8 4 (11.9)
〈1466, 800, 841〉 1500 St 8 4 (117.2)
〈679, 1128, 734〉 2000 Wi 8 8 (93.74)

Table 3.3: The matrix sizes and bitsizes used for irregular matrix testing, and optimal
parameter sets and timings (in seconds). CPU: algorithm, baseblocksize, jobblocksize,

(timing); GPU: algorithm, width & height of thread block, (timing).

3.7 Results for Irregular Matrices

As mentioned in Section 3.1.1, we should separately look at matrices that are not square with a
power of 2 side length. Such matrices will be called irregular. The hypothesis is that even with
the simplistic implementation of the squarify function described in Section 3.3.2, extrapolation of
optimal parameter sets and timings from measurement results with input conditions close to the
irregular multiplication in question will give a good indication of performance.

First, we note again that for non-square matrix multiplication, the matrix sizes can be described
fully with the triple of integers 〈k,m, n〉, denoting matrix multiplication of a k×m and an m×n
matrix to produce a k × n matrix.

To make the hypothesis plausible, five matrix size triples were selected, the first to combine some
favourable and unfavourable numbers, and the other four randomly. Five bitsizes were chosen,
and the resulting pairs were tested on the CPU for 1, 2, 4 and 8 threads and all parameter sets,
and on the GPU for all parameter sets. The inputs chosen with their optimal parameter sets and
corresponding timings are shown in Table 3.3.

In the CPU data, it is immediately clear that the Winograd algorithm has better results for larger
numbers of threads than the previous sections. This is because the squarify operation already
introduces sufficient parallelism into the computation, and no more is needed to use the threads
adequately.

When comparing the optimal times in Table 3.3 with Tables A.2 and B.2, it can be verified that
these are in the expected ranges: e.g. for 〈1466, 800, 841〉 with bitsize 1500, we expect the runtime
to be between those for b = 1024 and b = 2048, on the row of n = 1024. Indeed, this holds for all
CPU thread counts and for the GPU.

The baseblocksize parameter for the CPU conforms to the behaviour extrapolated from Table
A.1: for smaller bitsizes, larger values of baseblocksize are optimal, while its optimal value
decreases quickly for larger bitsizes. For bitsizes at least 1000, the optimal value is always 16,
like in Table A.1. The jobblocksize parameter is more volatile than maybe expected, but when
restricting the data to the records for which jobblocksize = 256, the maximum relative error is
less than 5%. This indicates that for matrix sizes in the range sampled here, choosing the value
256 does not hurt performance significantly.

For the GPU, the optimal runtimes are as expected from Table B.2 as mentioned, but the
algorithms and block sizes do not all correspond to those in the correct neighbourhoods of
Table B.1. However, as before, the optimal parameter sets here can be deceptive: for the last
four samples, the parameter sets expected from Table B.1 are Wi 16 32, Wi 32 16, Wi 32 16 and
Wi 32 2, respectively, and these all have relative error with the optimal choice less than 5%.

44

Therefore, we can conclude that the data for square matrices with size a power of 2 can provide a
good indication for the parameter sets for irregular matrix sizes.

3.8 Comparison of Results

Comparing Table A.2 and Table B.2, for small bitsizes GPU performance is comparable to
4-thread CPU performance, while this drops to below 2-thread CPU performance for larger
bitsizes (≥ 1024). This indicates that when the hardware offers enough parallelism, the CPU
implementation is more performant than the GPU implementation.

As noted in Section 3.6.2, the bottleneck of the GPU implementation is principally memory
latency. Since we do not use shared memory in the GPU code, all data is stored in global memory,
which is only cached in the GPU L2 cache, not the faster L1 cache [17, §9.2 Device Memory
Spaces]. By contrast, the CPU implementation freely uses all layers of CPU cache available, as a
result of the design of modern CPU’s. In addition, memory accesses are not optimally coalesced
in the GPU code, even in the interleaved versions; in the CPU version, the memory infrastructure
does not assume such coalescing, and may therefore cope better with many separate memory
accesses. The fact that modern CPU’s have intelligent memory prefetch units, while GPU’s
typically do not employ such techniques [16], also speaks in the favour of a CPU platform for this
approach to large-integer matrix multiplication.

3.9 Conclusion

We have optimised parameter sets for each combination of matrix size, bitsize and thread count
on the CPU, and each combination of matrix size and bitsize on the GPU. For the CPU, it has
become clear that for larger thread counts, using 8-fold parallelism using naive recursion scales
well, while using an asymptotically faster recursion algorithm can be better for small thread
counts. The total number of 7-fold recursion steps should increase when element multiplications
become more expensive (i.e. when the bitsize increases), and the number of recursion steps
distributed over threads should increase as the number of threads increases.

For the GPU, using Winograd’s algorithm has proved to be the best choice in most circumstances.
It remains unclear exactly which GPU thread block sizes are optimal, but good indications have
been given, with a thread block size of 8× 2 working well for a large part of the input data set.
It is expected, but not proven, that larger block sizes like 32× 2 and 32× 16 become optimal as
the input grows, both in matrix size and in bitsize. The GPU performance bottleneck has been
identified as memory latency, with arithmetic latency being second but much less important.

For irregular matrix sizes, the results generally coincide with those for square matrices with power
of 2 sizes, and the same recommendations perform well. The exact performance characteristics of
the implementations in this case have not been studied.

The aim of Section 3 was to describe and evaluate implementations for large-integer matrix
multiplication and determine the most suitable platform. In Section 3.8 we have seen that in this
case, a multicore CPU platform is the most suitable for large-integer matrix multiplication.

3.10 Future Research

As in all theses, many possibilities and research directions lay yet unexplored. For Section 3
specifically, the following optimisations, extensions and points of further study may still prove
fruitful but have not been applied here due to time constraints.

45

• Using the Chinese Remainder Theorem, or “multi-modular reduction”, to reduce the single
matrix multiplication over large integers to many matrix multiplications over native integers,
is sometimes more performant than the approach taken here. When using this method, fast
floating-point GPU matrix multiplications kernels (e.g. GPU8 in [14]) may be adapted to
use integers, since native integers are equally large as single-precision floating-point numbers
on a current GPU.

• The GPU implementation does not make use of shared memory, which is a small amount of
memory local to each GPU thread block that is generally faster than main GPU memory,
called “global memory”. However, it is not large enough to store a significant piece of the
matrices, so a selection will have to be made.

• The Strassen and Winograd algorithm implementations for the CPU could be parallelised
more by using more temporary matrices and thus more memory. The current implementation
was chosen to support running on a more resource-constrained system than the final tests
were run on. Even though it is expected that their 7-fold parallelism will not be as efficient
as the 8-fold parallelism of the naive/Winograd algorithm in many-core scenarios, this is
worth testing.

• In Section 3.8, conjectures have been made as to the reason for performance difference
between the GPU and CPU implementations; a more thorough study is needed to identify
the reasons that are most relevant in practice.

• It is still unclear how to select parameter sets when given very asymmetric input matrix
sizes. This would require a more extensive study of different kinds of matrix sizes, and an
in-depth study of the wrapper function to convert to square multiplications. Alternatively,
Strassen-like algorithms can be adapted for non-square inputs; the performance implications
of this can be studied.

• Loop blocking increases memory locality and might be applied in the GPU kernels to
optimise cache usage. This could be combined with the above shared memory optimisation,
if shared memory is large enough to contain one such block of a matrix. Loop blocking
might not yield much improvement on the CPU because baseblocksize is already small.
However, for small caches, an improvement may be observed.

• Using a job scheduling system like that used for the CPU implementation might enable the
usage of multiple GPU’s. It should be kept in mind that the use of many GPU’s can make
Strassen-like algorithms less attractive [30].

46

4 Reflection

We have looked at large-integer matrix multiplication both from the theoretical side, where we
have set out results from complexity theory to prove a bound on the exponent ω (see Definition
2.6.3) in the theoretical complexity of matrix multiplication, and from the practical side, where
we have discussed two implementations and evaluated their performance. Both times, we have
tried to make progress on the question of how to efficiently multiply matrices over large integers,
but the results are of a very different character.

In Section 2, the theoretical bound on the complexity of the problem does not yield an actual
algorithm for performing the computation with that asymptotic performance. In fact, Arnold
Schönhage writes the following in his article introducing the τ -theorem: [21, p. 448]

It is a remarkable fact that the preceding argument has led to an upper bound for
the complexity of matrix multiplication though no algorithm has been specified, not
even implicitly.

On the other hand, when creating practical implementations in Section 3, we have limited ourselves
to the more standard algorithm of Strassen, which provides a useful decrease in complexity but
does not increase the hidden constant factor by too much. In fact, we have seen that it is useful to
consider naive recursion in addition to Strassen recursion to provide a branching factor (namely,
8) that is in line with the number of CPU cores in modern processors.

This is in contrast with the developments in Section 2, where we have ignored all constant factors
for the sake of an improvement in complexity. An illustration of this is Theorem 2.6.4, where
we show that the potentially considerable amount of work in all other operations, an amount
that nevertheless scales only quadratically with n, is dominated by the number of multiplications
necessary. To prove this, we have made use of the fact that no algorithm for matrix multiplication
(n > 1) can perform its task in O(n2) multiplications (Theorem 2.6.2), allowing the quadratic
work to be ignored.

Even if the results of the two parts of this thesis are quite different, we believe to have illuminated
both perspectives on the question of large-integer matrix multiplication.

47

References

[1] A. Ambainis, Y. Filmus, and F. Le Gall. “Fast Matrix Multiplication: Limitations of
the Laser Method”. In: ArXiv e-prints (Nov. 2014). arXiv: 1411.5414 [cs.CC]. url:
https://arxiv.org/abs/1411.5414 (visited on 06/09/2018).

[2] G. Ballard et al. “Communication-Optimal Parallel Algorithm for Strassen’s Matrix Mul-
tiplication”. In: ArXiv e-prints (Feb. 2012). arXiv: 1202.3173 [cs.DS]. url: https:
//arxiv.org/abs/1202.3173 (visited on 06/10/2018).

[3] Markus Bläser. Fast Matrix Multiplication. Graduate Surveys 5. Theory of Comput-
ing Library, 2013, pp. 1–60. doi: 10 . 4086 / toc . gs . 2013 . 005. url: http : / / www .
theoryofcomputing.org/library.html.

[4] Henry Cohn and Christopher Umans. “Fast Matrix Multiplication Using Coherent Configu-
rations”. In: Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’13. New Orleans, Louisiana: Society for Industrial and Applied Mathe-
matics, 2013, pp. 1074–1086. isbn: 978-1-611972-51-1. url: http://dl.acm.org/citation.
cfm?id=2627817.2627894.

[5] D. Coppersmith and S. Winograd. “Matrix Multiplication via Arithmetic Progressions”.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing.
STOC ’87. New York, New York, USA: ACM, 1987, pp. 1–6. isbn: 0-89791-221-7. doi:
10.1145/28395.28396. url: http://doi.acm.org/10.1145/28395.28396.

[6] Niall Emmart. “A Study of High Performance Multiple Precision Arithmetic on Graphics
Processing Units”. Feb. 2018. url: https://scholarworks.umass.edu/cgi/viewcontent.
cgi?article=2252&context=dissertations_2 (visited on 07/09/2018).

[7] Yuval Filmus. Matrix Multiplication I (Lecture Notes). Feb. 2012. url: http://www.cs.
toronto.edu/~yuvalf/MatMult.pdf (visited on 06/09/2018).

[8] Torbjörn Granlund and contributors. GMP 6.1.2 Manual: 15.1 Multiplication. url: https:
//gmplib.org/manual/Multiplication-Algorithms.html (visited on 06/09/2018).

[9] Torbjörn Granlund and contributors. The GNU Multiple Precision Arithmetic Library. url:
https://gmplib.org/ (visited on 06/10/2018).

[10] The PARI Group. PARI/GP. url: https://pari.math.u- bordeaux.fr (visited on
06/10/2018).

[11] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory. url:
http://flintlib.org (visited on 06/10/2018).

[12] Koji Kitano and Noriyuki Fujimoto. “Multiple Precision Integer Multiplication on GPUs”.
In: 2014 International Conference on Parallel and Distributed Processing Techniques and
Applications. Las Vegas, Nevada, US: CSREA Press, 2014, pp. 236–242. isbn: 1-60132-284-4.

[13] François Le Gall. “Powers of Tensors and Fast Matrix Multiplication”. In: Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation. ISSAC ’14. Kobe,
Japan: ACM, 2014, pp. 296–303. isbn: 978-1-4503-2501-1. doi: 10.1145/2608628.2608664.
url: http://doi.acm.org/10.1145/2608628.2608664.

[14] J. Li, S. Ranka, and S. Sahni. “Strassen’s Matrix Multiplication on GPU’s”. In: 2011 IEEE
17th International Conference on Parallel and Distributed Systems. Dec. 2011, pp. 157–164.
doi: 10.1109/ICPADS.2011.130.

[15] Hao Jun Liu and Chu Tong. GMP implementation on CUDA - A Backward Compatible
Design With Performance Tuning. Tech. rep. url: http://individual.utoronto.ca/
haojunliu/courses/ECE1724_Report.pdf (visited on 07/09/2018).

[16] Nuno Neves, Pedro Tomás, and Nuno Roma. “Stream data prefetcher for the GPU memory
interface”. In: The Journal of Supercomputing 74.6 (June 2018), pp. 2314–2328. issn: 1573-
0484. doi: 10.1007/s11227-018-2260-6. url: https://doi.org/10.1007/s11227-018-
2260-6.

48

https://arxiv.org/abs/1411.5414
https://arxiv.org/abs/1411.5414
https://arxiv.org/abs/1202.3173
https://arxiv.org/abs/1202.3173
https://arxiv.org/abs/1202.3173
https://doi.org/10.4086/toc.gs.2013.005
http://www.theoryofcomputing.org/library.html
http://www.theoryofcomputing.org/library.html
http://dl.acm.org/citation.cfm?id=2627817.2627894
http://dl.acm.org/citation.cfm?id=2627817.2627894
https://doi.org/10.1145/28395.28396
http://doi.acm.org/10.1145/28395.28396
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=2252&context=dissertations_2
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=2252&context=dissertations_2
http://www.cs.toronto.edu/~yuvalf/MatMult.pdf
http://www.cs.toronto.edu/~yuvalf/MatMult.pdf
https://gmplib.org/manual/Multiplication-Algorithms.html
https://gmplib.org/manual/Multiplication-Algorithms.html
https://gmplib.org/
https://pari.math.u-bordeaux.fr
http://flintlib.org
https://doi.org/10.1145/2608628.2608664
http://doi.acm.org/10.1145/2608628.2608664
https://doi.org/10.1109/ICPADS.2011.130
http://individual.utoronto.ca/haojunliu/courses/ECE1724_Report.pdf
http://individual.utoronto.ca/haojunliu/courses/ECE1724_Report.pdf
https://doi.org/10.1007/s11227-018-2260-6
https://doi.org/10.1007/s11227-018-2260-6
https://doi.org/10.1007/s11227-018-2260-6

[17] NVIDIA. CUDA v9.2.88 Best Practices Guide. url: https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html (visited on 06/13/2018).

[18] NVIDIA. CUDA v9.2.88 Programming Guide. url: https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html (visited on 06/13/2018).

[19] Petr Petrouš. “CUDA implementation of the GMP library.” Feb. 2016. url: https://dspace.
cvut.cz/bitstream/handle/10467/65185/F8-DP-2016-Petrous-Petr-thesis.pdf
(visited on 07/08/2018).

[20] R. Probert. “On the Additive Complexity of Matrix Multiplication”. In: SIAM Journal on
Computing 5.2 (1976), pp. 187–203. doi: 10.1137/0205016. url: https://doi.org/10.
1137/0205016.

[21] A. Schönhage. “Partial and Total Matrix Multiplication”. In: SIAM Journal on Computing
10.3 (1981), pp. 434–455. doi: 10.1137/0210032. url: https://doi.org/10.1137/
0210032.

[22] A. Schönhage and V. Strassen. “Schnelle Multiplikation großer Zahlen”. In: Computing
7.3 (Sept. 1971), pp. 281–292. issn: 1436-5057. doi: 10.1007/BF02242355. url: https:
//doi.org/10.1007/BF02242355.

[23] Victor Shoup. NTL: A Library for doing Number Theory. url: http://www.shoup.net/ntl
(visited on 06/10/2018).

[24] Volker Strassen. “Gaussian elimination is not optimal”. In: Numerische Mathematik 13.4
(Aug. 1969), pp. 354–356. issn: 0945-3245. doi: 10.1007/BF02165411. url: https://doi.
org/10.1007/BF02165411.

[25] Volker Strassen. “Vermeidung von Divisionen”. ger. In: Journal für die reine und angewandte
Mathematik 264 (1973), pp. 184–202. url: http://eudml.org/doc/151394.

[26] Vasily Volkov. “Better Performance at Lower Occupancy”. In: vol. 10. Sept. 2010. url:
http://www.nvidia.com/content/gtc- 2010/pdfs/2238_gtc2010.pdf (visited on
06/20/2018).

[27] Virginia Vassilevska Williams. “Multiplying Matrices Faster Than Coppersmith-Winograd”.
In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing. STOC
’12. New York, New York, USA: ACM, 2012, pp. 887–898. isbn: 978-1-4503-1245-5. doi:
10.1145/2213977.2214056. url: http://doi.acm.org/10.1145/2213977.2214056.

[28] Virginia Vassilevska Williams. Multiplying Matrices in O(n2.373) time. url: http://theory.
stanford.edu/~virgi/matrixmult-f.pdf (visited on 06/09/2018).

[29] Shmuel Winograd. “On Multiplication of 2 × 2 Matrices”. In: Linear Algebra and its
Applications 4.4 (Oct. 1971), pp. 381–388. issn: 0024-3795. doi: 10.1016/0024-3795(71)
90009-7. url: https://doi.org/10.1016/0024-3795(71)90009-7.

[30] Peng Zhang and Yuxiang Gao. “Matrix Multiplication on High-Density Multi-GPU Archi-
tectures: Theoretical and Experimental Investigations”. In: High Performance Computing.
Ed. by Julian M. Kunkel and Thomas Ludwig. Cham: Springer International Publishing,
2015, pp. 17–30. isbn: 978-3-319-20119-1.

49

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://dspace.cvut.cz/bitstream/handle/10467/65185/F8-DP-2016-Petrous-Petr-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/65185/F8-DP-2016-Petrous-Petr-thesis.pdf
https://doi.org/10.1137/0205016
https://doi.org/10.1137/0205016
https://doi.org/10.1137/0205016
https://doi.org/10.1137/0210032
https://doi.org/10.1137/0210032
https://doi.org/10.1137/0210032
https://doi.org/10.1007/BF02242355
https://doi.org/10.1007/BF02242355
https://doi.org/10.1007/BF02242355
http://www.shoup.net/ntl
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/BF02165411
http://eudml.org/doc/151394
http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf
https://doi.org/10.1145/2213977.2214056
http://doi.acm.org/10.1145/2213977.2214056
http://theory.stanford.edu/~virgi/matrixmult-f.pdf
http://theory.stanford.edu/~virgi/matrixmult-f.pdf
https://doi.org/10.1016/0024-3795(71)90009-7
https://doi.org/10.1016/0024-3795(71)90009-7
https://doi.org/10.1016/0024-3795(71)90009-7

A Appendix: CPU Tables

This section contains tables that were considered too large to fit in the main text.

b = 16 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 nW 16 /2 nW 16 /2 nW 16 /2 St 16 /2 St 16 /2 St 16 /2
n = 64 Wi 16 /2 nW 16 /2 nW 16 /2 Wi 32 /2 nW 16 /2 nW 32 /2
n = 128 Wi 32 /4 Wi 32 /4 nW 16 /2 nW 32 /2 nW 32 /2 nW 32 /2
n = 512 Wi 32 /2 nW 32 /2 nW 32 /2 nW 32 /2 nW 32 /2 nW 64 /2
n = 1024 Wi 32 /8 St 32 /4 nW 32 /2 nW 32 /2 nW 32 /2 nW 32 /2
n = 2048 Wi 32 /4 nW 32 /2 nW 32 /2 nW 32 /2 nW 64 /4 nW 32 /2

b = 512 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 Wi 16 /2 Wi 16 /2 St 16 /2 nW 16 /2 nW 16 /2 nW 16 /2
n = 64 Wi 16 /2 nW 16 /2 nW 16 /4 nW 16 /2 nW 32 /2 nW 32 /2
n = 128 Wi 16 /2 nW 16 /2 nW 16 /2 nW 32 /2 nW 32 /2 nW 32 /2
n = 512 Wi 32 /2 nW 16 /2 nW 16 /2 nW 16 /2 nW 32 /4 nW 64 /8
n = 1024 Wi 16 /4 St 16 /4 nW 16 /2 nW 16 /2 nW 64 /4 nW 64 /8
n = 2048 Wi 16 /2 St 16 /4 nW 16 /2 nW 16 /2 nW 16 /4 nW 32 /4

b = 1024 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 nW 16 /2 St 16 /2 St 16 /2 nW 16 /2 nW 16 /2 nW 16 /2
n = 64 Wi 16 /2 St 16 /2 nW 16 /2 nW 16 /2 nW 16 /2 nW 16 /2
n = 128 Wi 16 /2 nW 16 /2 nW 16 /2 nW 32 /2 nW 32 /2 nW 16 /2
n = 512 Wi 16 /4 St 16 /8 nW 16 /2 nW 16 /2 nW 16 /4 nW 16 /4
n = 1024 Wi 16 /8 St 16 /8 nW 16 /2 nW 16 /2 nW 16 /4 nW 32 /8
n = 2048 Wi 16 /4 St 16 /4 nW 16 /2 nW 16 /2 nW 16 /4 nW 16 /8

b = 2048 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 Wi 16 /2 nW 16 /2 nW 16 /2 nW 16 /2 nW 16 /2 nW 16 /2
n = 64 Wi 16 /2 nW 16 /2 nW 16 /2 nW 32 /2 nW 16 /2 nW 16 /2
n = 128 Wi 16 /2 St 16 /4 nW 16 /2 nW 16 /2 nW 16 /2 nW 16 /2
n = 512 St 16 /8 St 16 /4 nW 16 /2 nW 16 /2 nW 16 /4 nW 16 /4
n = 1024 Wi 16 /8 St 16 /4 St 16 /8 nW 16 /2 nW 16 /4 nW 16 /4
n = 2048 Wi 16 /2 St 16 /4 St 16 /8 nW 16 /2 nW 16 /4 nW 16 /4

Table A.1: Optimal parameter settings for CPU. Each table concerns a specific bitsize, each
row concerns a matrix size, and each column concerns a thread count. The parameter values
are formatted as “algorithm baseblocksize jobblocksize”, where algorithm is Strassen,
Winograd or naive/Winograd. A jobblocksize of “/k” should be read as n

k
, where n is the

matrix size for that row.

50

b = 16 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.003056 0.00255 0.002002 0.002969 0.002888 0.003565
n = 64 0.011026 0.006833 0.005297 0.005837 0.005498 0.005367
n = 128 0.048697 0.035726 0.022926 0.012277 0.012482 0.013563
n = 512 1.99084 1.17213 0.632578 0.393434 0.400736 0.428842
n = 1024 12.7539 7.49704 4.15086 2.42802 2.46425 2.43809
n = 2048 82.3275 49.5242 26.3804 14.9801 14.7321 15.2245

b = 512 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.009629 0.004915 0.004305 0.001568 0.0021 0.002634
n = 64 0.035638 0.024637 0.013188 0.006706 0.006044 0.011652
n = 128 0.192117 0.122225 0.065441 0.032512 0.035059 0.034878
n = 512 8.64574 5.49531 2.87114 1.64548 1.31009 1.15675
n = 1024 59.9396 33.1425 17.6512 10.1048 8.08015 7.73611
n = 2048 405.977 230.506 125.554 72.3295 49.7583 66.8393

b = 1024 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.014214 0.011 0.008814 0.003908 0.002584 0.006109
n = 64 0.072059 0.047888 0.027993 0.013369 0.014793 0.015712
n = 128 0.455301 0.264321 0.135949 0.078247 0.081889 0.078164
n = 512 19.1484 11.6325 5.94216 3.42747 2.75695 2.61307
n = 1024 131.2 75.7815 40.5061 22.5626 16.4799 18.9358
n = 2048 930.033 493.231 282.409 155.974 105.194 142.379

b = 2048 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.03565 0.023163 0.01553 0.00509 0.005439 0.009402
n = 64 0.185363 0.113432 0.062952 0.033163 0.033515 0.031824
n = 128 1.26826 0.681322 0.37713 0.19516 0.21351 0.202236
n = 512 54.3766 29.2129 15.8977 8.84537 6.22498 5.83046
n = 1024 368.219 196.092 104.767 59.6969 41.7866 47.8295
n = 2048 2579.94 1333.49 736.926 415.238 270.013 305.14

Table A.2: Timings in seconds for each input condition and the parameter settings in
Table A.1.

b = 16 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.718 (6) 0.474 (6) 1.42 (6) 0.579 (6) 0.482 (6) 1.18 (6)
n = 64 0.821 (18) 0.877 (18) 0.879 (18) 0.788 (18) 2.66 (18) 0.508 (18)
n = 128 0.2 (36) 0.185 (36) 0.226 (36) 0.466 (36) 0.4 (36) 0.374 (36)
n = 512 0.0422 (12) 0.114 (52) 0.0825 (54) 0.137 (54) 0.399 (54) 0.148 (54)
n = 1024 0.156 (18) 0.0575 (6) 0.135 (12) 0.0702 (8) 0.102 (10) 0.151 (14)
n = 2048 0.122 (12) 0.0517 (10) 0.0708 (20) 0.0962 (12) 0.0373 (10) 0.0719 (8)

b = 512 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.372 (6) 1.13 (6) 0.99 (6) 0.623 (6) 0.464 (6) 0.948 (6)
n = 64 0.138 (18) 0.252 (18) 0.387 (18) 0.636 (18) 0.337 (18) 0.64 (18)
n = 128 0.135 (36) 0.203 (36) 0.26 (36) 0.25 (36) 0.242 (36) 0.603 (36)
n = 512 0.0905 (14) 0.141 (14) 0.0764 (12) 0.0747 (26) 0.0841 (28) 0.196 (20)
n = 1024 0.0094 (6) 0.0997 (8) 0.171 (14) 0.106 (14) 0.0654 (8) 0.0106 (2)
n = 2048 0.09 (10) 0.0422 (10) 0.0579 (16) 0.0718 (8) 0.021 (4) 0.0514 (14)

b = 1024 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.453 (6) 0.394 (6) 0.381 (6) 0.448 (6) 1.59 (6) 0.408 (6)
n = 64 0.114 (18) 0.243 (18) 0.352 (18) 0.301 (18) 0.279 (18) 0.389 (18)
n = 128 0.0665 (36) 0.0672 (36) 0.107 (36) 0.377 (36) 0.276 (36) 0.278 (36)
n = 512 0.169 (8) 0.121 (12) 0.136 (10) 0.1 (14) 0.0961 (6) 0.0616 (8)
n = 1024 0.139 (10) 0.0869 (12) 0.0632 (8) 0.0885 (18) 0.0756 (16) 0.171 (14)
n = 2048 0.0338 (8) 0.035 (8) 0.046 (8) 0.0347 (10) 0.00725 (2) 0.0478 (12)

b = 2048 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.179 (6) 0.174 (6) 0.126 (6) 0.491 (6) 0.445 (6) 0.524 (6)
n = 64 0.0888 (18) 0.0904 (18) 0.167 (18) 0.157 (18) 0.503 (18) 0.291 (18)
n = 128 0.0278 (36) 0.147 (36) 0.0705 (36) 0.33 (36) 0.358 (36) 0.474 (36)
n = 512 0.146 (16) 0.0891 (12) 0.0401 (6) 0.103 (20) 0.0952 (16) 0.0627 (6)
n = 1024 0.0803 (10) 0.0288 (4) 0.0657 (8) 0.0489 (4) 0.0709 (14) 0.101 (16)
n = 2048 0.0419 (10) 0.0345 (22) 0.0202 (10) 0.0213 (4) 0.0995 (16) 0.0405 (6)

Table A.3: For each input condition the format is “maxrelerr (count)”, where maxrelerr is
the the maximum relative error of all re-run testcases compared to the original timings for that
input condition, where the relative error between a re-run time t1 and an original time t0 is
|t1−t0|
t0

; and where count is the number of test cases that this maximum was taken over.

51

b = 16 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.8135 0.8353 0.3142 0.2529 0.4834 1.046
n = 64 0.0 0.88 0.5458 1.091 0.3037 1.742
n = 128 0.04134 0.115 0.718 1.597 2.234 1.511
n = 512 0.05323 0.3045 0.9805 2.133 2.133 1.955
n = 1024 0.1196 0.3617 0.984 2.563 2.53 2.552
n = 2048 0.1644 0.33 0.9624 2.69 2.539 2.634

b = 512 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.0 0.0 1.339 2.186 3.009 3.383
n = 64 0.0 0.09092 1.251 2.83 2.755 1.084
n = 128 0.0 0.2731 0.8672 2.603 2.431 2.416
n = 512 0.08925 0.2324 0.9178 2.17 3.227 3.537
n = 1024 0.07472 0.2614 0.9454 2.652 3.214 3.604
n = 2048 0.0 0.2862 0.951 2.344 4.323 2.664

b = 1024 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.09118 0.3155 1.091 1.424 3.363 1.438
n = 64 0.0 0.1955 1.059 2.266 2.266 2.362
n = 128 0.0 0.2387 0.9677 2.381 2.213 2.547
n = 512 0.1137 0.2187 0.9443 2.518 3.338 3.385
n = 1024 0.0988 0.2855 1.012 2.477 4.259 3.454
n = 2048 0.01319 0.3729 0.9683 2.535 4.256 2.846

b = 2048 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.0 0.3169 0.5563 3.886 3.297 1.609
n = 64 0.0 0.2036 0.8044 2.252 2.393 2.471
n = 128 0.0 0.3088 1.013 2.746 2.44 2.613
n = 512 0.04324 0.4445 1.215 2.767 4.308 4.746
n = 1024 0.01073 0.3822 1.072 2.799 4.155 3.549
n = 2048 0.0 0.3839 1.053 2.642 4.62 3.928

Table A.4: Relative error of always choosing Wi 16 /2 instead of the optimal parameter set.
Coloured are input conditions for which the optimal time is less than 2 seconds.

b = 16 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.0 0.0 0.0 0.1533 0.5301 0.2429
n = 64 0.3483 0.0 0.0 0.2542 0.0 0.4602
n = 128 0.1629 0.05856 0.0 0.1934 0.1452 0.2235
n = 512 0.1977 0.07044 0.07167 0.00607 0.005028 0.0001399
n = 1024 0.3022 0.04306 0.07522 0.06982 0.07782 0.0614
n = 2048 0.3889 0.05769 0.05693 0.06186 0.0872 0.04673

b = 512 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.651 0.1784 0.6318 0.0 0.0 0.0
n = 64 0.09369 0.0 0.2683 0.0 0.05692 0.09149
n = 128 0.1453 0.0 0.0 0.1046 0.1245 0.0972
n = 512 0.1502 0.0 0.0 0.0 0.2034 0.4284
n = 1024 0.1868 0.02087 0.0 0.0 0.2335 0.3092
n = 2048 0.1993 0.03896 0.0 0.0 0.434 0.08453

b = 1024 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.0 0.7163 0.05695 0.0 0.0 0.0
n = 64 0.1346 0.05189 0.0 0.0 0.0 0.0
n = 128 0.1503 0.0 0.0 0.000077 0.2761 0.0
n = 512 0.3371 0.07116 0.0 0.0 0.2444 0.2906
n = 1024 0.3215 0.07684 0.0 0.0 0.3567 0.1976
n = 2048 0.1794 0.1082 0.0 0.0 0.4873 0.1048

b = 2048 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 0.06188 0.0 0.0 0.0 0.0 0.0
n = 64 0.1916 0.0 0.0 0.1493 0.0 0.0
n = 128 0.1435 0.06429 0.0 0.0 0.0 0.0
n = 512 0.2311 0.05976 0.0 0.0 0.3894 0.4934
n = 1024 0.1595 0.06851 0.05529 0.0 0.4362 0.2435
n = 2048 0.1744 0.1099 0.05941 0.0 0.5572 0.3712

Table A.5: Relative error of always choosing nW 16 /2 instead of the optimal parameter set.
Coloured are input conditions for which the optimal time is less than 2 seconds.

52

b = 16 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 — — — — — —
n = 64 0.3173 1.014 1.135 0.6291 0.03147 2.754
n = 128 0.3962 0.3246 0.3086 0.9128 1.833 2.865
n = 512 0.353 0.2205 0.2459 0.2016 0.09476 0.8565
n = 1024 0.417 0.2149 0.2026 0.3717 0.1946 0.9179
n = 2048 0.4989 0.1855 0.207 0.2818 0.02922 0.3716

b = 512 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 — — — — — —
n = 64 0.2309 0.02334 0.0 0.06308 0.9247 0.7274
n = 128 0.3407 0.1532 0.1737 0.4478 0.4667 1.711
n = 512 0.3738 0.06536 0.07925 0.1008 0.0284 0.1816
n = 1024 0.3244 0.2157 0.2009 0.1055 0.00262 0.118
n = 2048 0.3834 0.2285 0.1509 0.08697 0.0 0.07472

b = 1024 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 — — — — — —
n = 64 0.3421 0.02401 0.2414 0.2382 0.5887 1.317
n = 128 0.3038 0.1404 0.187 0.2097 0.2695 1.386
n = 512 0.309 0.1404 0.1914 0.09351 0.0 0.0
n = 1024 0.3439 0.1942 0.1257 0.1082 0.0 0.06605
n = 2048 0.3498 0.2613 0.1497 0.1242 0.0 0.005528

b = 2048 C = 1 C = 2 C = 4 C = 8 C = 16 C = 32
n = 32 — — — — — —
n = 64 0.2892 0.1061 0.1276 0.1778 0.1048 1.945
n = 128 0.2814 0.2136 0.134 0.1674 0.1328 0.9066
n = 512 0.4889 0.2652 0.1526 0.1058 0.0 0.0
n = 1024 0.3245 0.2455 0.1978 0.1237 0.0 0.0
n = 2048 0.3264 0.2731 0.1998 0.1357 0.0 0.0

Table A.6: Relative error of always choosing nW 16 /4 instead of the optimal parameter set.
Coloured are input conditions for which the optimal time is less than 2 seconds. Note that with

the tested parameter ranges (i.e. baseblocksize ≥ 16), the value
jobblocksize = 32

4
= 8 < 16 is not allowed, so n = 32 is not included.

Relative errors Absolute errors [seconds]
b = 512
n = 128
n = 256
n = 512
n = 1024

cpu 8 cpu 4 cpu 1 flint ntl pari/gp
0.02 0.29 0.00 0.00 0.00 0.00
0.29 0.04 0.00 0.01 0.08 0.05
0.02 0.03 0.07 0.09 0.00 0.00
0.02 0.01 0.01 0.01 0.10 0.01

cpu 8 cpu 4 cpu 1 flint ntl pari/gp
0.00 0.02 0.00 0.00 0.00 0.00
0.07 0.01 0.00 0.00 0.18 0.08
0.04 0.08 0.66 0.30 0.12 0.08
0.20 0.34 0.86 0.17 22.82 0.70

b = 1024
n = 128
n = 256
n = 512
n = 1024

cpu 8 cpu 4 cpu 1 flint ntl pari/gp
0.27 0.02 0.00 0.01 0.00 0.01
0.07 0.04 0.08 0.12 0.02 0.03
0.01 0.09 0.01 0.01 0.00 0.01
0.00 0.01 0.00 0.02 0.09 0.00

cpu 8 cpu 4 cpu 1 flint ntl pari/gp
0.02 0.00 0.00 0.00 0.00 0.00
0.04 0.04 0.25 0.16 0.13 0.13
0.03 0.58 0.26 0.07 0.16 0.25
0.12 0.80 0.94 0.71 36.32 1.13

Table A.7: Maximum relative and absolute errors (compared to the mean) for the 6
measurement runs of which the means are plotted in Figure 3.2. “cpu n” is our implementation

using n threads. Coloured are the cases where the relative error is ≥ 0.1 = 10%.

53

B Appendix: GPU Tables

b = 16 b = 512 b = 1024 b = 2048
n = 32 Wi 64 2 St 8 2 Wi 8 2 Wi 8 2
n = 64 Wi 16 2 St 16 2 St 16 2 St 8 32
n = 128 St 32 8 St 8 4 St 8 8 St 32 2
n = 512 St 8 64 Wi 32 16 Wi 32 16 Wi 32 2
n = 1024 Wi 8 4 Wi 16 32 Wi 32 16 Wi 32 2
n = 2048 SS 128 2 Wi 16 32 Wi 32 16 Wi 32 2

Table B.1: Optimal parameter settings for GPU. Each row concerns a specific matrix size and
each column concerns a bitsize. The parameter values are formatted as “algorithm

gputhreadblock_width gputhreadblock_height”, where algorithm is Strassen, Winograd,
Strassen Strided or Winograd Strided. Strided means interleaved is true.

b = 16 b = 512 b = 1024 b = 2048
n = 32 0.004856 0.007245 0.013031 0.034703
n = 64 0.006273 0.011453 0.023663 0.056074
n = 128 0.013789 0.030598 0.090572 0.349075
n = 512 0.498623 2.81716 8.10032 28.302
n = 1024 3.90545 23.9769 67.2851 223.586
n = 2048 25.0781 176.909 501.448 1675.32

Table B.2: Timings in seconds for each input condition and the parameter settings in
Table B.1.

b = 16 b = 512 b = 1024 b = 2048
n = 32 8.38 (84) 0.0504 (84) 0.167 (84) 0.716 (84)
n = 64 0.133 (84) 3.22 (84) 0.648 (84) 0.408 (84)
n = 128 0.259 (84) 0.397 (84) 0.274 (84) 0.109 (84)
n = 512 0.0722 (168) 0.00557 (30) 0.00929 (28) 0.00492 (24)
n = 1024 0.0072 (26) 0.00174 (28) 0.0009 (30) 0.00136 (36)
n = 2048 0.00487 (14) 0.00124 (20) 0.00112 (18) 0.00129 (14)

Table B.3: For each input condition the format is “maxrelerr (count)”, where maxrelerr is
the the maximum relative error of all re-run testcases compared to the original timings for that
input condition, and where count is the number of test cases that this maximum was taken

over.

b = 16 b = 512 b = 1024 b = 2048
n = 32 0.0 0.004141 0.0 0.0
n = 64 0.0 0.001834 0.0008452 0.02698
n = 128 0.001378 0.02458 0.007684 0.002501
n = 512 0.001937 0.0 0.0 0.0
n = 1024 0.0 0.0 0.0 0.0
n = 2048 0.006049 0.0 0.0 0.0

Table B.4: Relative error of disregarding the Strassen and Strassen strided algorithms compared
to the optimal parameter sets in Table B.1. Coloured are input conditions for which the

optimal time is less than 2 seconds.

54

b = 16 b = 512 b = 1024 b = 2048
n = 32 100% 95% 67% 76% 67% 67% 62% 67%
n = 64 90% 76% 62% 57% 57% 57% 14% 10%
n = 128 86% 90% 24% 48% 24% 24% 67% 71%
n = 512 14% 19% 81% 67% 19% 38% 48% 48% 48% 48% 48% 48% 29% 29% 48% 48%
n = 1024 14% 19% 71% 71% 33% 33% 48% 48% 62% 52% 48% 48% 43% 43% 48% 48%
n = 2048 19% 19% 71% 71% 24% 24% 48% 48% 71% 67% 48% 48% 57% 52% 48% 48%

Table B.5: For each combination of matrix size, bitsize and algorithm choice, the percentage of
block sizes with timings within 3% of optimal timings for that combination. Each cell contains
values for the algorithms Strassen, Winograd, Strassen strided and Winograd strided in that
order; the strided variants are omitted where invalid. Each combination has 21 possible block
sizes, so the rounding does not introduce ambiguities. Coloured are input conditions for which

the optimal time is less than 2 seconds.

b = 16 b = 512 b = 1024 b = 2048
n = 32 0.006384 0.01767 0.01581 0.02642
n = 64 0.003667 0.004715 0.006254 0.06673
n = 128 0.005439 0.0403 0.06692 0.01113
n = 512 0.00722 0.01379 0.05651 0.07925
n = 1024 0.0 0.02437 0.0411 0.0811
n = 2048 0.1663 0.03866 0.02005 0.05078

Table B.6: Relative error of always choosing Winograd with block size 8× 4 instead of the
optimal parameter set. Coloured are input conditions for which the optimal time is less than 2

seconds.

b = 16 b = 512 b = 1024 b = 2048
n = 32 — — — —
n = 64 — — — —
n = 128 — — — —
n = 512 0.493 0.179 0.1456 0.1414
n = 1024 0.06859 0.03832 0.06611 0.1484
n = 2048 0.0 0.02654 0.02552 0.1169

Table B.7: Relative error of only considering interleaved algorithms instead of the optimal
parameter set. Note that our interleaved implementation does not accept matrices smaller than

256× 256.

55

	Introduction
	Complexity Theory
	Matrix Multiplication
	Computation
	Tensors
	Reduction of Abstraction
	Cost
	Rank

	Divisions & Rank
	Tensors & Rank
	Tensor Properties
	Rank Properties

	Matrix Multiplication Exponent
	Border Rank
	Schönhage's tau-Theorem
	A Simple Application

	Performance
	Introduction
	Input Data Set

	Large-Integer Arithmetic
	Multiplication Algorithms

	Implementations
	Recursive Algorithms
	CPU
	GPU
	GMP on the GPU

	Experimental Setup
	CPU Results
	Algorithm Choice
	A Model
	Comparison to Existing CPU Implementations

	GPU Results
	Analysis
	GPU Performance Bottleneck

	Results for Irregular Matrices
	Comparison of Results
	Conclusion
	Future Research

	Reflection
	References
	Appendix: CPU Tables
	Appendix: GPU Tables

