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1 Introduction

The mixed integer programming (MIP) stems from various real-world problems and has deeply
rooted in the research of mathematical optimization / operational research. In order to ef-
fectively tackle such problems in practice, many well-designed mathematical / heuristical al-
gorithms have been proposed in the literature. Depending on the form of the problem, it
can be further categorized into Mixed integer non-linear programming (MINLP) and mixed
integer linear programming. In order to solve such problems, many optimization techniques
are developed. For instance, two optimization algorithms, Bayesian Optimization (BO) and
Mixed-integer Evolution Strategy (MIES) have been developed independently in the field of
machine learning and evolutionary computation respectively. In the machine learning com-
munity, Bayesian optimization approaches such SMAC is devised to handle the Algorithm
Configuration (AC) task, while the evolutionary algorithm community has developed methods
such as the MIES (mixed-integer evolution strategy) for such applications. Although these
methods serve the same purpose, there is no systematic empirical comparison on them. This
thesis aims at bridging this gap and identifying pros/cons of the considered algorithms, through
empirical comparisons of the performance of the algorithms on some selected test functions.

2 Optimization Problems

The optimization problems are divided into continuous optimization problems and combina-
torial optimization problems. In continuous optimization problems, the search variable usually
takes values in a subset of R", where n is the dimensionality. The combinatorial optimization
problem deals with discrete search spaces.

2.1 Continuous Optimization Problems

Continuous optimization problems can often be described as: Let S be a subset of R", that
is, a domain of real-valued variables and f : S — R be a real-valued function. The global
minimum of the function f in the S domain is defined as follows: VX € S : f(X,in) < f(X).
The performance comparison of the algorithm is usually based on some typical problems
called benchmark. The commonly used benchmark problem problems are::(1) Sphere Model
(2) Schwefel's Problem (3) Rosenbrock’s Function. Given the constraints of many engineering
problems, the optimization of constrained functions has also been a major concern in the
optimization field. For the constrained problem, in addition to the existence of a local minimum,
the factors that affect the optimal performance mainly include: (1) The properties the function
landscape, the linear or convex function is easier to solve than the irregular function. (2) The
degree of density in the feasible region is usually measured by the ratio of the feasible region
to the entire search space.

2.2 Combinatorial Optimization Problem

The combinatorial optimization problem can usually be described as follows: Let 2 = s1, 5o, ..., S5,
be the solution space formed by all states, C(s;) is the value of the objective function corre-
sponding to the state s;. It is required to find the optimal solution s*, so that Vs; € Q,C(s*) =
minC(s;). Combinatorial optimization often involves issues such as sorting, classification, and
screening. It is a branch of operations research. Typical combinatorial optimization problems



include Traveling salesman problem (TSP), Scheduling problem (eg, Flow-shop, Job-shop),
Knapsack problem (0-1), Packing problem (Bin Packing Problem), Graph coloring problem,
Clustering problem, etc. Obviously, the above problems are not complicated to describe and
they are strong engineering representations, but the optimal solution is quite difficult to reach,
the main reason is the so-called " combination explosion” .

For example, clustering problems, there are n patters on m-dimendional space {X;|i =
1,2,...,n} which is required to cluster into k, so that the points within each cluster are
most closed, for instance: x2 = 2% || X") — R, || where R, is the amount of points in
p cluster. And the traveling salesman problem (TSP), given the distance between n cities
and a pair of cities, it is required to determine the shortest path that passes through each
city once and only once. The Job-shop problem is a more complex typical process schedul-
ing problem than TSP, and it is a simplified model of many practical problems. A Job-shop
can be described as n workpieces machined on m machines, O;; represents the operation
of the i-th workpiece on the j-th machine, the corresponding operation time 7;; is known.
Predetermining the processing sequence of each workpiece on each machine (called technical
constraints), requiring the determination of the processing sequence of all workpieces on each
machine that are compatible with the technical constraints, so as to optimize the processing
performance index, usually it means the minimum value of makespan. In the Job-shop prob-
lem, in addition to technical constraints, it is generally assumed that each machine can only
machine one workpiece at a time, and each workpiece can only be processed by one machine,
and the processing process is continuous. If the technical constraints of the parts are the same,
a Job-shop problem changes into a simple Flow-shop problem. Furthermore, if the processing
order of the workpieces on each machine is also the same, the problem is further transformed
into a replacement Flow-shop problem.

So, there are kn/k! possible division methods for clustering problems, (n!)m possible job-shop
arrangements, and n-city TSP problems based on permutation arrangement descriptions, even
for non-directional and cyclical plane problems, there are still (n — 1)!/2 different permuta-
tions. Obviously, the number of states increases exponentially with the scale of the problem.
Therefore, the key to solving these problems lies in designing efficient heuristic solvers that
approaches the optimum asymptotically.

2.3 Black-Box Optimization

For many real-world mixed-integer optimization problems, no analytical expression or assump-
tion (e.g., convexity) can be given on them. Consequently, the most of mathematical optimiza-
tion techniques are rendered inapplicable. In this situation, the so-called black-box optimization
technique is quite suitable.

The black-box optimization problem is a special category of optimization problems based
on three components: decision variables, constraints, and objective functions. Some practical
problems are commonly treated as black-boxes: numerical code involving partial differential
equations (PDE), integrals and crash tests and chemical reactions in experiments. The cost
of this evaluation process is often expensive and time-consuming. When optimizing the black
box problem, it is to construct a surrogate model over the problem to participate in the
optimization process in order to reduce the evaluation cost. Assume that the decision variables



is x = (x1,29,...,7,)T € R", the constraints is
S={zlgi(z) <0,i=1,2,....,m;hj(x) =0,i=1,2,...,1}
Then the black-box optimization problem can be presented as follows:
minimize  f(z)

st. ze€8

where f(x) is the objective function; S € R" is the feasible region.

2.4 Taxonomy on Optimization Techniques

The so-called optimization algorithm, in fact, is a search process or rule, it is based on a certain
idea and mechanism, through a certain path or rule to get the solution to meet the user's
requirements. Divided by the optimization mechanism and behavior, the current optimization
algorithms commonly used in the project can be divided into classical algorithms, structural
algorithms, improved algorithms, algorithms based on system dynamic evolution and hybrid
algorithms.

The classic algorithm includes linear programming, dynamic programming, integer program-
ming and branch-and-bound method and the traditional algorithms in operations research.
The computational complexity of the classic algorithm is generally very large, and it is only
suitable for solving small-scale problems. It is often not applicable in engineering issues.

The constructive algorithm uses the method of construction to quickly establish the solution
to the problem. Usually, the quality of the constructive algorithm is poor and difficult to meet
the engineering requirements. For example, the typical construction methods in the scheduling
problem include Johnson method, Palmer method, Gupta method, CDS method, Daunen-
bring’s rapid approach method, NEH method, etc.

The improved algorithm, or domain search algorithm. From any solution, optimization is per-
formed by the continuous search of its domain and replacement of the current solution. Ac-
cording to the search behavior, it can be divided into local search method and guided search
method.

e Local search method: Greedy search in the field of current solution with local optimization
strategy, such as only accepting the state superior to the current solution as the climbing
method of the next current solution etc. that accepts the best solution in the current
neighborhood as the next current solution

e Guided search method: Use rules to guide the exploration of good solutions in the entire
solution space, such as SA, GA, EP, ES, and TS.

The method in the basis of the dynamic evolution of the system is to change the optimizing
process into a dynamic evolutional procedure of system to accomplish the implementation of
optimization, such as neural network and chaotic search.

The hybrid algorithm is the algorithm which refers to the various algorithms generated by the
above algorithms from the mix of structure or operation. We took this classified approach
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here, however, the optimization algorithm can certainly be classified from other perspectives,
such as deterministic and uncertainty algorithms, local optimization algorithms, and global
optimization algorithms.

2.5 Neighborhood Function and Local Search

The so-called optimization algorithm, in fact, is a search process or rule, it is based on a certain
idea and mechanism, through a certain path or rule to get the solution to meet the user’s
requirements. Divided by the optimization mechanism and behavior, the current optimization
algorithms commonly used in the project can be divided into classical algorithms, structural
algorithms, improved algorithms, algorithms based on system dynamic evolution and hybrid
algorithms.

Neighborhood function is an important concept in optimization. Its function is to guide how
to generate a (group) new solution from a (group) solution. The design of neighborhood
functions often depends on the feature of the problem and the way the solution is expressed
(encoding). Due to the different ways of characterization of optimization states, there are ob-
vious differences between the specific methods of function optimization and the neighborhood
function in combinatorial optimization. The concept of the neighborhood function in function
optimization is more intuitive, and using the concept of distance to construct neighborhood
functions by adding perturbations is the most common way. For example, ' = x + n¢, where
2’ is a new solution, x is an old solution, 7 is a scale parameter, and £ is a random number or
white noise or chaotic series or gradient information that satisfies a certain probability distri-
bution. Obviously, the use of different probability distributions (such as Gaussian distribution,
Cauchy distribution, uniform distribution, etc.) or descent strategy will achieve different states
of state transfer.

The local search algorithm is based on greedy thoughts and uses the neighborhood function to
search. It can usually be described as starting from an initial solution, using the neighborhood
function to continuously search for a solution better than it is in the neighborhood of the
current solution, if such a solution can be found, it is referred to as a new current solution,
and then the above process is repeated, otherwise the search process is ended and the current
solution is used as the final solution. It can be seen that although the local search algorithm
has the characteristics of general and easy implementation, the search performance completely
depends on the neighborhood function and the initial solution. If the domain function is not
properly designed or the initial value is not suitable, the final performance of the algorithm
will be poor. At the same time, greed thinking will undoubtedly make the algorithm lose the
ability of global optimization, that is, the algorithm can not avoid falling into a local minimum
during the search process. Therefore, if people do not improve on the search strategy, then
to achieve global optimization, the local function used by the local search algorithm must be
"complete”, the neighborhood function will lead to a complete enumeration of the solution.
However, it cannot be achieved in most cases, and the exhaustive method is not allowed
for large-scale search time. In view of the above shortcomings of local search algorithms,
intelligent optimization algorithms, such as SMAC and MIES, use different search mechanisms
and strategies from different perspectives to improve the local search algorithm to achieve
better global optimization performance.



3 Mixed-integer Black-box Optimization Application

We can take a look at a representative real-world optimization task: optimization of multilayer
optical coating which is of remarkable importance in a number of application fields such as
optical and scientific instrumentation manufacturing, spectroscopy, medicine, and astronomy.
This multilayer system is formed by a set of layers to separate air and a substrate and the
permittivity and conductivity of the layers depend on one spatial coordinate perpendicular to
the layer-media boundaries. Generally, one plane electromagnetic wave enters the multilayer
system from the air, it will be partially selected or transmitted at the borders between layers of
different refractive indices. So, the intention of the multilayer optical coating is to find a certain
sequence of layers of certain materials and certain thickness that all undesirable frequencies
are abandoned while the wanted frequencies go through without any reflection. The involved
parameters mainly are: the number n of layers, their refractive indices 7 = (m1,...,n,) of n
layers and the thickness d = (dy,...,d,) of the n layers. People took black-box optimization
for MOCs design in result of its complexity, first, it contains real-valued thickness and integer-
valued refractive indices variables, second, the dimension of decision variables are quite high,
third, the equation which is used to compute objective values are complicated, forth, the
number of dimensions is variable in the most general formulation of this problem. The detailed
formulations are described in [1].

4 SMAC

In this section, we give a brief introduction to the SMAC (Sequential Model-based Algorithm
Configuration), it is an instantiation of the general Sequential Model-Based Optimization
(SMBO) [2] framework. The SMBO [3] uses a regression model, also called a response surface
model, that predicts the objective value at unknown points and can be used for optimization.
In addition, SMBO iteratively proposes candidate points for evaluation and update (re-train)
the regression model after incorporating the newly evaluated point into the data set. In this
thesis, the underlying data set is denoted as: H = (x1, f(21),..., (zn, f(z))). In order to
propose candidate point in each iteration, some utility functions are defined over the regression
model. Such functions typically balances the exploration and exploitation in the optimization.
Some commonly used functions are: probability of improvement, expected improvement (EIl)
and upper confidence bound. In SMAC, El is taken as the default option and a new candidate
point is generated through the following maximization task: El is used to recommend a new
x*.
r* = arg max, g El(z).

For this new recommendation z*,SMAC first evaluates it and then add (z*, f(2*)) to domain
H, then update the underlying regression model, and repeat the above procedure to acquire
new z*. The precised process are demonstrated as below: f denotes the objective function,© is
a list of configurations. SMBO has its roots in the statistics literature on experimental design
for the global (black-box) function optimization. The most notable algorithm in this category
is the so-called efficient global optimization [4] (EGO) algorithm by Jones et al. [12], however,
limited to optimizing continuous parameters for noise-free functions.

Commonly, Gaussian processes are used as the regression model, which requires the specifi-
cation of the kernel function k : © x © —— R* with specifying the similarity between two



Algorithm 1 SMBO(f,T,S)

1: H+ ©
2: fort < 1to T do
3: r* — arg max, g EI(x)

4 Evaluate f(z*)

5 H «+ U(z*, f(z*))

6: fit a new model El(z) to H
7. end for

candidate solutions. This approach was utilized in most recent sequential model-based work,
including classic SMBO when it deals with numerical parameters:

d
k 017 0 = €xXp Z 1,1 J,Z)Q)L (1)
=1

where Ay, ..., Ay are the so-called kernel parameters.
For the categorical parameters, which measures the weighted Hamming distance instead of
the weighted euclidean distance:

d

Feat(0:,0;) = exp[Y_ (=N~ [1 = 8(6:1,0;0])]; (2)

=1

where 0 is the Kronecker delta function (which equals one if two arguments are identical,
otherwise zero).

For a combination of continuous parameters P.,,; and categorical parameters P.,;, SMAC also
defines a combined kernel

Kpizea(03,0;) = expl > (=N (00— 0:0)") + > (=A - [1=6(6:1,0,0)])].

IEPcont lePcat

In view that Gaussian stochastic processes are with a similar pattern to kernel-based learning
methods and the validation of K,;..q function, it can be exchanged for Gaussian kernel without
altering any other element of GP construction.

Random forests [5] is an ensemble learning algorithm. The most significant premise of the ran-
dom forests is that building a small, weak decision tree with few features is a computationally
cheap process. so if we can build many small decision trees in parallel, then we can acquire a
singer, strong through averaging and majority vote. Random forests are found to be the most
accurate learning algorithm to date. Algorithm 2 is the detailed process of random forest.

The algorithm works as follows: for each tree in the forest, we select a bootstrap sample
from S where S denotes the ith bootstrap. We then learn a decision-tree using a modified
decision-tree learning algorithm. The algorithm is modified as follows: at each node of the
tree, instead of examining all possible features-splits, we randomly select some subset of the
features f C F, where F' is the set of features. The node then splits on the best feature in
f rather than F. In practice, f is much much smaller than F'. Deciding on which features
to split is oftentimes the most computationally expensive aspect of decision tree learning. By



Algorithm 2 Random Forest
Precondition: A training set S := (z1,y1),..., (Zn,yn), features F', and number of trees
in forest B.
1: function RANDOM FOREST(S, F)
2 H«go
3 forie1,...,Bdo
4: S@ « A bootstrap sample from S
5: h; + RANDOMIZEDTREELEAN (S® F)
6
7
8
9

end for
return H
. end function
10:
11: function RANDOMIZEDTREELEAN(S, F)
12: At each node:

13: f + very small subset of F
14: Split on best feature in f
15: return The learned tree

16: end function

narrowing the set of features, we drastically speed up the learning of the tree. The random
forest algorithm uses the bagging technique for building an ensemble of decision trees. Bagging
is known to reduce the variance of the algorithm.

Because SMAC originally aims at minimizing the runtime of computer programs and it has
been discovered in [3] that the logarithmic transformation has an advantage in substantial
improving model quality, thus SMAC took this method. In this study, we only consider some
commonly used mixed-integer objective function other that the actual running time of some
computer codes. Therefore, the logarithmic transformation is not applied in our experiments.

5 MIES

Evolution Strategies (ES) [6] are a branch of Evolutionary Algorithms (EA) [7], and have been
successfully applied to various real-world applications. Although ES has been successfully ap-
plied in many applications, it has encountered challenges, one of which is the heterogeneity
of the decision variables. There are real-world optimization problems, whose decision variables
are of different types. This kind of optimization problems is called mixed-integer optimization
problems [8]. It usually contains continuous variables, integer variables and discrete variables
simultaneously. Mixed -integer evolution strategies [9] (MIES) is proposed by Emmerich et.
al. to optimize the Hydrodealkylation (HDA) process simulators which is a mixed-integer op-
timization problem in the chemical plant design. MIES can deal with different variable types
simultaneously. In [10] [11] [12] MIES have been employed to successfully solve mixed-integer
optimization problems occurring in optical filter design, HDA process simulators for chemical
plant design and image analysis agent for intravascular ultrasound image analysis.



A mixed-integer global optimization problem can be defined as follows [13]:
fri, oo oy 21, ooy 20y dy ooy dyy,) — min

subject to:

ri € [P P C Ryi=1,...,n,

7 7

zi € [zM MM C Zyi=1,...,n,

7 tiad)
di eDi:di’l,...,dMDﬂ,i:1,...,nd

Here, r denotes the continuous variables, z are integer variables, and d are the nominal discrete
variables, where the subscript indexes each type of the variable. n,., n, and ny is the number of
continuous, integer, and nominal discrete variables, respectively. D; denotes a set of discrete
values. The fitness function is denoted by f. An individual in Evolution Strategies is denoted
as [10]:

Q= ("1, Ty 21y 2 ey Oy Oy s STy ey Sy Py - - - Pry)

The parameters 7q,...,7,,, 21,...,2n,, d1,...,dy, are called simply parameters, correspond
to the variables of mixed-integer optimization, while o1,...,0n,, S1,..., G, P1,-. -, Pn, are
called strategy parameters for Evolution Strategies. oy,...,0,_  are the step size for contin-
uous variables, ¢i,...,c, are step size for integer values and pi,...,p,, are the mutation
probabilities for discrete values.

There are two recombination operators in ES: discrete recombination, sometimes also referred
to as dominant recombination and the intermediate recombination. In this paper, we adopted
dominant recombination for object parameters and intermediate recombination [6] for the
strategy parameters. For each object parameter of offspring individual, dominant recombina-
tion chooses the object parameter from parents with an equal probability. By contrast, for
each strategy parameter of the offspring individual, intermediate recombination calculates the
mean of the strategy parameter from the parents.

Different variable types need different mutation operators. To make mutation operator suited
for mixed-integer optimization problems, Emmerich et. al. proposed a new mutation operator
in [10]. This mutation operator is combined with the standard mutations for continuous, in-
teger and nominal discrete, as described in [14] [15] [16]. Algorithm 3 presents the detail of
the mutation, where 7, denotes the global learning rate and 7; the local learning rate. The
recommended settings [10] are 7, = 1/4/2\/n, and 7, = 1/4/2n,. U(0, 1) denotes uniform
distribution and N(0,1) denotes the standardized normal distribution. In case of continuous
variables, the new individual is acquired by adding a normally distributed perturbation to old
values of vectors, the related standard deviations are resisted by the evolution process and are
thus multiplied in each step with a logarithmically distributed random number, this process
can be considered as self-adaptive. while in integer case, the normally distributed variables are
altered by difference between two geometrically distributed variables and the self-adaption is
utilized to control the width parameters with a global learning rate and a local learning rate.
The discrete mutation is carried out with a mutation probability p’, it can be regarded as a
strategy parameter for each discrete variable, each new value is chosen randomly (uniformly
distributed) from a finite domain D;. The discrete self-adaption of the mutation probability



Algorithm 3 Mutation operators in MIES

1: N, <= N(0,1){generate and store a normally distributed random number}

2: Mutation of continuous values

3: fort=1,...,n, do

4: o} < o;exp(t,N, + 71N (0,1)){a normally distributed random number}

5: rh = T:mmﬂ,m(ri + N(0,0)))

6: end for =

7: Mutation for integer values

8 fori=1,...,n, do

9: s; < maz(1, g exp(r,Ny + 7N (0, 1)))
10: uy = U(0,1);us = U(0, 1){generate a uniformly distributed random number}

Si/ Mz

11:  p=1- H-\/l/—-&-(?

12: G, = L%(ll__%)j Gy = Llfé(ll__f))j; {two geometrically distributed varibales was

generated }

13: 2 = Tl in mas (2 + G — G2)
14: end for

15: Mutation for discrete values

16: p' = 1/[1 + % * exp(—m * N(0,1))]
17: p' = T13ng),0.5(0)

18: for i € {1,...,n4} do

19:  if U(0,1) < p, then

20: choose a new element uniformly distributed out of D;\{d;}
21: end if
22: end for

is achieved by a logistic mutation of discrete parameters, generating new probabilities in the
feasible domain. We recommend employing a second transformation function that keeps the
value of p in the interval [1/(3n4),0.5]. The upper bound of 0.5 for the mutation probability
is motivated by the observation that the mutation loses its causality once the probability ex-
ceeds the value of about 0.5. The lower bound is used to prevent the mutation probability from
being too close to 0, in which case the MIES becomes insensitive to changes of that parameter.

To keep the parameters in their feasible interval, T}, is a transformation function for integer
parameters [10]. Given a step size of the mutation, we may consider this to be the length of
a particle to travel in the interval. Starting in the direction of the unbounded mutation, when
it meets the boundary, the direction is inverted until the entire length of unbounded mutation
has been covered. Transformation makes sure that the values are within the boundaries. The
details of the transformation are shown in [10].

6 Benchmarking

6.1 MILP and MINLP test functions

The aim of this section is to briefly describe the MILP and MINLP we applied and the reason
for choosing mixed integer programming as target problems. Thus, we basically state several
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fields that the mixed integer linear or non-linear optimization are noticed: production plan-
ning, sequencing problems, scheduling problems, allocation problems, distribution and logistics
problems, etc. However, above instances are not consummate with only mentioning the typi-
cal real-world problems in process industries, while in facts, many applications occur in other
business and industries as well.

In consideration of above possibility, in our mixed integer linear and nonlinear testing suits,
six classic mixed integer algorithms were chosen from literature as basis of the research. The
number of parameters ranges from two to eleven, involving binary categorical parameters and
real parameters.

MILP and MINLP formulations have been used quite successful in modeling a variety of opti-
mization problems that occur in process design and synthesis (see Kocsis and Grossmann, 1988,
and Floudas et al., 1989).This test case, taken from Kocis and Grossmann(1988), involves one
binary variable and one continuous variable, and it is a linear problem. The formulation is given
by:
f1 =2r; + dl — min (3)
s.t. € [O, 16],d1 S {O, 1}

This test case, taken from Kocis and Grossmann(1988), involves three binary variables and
two continuous variables. The formulation is given by:

fg =2r; 4+ 3ry + 1.5dy + 2dy — 05d3 — min

st ri+d; =1.257°+1.5dy =3, (4)
r1+ dl S 16, 1333T2 + d2 S 3, —d1 - dg +d3 S 0,

with 1,2 € [1, 10],d17273 € {O, 1}

This test case is from Floudas (1995). The formulation involves two continuous variables and
only one binary variable. ry is not the component of objective function but resisted in the
constraints.

f3=0.8+5(ry —0.5)? — 0.7d; — min

st. —exp(rp —0.2) —ry < 0,79+ 1.1d; < —1,r; — 1.2d; <0, (5)

with 7 €[0.2,1],r2 € [-2.22554, —1],d; € {0,1}

This test case was proposed by Yuan el. al. (1988) and involves three continuous variables and
four binary variables. From this case, the number of categorical variables is increasing and the
constraints become more and complicated. The formulation is

f4:6+(7“1—1)2—(7‘2—2)2—(7“3—3)2

—dy — 3dy — d3 — 0.693147180559945d, — min

s.t. T1+7“2+7"3+d1+d2+d3§5,7’%+7’%+T§:d3§5.5, (6)
1 +d1 S 1.2,7”2 +d2 S 1.8,7’3 +d3 S 2.5,7"1 +d4 S 12,

72+ dy < 1.64,72 + d3 < 4.25,72 + dy < 4.64,

with 1,23 € [O, 10], d1727374 S {0, 1}

This test case in from Porn et. al. 1999 and involves two continuous variables and three binary
variables, but entire categorical variables state in the constraints:

f5 = —57’1 + 3T2 — min
st 8rp —2r{Pr2 4+ 11ry = 2r2 — 2195 < 39,7, —1ry < 3, (7)
3T1 —|—2T2 S 2477“2 —d1 —2d2 —4d3 = 17d2+d3 S 17

with 1 € [1,10],75 € [1,6],d1 23 € {0,1}
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This test case was proposed by Yuan el al. (1988) and involves seven continuous variables
and four binary variables and a logarithmic transformation in the objective function. The
formulation is

fo=(a—1)2=(r5—=2)2—(rg — 1) —log(1 +r7) — (11 — 1)? — (ry — 2)?

—(rs — 3)* — min

st. ri+reo+ry+di+ds+ds < 5,r%+r%,r§+r§ < 5.5,

(1 +d1 S 1.2,7’2 —|—d2 S 1.8,7"3 —|-d3 S 2.5,7“1 —{—d4 S 12, (8)
72473 < 1.64,73 + 13 < 4.25 12 + 13 < 4.64,

T4—d1 :0,T5—d2:O,T6—d3:0,7’7—d420,

with T12,3 € [0, 10], T456,7 € [0, 1], d172’3,4 € {0, 1}

r and d describe the two types of variables: real and categorical. The experiment is conducted
on MIES and SMAC with the following setting: 200 generations were set in both SMAC
and MIES, in MIES setting, the X is 10 to guarantee the 200 evaluation generations, and in
SMAC, the iteration was marked 200, other algorithmic parameters are as default. 15 times of
implementations have been applied in six functions separately and the presented values are the
average of iterative best fitnesses and the average best fitness recorded since the beginning of
of 15 times experiments. Figure 1 shows the line charts of entire six objective functions with
the best fitness for each iterative generation. To enhance the comparison when the difference
is small, the fitness values are plotted in the log scale. Across all six functions, MIES performed
better but with much fluctuation. Figure 2 demonstrates the the best fitness found since the
beginning of each run. Generally, MIES outperforms SMAC except that a tie is observed on
the third test case.

6.2 Generalized Sphere Function

The generalized sphere model is an extension of a standard problem [10], this problem is
relatively simple, as it is additively separable and unimodal. We can use it to gain some
insights of how an algorithm behaves on rather simple problems and thus to estimate the best
case behavior of the algorithm.

Ny

fl(r,z,d):Zri2+nZzzi2+id? (9)
=1 i=1

=1

In the above equation, 7, z, d stand for real variables, integer variables and categorical variables.
1 is the index and n,., n, and ng4 are the number of three types of variables. The constraints fof
the real and integer variable is [-19, 19], for categorical is [-19,19] as well. The target is to reach
the minimum solution of f;. Figure 3 demonstrates the best solution for 200 iterations, the
objective function was benchmarked for 15 times, then we calculate the average values. Again,
the function values are plotted in the log scale. During the initialization, SMAC apparently
finds a better fitness value roughly before 50 generation. After that, MIES starts to outperform
SMAC, with an increasingly difference. Figure 4 is the line chart for the best solution of each
iteration, each experiment is set within 200 generations and run 15 times for every generation,
the shown values are the arithmetic means of 15 times. After 45 generation, the mies’ solution
is obviously better than smac's, though smac’s initialized parents are quite close to optimal,
this situation also delivered in the ordered generations with strong fluctuation. Since we found
the best fitnesses are discrepancy during the previous 15 times of 200 evolutions experiments,
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Figure 3: Average best fitnesses since the beginning recorded from MIES (real curves)
and SMAC (dotted curves) on 6 test functions. 15 runs are conducted.
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Figure 4: Average best fitness values per iteration, recorded from MIES (light gray curves)
and SMAC (black curves) on 6 test functions. 15 runs are conducted.

to validate our arguments against the dispersion of the data, a boxplot has been drawn for
15 times solution of 200 generations (Figure 5-8), after analyzing we found the population of
fitness values approaches the normal distribution and disperses well.

6.3 Weighted Sphere Function

The weighted sphere model represents a function with an elliptical geometry. Experiments on
this function can detect if a speed up can be achieved by the learning of individual strategy
parameters for each parameter. Furthermore it is an example for a function with a simple
quadratic and convex geometry.

Ty Nz nq

fo(r, z,d) = Z@Tf + Z@Z? + szf (10)

=1 =1 =1
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MIES (grey box) and SMAC (white box) for generalized sphere function
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from MIES (grey box) and SMAC (white box) for generalized sphere function

In the this objective function, the r, z and d shows the same types of variables like previous
generalized sphere function, but each one has added an weight integer number ¢, and i is
also the index for each sum function. The lower bound and upper bound for this objective
function is [—19, 19] as well. The feasible region for categorical variables is [-19,19]. The target
is to reach the minimum solution of f;. We implemented the above function for 15 times

Weighted Sphere
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Figure 9: Average best fitnesses since the beginning recorded from MIES (real curves)
and SMAC (dotted curves) on 6 test functions. 15 runs are conducted.

for each generation, according to the collected statistics, Figure 9 was drawn to illustrate

the best solutions for entire 200 generations. Generally, MIES searched the better quality
solution. Although the SMAC's initialized parents are better than MIES’ and actually SMAC
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performs better in the period of former 13 evaluations. However, during first 50 iterations,
MIES speeds up the searching process and exceeds SMAC at approximate 13th generation.
For clear presentation, all the solution value has been logged. If people observe the procedure

Weighted Sphere

10000

1000

100

10

A~ MO A~ DO A~ MO A~ DN A~ M DLW A~ M DN A~ MDD
AN MO TN OO~ OOMO O A NMNMMST W OOM~OO0D
o e B TR R B o B TR O e I B B N R B |

=—gverage smac ——average_mies

Figure 10: Average best fitness values per iteration, recorded from MIES (light gray
curves) and SMAC (black curves) on 6 test functions. 15 runs are conducted.

carefully, they will study the contrast of each generation optimal which is demonstrated in
Figure 10. In this graph, the iterative best fitness of MIES surpasses that of smack in almost
every evaluation.

6.4 Modified Step Function

The step function has been chosen to show that MIES and SMAC are capable to tackle large
plateaus in the fitness landscape. The plateau links in the search space, that lead to the
same fitness value. Such plateaus occurs in practice for example when searching for feasible
points, using penalty functions that are proportional to the number of violated constraints or
simulation errors.

Ny

fa(r,z,d) = | + Z(z div 10)2 + Z(di mod 2)? (11)

i=1

r, z, d are separately real variables, integer variables, and categorical variables, the purpose
is to minimize the objective function and get optimal. In the first sum function, the floor of
r was requested, then square it; in the second sum, div stands for division, z; will be divided
by 10 and the result is squared; the third sum is is remainder of the division by 2, and the
result is squared again. i means the index, n,, n, and ny describe the number of real values
and amount of integer values and amount categorical values. To assure the equivalent number
of generations, \ of mies has been set as 10, the evaluation quantity was set to 2000; the
iteration of SMAC has been set as 200. The constraint of variables is [—19,19]. In this test
function, the general performance of MIES is better than that of SMAC, after 50th generation,
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Figure 11: Average best fitnesses since the beginning recorded from MIES (light grey
curves) and SMAC (black curves) on 6 test functions. 15 runs are conducted.

SMAC gets "lost” on the plateau while MIES keeps searching as it is a global optimization
algorithm. See Figure 11 and Figure 12.
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Figure 12: values recorded from MIES (light gray curves) and SMAC (black curves) on 6
test functions. 15 runs are conducted.
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6.5 General Quadratic Function

The general quadratic function represents a strong iteration between all parameters. The
contour lines of this function have approximately the shape of ellipsoids.

f4<T,Z,d) :Z(er—i_zj—i_djy (12)

i=1 j=1

¢ and 7 are two index number, n is the amount of real values and integer values and categorical
values: r, z and d. Also, in this case, the number of three types of variables are supposed to be
equivalent. During the experiment, one phenomenon was noticed that SMAC will automatically
abandon the extreme large solution on purpose of finding the minimum, so to assure the
accuracy of the testing, the feasible region of the variables will be narrowed down and set
as [—10,10]. The total iteration is 200 and the times of implementation is 15. The number
mentioned in the following graphs are all arithmetic value. From Figure 13, MIES begins better
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Figure 13: Average best fitnesses since the beginning recorded from MIES (real curves)
and SMAC (dotted curves) on 6 test functions. 15 runs are conducted.

performance with the higher quality solution after the 7th generation. Over the entire 200
generations, MIES gives the better optimal solution than SMAC. Figure 14, it demonstrates
the activeness of both optimization algorithms and the average value of MIES is always lower
than SMAC.

7 Conclusion

SMAC shows an advantage when large plains are present in the fitness landscape, taking
weighted step function test case as an example, when facing the real-world application where
the violation-based penalty function is used, MIES is supposed to choose. Moreover, to tackle
plenty of MINLPs with numerical, categorical and integer parameters, MIES shows its strength
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Figure 14: Average best fitness values per iteration, recorded from MIES (light gray
curves) and SMAC (black curves) on 6 test functions. 15 runs are conducted.

Table 1: Average Running Times of Ten Different Benchmarking Functions for MIES and
SMAC

Test Case MIES Running Time/s | SMAC Running Time/s
One 8.62683 242.455
Two 8.49213 237.854
Three 8.00148 246.991
Four 8.40456 259.601
Five 7.95467 249.783
Six 9.13996 252.162
Generalized Sphere | 8.99489 271.839
Weighted Sphere 8.31788 263.209
Modified Step 8.51589 270.725
General Quadratic | 8.74782 264.195

in this field. Though in some cases,SMAC's solution is closed to MIES’, but in consideration
of the quality of the solution found, MIES would be a suitable algorithm. For most of decom-
posable and unimodal problems with iterations, MIES still optimizes them better. MIES did
even better by comparing generalized sphere model and weighted sphere model, the weight
i actually emphasizes the MIES’s better performance. When some the problem is mentioned
with approximate shape of ellipsoids, according to the benchmarking statistics, the best solu-
tion found by MIES is better.

Another results of this testing is the average running time of each algorithm for different
functions. As indicated in the table, there is a huge gap between SMAC and mies in the
running time, MIES’ running time is only 1/30 of the SMAC's. In a real-world application, the
running time should also be taken into account, which gives more preference to MIES.
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This thesis only discussed the unimodal condition. In this type of situation, MIES performed
better than SMAC, both in terms of time and the quality of the solution. However, we do not
deal with non-deterministic problems where whether MIES still keeps its advantages requires
further research. At the same time, there are many other methods dealing with mixed-integer
problems like IRACE, but we did not verify this performance in the thesis, from a theoretical
point of view, IRACE is possible to be more suitable to tackle non-deterministic problems. In
fact, during the experiments, we did tried IRACE algorithm, but since it is not accessible to
separate the evaluation process into 200 generations which costs such a long time, the IRACE
method did not continue, but this issue is still worth consistently being studied.
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