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Abstract

This paper focuses on the parts of the design of a navigation architecture for a life-size spherically shaped

robot with an internal drive platform called BB-8, along with the hardware and software implementation that

is needed to control this robot. It will, eventually, be used as a tour guide during open days in the building

of the The Hague University of Applied Science (THUAS) in Zoetermeer. The subject that will be researched

is: what navigation architecture, consisting of several sensors, will result in the best autonomous navigation

in a controlled environment for a spherical robot. Background information about the robot, localization,

mapping, simultaneous localization and mapping, and path planning is given, with the focus on the robot

and localization and the rest for future work. All the processing, logic and controlling the movement of

the robot is done with the aid of a framework named the Robot Operating System (ROS). This framework

enables its users to quickly create multi-threaded programs which are able to communicate with each other

via a high speed TCP/IP network. It is essential to have a good understanding of this framework, ROS,

to correctly understand the implementation of the described navigation architecture. Various levels in the

proposed navigation architecture have been defined of which a few have been implemented, focusing on

internal sensors, with the rest being proposed for future work. Per extra sensor an increase in autonomous

capabilities is expected. The implemented levels consist of the odometry from the wheel base as well as an

inertial measurement unit (IMU) to compensate the rotations of the robot due to its spherical shape as well as

errors in the movement. Each of the levels of the navigation architecture has been compared to one another

with the results from an experimentation in which the autonomous navigation was tested by means of dead

reckoning. Concluded was that the use of three omni wheels on an internal drive mechanism was found to be

usable together with a sphere consisting of two halves. Furthermore, the robot was found to have much better

autonomous navigation capabilities after the inclusion of the orientation sensor, the IMU, as was expected.

This is due to the instable nature of its spherical shape resulting in the shell turning easily whilst driving.



Contents

1 Introduction 1

1.1 The robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization of this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

2.1 Tour-guide robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Spherical robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Background 8

3.1 Driving and shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Head and head mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Localization 12

4.1 Markov Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Comparison and recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Mapping 23

5.1 Indoor structured environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Occupancy grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.2 Line maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.3 Topological maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.4 Landmark-based maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Natural environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Simultaneous Localization and Mapping 31

6.1 Taxonomy of SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Loop Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Motion Planning 34

7.1 Combinatorial planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.1.1 Visibility graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.2 Exact cell decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1.3 Approximate cell decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2 Sample based planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2.1 Probabilistic Road Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



7.2.2 Rapidly Exploring Random Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Robot Operating System 43

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Navigation Architecture 46

9.1 Wheel encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.1.1 Four omni-wheel setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.1.2 Alternative three omni-wheel setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.1.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.2 Inertial measurement unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.2.1 Madgwick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2.2 Sensor fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10 Evaluation of dead reckoning capabilities 59

10.1 Experimental test setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.2 Evaluation of experimental test setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.3.1 Straight lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.3.2 Turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

10.3.3 General remarks and four wheeled setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

11 Conclusions 71

12 Future navigation architecture 72

12.1 Bluetooth positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

12.1.1 Retreiving RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

12.1.2 Determine position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

12.2 Radar collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

12.3 RGB-D Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

12.4 Future evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

13 Discussion 79

A BB-8 technical details 80

A.1 Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Motors and servo’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Hardware and electrical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B Implementation into ROS 85

B.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.2 ROS computation graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 88



List of Tables

2.1 Tour guide robot overview per location, updated version of [1] . . . . . . . . . . . . . . . . . . . 6

4.1 KF vs EKF Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Comparison of localization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.1 Calibration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.2 Performance of different grades of intertial sensors. [2] . . . . . . . . . . . . . . . . . . . . . . . . 55

10.1 Evaluation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.2 Results straight line 1m odometry only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10.3 Results straight line 1m IMU + odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10.4 Results straight line 2m odometry only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.5 Results straight line 2m IMU + odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.6 Results straight line 3m odometry only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

10.7 Results straight line 3m IMU + odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

10.8 Results two straight lines 1m with 90 degree turn in between odometry only . . . . . . . . . . . 67

10.9 Results two straight lines 1m with 90 degree turn in between IMU + odometry . . . . . . . . . . 67

10.10Results two straight lines 2m with 90 degree turn in between odometry only . . . . . . . . . . . 68

10.11Results two straight lines 2m with 90 degree turn in between IMU + odometry . . . . . . . . . . 68

10.12Results two straight lines 3m with 90 degree turn in between odometry only . . . . . . . . . . . 69

10.13Results two straight lines 3m with 90 degree turn in between IMU + odometry . . . . . . . . . . 69

B.1 List of packages used in combination with ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

List of Algorithms

1 Markov Localization pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Particle Filter Localization pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Kalman filter pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Extended Kalman filter pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 posterior occupancy probability of cell mi, given observation zt in state xt [3] . . . . . . . . . . . 25

1



6 Visiblity graph path planning pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Exact cell decomposition path planning pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Approximate cell decomposition path planning pseudo code . . . . . . . . . . . . . . . . . . . . 40

9 Probabilistic Road Map path planning pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10 Rapidly Exploring Random Trees path planning pseudo code . . . . . . . . . . . . . . . . . . . . 42

11 Odometry algorithm pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

12 Four wheel odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13 Three wheel odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

14 Odometry calibration [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

15 Correction formula to calibrate and align IMU [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

16 RSSI Smoothing [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

17 Position smoothing [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

List of Figures

1.1 Inner mechanism of BB-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Characteristics of the developed spherical robots. D, G, and A indicate direct-driving, gravity,

and angular momentum methods, respectively. The mark v indicates the robot is capable of

performing the specific motion, and the mark v* indicates the motion is achievable in most

situations (i.e., with singularity). [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 BB-8 drive mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 BB-8 frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 BB-8 head and head mount overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Markov localization example [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Particle localization example [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Illustration of Kalman filters. [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Grid map visualization 5.1b of room 5.1a. [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Line map visualization 5.2b of laser scan data 5.2a. [11] . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Example of a generalized Voronoi graph. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Visualization of a landmark-based map. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Loop closure example. [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Visualization of obtaining configuration space from work space [13] . . . . . . . . . . . . . . . . 35

7.2 Configuration space definitions [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Visiblity graph algorithm visualization [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2



7.4 Exact cell decomposition algorithm visualization [13] . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.5 Approximate cell decomposition algorithm visualization [13] . . . . . . . . . . . . . . . . . . . . 39

7.6 Probabilistic Road Map algorithm visualization [15] . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.7 Rapidly Exploring Random Trees algorithm visualization [15] . . . . . . . . . . . . . . . . . . . . 42

8.1 ROS communication example [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.1 Driving mechanism of BB-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.2 Driving mechanism of BB-8 with three omni-wheels . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.3 Graphic diagram for three wheeled kinematic model, adjusted from [17] for the current setup . 51

10.1 Test setup examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.2 Visualization of Tables 10.2 and 10.3 for first test setup at length 1m . . . . . . . . . . . . . . . . 63

10.3 Visualization of Tables 10.4 and 10.5 for first test setup at length 2m . . . . . . . . . . . . . . . . 64

10.4 Visualization of Tables 10.6 and 10.7 for first test setup at length 3m . . . . . . . . . . . . . . . . 65

10.5 Visualization of Tables 10.8 and 10.9 for second test setup at two times length 1m with 90

degree turn in between . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10.6 Visualization of Tables 10.10 and 10.11 for second test setup at two times length 2m with 90

degree turn in between . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

10.7 Visualization of Tables 10.12 and 10.13 for second test setup at two times length 3m with 90

degree turn in between . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12.1 Modular Multi Layer Perceptron [18]. Left is the selector which selects which of the trained

networks is used. Right are the networks with the input layers and the Acces Points (AP 1-3),

the hidden layer and the Location ID which comes out of the output layer . . . . . . . . . . . . . 74

12.2 Radar based SLAM implementation [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

12.3 Occupancy grid visualization of obtained point cloud for lab [20] . . . . . . . . . . . . . . . . . . 77

12.4 RGB-D base SLAM implementation [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

12.5 Future test setup examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 BB-8 shell mock-up sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 Jetson TX1 Connections [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3 BB-8 electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.1 ROS computation graph for the first navigation architecture level . . . . . . . . . . . . . . . . . . 87

B.2 ROS computation graph for the first navigation architecture level . . . . . . . . . . . . . . . . . . 87



Chapter 1

Introduction

Everyone encounters them in any way, form or shape these days: robots. Scientists have been trying to make

more and more advanced robots for decades now, but truly autonomous robots do not yet exist. The ultimate

goal for the robot researched in this thesis is to be autonomous and able to give guided tours through an office

building. Having a robot move through an office building is a big challenge with all of the moving objects and

stationary objects which can be moved by people. This problem has been studied extensively by many, one

of which is The Office Marathon [23] where they were able to let a robot drive a complete marathon in a real

office building. Robots giving guided tours is also a subject that has been extensively studied, usually their

goal was to give guided tours through a museum. One of the first robots that has been created whilst studying

the field of autonomous robots is Rhino [24], which was created in 1997 to give guided tours through the

”Deutsches Museum Bonn”. Rhino was quickly succeeded a year later by Minerva [25]. Minerva was made

by mostly the same creators of Rhino but this time it was set up to give guided tours in the Smithsonians

National Museum of American History and was improved on many fronts. After these two groundbreakers,

many others have studied the subject of guided tours by robots. Most recently the studies into tour-guide

robots have become more in-depth, even using frameworks like the Robot Operating System (ROS) in the case

of [26]. They have also been studied whilst using less powerful hardware like the Raspberry Pi 2 in the case

of [27]. More recently with new, more advanced, algorithms and new hardware capable of parallel processing

at a lower energy consumption a start to the solution of problems faced in dynamic environments has been

found by [28]. They processed the data of an RGB-D camera to model the very dynamic, real life, world as a

static environment by identifying and removing dynamic objects. Even neural networks have been applied to

the problem of robotic navigation by [29] where researchers from DeepMind designed a neural network able

to localize the robot and find a path to its destination.
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1.1 The robot

The robot on which this paper focuses is a spherical robot resembling BB-8, a robot known from the movie

Star Wars, The Force Awakens. Its total size is about 65cm in diameter for the body and 35 cm in diameter for

the head. The movement comes from an internal drive mechanism which moves the outer shell. The concept

of moving the robot from the inside was first introduced in a robot with two points anchored to the outer

shell and one active wheel on the inside drive unit [30]. The head will not be used in conjunction with the

spherical body during the evaluation. Adding the head during driving is to be part of future work. After

more future work to expand the autonomous navigation capabilities, the robot should be able to give guided

tours in a building. The building in question is a building from The Hague University of Applied Science

(THUAS): The Dutch Innovation Factory (DIF) in Zoetermeer, The Netherlands. In the DIF potentially new

students of THUAS should be guided around to give them a look and feel of what studying at THUAS would

be like.

Figure 1.1: Inner mechanism of BB-8

1.2 Research goal

As a step towards the final goal of giving guided tours, the research goal will be focused on making a

navigation architecture for an autonomous spherical robot. This proposed navigation architecture should

be able to use dead reckoning to return the robot to its starting position. For any robot to be able to move

autonomously it will need a way to sense the environment. To achieve this, the navigation architecture will be

given to provide the robot with the necessary sensors to enable it to drive through a building without needing

any adjustment or input from humans. This will be built up in various levels of the to be implemented

navigation architecture, focusing on internal sensors only each level. These levels will be built up by first

using only the wheel encoders followed by introducing an inertial measurement unit (IMU) to achieve the

current research goal of enabling dead reckoning. All of the software needed will be written for the Robot

Operating System (ROS) framework, which has a lot of already available drivers and controllers for various

sensors; algorithms for path finding and much more. The navigation architecture will be tested and evaluated
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by using dead reckoning to start from a home position, let a human guide the robot to a random position and

then to let the robot find its home position again. This will then be evaluated by checking its speed, precision

and level of difficulty (e.g. by going in multiple directions before letting it return).

1.3 Organization of this paper

The related work will be described first in Chapter 2. In this chapter a lot of other tour guide robots will be

described followed by spherical robots. Furthermore information about many possible drive mechanisms of

spherical robots is given.

In Chapter 3 background information is given about the robot BB-8 itself. Details will be given about the

sphere and the drive mechanism used within the sphere. Lastly information about the robots head is given,

although the head is not used in the experimental setup, it is a part of the robot as a whole.

The first of the explained techniques used is localization, given in Chapter 4. In this chapter information

is given about what problems are faced during the localization of a robot. Four different localization tech-

niques are discussed, showing how they work and what their strengths and weaknesses are. Afterwards a

comparison between the methods is given and one is advised for usage in the navigation architecture.

Chapter 5 about mapping methods, Chapter 6 about Simultaneous localization and mapping (SLAM) and

Chapter 7 about motion planning give background information for the future work. For the navigation ar-

chitecture as implemented and evaluated all of these chapters are not needed. An overview of the mapping

problem is given first followed by multiple mapping methods, being divided into two- and three-dimensional

methods. SLAM poses a solution for the problem of the dependence of the localization and mapping methods

given in the previous chapters on one another to work correctly. A taxonomy of the SLAM problem is given

followed by information about loop closures, which enables the detection of previously visited locations. For

the motion planning chapter, first a general idea is given in order to define the problems faced. Two types of

methods are then discussed, each with their own algorithms, which are capable of solving this problem. At

the end of both the mapping and motion planning chapters a recommendation as to made for which method

is to be used with the future work.

The framework named Robot Operating System (ROS), explained in Chapter 8, is only relevant for the reader

when details of the implementation are to be read in the appendix. Firstly a quick overview of the framework

is given detailing it key characteristics after which information about the communication between various

subprograms of the robot is given.

Chapter 9 is about the various levels in the navigation architecture itself, which is the most important topic

towards which all of the background information is pointed. It starts of with defining the various levels of the

navigation architecture including the proposed levels for future work. The various levels are then explained

on a per section basis. Firstly the wheel encoders which give information about the odometry is given, for

both the four wheeled drive mechanism as well as the three wheeled drive mechanism. Lastly the second level
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of the navigation architecture as implemented is given. This second level introduces and inertial measurement

unit in order to add orientation information to the robots movements.

The evaluation and results are given in Chapter 10. Here the two implemented levels of the navigation

architecture are tested by first introducing the reader to the two used experimental test setups. This is followed

by the parameters with which each of the levels is evaluated. Next the results follow, being split up in a

subsection per test setup. Lastly in the results some general remarks are given.

The conclusions from the experiments are given in Chapter 11. This chapter sheds more light on the com-

parison between the three wheeled setup and the four wheeled setup for the internal drive platform. Lastly

the conclusions over the two tested levels of the navigation architecture are given, in order to show the found

improvements to the reader.

Chapter 12 will go into detail about the levels of the navigation architecture as proposed for future work.

Some work has already gone into the levels of the proposed future work, which is shown for each level. The

levels are elaborated on in order on a per level basis as with the chapter about the already implemented and

tested navigation architecture.

Lastly the discussion is given in Chapter 13. This chapter elaborates on the improvable parts of this paper,

showing the shortcomings and possible improvements.

The appendices follow lastly, starting with technical information about the robot itself in Appendix A, fol-

lowed by Appendix B, where information about the implementation of the navigation architecture levels into

ROS is given. Firstly details and the creation of the shell are given followed by the used motors and servo’s

that make up the drive platform and head mount. Last in Appendix A the used hardware and electrical

components are explained. In Appendix B the used and built packages are given first in a quick overview

followed by a more elaborate description. Lastly the graphs showing the actual combination of packages used

in each of the implemented levels of the navigation architecture is given.
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Chapter 2

Related Work

In the case of BB-8 two areas of related work can be identified. In the first case this robot is to be a tour-

guide robot, a much studied field. Secondly it is also a spherical robot, which can be built and operated in

various different ways. Both of these subjects will, in the given order, be elaborated on in this chapter in their

respective subsection.

2.1 Tour-guide robots

Over the years many tour-guide robots have been created and studied, beginning back in 1993 with very

primitive tours by Polly [31]. To give a good overview of the tour guide robots that have been created over

the years, check Table 2.1 where an overview is given of the most well-known tour-guide robots that exist

and their location. This table is an extension of the work done by [1]. It has been altered to make it more up

to date.

Most of the robots in the table have been described by [1]. A noteworthy, more recent, robot is Aggie [43].

This robot is a continued development of the robot by [1], which they gave more capabilities such as more

languages that it can understand and speak. Another noteworthy of these is Kbot-1 [42], it was created back

in 2004 by Neobotix but broke down two years later. Since then it stood in a garage until 2014 when it was

taken over by members of the University of Basque Country (UPV/EHU) and the RSAIT group to be fixed

and is one of the first to have the Robot Operating System (ROS) integrated. Besides these robots that actually

perform real world tours a few more interesting studies have been done. Other tour-guide robots to have

ROS integrated are [26], [27] and [58]. The study performed by [26] enabled a robot to learn a new tour whilst

following a human tour guide. And more recently work by [27] enabled tour-guide robots powered by less

powerful hardware like the Raspberry Pi 2. For the proposed navigation architecture [58] is one of the more

important papers since they try to localize the robot with the use of various sensors. These sensors are then

combined via a fusion algorithm to get a better understanding of the robots exact location.
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Location type Name Location Name
Museum Rhino [24] Deutsches Museum Bonn

Minerva [25] Smithsonians National Museum of American History
Sage [32] Carnegie Museum of Natural History
Chips [33] Carnegie Museum of Natural History
Care-O-Bot [34] Museum für Kommunikation
HERMES [35] Heinz Nixdorf Museums Forum
Jinny [36] National Science Museum of Korea
Robovie [37] Osaka Science Museum
Enon [38] Kyotaro Nishimura Museum
Urbano [39] Principe Felipe Museum
Indigo [40] Cultural institute
Cicerobot [41] Archaeological Museum of Agrigento
Kbot-1 (2004) [42] Eureka Museum of Science
Aggie [43] Art Gallery of Western Australia

Exhibition hall Robox [44] Swiss National Exposition Expo.02

Toyota [45] Toyota Kaikan Exhibition Hall
Lumen [46] Electrical Engineering Days 2015

University Polly [31] MIT AI Lab 1993

Virgil [47] Rice University
Bryn Mawr [48] Bryn Mawr College
NTU-I [49] National Taiwan University
Konrad, Suse [50] Konrad Zuse building
Nao [1] Industrial Informatics and Robotics Laboratory

Various GRACE [51] AAAI Robot Challenge
BIRON [52] Home-tour guide
Robotinho [53] The 12 Cellists of the Berlin Philharmonic
TOOMAS [54] Germany stores
SANCHO [55] Live TV shows
CATE [56] Engineering and Technology building
FROG [57] Royal Alczar

Table 2.1: Tour guide robot overview per location, updated version of [1]

2.2 Spherical robots

Spherical robots are quite unstable due to their single point of contact with the ground. There are also various

ways in which they can be driven, all differing hugely between each other. An overview of all of the drive

mechanisms can be seen in Figure 2.1. This figure has been supplemented in the column for the hamster car

with a v* in the omnidirectional locomation row, which was empty at first. This can be explained by looking

at the SPHERICLE robot by [59] and the proposed BB-8 robot which both have omnidirectional capabilities

despite having a hamster car mechanism. [8] created a spherical robot which was remotely controlled by

a human, in their experiments they moved the robot about 1m forward measuring its lateral displacement

and angular deviation. They achieved a displacement of 4.1cm and a deviation of 13 degrees, reaching a

maximum speed of 235mm/s.
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Figure 2.1: Characteristics of the developed spherical robots. D, G, and A indicate direct-driving, gravity,
and angular momentum methods, respectively. The mark v indicates the robot is capable of performing the
specific motion, and the mark v* indicates the motion is achievable in most situations (i.e., with singularity).
[8]

While spherical robots date back all the way to 1996 with the first by [60] there are of course more recent

papers researching the subject of spherical robots. One example of these is [61] which uses four separate

pendulums that rotate around on a separate axis, thereby moving its center of mass in a way that will make

the ball roll. One of the advantages of using a spherical shape is that it can be used either on land or on

water with little drag. This fact is shown by [62] which made a amphibious spherical robot. This robot has a

conduit built in to the sphere making it not perfectly round, but providing a housing for the propeller that

is used under water. Its steering under water is done by using a flywheel with substantial mass. On land

or on the bottom underwater it uses two pendulums however, having such a conduit means this robot is

not capable of driving omnidirectional. In terms of speed it was capable of reaching a maximum of around

0.5m/s. [63] created a more comparable robot, albeit smaller, which also uses an internal omniwheel platform.

In this paper they performed experiments by letting their robot move in a straight line and with a small turn.

Whilst moving forward 37 cm on the y axis, just over two times the diameter of the robot, they achieved

the following: xe −1.392± 28.9mm and ye 369.2± 37.7mm. Combined with a turn the accuracy went up from

around 10% deviation to over 20% when moving 15cm in the x direction and 50cm in the y direction.
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Chapter 3

Background

To give a more complete picture of how the robot works, this chapter will provide more in depth information.

First of all the actual driving mechanism, which is vital to the defined navigation architecture, is explained

in both its possible configurations. Then the head and head mount are explained to give an understanding of

how the extra levels of the navigation architecture that have been defined for future work can be incorporated.

All of this information is aimed to lead to a better understanding of the used and created software and all of

the definitions. To see all of the details of the hardware and the specific parts that are used, see Appendix A.

3.1 Driving and shell

The body of BB-8 is a large hollow sphere. Within this sphere there is an internal drive mechanism which

moves the outer shell around it. The outer shell itself is comprised of two hemispheres with a total inner

diameter of 600mm. Both halves are joined together with the aid of hook-and-loop fasteners to allow quick

and easy opening and closing of the sphere. To prevent further wheel slippage the inside was coated with a

rubber spray that increases the friction on the wheel, thereby reducing the slippage as much as possible. A

complete breakdown of all the components and how the shell is built up can be read in Appendix A.1.

(a) Overall impression (b) Dimensions

Figure 3.1: BB-8 drive mechanism
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The mechanism that moves the outer shell is a platform on which three or four omni wheels are mounted.

This type of mechanism is called a hamster ball mechanism [8]. Whilst driving around, the mechanism moves

the robots centre of mass and thereby making the robot itself move, which is also called the barycentre offset

principle [64]. Each omni wheel is 100mm in diameter and consists of two parts with the smaller wheels on

the outside, each positioned in such a way that there is always an outside wheel on the ground. The omni

wheels are fitted straight onto the axis of each of the motors. The entire unit is then fitted into the frame

under a 51 degree angle, see Figure 3.1. This is done to ensure that the wheels are always perpendicular to

the sphere’s inner surface. More in depth detail of the motors and their characteristics is given in Appendix

A.2.

In Figure 3.1b we see the dimensions of the robot, which will be useful later on when the wheel odometry

is calculated. In Figure 3.1a an overall impression is given of how it would look inside of the ball. The green

part in the middle of the overall impression are the batteries with on top of them some more hardware, all

together modeled as a single green box. Below in Figure 3.2 more dimensions for the frame are given and the

setup with three or four omni wheels is shown. The three wheeled setup as seen in Figure 3.2b is not optimal,

i.e. the wheels are not separated according to the perfect distribution of 120
◦ in between. The advantage of

this setup however is that it can be quickly converted to a four wheeled setup as seen in Figure 3.2a, since it

was not feasible to build a completely new frame. The frame is the basis on which everything rests, holding

the motors in their respective motor mounts and the batteries in the centre. Everything else is fitted to the

plateau which lies on top of what is visible here, thus on top of the frame. An electrical diagram is given later

in Appendix A.3 to show how everything is connected and powered.

(a) 4 wheel setup (b) 3 wheel setup
Figure 3.2: BB-8 frame
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3.2 Head and head mount

To have a head mounted on top of the body a head mount was developed which would reside inside of the

body and then reach up to the upside of the shell where an array of magnets was mounted. This solution was

needed to allow the outer shell to move freely whilst the head would stay attached. The magnets used in the

head mount would then draw on another array of magnets inside the head to make sure they would stay at

the same position. Since this would require quite some force very powerful neodymium magnets where used

with a pulling force of 10kg at a size of just slightly over 2.5cm. This arm that would rise up would have a

joint right in the center of the sphere to make sure the array of magnets would, no matter in what position it

was, be just under the shell but not touching it. The movement and rotation of this arm come from within the

sphere driven by servo motors which are controlled by an arduino. Two servos move the arm, with those two

being more powerful to make sure gravity would not pull it down when the head is positioned at an angle. A

less powerful servo is then used to control the heads rotation. In the future work when RGB-D camera’s are

used they are to be fitted in the head, since it is the only place sensors can be mounted that need a straight

line of sight.

(a) Headmount overview

(b) Head overview

Figure 3.3: BB-8 head and head mount overview

In Figure 3.3 the entire assembly can be seen. In this figure the head mount is in the center with the two

powerful servo’s next to it in green. The smaller servo is located inside of the arm near the head also in green,

this was the one that only controls the rotation, giving the head about 180
◦ of range. At the end of this arm

the array of magnets is mounted which is then also located in the head just below the cross that is visible in

Figure 3.3a and below the grey ring surrounding the green wheels in Figure 3.3b, both arrays attracting each

other. The head thus rests on the four wheels as seen in Figure 3.3b which are smaller omniwheels, 48mm
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in diameter, again tilted slightly to be perpendicular to the outside of the shell. These wheels are held in

place by a smaller octagonal frame on which a platform is mounted just as with the frame in the body. This

head mount has been developed to enable the usage of other sensors in future work, but is not used in the

evaluation of the navigation architecture defined and implemented so far.
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Chapter 4

Localization

In order for a robots to eventually be autonomous they need to localize themselves in a map by using the

available sensor measurements. This of course is at the basis of the dead reckoning capabilities researched

here with the proposed navigation architecture, since the robot has to be able to know the amount of distance

that is covered. For this reason this is one of the most important chapters to understand correctly. The

proposed navigation architecture and its dead reckoning capabilities only requires these techniques to be

used for local localization, i.e. only looking at the robot itself. In future work all of these techniques can also

be used for global localization, i.e. they look at a known map by comparing the sensor measurements to this

map.

With every movement that is made, the estimation of the robots position changes and eventually drifts over

time. The drift is caused by the fact that during movement the stochastic models used, lose data by the

uncertainty in this movement. This can be compensated by actively computing the robots location with the

use of sensor data, thereby adding data to the stochastic model and thus getting a higher probability of the

robots exact location [65]. Even though a higher probability of the location can be obtained in this way, some

uncertainty always remains. This is caused by a combination of the following four aspects:

• Sensor measurements are noisy

• Problematic sensor measurements might arise due to abnormalities in the real world

• Estimation is always done indirectly

• Sensor measurements might not be available all of the time.

To make the localization of the robot easier, the precision of sensor readings should be increased. Firstly the

precision of the movements should be increased in order to know as precise as possible how much distance

has been covered. This is done by first calibrating and then calculating the robots odometry, meaning to use

data from various motion sensors to estimate the absolute change in position A to position B in a given time

frame. By combining more sensors the expectation would be that this would to lead to a better understanding

of the exact odometry. This means that once a more precise odometry can be calculated, the probability that

the absolute movement in the real world is the same as the calculated movement from the odometry will be
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higher, thus leading to a lower information loss.

The most used algorithms that tackle the localization problem are implementations of Bayesian or Gaussian

models [66]. Based on these uncertainty characteristics of this problem, various probabilistic methods have

been designed, the most commonly used being [9]:

• Markov Localization (Bayesian). Uses probability distribution over the state space of all possible hy-

potheses to localize robot.

• Particle Filters (Bayesian). Uses a distribution of samples over the state space of all possible hypotheses

to localize robot.

• Kalman Filter (Gaussian). A recursive filter that estimates the state of a linear robot from a series of

noisy measurements.

• Extended Kalman Filter (Gaussian). A recursive filter that estimates the state of a nonlinear robot from

a series of noisy measurements

At the end of this chapter these various localization techniques will be compared to one another. After that a

recommendation for the specific technique useful for the proposed navigation architecture is given.

4.1 Markov Localization

Markov localization is a straightforward application of Bayes rule to solve the localization problem. It esti-

mates the robots location based on the sensor data by comparing these to the known map. It does this by

calculating the probability that the world observed from a position x at time t corresponds to the obtained

sensor data. By doing so, this method is able to give an accurate estimation of the robots position in dy-

namic environments. The main idea here is to make sure the robot can attain a high probability density in

one position compared to all of the possibly positions of the robot. Thus Markov localization is maintains a

probabilistic distribution over the entire map for the robots current position.

Before getting to an example, a more formal mathematical definition of Markov localization is given. For

simplicity an one dimensional world is used in the equations and the example, thereby only having to apply

one axis in which the robots state (xt) can reside. A robot can never know its exact position due to noisy sensor

measurements. It does, however, have a belief of where it currently is, which will be graphically depicted in

the example by the belief distribution (Bel(xt)).

The following two equations are the equations for belief prediction and distribution [9].

Bel(xt) =
∫

p(xt|ut, xt−1, m)Bel(xt−1)dx (4.1)

Bel(xt) = ηp(zt|xt, m)Bel(xt) (4.2)

In these equations xt is the robots state, zt the sensor measurements to compare to the map m. ut is the

believed odometry. The first of these equations represents the prediction and the second represents the cor-

rection step. Both of these steps can be found in the pseudocode representation of the Markov localization
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Algorithm 1.

Algorithm 1 Markov Localization pseudo code

1: for i = 0 to n do
2: P(xi) = 1/n
3: end for
4: while true do
5: ut = getOdometryMeasurements
6: zt = getSensorMeasurements
7: for i = 0 to n do
8: P(x′i) = motion update(P(xi), ut)
9: end for

10: for i = 0 to n do
11: P(xi) = sensor update(P(x′i), zt)
12: end for
13: end while

In Figure 4.1 an example is given of how this localization technique would work. In this example the belief is

modeled as a continued Bayesian model. In a real world application this would be portrayed with the aid of

a grid consisting of several cells which have a value equal the average of the Bayesian model for that part of

the world. In the example shown here this would simply be a one dimensional grid, which could be extended

to two dimensions for a robot driving around on a single floor or three dimensions when applied for a drone

for example.

In the first Figure 4.1a the robot is in its initial position. This is a clear example of the kidnapped robot

problem. The robot knows the map (as seen behind it in the form of a wall with three doors), but it does not

know its current state. This is shown as the belief distribution being uniformly distributed across all possible

states (black bar at on the x axis). Thus the robot assumes it can be at any of the possible states by giving

them all the same probability.

In Figure 4.1b the robot is in front of a door. This should, when sensed by the robot, give some more in-

formation about where the robots position might be, due to the fact that there are only three doors in the

entire map. With the use of Markov localization, the robot is now able to update its belief distribution by

increasing the probability of the states that are in close proximity to a door. This can be seen as the p(z|x) vs

x graph in red in Figure 4.1b. After updating the belief distribution at the bottom of Figure 4.1b in the black

graph there are now three assumptions of the position. One thing to notice however is that although a sensor

reading of a door might make one assume that all other possible states, not in proximity to a door, should

have a probability of zero, this is not the case. Since all sensor measurements will be noisy to a certain degree

the change that it falsely reads a door is still present. To compensate for this the probabilities of the other

positions remain small, but are not equal to zero.

In the next case the robot moves forward a few meters, which is provided as input to the localization algo-

rithm. In the case of Markov localization the robot then incorporates this information into the belief distri-

bution by moving it forward accordingly as seen in Figure 4.1c. Since even the odometry information can be

noisy, and a robot always over- or undershoots it desired location, the belief distribution will be more evenly
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distributed by smoothing out the most certain points.

(a) Situation 1

(b) Situation 2

(c) Situation 3

(d) Situation 4

(e) Situation 5

Figure 4.1: Markov localization example [9].

After having moved again the next state is next to a door as seen in Figure 4.1d. If the environment is sensed

and close proximity to a door is found which leads to the same graph for probability p(z|x) vs x in red in

Figure 4.1d as seen in Figure 4.1b. By updating the belief distribution with the new information a single point

arises which has the highest probability, with the rest only having small peaks. This is for humans easy to
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see since sensing a door, moving a few meters to the right and sensing a door once again can only be if two

doors are in close proximity to each other and the robot moved between them. By using Markov localization

the robot is able to come to the same conclusion as seen in the belief distribution in the black graph at the

bottom of Figure 4.1d.

Now a high confidence over the robots position is found in Figure 4.1d, it moves further than the first time,

which leads to some information loss. Because of that, the probability distribution as seen in Figure 4.1e starts

to smooth the peaks. If moved indefinitely without sensing new information this distribution would return

to a uniform distribution.

4.2 Particle filter

The particle filter (PF) [67], also known as Monte Carlo localization, works in an entirely different way then

the Markov localization, whilst still solving the same problem. The basic idea here is that it find the most

likely location based on a set of sample states, also known as particles. More particles closely together in

a single location means that the probability of the robot being in that location is higher. Furthermore each

particle can have a weight added to it to distinguish more likely locations. This weight is simply the chance

that a measurement zt at a location xt is correct: p(zt|xt). This leads to the notation of a particle; it has a

location xt and a weight wt at time t: 〈xt, wt〉

There are a few formulas and assumptions on the basis of which this localization method works.
n

∑
i=1

w(i)
t = 1

Bel(x) =
{〈

x(i)t , w(i)
t

〉
|i ∈ [1...n]

}
(4.3)

Normally a large amount of particles is used to get a better answer. The fact that the amount of particles can

differ also helps the PF to be able to better adapt to different situations compared to Markov Localization. In

a robot which has less computing power less particles could be used to be able to more quickly, although less

precisely, calculate the position.

In order to get a grasp of the theory behind this filter an example is given in which each situation shown

corresponds to a situation in the example for Markov Localization. The difference with Markov localization

is clearly shown as numerous tiny lines, representing the particles, are visible in the graph in Figure 4.2a

compared to a probabilistic distribution. As is the case with Markov localization where the belief distribution

was uniform, so do the particles now have a uniform weight (which is denoted by the height of the lines).

Once the robot senses its environment in Figure 4.2b, it calculates the chances of a measurement zt at location

xt: p(zt|xt) (shown in the top graph in red), this step is also called the re-sampling step. Each particle is

assigned a new weight corresponding to the probabilities as seen in the bottom graph in Figure 4.2b. However

in this state the robot still has no extra clue over where its position is. To recall, the robot estimates its position

based on the amount of particles that are in a certain location, not on their weight.
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In Figure 4.2c the particles have been redrawn at new locations, which is called the prediction step. In this

step new particles are again distributed over the entire graph, however the particles have a higher change to

get in a location where previously a particle with a high weight existed.

If the robot moves as seen in Figure 4.2d, the localization algorithm loses some information due to the

uncertain movement. Just as seen in Figure 4.1c where the belief distributions smoothed out a little the

particle filter shows the same behavior by spreading out the particles a bit more.

In Figure 4.2e the particles are once again updated with new weight according to the sensed environment.

In order to arrive at the same conclusion as the Markov Localization algorithm as seen in Figure 4.1e the PF

however needs another prediction step, which is however omitted here since this has already been explained.

The pseudo code of the PF can be found in Algorithm 2.

Algorithm 2 Particle Filter Localization pseudo code

1: Xt−1 = ∅

2: for i = 0 to n do draw x(i)t−1 with probabilty ∝
1
n

// Initialize ’previous’ state add x(i)t−1 to Xt−1

3: end for
4: while true do
5: Xt = Xt = ∅
6: ut = getOdometryMeasurements
7: zt = getSensorMeasurements
8: for i = 0 to n do
9: x(i)t =motion update(ut, x(i)t−1)

10: w(i)
t =sensor update(zt, x(i)t )

11: add 〈x(i)t , w(i)
t 〉 to Xt

12: end for
13: normalize(wt)
14: for i = 0 to n do
15: draw x(i)t from Xt with probabilty ∝ w(i)

t // Resample particles

16: add x(i)t to Xt
17: end for
18: end while
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(a) Situation 1

(b) Situation 2

(c) Situation 3

(d) Situation 4

(e) Situation 5

Figure 4.2: Particle localization example [9].
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4.3 Kalman filter

The earliest version of this filter is simply called the Kalman filter [68] and in more elaborate and newer

forms one of the most used in robotics nowadays. The algorithm itself is reviewed mathematically in a more

elaborate way after a short visual representation of the workings of this filter.

(a) Initial belief
(b) A measurement is added (in bold), with the
associated uncertainty

(c) Belief after integrating the measurement into
the belief using the Kalman filter algorithm

(d) Belief after motion to the right (which intro-
duces uncertainty)

(e) A new measurement with associated uncer-
tainty (f) The resulting belief

Figure 4.3: Illustration of Kalman filters. [9]

The representation is given in Figure 4.3, a more complete break down of each step is not given since this is in

essence the same as with the Markov and particle localization. In the figure its shown clearly that this filter is

a Gaussian distribution instead of the Bayesian models which are used in the earlier localization techniques.
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This is shown by having only one peak where the robot believes its current location is instead of the Bayesian

models which can have multiple peaks.

Algorithm 3 Kalman filter pseudo code

1: while true do
2: ut = getOdometryMeasurements
3: zt = getSensorMeasurements
4: µ̄t = Atµt−1 + Btut
5: Σ̄t = AtΣt−1 AT

t + Rt
6: Kt = Σ̄tCT

t (CtΣ̄tCT
t + Qt)−1

7: µt = µ̄t + Kt(zt − Ctµ̄t)
8: Σt = (I − KtCt)Σ̄t
9: end while

The filter’s algorithm is shown in table 3. It is a different representation of the belief distribution Bel(xt) and

predicted belief distribution Bel(xt). The Bel(xt) at time t is represented by the mean µt and covariance Σt,

both of which are vectors with length corresponding to the number of dimensions. Likewise, as with Bel(xt),

Bel(xt) is represented by µ̄t−1 and Σ̄t−1. This algorithms input is Bel(xt−1), µt−1 and Σt−1, alongside with

control ut and measurement zt.

In lines 4 and 5 of the algorithm the Bel(xt) is calculated in the prediction steps. In these two lines the

variable At represents the state transition model, e.g. physical laws of motion which predict its movement,

and Bt represents the control input model. Since these two variables are considered to be linear in the case

of the Kalman filter, this entire algorithm can only be applied to linear models. Rt represents the covariance

of the Gaussian random vector εt. This εt is a random variable that models the randomness in the state

transition that is represented by p(xt|ut, xt−1). This state transition is also used in the Markov localization

example, however then it also uses the given variable m denoting the current map.

In line 6 the so-called Kalman gain, Kt, is computed. This specifies to which degree the measurement is

incorporated into the new estimate, thereby reducing the noise of measurements. The Kalman gain is the

really important part of this filter. To understand why it is so useful, consider the following two points:

• Once the measurement noise is large, the error between the expected value and measurements might

just be due to the noise. Meaning it is probably not an actual new step and should thus not be taken

too seriously.

• If the process noise is large, i.e. the states of the robot are expected to change suddenly, the new value

should be taken more seriously. Because due to the fact that this states change quickly the large error

in expected and actual measurements is not that weird.

In the same line 6 the variable Ct and its transpose CT
t are found. These represent the observation matrix,

which can be used for example to convert polar coordinates to Cartesian coordinates to continue with if the

rest is in Cartesian. Lines 7 and 8 then calculate the new Bel(xt). The complete mathematical derivation for

this algorithm can be found in chapter 3, subsection 3.2.4, of [9].
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4.4 Extended Kalman filter

One downside of the ’normal’ Kalman filter is that it can only be used for linear system because it uses

the assumption of linear state transitions and linear measurements with added Gaussian noise. However

nearly every robot that is made, at least in the current day and age, cannot be described in a linear fashion.

This is simply due to fact that once it is capable of making turns it already becomes nonlinear. The visual

representation is the same as with the Kalman filter and is thus omitted.

For this problem various extensions to the Kalman filter have been defined, one of which is the extended

Kalman filter (EKF). This filter handles the nonlinearity by assuming that the next state probability, xt, and

measurement probabilities, zt, are dictated by two nonlinear functions: g for xt and h for zt. The entire EKF

peusod code can be found in Algorithm 4 with the key differences being show in Table 4.1. One other obvious

difference is the use of the Jacobians Gt and Ht in the case of EKF. The Jacobian Gt corresponds to the matrices

At and Bt from the Kalman filters. Lastly, the Jacobian Ht corresponds to the matrix Ct, both representing the

observation matrix.

Kalman Filter EKF
State prediction (line 4) Atµt−1 + Btut g(ut, µt−1)
Measurement prediction (line 7) Ctµ̄t h(µ̄t)

Table 4.1: KF vs EKF Differences

Algorithm 4 Extended Kalman filter pseudo code
1: while true do
2: ut = getOdometryMeasurements
3: zt = getSensorMeasurements
4: µ̄t = g(ut, µt−1)
5: Σ̄t = GtΣt−1GT

t + Rt
6: Kt = Σ̄tHT

t (HtΣ̄tHT
t + Qt)−1

7: µt = µ̄t + Kt(zt − h(µ̄t))
8: Σt = (I − Kt Ht)Σ̄t
9: end while

4.5 Comparison and recommendation

Of all of these specific methods one has to be implemented for the robot. Each of these methods has it

advantages and disadvantages, both in memory usage and needed computational power. In Table 4.2 a

comparison is given where a few of the advantaged and disadvantages are shown for each method. The KF

and EKF have been combined into one column since they are nearly the same. The only difference between

the two is shown as the last point in the disadvantages cell of the table.

One of the biggest downsides to Markov localization is its memory usage. This comes into play when the

world is to be modeled very precisely due to the very large amount of cells in the grid that are then used.

This would in turn also lead to a higher computational load for the robot. The PF can overcome this problem

21



Technique Markov Particle Filter (Extended) Kalman Filter

Advantages • Good in global localiza-
tion starting from scratch
• Recovers well from

amibiguous situations
• Tunable precision with

changing grid resolution

• Memory and computa-
tional usage can be ad-
justed for application
• High parellization possi-

ble

• Tracks the robot with
high precision

• Very efficient due to its
single representation

• Can handle noise quite
well

Disadvantages • High memory and com-
putational usage in envi-
ronments where high de-
tail is needed

• With uninformative sen-
sor readings samples can
quickly congregate
• Optimization is hard, no

real ’benchmark’ possi-
ble
• Same inputs can lead

to different outputs, thus
hard to predict and de-
bug

• Is bad at global localiza-
tion from scratch

• Cannot cope well with
high uncertainty

• (normal only) Cannot
handle non linear sys-
tems

Table 4.2: Comparison of localization techniques

by simply reducing the amount of particles used for localization. Where this would lead to a lower certainty

of the robots position this means it can also be applied to any large map by optimizing the amount of

particles. A big downside to the particle filters however is that with uninformative inputs the particles can

conjugate. This happens mostly in ambiguous situations where multiple rooms exists that are very alike and

sensor readings are valid for the same position in those rooms. One advantage of both the PF and Markov

localization is however that they can in fact localize the robot starting from scratch. Global localization from

scratch is however something the KF and EKF are not so good at due to how they work. That is because

these filters track the robots pose itself in stead of where the robot might be. The advantage of KF and EKF

however is that they are superior in tracking the robots pose over the other localization techniques, since they

are far better at handling noise.

With the research goal and proposed navigation architecture in mind the most obvious choice for now would

be to implement an Extended Kalman Filter to track the robots position. This is only useful for now since the

proposed levels of navigation architecture that are implemented can only track the robot’s own movements.

When higher levels of the navigation architecture would be added a more advanced form of a particle filter

as proposed by [69] would be better in combining actual sensor readings to get the robots pose in reference

to the world. Even though a particle filter is used the EKF could still be used to track the robot’s own pose

which can then be combined into the PF by using the EKF’s outcome as input for the motion update in the PF.

The reason a PF is chosen over Markov localization is that the PF is, especially in large environments, better

suited to be used for localization knowing the memory required for Markov localization. Once the robot is

finished it would move through a large building where it needs to have a detailed map to be able to navigate

through doors. With Markov Localization this level of detail required would probably result in a way to large

map for the robot to efficiently use.
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Chapter 5

Mapping

This chapter will be elaborating on various 2D and 3D mapping techniques. The mapping techniques dis-

cussed here are not yet necessary for the proposed navigation architecture. This can be derived from the

fact that for its dead reckoning capabilities the robot only looks at itself and not the environment. However

it is useful to understand how the localization techniques can portray the robot in a map and what their

(dis-)advantages are. In order to correctly understand the proposed future work it is essential to understand

the mapping techniques.

In an office environment furniture tends to get moved around and people walk all around the robot. That is

why programming a map into its memory will not work, the solution would be to keep track of the previously

build maps and identify its current location based on the landmarks in these previous maps.

The problem of mapping has many different examples, which are not all equally hard. This is a result of a

number of different factors, of which the most important are, as described in [9]:

• Size. When a map is bigger then what a robot can perceive it becomes more difficult to successfully

map the entire environment.

• Noise in perception and actuation. Since all sensors and actuators have noisy measurements mapping

becomes a really difficult problem due to having to compensate for all the noise. Clearly more noise

results in a more difficult problem.

• Perceptual ambiguity. When certain places are very much alike it becomes really hard to distinguish

them from one another. This problem of course becomes even more difficult the more places have the

described close resemblance.

• Cycles. Mapping various cycles in an environment, like in the most simple case of moving around

a table, is very hard. When a robot moves through a hallway back and forth it can compensate the

odometry errors when coming back since walls can not move and thus provide an absolute reference.

However when making cycles via different paths the odometric error can become very large due to the

fact that it cannot compensate it whilst navigating.

Since there are many different environments in which a robot can find itself an universal world representation
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does not exist [3]. The map must be adapted to the task that the robot is to perform and the environment

it is performed in. Thus in every occasion a certain map type is to be chosen that is the most efficient and

compact for that particular type of environment. In that way if every bit of essential information is stored

it can be used quickly and efficiently by other parts of the robots system such as the path planners. The

most important part however is that whatever type of map is chosen they must all be able to represent the

uncertainty that is inherently in all sensors. In this way the maps can be adjusted later on as will be described

in a latter Section 6.2 about loop closures.

A clear distinction can be made between two classes of maps; maps for indoor and structured environments

(2D representations) and maps for natural environments (3D representations). In the first case the maps are

able to take advantage of the fact that most buildings are highly structured since they are compromised of

mostly linear structures with straight corners. In this type of environment robots would normally see very

little movement of the objects except for naturally dynamic objects like other agents, humans or vehicles. The

maps for natural environments however not only need to be able to hold data for an extra dimension, height,

but also the dynamic nature of the objects that are perceived. Where in the indoor environments a 2-D map

would suffice due to the fact that nearly all building’s floor do not differ in height this would not be the case

in natural environments. Besides the needed height information the maps for natural environments need to

be able to store more data that is relevant to the robot. For example, sensors could pick up a lake as a flat

surface which in the first place looks good to drive on, but that would of course not be possible.

5.1 Indoor structured environments

In the case of a robot that is to perform its tasks indoor a few common map types exist. These shall be ex-

plained in turn and their respective benefits will be given. In contrast to the maps about natural environments

the maps for this type will be given more detail about since the robot shall perform its tasks indoors. The

most common maps for this type of environment are implementations of the following types [3]:

• Occupancy grids

• Line maps

• Topological maps

• Landmark-based maps

5.1.1 Occupancy grids

Their first appearance was back in the 1985 by [70] and it is one of the most popular type of maps. The

representation is very simple, given a 2-D array each cell of that array holds the probability value that it is

occupied by an object. The big advantage of these grids is that they do not rely on any predefined features.

They also have the ability to easily represent unobserved areas and have the ability to offer a constant-time

access to the grid. The only downside to this type of map is that they have a high memory requirement
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and they could have discretization errors. A depiction of how this mapping method would look like is given

in Figure 5.1 where a living room is depicted by a grid map. In the grid map of that picture the objects

are depicted with a black cell depicting its occupancy and a white cell of no object resides there. Where

this example uses a very low resolution which is not the most suitable to navigate in, the resolution can be

increased significantly. The limit in terms of resolution will in that case be determined the memory usage by

such a map, since only finite amounts of memory are available.

(a) Actual room (b) Grid map

Figure 5.1: Grid map visualization 5.1b of room 5.1a. [10]

To get to theory behind the occupancy grids, the first thing is the that it consist of n cells in a two-dimensional

grid, m1, ..., mn. Occasionally this method is used in with a three-dimensional grid. A single cell in this map

represents a perfect square in the real world, each being a certain predetermined size. All of these cells is

assumed to be independent of one another. Despite the fact that in the real world object normally span

multiple cells, as could be seen in Figure 5.1 where for example the table occupies more than one cell, this

method works successfully in robots [3].

By now using the independence assumption of each cell, the formula for calculating the occupancy probability

p(mi|x1:tz1:t) that cell mi is occupied given p(mi|x1:t−1z1:t−1) and new observation zt at in state xt can be given.

p(mi|x1:tz1:t) =

(
1 +

(1− p(mi|xt, zt))

p(mi|xt, zt)
· p(mi)

1− p(mi)
× (1− p(mi|x1:t−1z1:t−1))

p(mi|x1:t−1z1:t−1)

)
(5.1)

Equation 5.1 can be made to look a lot easier by introducing the often used odds notation for a binary Bayes

filter, which is shown in line 1 of the algorithm for occupancy grids, Algorithm 5.

Algorithm 5 posterior occupancy probability of cell mi, given observation zt in state xt [3]
1: procedure odds(p(mi|x1:tz1:t), p(mi), p(mi|x1:t−1z1:t−1))

2: odds(x) =
p(x)

1− p(x)

3: odds(mi|x1:tz1:t) =
odds(mi|xtzt)

odds(mi)
× odds(mi|x1:t−1z1:t−1)

4: end procedure

By instantiating the prior of p(mi), also known as pprior, as 0.5, in the first case when the robot starts building

the map, the odds(mi) defaults to 1 thereby vanishing from the equation. In that case the map depicts the
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unknown occupancy of a cell, since a value of 0.5 says nothing about the actual occupancy or vacancy. Thus

a cell holds a value for which the following holds 0 ≤ pvacant < pprior < poccupied ≤ 1

Describing how to compute the occupancy probability p(mi|xtzt) of a grid cell given a single observation has

not been given. This is due to the fact that this differs per sensor type and how they observe the world. This

implies that the tuning of the parameters of those models needs to be specifically for to the characteristics of

the specific sensors.

5.1.2 Line maps

This map type is based on the same assumption as the occupancy grids, namely that indoor structured

environments have lots of linear structures such as lines and planes. The advantage of line maps however is

that they allow the robot to use substantially less memory to represent the environment. Moreover they allow

the environment to be depicted in memory more precisely since the lines can be drawn where ever objects

reside instead of having to discretize them into one of the cells of the occupancy grid. A visualization of how

these line maps could be depicted is seen in Figure 5.2. In the left we see in Figure 5.2a the laser scan data,

this image is a collection of numerous points from the sensor. The line map drawn from all of these points is

given in Figure 5.2b. In this figure an algorithm by [11] is used to extract these line segments.

(a) Laser scan data (b) Line map

Figure 5.2: Line map visualization 5.2b of laser scan data 5.2a. [11]

As seen, line maps are a big collection of n pairs of Cartesian coordinates (xi, yi). Where it is easy to draw

one line fitting those coordinate pairs with the use of the least squares technique this of course would not be

a good depiction of reality. To solve the problem of correctly drawing multiple lines from the set of points

two questions need answering. Firstly the map needs to be divided into several lines, thus the question of

how many lines should be drawn has to be answered. Secondly if the first question has been answered then

it comes down to the question of which points then below to which lines.

Besides the algorithm by [11] used in Figure 5.2 various algorithms have been made to solve this problem.
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The most popular approach to this is the so-called split-and-merge algorithm by [71]. In this method a line is

drawn according to the least squares technique. Then the point furthest away is chosen and if this distance

is above a certain threshold the drawn line is cut in half at the point that was furthest. After that there are 2

lines, from the original start point to the point that was furthest away and from that point to the original end

point. This process is repeated until the distance from every point to its corresponding line is below the set

threshold. Where this method is very efficient and quickly, it does not however always give the best results.

Another much used, but thus more computationally expensive, method is the Expectation Maximization

method [72]. This method can be regarded as a variant of the fuzzy-k means clustering algorithm [73]. For

the purpose of this thesis it is not useful to go into more details about the workings of all the other algorithms.

5.1.3 Topological maps

Topological maps look at the surrounding world in a different way, namely by representing it as a graph.

The pioneering work for these maps has been done by [74]. In their work they represented the map with a

graph-like structure, in which each of the nodes is a locally distinguishable place. These nodes together form

the travel edges along which the robot can move between. Distinguishable places are identified according to

the distance they have to nearby places. These places were defined by [75] as the meet-points in generalized

Voronoi graphs. A generalized Voronoi graph is the set of point which is equidistant from the two (or more)

closest obstacle boundaries. This approach means they are a very good depiction of the topological structure

of the environment and can be considered as road maps. Using these kind of maps as road maps is very

simple since the robot can simply plan a path to one of the points on the generalized Voronoi graph. Then

simply following the graph as close as possible to the desired destination, at which the robot stops following

the graph and moves to its goal.

A depiction of these kind of graphs is shown in Figure 5.3. In this figure the easy path planning that these

maps enable is shown clearly by seeing that these graph lines are equidistant to the obstacle boundaries.

Thereby enabling the robot to move freely along these lines without danger of collision.

Figure 5.3: Example of a generalized Voronoi graph. [3]
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5.1.4 Landmark-based maps

When it comes down to environments that have locally distinguishable places, landmark-based maps are used

extensively. A locally distinguishable place is actually quite common, especially nowadays when camera’s are

used on robots, since for a painting or couch somewhere in a room is nearly always distinguishable from other

places. A visualization of this kind of map is given in Figure 5.4 where a mobile robot is mapping a set of

stones.

(a) Robot mapping the stones (b) Estimated path and landmark
positions (manually determined po-
sitions given by circly)

Figure 5.4: Visualization of a landmark-based map. [3]

When using the assumption that the robot pose is known, it simply remains to estimate and maintain a

position for each landmark over time. Landmark-based map m can then be represented by N two-dimensional

Gaussians, where N equals the number of landmarks, in a planar environment. Various approaches to these

maps can be used, one of which is using the EKF for landmarks. This approach would result in having 2N

+ 3-dimensional state vector (2N two dimensional Gaussians for the landmarks and 3 for the robot pose).

Another approach that is FastSLAM [76] which reduced the required dimensions to just N two dimensional

Gaussians and then using localization to determine the robot’s pose. This algorithm is an implemtation of

Simultaneous Localization and Mapping (SLAM), which will be explained more thoroughly in a later section.

5.2 Natural environments

In the case of natural environments it is no longer appropriate to project all of the sensed data into a 2-D map.

In these environments the robot needs to be able to store elevation changes. Overhanging structures such as

three canopies are hard to depict by using just elevation, therefor more advanced true 3-D map types are
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also available. The need to depict overhanging structures has become more apparent recently by the arrival

of drones, which need to be able to not only collide with the ground, but in some occasions need to be able

to go through holes in walls or underneath trees.

The most used types of maps are as follows [3]:

• Elevation grids. This type is simply an extension of the occupancy grids for indoor environments

because it also holds elevation data. The most simple depiction of this type can be seen as a wire

mesh. It is easy to implement but quickly becomes obsolete in environments where vertical surfaces or

overhangs reside due to its incompatibility with these types of structures. Extended versions of these

maps have been made to work around their limitations in the form of multilevel surface maps where

they allow the storage of multiple surfaces in each cell of the grid [77] or extended elevation maps

where certain classes are given to the cell to depict vertical objects [78]

• 3-D grids and point clouds/sets. When structures such as trees have to be depicted in maps, these types

are good options. The most easy implementation of these is to use the occupancy grid approach but

then expand it into the third dimension. The downside however is that it quickly becomes very memory

hungry since the array’s used to store the data become humongous when a high resolution is chosen in

outside environments. A solution for this is given in [79] where data structures are presented based on

dynamic 3-D grids.

• Meshes. Both Elevation grids and 3-D grids and point sets thus have their respective limitations on the

types of environments they can depict, which also makes them very suitable if they are indeed needed.

Meshes however can be adapted to depict nearly any type of terrain. By using advanced algorithms [80]

the amount of vertices in these maps can also be reduced to minimize the memory need. The only

downside is the difficulty to correctly map the environment, since due to sensor noise the map might

depict two separated surfaces as connected.

• Cost maps. These maps are an extension of elevation maps, because they also hold data for the cost of

moving over that particular part of the map. Various algorithms, such as [81], have been designed to

extract the cost of the cell from the slopes and textures of the terrain. More advanced algorithms also

take into account the dynamics of the robot to better depict the cost.

5.3 Recommendation

Whilst mapping techniques will not be used for the defined navigation architecture so far, they are, however,

to be used in conjunction with future work. Once higher levels of the proposed navigation architecture are

implemented one of the methods from the Indoor Structured Environments is to be implemented first. The

easiest would be to start with simple grid based maps, like the occupancy grids. When using occupancy grid

the (later on) proposed radar sensors or collision detection from the IMU can be implemented. From there

on the robot can be developed to work correctly before even higher levels are implemented. Once RGB-D

camera’s or laser range finders will be implemented a method from the Natural Environments can be chosen

due to the introduction of 3D data. A good implementation to use in this situation in order to keep the
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memory usage lower is landmark based maps (graph maps). Once detailed 3D data is acquired this could be

stored in one of the landmarks which could then be used to make assumptions of the robots global position

in reference to the map by comparing the current information to the landmarks. The usage of grid based

maps to prevent collision with objects also becomes less important since the most recent data from the range

finders and RGB-D camera’s can be used for that goal. An example of this graph based mapping technique

has been proposed by [12].
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Chapter 6

Simultaneous Localization and Mapping

This chapter will be covering the problem of simultaneously building a map of the current surroundings as

well as to localize the robot in this map. This described technique is know as Simultaneous Localization and

Mapping (SLAM). Understanding SLAM is needed in order to solve the problem of autonomous driving for

the proposed future work. For the proposed and researched navigation architecture this technique is not yet

necessary.

The main idea behind SLAM is to create a map with the sensor data (from sensors looking to the environment)

as input to localize the robot, then to translate this map after the robot has moved followed by doing those

steps again with the current world perception as the start of the next iteration. This entire world is viewed

as a stochastic model in which each perceived object and the current location is approximated. This problem

can in a way be seen as a chicken-or-egg problem, the map is needed for localization, but the pose estimate

is needed to build the map.

SLAM thus is a very important part in any robot in order for it to navigate. Because of this importance various

methods have been researched by many, of which the most popular use localization techniques such as the

Kalman- ( [82] and [83]), information- and particle filters.

6.1 Taxonomy of SLAM

As mentioned there are a lot of solutions to the SLAM problem, each of which has its own characteristics and

thus differences. These differences can be combined into a few topics which will be discussed here [3]. One

of these differences, namely single-robot vs multirobot SLAM, will not be discussed since it has no use for

this thesis’ robot BB-8.

• Volumetric - Feature-based. Volumetric SLAM samples the map at a very high resolution, enough for

a photo-realistic reconstruction of the environment. Feature-based SLAM extracts features from the
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surroundings, like landmark based maps. The downside to feature-based SLAM is that it thus discards

information but the upside is its increased efficiency.

• Toplogical - Metric. Topological mapping techniques use a description of the environment, for example

place a is adjacent to place b. Whereas metric mapping describes precise metric information of the

relation between objects instead of just a description.

• Known - Unknown correspondence. This subproblem refers to relating sensed objects to previously

sensed object, for example sensing a painting that is already a part of the landmark based map. More

on this topic in the next subsection about loop closures (Section 6.2).

• Static - Dynamic. This has everything to do with the environment. Dynamic methods incorporate shifts

in the environment, like a chair that has moved, while static methods cannot cope with this.

• Small - Large uncertainty. This covers the amount of uncertainty the method can handle when it

comes to the robots position. Some incorporate loop closures (Section 6.2) methods which allow more

uncertainty in the location after a certain time, only to be reduced significantly at sensing a known

position, whereas others could use absolute positioning systems such as GPS to keep the uncertainty

small.

• Active - Passive. Active SLAM methods the method itself controls the movement of the robot, with

the goal of pursuing the most accurate possible map. In passive SLAM methods the SLAM method is

simply an observer which senses the environment and places the robot somewhere. Another part of the

robots program can then control the movements. Hybrid approaches are possible where the active part

points the sensors in a direction and the passive part moves the entire robot.

6.2 Loop Closures

In each SLAM solution a key feature is the ability to recognize previously visited locations, this process is

called loop closure detection. The name loop closure detection implies that coming back (after making a

loop) to a previously visited location will allow the robot to detect this location with such a visited place.

As mentioned, most of the slam solutions are based on probabilistic models of the world. For these solutions

the loop closure detection methods are all done locally, meaning that loop closures are found between the

current (new) observation and a small part of the current map. This small part of the map is determined by

the robot never fully knowing where its position is, it only has an estimated position around which each of

the other positions also is a possibility. These probabilistic based loop closure detection methods ( [84], [85]

and [86]) have the advantage that all of the information can be processed near real-time. The downside to

these methods is that once the estimated position is not valid, they all cease to work because the can no longer

give good estimates of loop closures. The fact that estimated positions cannot be guaranteed to be valid is a

serious problem [87]. A visualization of what loop closure exactly does is given in Figure 6.1.
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(a) The current map is visible with the detected
loop closures in red.

(b) The optimized map after all of the detected loop clo-
sures have been applied.

Figure 6.1: Loop closure example. [12]

The problem in the case of BB-8 however is that is will be operating in a large scale environment (an entire

office building) and that it will do this for up to 4 hours or more. The complexity of the loop closure problem

then becomes a lot harder to solve, subsequently increasing the memory and time required to process new

observations due to the increased number of locations in the map. A solution to this is given in [88], this

solution is not elaborated on further but could be used in the future when further development is done to

extend BB-8’s capabilities beyond the scope of this thesis.
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Chapter 7

Motion Planning

This chapter will go a bit into detail about motion planning and what techniques exist. Since this is less

important for the currently proposed navigation architecture most of the mathematics behind each of the

reviewed methods is omitted. However, if higher levels of the navigation architecture as defined later on

are implemented a motion planning algorithm becomes essential. Firstly a few motion planning algorithms

will be reviewed before a recommendation is made about which algorithm will be useful and with what

navigation architecture level it should be used.

The problem of motion planning is of course at the basis of autonomous robotics since each robot accom-

plishes tasks by moving in the real world. To achieve these tasks a motion planning algorithm should try to

do the following two things [13]:

• Get to the destination with a collision-free trajectory

• Calculate a trajectory to the destination which is the shortest possible trajectory

In order for the algorithm to do this it needs to know a few thing in order to successfully calculate a path [13]:

• Current/start pose of the robot

• Desired pose at the goal

• A description of the robot with it geometric shape

• A map of the world

While all of the actions that a motion planning algorithm provides are executed in the real world, the actual

problem of motion planning lives in the Configuration Space (C-space). The C-space can be defined in a

varying number of dimensions. The amount of dimensions corresponds to the degrees of freedom the robot

has, which is three dimensions, (x, y, θ), when a robot is used in a 2D plane. To obtain the C-space the robots

radius is used to ”blow up” the edges of obstacles present in the map, called work space, by sliding this

radius along all edges of all obstacles. A visualization of this process is given in Figure 7.1. In this figure a

motion planning algorithm creates the configuration space from the work space and calculates a path from

a reference point to an endpoint. A noteworthy detail is that the robot in question does not have the same

radius along all sides. This can be seen as the grey area around the black obstacles which is not equally large
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along all edges. If this example would be extrapolated to a third dimension (for orientation) this would lead

to very strange 3d shapes of the C-space due to the odd shape of the robot.

(a) Work space (b) Configuration space

Figure 7.1: Visualization of obtaining configuration space from work space [13]

Before a detailed explanation of motion planning algorithms using this C-space are given, a little more light

is shed on the formal notation of the C-space. As the C-space is now constructed by blowing up the work

space the remaining areas can be named in a mathematical manner as a set of points. Once formally defined

the following definition of the C-space remains for a rigid body that can translate and rotate:

C = <2 × S

The work space is denoted as either W = <2 or higher orders of < depending on the degrees of freedom of

the robot. In this work space an obstacle region O ⊂ W is defined. Besides the obstacle region a rigid body

A ⊂ W is also defined, commonly denoting the robot itself. Then let q ∈ C denote the configuration of A

where q = (xt, yt, θ). The obstacle region Cobs is then defined as:

Cobs = {q ∈ C|A(q) ∩O 6= ∅}

By this definition Cobs is the set of all configurations of rigid body A, where this rigid body intersects the

obstacle region, O. Lastly the leftover regions are defined as C f ree:

C f ree = C \ Cobs

C f ree can be seen in Figure 7.1b as the white area in which the robot can move. Cobs holds both the black

and grey areas from the same figure where the robot is unable to move. To formally denote the problem of

motion planning two more definitions are introduced. First of which is the initial configuration q1 ∈ C f ree,

followed by qG ∈ C f ree denoting the goal configuration. All of the definitions combined are shown in a visual

representation in Figure 7.2, where the work space W encompasses all elements.

The problem definition for motion planning algorithms is then as follows [14]:

1. Given a world, W
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Figure 7.2: Configuration space definitions [14]

2. Given an obstacle region O ⊂W

3. Given a rigid body A which is defined in W

4. Given a configuration space C, from which Cobs and C f ree are derived

5. Given a initial configuration q1 and a goal configuration qG, together denoting the query pair (q1, qG)

6. Compute a path t : [0, 1] → C f ree, where q1 = t(0) and qG = t(1) or correctly report that there is no

such path

For algorithm to solve this problem definition, they need to discretize the C-space. This is needed to reduce

the map size making is suitable for processing in a manner that is quick enough for real time motion planning.

There are two general approaches available to discretize the C-space, each of which has its own set of different

algorithms which will be explained later. The two main approaches are [13]:

• Combinatorial planning

• Sample based planning

7.1 Combinatorial planning

In order to solve the problem definition for the motion planning algorithms combinatorial planning methods

find paths in the C-space without resorting to approximations. Given this property they are often referred to

as exact algorithms, which are also complete. Being a complete algorithm defines them as being able to find

a path in any problem instance or correctly reporting no such path exists. Some of the algorithms are even

optimal, meaning that the path found is the best possible path to take (e.g. shortest or quickest).

The downside of these kinds of planning algorithms however is that they become intractable quickly when

higher order dimensions are used. This is due to the fact that all of these methods report failure by exhaus-

tively searching the C-space until no more options remain. Another downside to these methods in combina-

tion with higher order dimensions is that they explode in terms of facets to represent A, O and Cobs. This
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is especially apparent once rotations are taken into account, resulting in a C-space resembling a nontrivial

manifold [14].

All of the methods that fall under this technique produce a road map [13]. This road map is a graph in C f ree

in which each vertex is a configuration in C f ree and the edges are collision free paths through C f ree. A few of

the basic algorithms that fall under this type are:

• Visibility graphs

• Exact cell decomposition

• Approximate cell decomposition

• (Generalized) Voronoi graphs

All of the methods above will be discussed except the (generalized) Voronoi graphs, since these have already

been defined in Section 7.1.

7.1.1 Visibility graphs

Visibility graphs are one of the earliest path planning methods. Their idea is to construct a path as a polyg-

onal line connecting q1 and qG through the vertices of Cobs, thereby only narrowly avoiding collision. The

advantage of constructing a path in this manner is that it results in an optimal path [89, Chapter 15]. To

compute a path this method sees all obstacles in the world as closed polygons. These polygons are made up

of multiple vertices and edges. Some of these vertices are called reflex vertices and play an important role

in the computation of the path. A reflex vertex is a polygon vertex for which the interior angle (residing in

C f ree) is greater than 180deg. All vertices of the computer roadmap from which a path is calculated is a reflex

vertex.

The shortest path roadmap G is then constructed according to Algorithm 6. A visualization of this algorithm

can then be found in Figure 7.3.

Algorithm 6 Visiblity graph path planning pseudo code
1: Create empty graph G

2: Add q1 and qG as vertices in G

3: Add polygons from Cobs to G

4: Place all reflex vertices from all polygons in list V
5: for i = 0 to n do
6: Connect Vi to q1 or qG, if the constructed edge does not intersect any polygon add it to G

7: Connect Vi to all other vertices in G and add this edge if it also has no intersections
8: end for
9: Run a graph planner (like Dijkstra’s or A*) on G
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Figure 7.3: Visiblity graph algorithm visualization [14]

7.1.2 Exact cell decomposition

Whereas visibility graphs look at the edges of Cobs only narrowly avoiding them, exact cell decomposition

looks at C f ree. C f ree is decomposed into non-overlapping cells. This method does not however compute the

optimal path. In order to explain this algorithm no more definitions are required besides the ones given in the

the introduction of this chapter. Thus below the psuedo code is found in Algorithm 7 with its visualization

in Figure 7.4. This example focuses on the trapezoidal decomposition method. Other implementations of this

algorithm are possible [13], but for the sake of simplicity omitted here.

Figure 7.4: Exact cell decomposition algorithm visualization [13]
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Algorithm 7 Exact cell decomposition path planning pseudo code
1: Create empty graph G

2: Add q1 and qG as vertices in G

3: Place all vertices from all polygons in list V
4: for i = 0 to n do
5: Shoot a vertical line from Vi both upwards and downwards, add the one or more created trapezoids

to T
6: Place one vertex on the drawn line, e.g. the centroid and add it to G

7: end for
8: for j = 0 to n do
9: Place one vertex in trapezoid Tj, e.g. the centroid and add it to G

10: end for
11: Connect all vertices in G with edges as long as each edge does not touch or intersect Cobs
12: Run a graph planner (like Dijkstra’s or A*) on G

7.1.3 Approximate cell decomposition

The downside of exact cell decomposition methods is that they use odd sized shapes in order to calculate path.

This leads to inefficient and complex problems that are to be solved. The approximate cell decomposition

techniques however use the same simple predetermined shapes making them more efficient and easier. The

downside of the approximation however is that these methods can be complete, but they have to be made

so [14].

A few methods fall under this type, the example that is given in Figure 7.5 is in the form of quad tree

representation. This method can sometimes also be referred to as an adaptive cell decomposition method.

This is due to the fact that whilst all of the cells have the same shape, they do not, however, have the same

size. Other form such as equal sized squares can also be used. Pseudo code for this type of path planning can

be found in Algorithm 8.

Figure 7.5: Approximate cell decomposition algorithm visualization [13]
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Algorithm 8 Approximate cell decomposition path planning pseudo code
1: Discretize given C-space into smaller fixed shape areas and add to D
2: for i = 0 to n do
3: Mark Di as passable if Di ∩ Cobs = ∅
4: If passable add vertex in centre of cell and add to G

5: end for
6: Mark the vertex residing in cell where q1 resides as start
7: Mark the vertex residing in cell where qG resides as goal
8: Connect all vertices ∈ G to the vertices from neigbouring cells
9: Run a graph planner (like Dijkstra’s or A*) on G

7.2 Sample based planning

The main idea behind sample based planning is to search the C-space with a sampling scheme, explicitly

avoiding the construction of Cobs. Probing the C-space in this way is done with the aid of a collision detection

module, which acts as a sort of black-box. This module checks if the given configuration are in fact in C f ree. In

this manner the development of planning algorithms that are independent of the particular geometric models

is enables. Whilst this results in a weaker conclusion of a good path it is however far more efficient by not

exhaustively searching the C-space. To compute a path these algorithms all use a random element whilst

going through the C-space trying to find a vertex residing in C f ree.

The advantage of Sample based planning methods is that they are quickly able to come up with a solution

in a higher order dimension. The solution that is presented is usually is far from optimal, but given enough

time can approach optimality. Most of the robots nowadays use these kind of methods due to their high

dimensionality, often having arms or multiple joints which result in more degrees of freedom.

Just as with combinatorial motion planning algorithms a lot of methods have been defined which are part of

the sample based planning methods. The two methods that will be shown are:

• Probabilistic Road Maps (PRM)

• Rapidly Exploring Random Trees

7.2.1 Probabilistic Road Maps

PRM’s are very quick in finding solutions to higher order dimensions but have some downsides. Due to

their random nature in picking vertices in the C-space they are not well suited for C-spaces in which narrow

corridors reside. It is improbable that a vertex is randomly selected in those corridors knowing the possible

configuration form the entire C-space. Whilst this is a downside these methods are however probabilistically

complete. Given enough time and resources the random nature of this methods leads to all configurations

being exhaustively searched and a solution to be found optimal.

To solve the downsides of the random nature various extensions of PRM’s have been defined in more recent

literature. For example these extensions can add advanced sampling strategies close to objects, increasing the
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chance so solve problems when narrow corridors are in the C-space. All of these extensions are, however, out

of scope for this thesis. Once again a figure to illustrate its workings as well as a psuedo code algorithm are

given in Figure 7.6 and Algorithm 9.

Algorithm 9 Probabilistic Road Map path planning pseudo code
1: Create empty graph G

2: Add q1 and qG as vertices in G

3: for i = 0 to n do
4: Sample a random configuration, qr in C-space
5: if qr /∈ Cobs, checked by collision detection module then
6: Add qr to G

7: for n ∈ neighbourhood(qr, G) do
8: Draw edge between qr and n if edge does not cross Cobs
9: end for

10: end if
11: end for
12: Run a graph planner (like Dijkstra’s or A*) on G

(a) New sample of point in C-space (b) Newly added edges in G

Figure 7.6: Probabilistic Road Map algorithm visualization [15]

7.2.2 Rapidly Exploring Random Trees

Rapidly exploring Random Trees (RRT’s) are a very easy method to get to a solution is to randomly start

moving from qi in order to eventually get to qG. The path is build up in a random order and every n cycles

the randomly chosen vertex is forced to be qG in order to see if the goal is already reachable. These algorithms

can be expanded by both growing a RRT from both qi as well as qG and try and connect them every n cycles.

These kinds of RRT’s are called Bidirectional RRT’s.

Just as with PRM’s these RRT’s have their disadvantages due to their random nature. Furthermore also RRT’s

are probabilistically complete, as long as the tree is continued to be expanded all configurations are reached.

One easy implementation of RRT’s is discussed here with more advanced method being omitted for research

in future work. A visualization of the pseudo code in Algorithm 10 can be found in Figure 7.7.
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Algorithm 10 Rapidly Exploring Random Trees path planning pseudo code
1: Create empty graph G

2: Add q1 and qG as vertices in G

3: for i = 0 to n do
4: Sample a random configuration, qr in C-space
5: Find node qn ∈ G closest to qr
6: while edge (qr, qn) crosses Cobs do
7: Move qr closer to qn along edge (qr, qn)
8: end while
9: Add qr to G

10: end for
11: Run a graph planner (like Dijkstra’s or A*) on G

(a) New sample of point in C-space (b) Newly added edges in G

Figure 7.7: Rapidly Exploring Random Trees algorithm visualization [15]

7.3 Recommendation

Various path planning algorithms have now been reviewed. Whilst many more variants of the reviewed

methods remain the basic concepts are the same. Whilst out of scope for this thesis since the proposed

navigation architecture is not in need of a path planning algorithm. This is also due to its inability to produce

a map which is needed as per de given definition of the path planning problem.

In the proposed future work the approximate cell decomposition methods can be used once IMU’s are used

for collision detection due to the proposed use of occupancy grids. These grids closely resemble the needed

map reducing computational time needed to compute a path. Once higher levels of the navigation architecture

are implemented more degrees of freedom are added to the robot due to the addition of the head. In that

case a method from the sample based algorithms could be useful. Due to the eventual goal of giving a guided

tour the recommendation is to use Bidirectional RRT’s in order to come up with a solution. If however in the

future work occupancy grids are still used approximate cell decomposition can remain useful. Or if a graph

based mapping technique is used most of the planners can be evaded an Dijkstra’s or A* can simply be used

as this is the last step for most of the planners that create graphs.
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Chapter 8

Robot Operating System

For any robot to work it needs a large code base to control each and every sensor and motor. For this

purpose various frameworks have been created over the years. The one that is used in the case of BB-8 is

the Robot Operating System (ROS). It has a very large community that makes use of it and thus has an

enormous amount of documentation available on the internet to speed up the development process. In order

to understand the implementation of the proposed navigation architecture it is essential to understand the

basics of this framework.

8.1 Overview

ROS is a completely open source framework used in robotics applications, offering many communication tools

between processes of the robot or multiple machines on which the robot runs through a TCP/IP network.

ROS is mainly split up into two parts:

• Roscore. This is the core of the framework, for any of its components to work it needs this part. It offers

the various scripts and command-line programs to control and monitor everything that happens whilst

the robot is running. This core is maintained by the creators of the ROS framework: Willow Garage.

• Packages. The core itself does nothing but enable various programs to use its services. To have the

robot actually perform anything a combination of packages is needed. These are all open source and

maintained by numerous people from throughout the community. Each of these is tailor made for a

specific purpose or robot. Each of these packages runs as a stand alone program, all communicating via

the roscore, which is explained in the next subsection.

Another huge benefit of ROS is the ability to write the software in various languages. It supports C++, Python,

Lisp officially and has experimental builds available for Java and Lua. Since programs that are written in any

of these languages all communicate via the TCP/IP network with the roscore any package of the robot can

be written in any of these languages and cause no problems at all. Besides the ability to support many

programming languages it is also available on various architecture due to the fact that it runs mainly on
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top of Ubuntu and Mac OS, but with the aid of the community various ports have been created to other

linux distributions. This enables it to run on both ARM and X86 architectures and more, offering even more

variation in which hardware can be chosen for the robot.

8.2 Communication

The real power of ROS is in its ability to enable communication between all of the packages. Each of these

packages is called a node once run and each of these nodes then can communicate with another via the

TCP/IP protocol. This is done by letting the nodes connect to another node via sockets, where each node

has its own port. The roscore keeps track of every node that exists and with which nodes they communicate

via the so called topics or services. All of the message passing is done via roscore which also enables the

message passing to be asynchronous, it also provides nodes the ability to read previous messages because

the roscore keeps a short history of the sent messages. The communication between nodes is also completely

anonymous, since a node does not know to which other nodes its messages are sent, only the roscore has that

information. As mentioned ROS also provides the ability to use the same TCP/IP protocol to send messages

over WiFi or LAN to other devices on which a different part of the robot runs. ROS however also has the

option to provide synchronous communication via services. Because of the fact that ROS has been designed

for robots it provides only standard message definitions using simple data types.

A few key concepts that are vital to understand how the communication in ROS happens follows:

• Nodes. These are the processes that come from the packages that are run. Each of these does a specific

task for the robot and communicates via the network. On startup it will register itself with the roscore

using an unique id and also provides information on which topics it subscribes to and publishes mes-

sages on. Besides the topics it also passes information to the roscore which services it can provide for

other nodes to call. As mentioned these can be written in various languages offering large compatibility.

• Master. This is a special node set up by the roscore, which does everything mentioned above like

handling the registration, subscriptions, publications and disconnections of each node. Thus it also

handles every message that is passed on by a publisher to each of the subscriber nodes on the given

topic and storing them for a short time allowing the subscribers to also retrieve messages from the past

in case that is necessary.

• Topics. Every node that communicates does so via a topic, they are the core of ROS’ communication

system. Each of these topics has its own unique id and unique message type. Thus every node knows

exactly what data type or object with data types it has to publish or receives, preventing possible errors

since nothing else can be sent through these. Each node can connect to the topics using its name when

calling the master. There is no limit on how many subscribers and publishers can exist for a topic.

• Messages. These are the actual packets that get sent by the publishers via the network. Each of these

is defined by using other message types or simple data type. The available data types are, by default,

the following: boolean, string, floats (32 + 64 bits), (unsigned) integers (8 + 16 + 32 bits). Besides these

standard data types ROS has two more specifically for ROS: time and duration. By combining these
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into messages an object is created, these objects can then be implemented by other messages to create

a more complex message type. The power of these thus is that a developer is given the ability to create

its own messages that need to be passed via the network.

• Services. Where the topics allow for asynchronous message passing services offer synchronous ways

to do so, letting nodes call each other directly instead of through the master. A node that provides a

service returns data specifically for the query it received by another node. Since a service is synchronous

the node providing this service can only handle one request at a time, thus limiting the use of it. Each

node that provides a service also advertises it via a topic, providing a unique name for other nodes to

call. Thus each node also has a specific message type for the request and response data.

Figure 8.1: ROS communication example [16]

In Figure 8.1 the communication system is visualized. The three nodes on the left publish information on

a topic, to which the two bottom nodes on the right are subscribed. These subscribed topics have no way

of knowing when a new message might come, they just receive it from the topic via the master when the

publishers have one ready. To get data straight away the top right node can request a service from the top left

node, thus getting a direct response to its query.
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Chapter 9

Navigation Architecture

By default a robot would not be able to do anything inside of any environment without the use of the right

sensors. Therefore a navigation stack is needed to provide various sensors in order for a robot to be able to

navigate autonomously. In this chapter a navigation architecture will be given for the BB-8 in order to provide

it with increasing levels of autonomous driving after the adding of each new sensor.

The navigation architecture will be built up in the following order:

1. Wheel encoders - extract rotation of wheels from the motors, thereby calculating the travelled distance.

This can be achieved by using the stepper motors completed steps since the have a fixed 200 steps per

full rotation.

2. Inertial measurement unit (IMU) - encompasses an accelerometer, gyroscope and compass who’s data

can be extracted and used for orientation or the traveled distance. With the accelerometer data collisions

could be detected by sudden spikes in the data, thereby sensing where objects are.

Future work to increase the effectiveness of this navigation architecture could be built up in the following

order:

1. Bluetooth positioning - use Bluetooth as an indoor GPS equivalent by triangulating the robots location

from the calculated distance to various beacons each few seconds. Thus acquiring our absolute position

in a building at low frequency, enough to compensate the IMU’s habit of drifting values over time.

2. Radar sensor - use radar sensors to peek through the shell in order to find objects in close proximity,

eliminating object collision at slow speeds and short distance (under 50cm).

3. Kinect V2 - using the RGBD camera from the XBox One’s Kinect V2 long range (60cm until 4.5m) objects

and humans can be detected and thus better evaded, even at higher speeds due to its increased range.
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9.1 Wheel encoders

As described in the background information, the robots internal drive platform consists of four omni-wheels,

each together with its own stepper motor. Each stepper motor then has its own stepper motor driver to

provide the current that is needed for the motor to move at the right time. These stepper motor drivers have

built in registers in which they automatically keep track of how many times current has been sent through

the motors, thus keeping track of exactly how many steps have been made. However steps can of course be

lost due to a force that counteracts the motors movement by for example having the robot try to move up

a hill. In the case that the hill becomes too steep the motor will not be able to provide enough force with

the wheels on the sphere via its internal magnetic spools to overcome gravity. In the case that happens the

stepper motor will have a so-called step-loss. Luckily the used stepper motor drivers are able to detect these

most of the time and should be able to keep the internal registers at the right value.

The downside to this method is that, although the rotations from each of the motors and wheels can now

be calculated, no information is gained for the rest of the robot’s movements. Thus the limiting factor here

is that if the wheels slip we do see steps that have been successfully completed but in the absolute motion

of the entire robot no movement has occurred. This means that the wheel encoders can not be more than a

good estimate to determine how much the robot has moved. This is however a good starting point for the

entire navigation stack. Since when the environment is sensed by the robot it needs to know how to translate

the gained information in a map after movement to compare the new sensor data it has then acquired as

described in Chapter 4.

(a) Motor locations (M1-4)
(b) Dimensions

Figure 9.1: Driving mechanism of BB-8

In order to use the wheel data a simple algorithm is needed to update our position. The psuedo code can

be found in Algorithm 11 where the ’getOdometryMeasurements’ is the implementation of the algorithms

explained below. After the data has been updated the current position and last known change in position

published in order to use it in the localization step.
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Algorithm 11 Odometry algorithm pseudo code
1: x = y = θ = 0
2: while true do
3: δx, δY, δΘ = getOdometryMeasurements
4: x = x + δx
5: y = y + δy
6: Θ = Θ + δΘ
7: publishOdometry(x, y, Θ, δx, δY, δΘ)
8: end while

9.1.1 Four omni-wheel setup

Knowing the amount of steps does not help us get the movement of the entire robot yet, for this we need to

combine the data from all four of the motors in order to calculate both angular and linear displacement, also

called odometry. By having the ability to calculate the odometry the first problem of the localization step can

be solved, by being able to track our position relative to the begin position. In the case of the BB-8 robot the

base platform consists of 4 separate motors which are mounted on 2 axis. This means that the entire system

could be described as a dual differential drive system in which the axis are orthogonal to each other. For a

single differential drive system there are a few formulas for the odometry calculations, as described in [90]

and [91]. We describe each motor as M1, M2, M3 and M4 and combine them per axis in the groups (M1, M3)

and (M2, M4), as seen in Figure 9.1.

Firstly the simple conversion from steps to distance for each individual motor:

∆si =
2πni

N
∗ Ri (9.1)

In this equation ∆si is the calculated displacement for the motor, with 1 ≤ i ≤ 4 (since there are four separate

motors); ni is the number of steps in the sampling period; N the number of steps per full rotation which is

200 in this case; and lastly Ri the radius of the wheels which is 0.05.

Then to combine the displacement of two wheels to calculate the displacement and rotation for the appropri-

ate axis, which gives the following formulas for the axis with wheel pair (M1, M3):

∆s(M1,M3)
=

∆s1 + ∆s3

2
(9.2)

∆θ(M1,M3)
=

∆s1 − ∆s3

b
(9.3)

Where ∆s1 and ∆s3 are calculated as per Equation 9.1; and b is the length of the wheel base which is 0.60,

or simply said the distance between two of the wheels. Equations 9.2 and 9.3 can be changed to get the

corresponding values for the other axis, (M2, M4), by substituting M1 with M2 and M3 with M4, thus also

substituting ∆s1 with ∆s2 and ∆s3 with ∆s4 (given that for the other axis b does not change).

One thing that should not be forgotten and added to Equetions 9.2 and 9.3 in the case of BB-8 is the trans-

mission. Since the driving mechanism is inside a ball, the distance that the wheels travel is not equal to the

absolute distance that the robot has traveled. The wheels are as said located on a 51◦ angle with the horizon,

as seen in Figure 9.1. This means that whenever the wheels move inside of the ball they travel a shorter
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absolute distance then the robot as a whole. To calculate this offset we take the circumference of the entire

ball with radius 0.3m: 0.3m ∗ 2 ∗ π = 1.885m. Then to take the distance the wheels travel in a full rotation we

use our angle but then with the vertical axis, which is then 39◦:

0.3 ∗ cos(39◦) ∗ 2 ∗ π = 1.465

This ends up giving us a transmission of
1.885
1.465

= 1.287

So now to incorporate this in the formula we get for wheel pair (M1, M3) the new formula for the traveled

distance:

∆s(M1,M3)
=

∆s1 + ∆s3

2
∗ 1.287 (9.4)

Now that the equations for the differential drives have been explained, the two axis can be combined to equate

the odometry for the entire robot as described in [92]. First to take the simple average of the two rotational

components, as per Equation 9.3 and its substituted version for the other axis, the rotational difference for

the base frame is computed:

∆θ =
∆θ(M1,M3)

+ ∆θ(M2,M4)

2
(9.5)

To combine all of the now available data to get the new pose of the BB-8 in total:

xn = xn−1 + ∆s(M1,M3)
cos

(
θn−1 +

∆θ

2

)
+ ∆s(M2,M4)

cos
(

θn−1 +
π

2
+

∆θ

2

)
(9.6)

yn = yn−1 + ∆s(M1,M3)
sin
(

θn−1 +
∆θ

2

)
+ ∆s(M2,M4)

sin
(

θn−1 +
π

2
+

∆θ

2

)
(9.7)

θn = ∆θ + θn−1 (9.8)

Now that the odometry is known as per Equations 9.6, 9.7 and 9.8, the continued updates can be used by the

system to get the traveled distance and update its position over time. The complete algorithm for odometry

updates in the case of a four wheel setup can be seen in Algorithm 12.

Algorithm 12 Four wheel odometry
1: x = y = θ = 0
2: while true do
3: d1, d2, d3, d4 = getWheelMovement

4: δθ =

d1 − d3

2
+

d2 − d4

2
2

5: δx = 1.287 ∗
(

d1 + d3

2
cos

(
θn−1 +

δθ

2

)
+

d2 + d4

2
cos

(
θn−1 +

π

2
+

δθ

2

))
6: δy = 1.287 ∗

(
d1 + d3

2
sin
(

θn−1 +
δθ

2

)
+

d2 + d4

2
sin
(

θn−1 +
π

2
+

δθ

2

))
7: x+ = δx
8: y+ = δy
9: Θ+ = δΘ

10: publishOdometry(x, y, Θ, δx, δY, δΘ)
11: end while
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9.1.2 Alternative three omni-wheel setup

Another setup that can be used is the one with three omni-wheels. Due to the way the platform of the robot

is setup in its octagonal shape the three omni wheels cannot be placed in prefect 120 degree angles in relation

to each other. The advantage of this setup is that while with 4 motors more power is available they also have

a higher possibility of slipping. With this setup that risk is greatly reduced since at all times a part of the

robot weight rests on one of the wheels, all bearing a part of the total weight, thus resulting in grip. With a 4

motor system this could only be achieved with suspension that will push the wheels down at all times, but

that would be harder to implement.

Figure 9.2: Driving mechanism of BB-8 with three omni-wheels

In Figure 9.2 the setup is shown with three omni-wheels. As can be seen the used frame is sub-optimal for

this setup, but the extra grip might prove useful. The wheels and motors are positioned in a setup in which

M1 is rotated 135◦ in reference to M2 and M3 which are perpendicular to each other. The motors and wheels

used in this setup are the same as with the 4 motor setup. A mathematical explanation for the odometry

information will now be given.

To see how the kinematic model of this setup would be the kinematic model from [17] is used and applied

on to our setup. Their model has to be altered to accompany for the different angles that are used in this

system, they use the perfect separation of 120◦ between all wheels. In Figure 9.3 the graphic diagram which

is used for this model is displayed. In this diagram v1, v2, v3 are the velocities of each of the wheels (M1, M2

and M3), which are shown on the projections of the direction of each wheel. In this diagram the dashed lines

(r1, r2 and r3) show the normal direction to each of the motors axis’. The lines W1, W2 and W3 indicate the

positive direction of rotation of each wheel and on these lines the speed of each separate wheel (v1, v2 and

v3) is projected.

Now to examine the equations used to calculate the projection line of each wheel r1, r2 and r3:
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Figure 9.3: Graphic diagram for three wheeled kinematic model, adjusted from [17] for the current setup

r1 : y = tan(
1
4

π) ∗ x + ((−v1) ∗ cos(
1
4

π) + (−v1) ∗ tan(
1
4

π) ∗ sin(
1
4

π))

y = x−
√

2 ∗ v1

x = y +
√

2 ∗ v1 (9.9)

r2 : x = −v2 (9.10)

r3 : y = v3 (9.11)

Next these three Equations 9.9, 9.10 and 9.11 can be used to obtain the cutoffs of r1, r2 and r3:

r1↔ r2 : P1 = (−v2,−v2−
√

2 ∗ v1) (9.12)

r2↔ r3 : P2 = (−v2, v3) (9.13)

r3↔ r1 : P3 = (v3 +
√

2 ∗ v1, v3) (9.14)

Combining these three cutoff points from Equations 9.12, 9.13 and 9.14 results in the centroid of the triangle

V:
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V =

(
P1x + P2x + P3x

3
,

P1y + P2y + P3y

3

)
=

(√
2 ∗ v1− 2 ∗ v2 + v3

3
,
−
√

2 ∗ v1− v2 + 2 ∗ v3
3

)
(9.15)

Equation 9.15 now gives us the x and y displacement of the robot. Now to be able to display the robot in

polar coordinates we need velocity v, angular orientation a and angular rotation w.

v =
√

V2
x + V2

y =

√(√
2 ∗ v1− 2 ∗ v2 + v3

3

)2

+

(
−
√

2 ∗ v1− v2 + 2 ∗ v3
3

)2

(9.16)

a = 90− tan−1
(

Vy

Vx

)
= 90− tan−1

(
−
√

2 ∗ v1− v2 + 2 ∗ v3√
2 ∗ v1− 2 ∗ v2 + v3

)
(9.17)

w ∗ R = Gx− r2 =

√
2 ∗ v1− 2 ∗ v2 + v3

3
− (−v2) =

√
2 ∗ v1 + v2 + v3

3

w =

√
2 ∗ v1 + v2 + v3

3 ∗ R
(9.18)

All combined into one algorithm is found for the case of this thesis’ robot, which cna be seen in Table 13.

In this algorithm the traveled distances of each wheel is used (di) and the radius of the circle on which the

platform rests (R).

Algorithm 13 Three wheel odometry
1: x = y = θ = 0
2: while true do
3: d1, d2, d3 = getWheelMovement

4: δx =

√
2 ∗ d1 − 2 ∗ d2 + d3

3

5: δy =
−
√

2 ∗ d1 − d2 + 2 ∗ d3

3

6: δΘ =

√
2 ∗ d1 + d2 + d3

3 ∗ R
7: x+ = δx
8: y+ = δy
9: Θ+ = δΘ

10: publishOdometry(x, y, Θ, δx, δY, δΘ)
11: end while

9.1.3 Calibration

No odometry system is perfectly aligned and calibrated out of the box, they all have slight deviations on

many fronts. To accompany for the errors in an odometry system there is a need to calibrate it as precise as

possible. For the three wheeled setup an adaption of the calibration method provided by [4]. Their method is

quite simple and consists of several test runs to gather some data of the approximate errors, which are then

fed into a few formulas which give the calibration values. The steps to follow are:

1. Setup robot at the start position. Make sure the orientation angle is also zero.
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2. Let the robot move along a straight line straight forward, stopping after a predetermined length of

travelling.

3. Once it has moved, measure the robots absolute position with respect to the reference coordinates it

was supposed to move to.

4. Repeat steps 1-3 a few times for some more date to improve calibration result.

5. Calculate longitudinal, lateral and rotation errors for each test run.

6. Calculate the correction matrices as defined by [4] and seen below in Algorithm 14.

7. Adjust each of the motors rotational speed with the resulting correction matrices from step 6.

Algorithm 14 Odometry calibration [4]

1: R(θ) =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1


2: J−1

n×3 = diag
[

1
r1cos(γ1)

. . .
1

rncos(γn)

] sin(α1 + β1 + γ1) −cos(α1 + β1 + γ1) −l1cos(β1 + γ1)
...

...
...

sin(αn + βn + γn) −cos(αn + βn + γn) −lncos(βn + γn)

 R(θ)

3:


ϕ̇e,1
ϕ̇e,2

...
ϕ̇e,n

 = J−1

 0
0
−θ̇e


4: Flat = diag

[
1 +

ϕ̇e,1

ϕ̇1
. . . 1 +

ϕ̇e,n

ϕ̇n

]
5: Flon =

L√
(L + x̄e)2 + (ȳe)2

6: J−1
c = FlonFlat J−1diag

[(
1 +

ϕ̇e,1

ϕ̇1

)
1

r1cos(γ1)
. . .
(

1 +
ϕ̇e,n

ϕ̇n

)
1

rncos(γn)

]
×Flonsin(α1 + β1 + γ1) −Floncos(α1 + β1 + γ1) −Flonl1cos(β1 + γ1)

...
...

...
Flonsin(αn + βn + γn) −Floncos(αn + βn + γn) −Flonlncos(βn + γn)

 R(θ)

To explain the formula each line from the algorithm is analyzed, for a complete mathematical deduction see

the referenced paper by [4]. In the first line R(θ) is simply the rotation matrix used to convert the robot’s

movements from its current orientation, θ, to the global reference frame. Next the inverse Jacobian is given,

in this formula the n (number of wheels) is to be filled. A few more parameters per wheel are to be filled

in as well, starting with the orientation of each wheel in reference to the robot’s frame, αi. βi denotes the

angle of the wheel relative to the robots main body. γi is the angle between the rotation axis of the smaller

circumferential rollers and the wheels main plane. And lastly ri is the radius of the wheel. For line 3 the

only parameter left to explain is the θ̇e, which is simply obtained by taking the measured error angle θe and

dividing it by the time t taken to complete the calibration run. Line 4 uses the outcome of line 3 together with

the nominal angular velocities per wheel, ϕ̇i. In line 5 the longitudinal error is calculate by taking the x and y

errors, x̄e, ȳe, together with the length of the traveled calibration trajectory, L. Then in line 6 the outcome of all

of the other parts of the calibration formula is taken together to get the corrected inverse Jacobian matrix, J−1
c .

This J−1
c is to be applied to the given movement vector to correct the wheel speeds to let the robot actually

follow the movement vector as precise as possible. Some of these variables can already be given for the robot.
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These variables, found in Table 9.1, can be applied to the calibration algorithm above.

Table 9.1: Calibration parameters

Specification Dimension
Number of wheels, n 3 or 4

Wheel radius (ri) 0.05

Wheel steering angle (βi) 0

Roller axis angle (γi) 0

Wheel shaft angle (αi) in 4 wheel setup 0,
π

2
, π,

3π

2
Wheel shaft angle (αi) in 3 wheel setup 0,

π

2
,

5π

3

9.2 Inertial measurement unit

Having just the computed odometry from the wheel encoders gives a lot of information of the robots new

position over time, however it is unable to detect any form of slippage in an easy manner. Another deficit

the robot’s shape brings with it is that due to its single point of contact with the ground it might rotate over

time which it would be unaware of looking at just the encoder data. To compensate for this extra sensors

are needed which try to keep track of the robots position by measuring external forces such as gravity and

magnetism. For this the Inertial Measurement Unit (IMU) has been created, which hosts and accelerometer,

a gyroscope and a compass.

These sensors are available in various forms and range from tens up to thousands of euro’s. The more

expensive ones are capable of more accurate and less noisy measurements in combination with a higher read

out frequency. The only downside they all have is their tendency to drift over time, meaning if the robot

remains stationary the IMU sensor might show a (very) slow continued movement. This would eventually

lead to thinking the robot might be in an upside down position, this effect is once again reduced when more

expensive and precise IMU’s are used. This comes from the more precise measurements provided by them

which reduce the error introduced when the acceleration data is integrated. An overview is given in Table 9.2

where the various grades of quality of IMU’s are given with their respective properties.

Seeing all of the various grades in Table 9.2 and furthermore keeping in mind the fact that the robot is to be

used in an indoor environment a tactical or navigational grade IMU would be preferable. Going any lower in

grade will dramatically increase our errors, going to over 120km/h of positioning error on automotive grade

or 180km/h or more on consumer grade IMU’s. Whereas the navigation and tactical grade IMU’s offer the

best precision they are, as mentioned above, very expensive going to thousands of euro’s quickly. Therefore

this would not be an option, so the higher end automotive grade IMU’s are used, which in the case of BB-8

would be the Phidgets 1044 Spatial Precision 3/3/3 High Resolution IMU. This IMU offers the precise, high

end automotive grade, sensors combined with the lesser automotive grade sensors as backup in case the

change in speed becomes to high to correctly measure with the high precision sensors. This also enables the

robot to keep working under those conditions by using the lower precision sensors as a fail-safe.
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Table 9.2: Performance of different grades of intertial sensors. [2]

Grade Navigation Tactical Automotive Consumer

Sensor type Gyro Accel. Gyro Accel. Gyro Accel. Gyro Accel.

Bias
0.005 - 0.01

(deg/hr)

5 - 10

(µg)

1 - 10

(deg/hr)

200 - 500

(µg)

150 - 180

(deg/hr)

1200

(µg)

360

(deg/hr)

2400

(µg)

Scale

Factor

5 - 50

ppm

10 - 20

ppm

200 - 500

ppm

400 - 1000

ppm
—— —— —— ——

Noise
0.002 - 0.005

deg/hr/Hz

5 - 10

g /hr/Hz

0.2 - 0.5

deg/hr/Hz

200 - 400

g /hr/Hz
—— —— —— ——

Positioning

Error
∼ 2 (km/hr) ∼ 20-40 (km/hr) ∼ 2 (km/min) ∼ 3 (km/min)

9.2.1 Madgwick

As mentioned the IMU’s present quite noisy data, to compensate for this and get good results they will have

to be passed through a filter. The go to filter was a Kalman filter for many years, however these become quite

heavy in situations where multiple data sources need to be combined. This meant that for IMU’s, which give

up to 9 types of data (3 axis for each of the included sensors), another solution needed to be found. This has

been done in the form of the Madgwick filter [93] which is a simpler filter specially optimized for IMU’s.

Another benefit this optimization brought with it is the fact that it is even more precise then the usual Kalman

filters, producing only a error of up to 0.7 degrees compared to the Kalman filters maximum of 1.3 degrees

of error.

This filter has the option to be implemented with or without the use of the compass. By using the compass it

could even better accomplish its task of eliminating gyroscope drift. However due to the fact that this robot

has stepper motors which create temporary magnetic fields this might not be useful. This has to be seen

during calibration if these temporary magnetic fields can be eliminated or the magnetic sensor should not

be used. To accomplish the implementation of this filter the use of the ROS package imu filter madgwick is

used. To see the implementation of this package and how it is connected to services and topics in ROS please

go to Appendix B.

9.2.2 Sensor fusion

Now that there are multiple data sources for the robot’s position and heading a way to fuse these correctly

is necessary. This is typically the area in which Kalman filters are used, specifically an Extended Kalman

Filter which can use non linear measurements. This filter gives the robot the possibility to fuse various data
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sources, each of which of course is more or less noisy, to get a better, less noisy, pose estimate. To recall

from Section 4.4: EKF can be used for any configuration of sensors, only the state transition model has to

be adjusted to allow the correct use of every data source. The use of the Extended Kalman Filter in this

case would be to take the orientational data from the IMU to compensate for the wheel encoders inability to

correctly determine slight rotations after movement. It’s accelerometer data could also be used to check the

wheel encoder’s velocity data by integrating it, and once more its actual position by integrating the velocity

data. This last part however could turn out to not be useful because of the error introduced in the (double)

integration.

All of this is possible with the use of the robot localization package [94], which when set up correctly can

take in numerous data sources. For each of these data sources exactly which data is fed into the filter can be

configured and thus used in correctly estimating our pose. In the case of the wheel encoders it uses the x and

y position and the ẋ and ẏ speeds. This is then combined with the pitch, roll and yaw of the IMU, together

with their corresponding speeds ˙pitch, ˙roll and ˙yaw. Lastly the acceleration in the x and y plane, ẍ and ÿ is

used by integrating it to check the speeds and once again by integrating the speeds to check the position. As

with the Madgwick filter the implementation of this filter into the system can be seen in the Appendix B.

9.2.3 Calibration

As with any sensor calibration is needed, especially once forces that differ all over the world are measured,

as is the case with an IMU which measures gravity and earths magnetic field. The way to calibrate this is

rather simple, the earths gravitational acceleration is to be measured for the used IMU in each for each of

the 3 axis during stand still. To do so each of these three axis is to be put perpendicular to the ground

which can simply be done by using a plumb to which the IMU is mount perfectly parallel to. After having

done so each of the axis acceleration measurement can be read out before being rotated 180◦ to measure the

respective axis negative acceleration measurement. Using both the negative and positive readouts of each of

the accelerometers axis the bias of each axis can be determined by the simple average of those two readings.

Each of these rotations is done in a particular order as to incorporate the gyroscope calibration at the same

time. To get the gyroscope bias the robot is to remain perfectly still, then after a short while the value can be

read out to see how much the gyroscope has drifted. This order allows each of the gyroscope axis to be tested

in a good fashion to get the right gain values. The order to use is as follows (there are of course variations

possible, as long as each axis of both sensors it put through its paces):

1. Place the IMU in the Zup orientation, record the Zup accelerometer measurement and gyro bias vector.

2. Rotate the IMU about the X axis 180 degrees to the Zdown orientation. Record the integrated gyro

measurements during the rotation around X axis. Record the Zdown accelerometer measurement.

3. Rotate the IMU about the Y axis 90 degrees to the Xdown orientation. Record the Xdown accelerometer

measurement.

4. Rotate the IMU about the Y axis 180 degrees to the XupP orientation. Record the integrated gyro

measurements during the rotation around Y axis. Record the Xup accelerometer measurement.
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5. Rotate the IMU about the Z axis 90 degrees to the Ydown orientation. Record the Ydown accelerometer

measurement.

6. Rotate the IMU about the Z axis 180 degrees to the Yup orientation. Record the integrated gyro mea-

surements during the rotation around Z axis. Record the Yup accelerometer measurement.

The calibration formula for IMU’s are given by [5]. They express the true acceleration and angular velocity

vectors as seen in Algorithm 15. In that formula the measured values from the IMU are corrected according to

parameters acquired later in this section to give the calibrated outcome. To understand the actual calibration

formula understanding the formula from Algorithm 15 is essential. The calibration algorithm they propose is

a new one where Fourier Transforms are used to calculate the parameters. They have compared this method

with the common Recursive Least Squares (RLS) and due to the simplicity and small differences in actual

outcome after calibration the more easy RLS method will be used here to calibrate the IMU.

Algorithm 15 Correction formula to calibrate and align IMU [5]

F =
[
Fx Fy Fz

]t

δF =
[
δFx δFy δFz

]t

S f =

kF
x 0 0

0 kF
y 0

0 0 kF
z


M f =

 0 mF
xy mF

xz
mF

yx 0 mF
yz

mF
zx mF

zy 0


BF =

[
bF

x bF
y bF

z

]t

F =
(
SF + MF

)(
δF− BF

)
+ wF

To explain Algorithm 15, in line 1 the true acceleration or angular rate is defined as F. In line 2 δF depicts the

measured acceleration or gyro values from the IMU. SF in line 3 is the scale factor, to accompany for wrong

scaling at higher acceleration or angular rates. To make sure the acceleration and gyro sensors from the IMU

are aligned to their correct axis MF is defined in line 4. In line 5 the last parameter of significant interest is

shown which is the bias BF. Lastly in line 6 the entire correction formula is shown into which all the variables

should be entered to get the corrected values from the IMU which are then as close as possible to the real F

values. In this last line another parameter is introduced which adds the noise terms, wF. These noise terms

are assumed to be white Gaussian.

To actually get the parameters needed for the alignment formula given by Algorithm 15 the RLS method

is to be applied on the acquired values from the measurements. In order to do this [5] rewrites line 6 from

Algorithm 15 to the following:

F =
(
SF + MF

)(
δF− BF

)
+ wF

= AS
FsF + AM

F mF − B
′
F + wF

=
[

AS
F AM

F −I[3×3]

] [
s f m f B

′
F

]T
+ wF

(9.19)

57



To explain the last line of this equation with known variables:

AS
F =


δFx 0 0

0 δFy 0

0 0 δFz


s f =

[
kF

x kF
y kF

z

]T

m f =
[
mF

xy mF
xz mF

yx mF
yz mF

zx mF
zy

]T

B
′
F =

[
bF′

x bF′
y bF′

z

]T

The standard RLS method for which line 6 of algorithm 15 is adjusted is as follows:

z = HΘ (9.20)

To show the relation between Equation 9.20 and 9.19 the following is given:

z = F

H =
[

AS
F AM

F −I[3×3]

]
Θ =

[
s f m f B

′
F

]T

The estimated parameter matrix Θ̂ is then given by [5] as follows:

Θ̂n = Θ̂n−1 + Kn
(
zn − HnΘ̂n−1

)
(9.21)

In Equation 9.21 the actual parameters needed to enter into the correction formula are given. In this equation

the following variables were used:

Kn = P−1
n−1HT

n
(

HnP−1
n−1HT

n + I[3×3]
)−1

Pn =
(

I[3×3] − KnHn
)

P−1
n−1
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Chapter 10

Evaluation of dead reckoning capabilities

In this chapter the evaluation of the robot shall be explained. Firstly the test setups will be shown and how the

robot should move through them in Section 10.1. After the various setups have been defined the parameters

with which they are evaluated are explained in Section 10.2. Lastly the results of the various levels will

be shown and compared to one another in section 10.3. In this comparison the goal is to show that every

level adds to the robots overall perception of its pose. These levels will be compared when fused together,

expecting each to increase the autonomous capabilities. In this way a good conclusion can be drawn as to if

the level actually benefits the robot. When drawing a conclusion it is important to take in mind the research

goals of defining an navigation architecture that is at the basis of an more elaborate architecture used for

guided tours.

10.1 Experimental test setups

To compare the various levels of the navigation architecture a good test setup has to be defined. The test setup

will compare the navigation architecture levels in various ways. To start of the robot will be set up at its home

position with no rotation, meaning at position with its heading straight forward (x, y, θ) is (0, 0, 0). From this

position the robot will be guided by hand, with the use of a Playstation 3 (PS3) controller connected to the

robot over bluetooth, to a new position. From this new position it should then find its way back to its home

position by using one or more of the navigation architecture levels. This new position will be called the ’let

go’ point for easy of use.

The tests will be built up in difficulty in the following order, ranging from simple to increasingly harder tasks:

1. Moving forward along a straight line.

2. Incorporating a turn into the path after which the robot now has to backtrack, this turn is made whilst

stationary.
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(a) Example of task 1, moving back from a straight line
forward (b) Example of task 2, backtracking the turn

Figure 10.1: Test setup examples.

Figure 10.1 shows the two test setups, each of these differing in their level of difficulty. In Figure 12.5a the first

setup is shown where the robot moves forward in a straight line and has to backtrack it again. This should be

relatively simple for the robot to accomplish since it can keep moving in a straight line without calculating

turns etc. In Figure 12.5b turns are introduced, which the robot is to backtrack correctly.

Each of these tests will be conducted in order on a per architecture level basis. This means the first task is to

be done by the odometry level alone, followed by introducing the IMU. Furthermore only the three wheeled

setup is used when obtaining the results. The reason for excluding the four wheeled setup is given in the

results section. For each of the tasks the length is increased to make the task harder in increments of one

meter up to tree meter, thus one, two and three meter. These path lengths are the same for the task with turns

but with a 90 degree turn followed by a the same length of the path driven before the turn. The length is

increased in the same way as with the straight line, thus resulting in three different lengths of one, two and

three meter. All of these test runs will be performed at a slow speed in order to reduce sudden stops and

turns of the sphere resulting in even higher errors. Per architecture level a total of 10 test runs is performed

per length of a setup. This sums up to a total of 60 test runs per setup with 120 runs in total.

10.2 Evaluation of experimental test setups

The defined experimental setups have to be evaluated in a well described manner in order to compare them.

This evaluation is done for each of the setups individually. A few evaluation parameters can be defined here

in terms of precision and difficulty. All parameters are listed here in Table 10.1.

Parameter Explanation
Precision (x, y) deviation from the home position in m
Orientation θ deviation from starting orientation in radians
Length of path Length of the task that is completed

Table 10.1: Evaluation parameters
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The precision of each of the levels is the most important parameter to compare them. The main goal is to

achieve an precision as close as possible to being absolute. This is very important for the future work when

it is needed in order for the robot to be able to drive through narrow spaces such as doors. A less important

parameter, but still one that can be measured easily, is the orientation. An orientation the same as the starting

orientation, namely θ = 0 is preferred. However due to the omni-directional capabilities of the robot it is

insignificant which orientation the robot is in. Especially considering the future work the head is capable of

rotating freely. This means that any sensors embedded there can observe every part of the world around the

robot without it needing to be in a particular orientation. Lastly the length of the path is another important

parameter, as a limit of the dead reckoning is expected due to no absolute positioning system being available

now. The absence of an absolute positioning system would lead to an inevitable drift over time, which should

thus limit the maximum length before the precision becomes awful.

10.3 Results

In this section the results of each of the navigation architecture levels will be given. In the same way as the

levels were defined in the navigation chapter firstly the wheel odometry is tested. Afterwards the IMU is

added and combined with the wheel odometry in order to increase the awareness of the robots orientation.

Lastly these levels are compared to one another.

The results are given in tables with a graph illustrating the final position. In these graphs the position is

shown as a small dot with the orientation being given by an arrow, which has its base at the dot. In all of

the graphs the orange marker indicates the perfect orientation and home position to which the robot is to

return in case of perfect autonomous navigation. Some overall remarks will be made after the results have

been given since they apply for all results of one of the two navigation architecture levels. These remarks will

explain some of the errors found in the results.

10.3.1 Straight lines

In this subsection the results for the straight line test are discussed. Starting with the odometry only results

for all three lengths followed by the IMU results. The IMU results are then compared to the Odometry only

results to see if any improvement has been made when the IMU is introduced.

To start of with the odometry only results for the path length of 1m from Table 10.2 depicted in red in Figure

10.2. It is clear to see that when the length of the path stays under 1m the this method is not optimal in

terms of precision due to the outliers towards Xe 0.2 and Ye 0.15. However nearly all of the results keep the

orientation fairly directed at the let go point, meaning it does keep a sense of direction.

The odometry only results for a path length of 2m in Table 10.4, once again depicted in red in Figure 10.3

show a different story. These results show the loss of directional awareness with the orientation pointing in
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various directions. Probably due to this loss of direction the precision is also lost. This loss of precision is

clearly shown with some results closer to the let go point where to it was guided than the origin where it was

supposed to go to. However, all of the results still ended up in the direction of the origin when looking from

the let go point.

Lastly to discuss the odometry only results the longest path length of 3m in Table 10.6 depicted in red in

Figure 10.4. These results show a complete loss of directional awareness with the orientation pointing in even

more extreme directions when compared to the 2m path length test runs. This loss of direction is so extreme

that in one case the robot ends up further away from its home position then the let go point is.

Now to get the results where the IMU was introduced to be combined with the odometry. The results a

path length of 1m for this combination are shown in 10.3 depicted in blue in Figure 10.2. All of the resulting

positions are within a few centimeters of the Y-axis, all resulting orientations are aiming towards the let go

point. This shows a slight, but not significant, improvement over the odometry only method.

The IMU and odometry combination results for a path length of 2m are shown in 10.5 and depicted in

blue in Figure 10.3. It is clear to see that in all cases the robot keeps a sense of direction with all resulting

orientations pointing towards the let go point. Once again all resulting positions come close to the Y-axis

within a deviation only in the X-axis of just over 0.5m. When comparing these results to the odometry only

method a significant improvement can be seen. This is probably due to its ability to better track its orientation

when the sphere itself starts to rotate.

Lastly the results for the IMU and odometry combination for a path length of 3m as seen in in 10.7 and

depicted in blue in Figure 10.4. As with the previous two test run lengths the robot keeps its orientation

pointed towards the let go point and the resulting positions coming close to the Y-axis. However, Figure

10.4 shows a deformed depiction of the results to the one massively erroneous result from the odometry

only method around Xe 1.5 and Ye 4.0. Thus the significant improvement over the odometry only method

is slightly less obvious. This improvement can however be deducted from the near perfect following of the

depicted circle, with a lot higher precision when looking towards the Ye.
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x error (m) y error (m) platform orientation (rad)
0.09 0.03 0.3
0.02 0.04 0.1
0.17 0.18 0.3
0.02 0.03 0.2
-0.03 0.02 0.0
0.21 0.15 0.2
0.06 0.00 0.2
0.18 0.14 0.2
-0.05 0.04 -0.2
0.17 0.16 0.5

Table 10.2: Results straight line 1m odometry only

x error (m) y error (m) platform orientation (rad)
0.05 0.02 -0.1
-0.05 0.04 -0.2
-0.03 0.01 0.0
0.09 0.01 0.1
0.19 0.03 0.3
0.15 0.02 0.0
0.09 0.03 0.1
0.09 0.02 0.1
0.14 0.02 0.1
-0.04 0.01 -0.1

Table 10.3: Results straight line 1m IMU + odometry

Figure 10.2: Visualization of Tables 10.2 and 10.3 for first test setup at length 1m
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x error (m) y error (m) platform orientation (rad)
-1.13 1.49 1.2
-0.31 1.09 -1.5
-0.36 0.71 0.5
0.12 0.13 -0.7
0.10 -0.20 -0.5
0.86 1.53 -0.9
0.69 0.93 0.8
0.57 0.28 0.5
-0.89 0.29 -0.6
-0.74 0.16 -0.4

Table 10.4: Results straight line 2m odometry only

x error (m) y error (m) platform orientation (rad)
-0.39 0.12 -0.5
0.13 0.07 0.1
0.25 -0.08 0.2
0.06 0.07 -0.1
-0.57 0.13 -0.1
0.12 0.07 0.0
-0.16 0.09 0.0
0.13 0.11 0.1
-0.02 -0.01 0.0
-0.18 0.05 -0.1

Table 10.5: Results straight line 2m IMU + odometry

Figure 10.3: Visualization of Tables 10.4 and 10.5 for first test setup at length 2m
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x error (m) y error (m) platform orientation (rad)
-1.13 4.12 -1.6
1.54 0.63 0.6
-1.17 0.70 -1.4
-0.76 0.66 -0.9
0.61 0.88 -0.3
-1.37 1.28 0.8
0.99 1.12 1.1
-0.32 0.92 -0.7
0.42 1.87 -2.5
0.32 0.43 0.4

Table 10.6: Results straight line 3m odometry only

x error (m) y error (m) platform orientation (rad)
-0.16 0.09 0.3
1.41 0.33 0.3
-0.60 0.13 -0.3
0.22 0.17 -0.2
0.46 0.18 -0.1
0.92 0.29 0.1
-0.33 0.08 -0.2
0.71 0.11 -0.1
-0.45 0.26 0.1
-0.86 0.34 0.4

Table 10.7: Results straight line 3m IMU + odometry

Figure 10.4: Visualization of Tables 10.6 and 10.7 for first test setup at length 3m
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10.3.2 Turning

In this subsection the results for the test run with the 90 degree turn are given. As in the previous subsec-

tion the odometry only results are discussed first, followed by the IMU and odometry results before being

compared to one another.

In Table 10.8 the results for the odometry only are shown for the shortest length. These results are depicted

in red in Figure 10.5. As with the results from the straight line test the odometry only method is able to keep

a sort of sense of direction. Although this sense of direction is worse then in the straight line test with less of

the results pointing towards the point where the turn was made. What is less obvious but still seems to be a

pattern is the precision errors following a line from the third quadrant to the first (negative x and y towards

positive x and y). This could be caused by the rotation of the sphere being higher in one particular direction

during the movement.

The results for the odometry only method for the 2m path lengths with a turn is shown in Table 10.10, being

depicted in red in Figure 10.6. Once again the robot starts to lose its orientation when path lengths exceed

1 meter. Remarkable however is that in this case the final positions do not follow the line from the third

quadrant to the first. This is seen in the two outliers in the second quadrant. It is possible that these two

outliers are caused by turning back to far due to the sphere moving with the robot itself.

Lastly the odometry only results for the 3m path lenths with a turn. These results can be found in Table

10.12, being depicted in red in Figure 10.7. As in the shortest path lengths these results seem to follow the

mentioned line from the third to the first quadrant. Furthermore the orientation is no longer correct.

To get to results of the the IMU and odometry combination. All three lengths can be discussed at once here

since the all seem to follow the same pattern. These results can be found in Tables 10.9, 10.11 and 10.13. They

are depicted in blue in Figures 10.5, 10.6 and 10.7. In all results the robot keeps a much better orientation

when compared to the odometry only method. The precision is also a lot better, being more clustered. Some

precision is of course lost when the traveled path increases, but still remains significantly better in all results.
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x error (m) y error (m) platform orientation (rad)
-0.23 -0.23 0.5
-0.16 -0.32 -0.6
-0.58 -0.17 -0.5
0.47 0.29 -0.3
0.34 0.18 0.3
-0.45 -0.23 0.4
0.13 0.11 0.1
-0.12 0.14 -0.5
-0.18 -0.08 -0.4
-0.38 -0.27 -0.2

Table 10.8: Results two straight lines 1m with 90 degree turn in between odometry only

x error (m) y error (m) platform orientation (rad)
-0.26 0.13 0.0
-0.24 -0.01 -0.2
0.22 -0.07 0.0
0.03 -0.13 0.0
-0.18 -0.05 -0.1
0.16 0.12 0.2
-0.06 0.05 0.1
0.12 -0.08 0.0
0.16 0.16 0.0
0.23 0.15 0.2

Table 10.9: Results two straight lines 1m with 90 degree turn in between IMU + odometry

Figure 10.5: Visualization of Tables 10.8 and 10.9 for second test setup at two times length 1m with 90 degree
turn in between
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x error (m) y error (m) platform orientation (rad)
-1.38 0.34 -0.5
0.19 0.53 0.3
-0.73 -0.34 0.6
-1.06 1.67 -1.3
-0.94 1.34 -1.5
1.53 1.43 2.2
-0.43 -0.84 1.3
0.13 0.91 2.1
0.84 0.76 1.6
-0.26 0.31 0.6

Table 10.10: Results two straight lines 2m with 90 degree turn in between odometry only

x error (m) y error (m) platform orientation (rad)
0.63 0.33 0.3
0.73 0.57 0.4
0.54 0.08 0.3
-0.34 -0.04 -0.2
-0.43 0.22 0.3
0.38 0.16 0.1
-0.67 -0.19 -0.3
-0.36 0.16 0.1
-0.76 0.37 -0.2
0.16 -0.06 0.0

Table 10.11: Results two straight lines 2m with 90 degree turn in between IMU + odometry

Figure 10.6: Visualization of Tables 10.10 and 10.11 for second test setup at two times length 2m with 90

degree turn in between
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x error (m) y error (m) platform orientation (rad)
1.06 0.66 0.8
1.85 1.31 0.3
-1.16 0.08 -0.5
-1.26 -1.02 1.5
0.98 0.46 -1.3
1.37 0.76 -0.6
-1.67 -1.12 -1.2
-1.39 -0.47 -0.3
0.56 0.34 0.6
-0.86 -0.16 -1.0

Table 10.12: Results two straight lines 3m with 90 degree turn in between odometry only

x error (m) y error (m) platform orientation (rad)
-0.67 -0.34 -0.5
0.68 -0.54 0.3
-0.04 0.34 -0.2
-0.79 0.12 -0.3
0.35 0.10 0.1
0.02 -0.30 0.0
0.53 0.30 0.3
-1.12 0.21 -0.4
-0.30 0.34 -0.1
-0.12 0.09 0.0

Table 10.13: Results two straight lines 3m with 90 degree turn in between IMU + odometry

Figure 10.7: Visualization of Tables 10.12 and 10.13 for second test setup at two times length 3m with 90

degree turn in between
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10.3.3 General remarks and four wheeled setup

The reason the odometry only method results have such a high variation in orientation is due to the platform

no longer being able to sense the overall orientation of the sphere. The sphere itself easily rotates due to its

single point of contact with the ground. Having the sphere itself rotate with the platform within it is probably

also the reason the precision is lost in the cases of the odometry only method.

The IMU and odometry combination seems to deviate mostly in the X positions in the first test setup, with

the Y positions coming up just short above the Y-axis. Which expanded to both the X and Y axis once the turn

was introduced. The deviation is probably due to the drift which is found in the IMU itself as was mentioned

in Table 9.2 . In normal cases this drift can be kept to a minimum by using the built in compass. This compass

uses the earth’s magnetic field as a global reference resulting in an absolute orientation value. However, in

this case the presence of stepper motors renders this compass useless. These stepper motors produce strong

magnetic fields in order to rotate the wheels which completely throw the compass off the trail. In order to

improve this a Faraday cage could be built around the stepper motors to confine their magnetic field.

To get to the omission of the four wheeled setup and why no results for it are given. The reason for this

exclusion is that this setup resulted in too much slippage of the wheels on the inside of the ball. This resulted

to such a loss of precision and direction that even driving the robot towards the let go point was very difficult

by hand. This is obvious since the odometry cannot tell when the wheels are slipping. The reason of the

slippage can be compared to a four legged table, which can rock back and forth on a diagonal pair of legs.

A three legged table however cannot, with all three legs being firmly on the ground at all time. This same

principle applies to this robot. When the robot moves from one half of the sphere to another half the two

halves move a bit compared to one another due to the small movement in their fastening. Due to this small

movement the two halves no longer form a perfect sphere on the inside which leads to the robot rocking on

a diagonal pair of legs. This leads to uncontrollable rotation when a third wheel still retains contact to one

of the halves whilst its diagonal paired wheel hangs in the air. To solve this issue either a better fastening

has to be made which does not allow for movement or suspension has to be added. The other option was to

remove one of the wheels which results in contact with both halves at all times and thus reduces slippage to

a minimum.
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Chapter 11

Conclusions

In this chapter the conclusion based on the results are given. More future work can be proposed based on the

conclusions given here, this is therefor discussed in chapter 13.

As is mentioned in subsection 10.3.3 of the previous chapter, getting a four wheeled setup working is im-

possible in the given configuration as seen in section 3.1 for a spherical robot. Due to the small movement

between the two halves of the sphere the internal platform starts to rock back and forth lifting one wheel

up from the inside of that sphere. This results in uncontrollable slippage, which is results to turning of the

platform. This turning is not reported by the odometry due to its inability to detect this slippage. The only

option for a four wheeled setup would be to add suspension to the mounts for the motors. However due to

the increased complexity and therefor increased risk of mechanical failure a three wheeled setup is advised

for future spherical robots with an internal omniwheel platform.

In contrast to more common robot which have direct wheel to ground contact the introduction of a sphere

in between leads to orientation errors when moving. This cannot be controlled by the odometry alone since

it reports no difference in orientation due to it being unaware of the absolute orientation of the robot as a

whole. This loss of orientation awareness was apparent in the results given in section 10.3, even in motion

straight forward and backward. Due to the slow rotation of this robot during turns only the orientation

of the platform as a whole barely moved, not the sphere itself. However when rotating at higher speeds

some rotation errors could occur due to more abrupt movements, which could result in the sphere itself also

rotating or moving. The results thus have shown that during movement and rotation an IMU is necessary in

order to improve the robots dead reckoning performance. With the addition of this IMU as the second level

of the navigation architecture orientation awareness could be maintained for a longer period whilst the outer

sphere rotated. However, the drift found in all IMU’s was noticable in all of the results due to the usage of a

lower cost IMU. This resulted in final positions which were nearly exactly at the distance traveled from the

let go point, but rotated.
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Chapter 12

Future navigation architecture

The navigation architecture as proposed with its two levels of odometry and IMU information can be ex-

panded in multiple ways. A few more levels have already been mentioned which will be discussed in this

chapter. These other levels have also been researched in varying length, thus the amount of detail differs per

level.

12.1 Bluetooth positioning

While this part is out of the scope of this thesis for now, some work has been put into this to figure out how

this could be implemented in a way that suits the needs of this robot.

To make sure a compensation is found for the drift in the IMU the need of an absolute reference system

arises. To achieve this usually methods like the Global positioning system (GPS) are used. The downside to

GPS is that in indoor environments most of the normal, consumer-grade, GPS receivers will not work due

to the signal not being strong enough. This would mean it would have to be enhanced by capturing it and

broadcasting it again with the use of extra antennas [95].

To increase the chances of getting a correct indoor position one could look to the method as described by

rebroadcasting the GPS signal with antennas. On the other hand other systems have been created which could

be implemented more easily by using exists WiFi signals and/or Bluetooth beacons [96]. The idea behind this

method is that you can measure the received signal strenth of the beacon or router, also called the Received

Signal Strength Indicator (RSSI). Then with this RSSI value the distance can be calculated, knowing that the

RSSI value will of course be lower once further away. Then the last thing that rests is to use these distances

and the beacons known position to determine the robots position just like in the case of the GPS.
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12.1.1 Retreiving RSSI

The easiest way to retreive these values is with the use of Bluetooth Low Energy (BLE) beacons. With the

introduction of the Bluetooth 4.0 standard the use of these beacons became much easier since the beacons

no longer have to be paired with the users device. This means that it now works more like the normal

GPS system in which the satellite is the only sender and does not listen to anything else. Once set up, the

robot only has to listen to these beacons which are sending out their packets once every half to one second

(on average, might be adjustable depending of beacon type). Then when a packet is received the bluetooth

controller determines its signal strength and then gives back the RSSI value for further calculation.

The problem with retreiving an RSSI value is that in indoor environments it is rather noisy and thus needs to

be filtered. To accompany for this noisy [6] proposes to use a weighted sliding window method to reduce the

measured fluctuations in the RSSI values. This method works as follows for the array X with rssi readings xi

(up to a maximum of 10 readings):

Algorithm 16 RSSI Smoothing [6]
1: procedure smoothing(X)
2: R = {xi ∈ X|

(
X− 2 ∗

√
Var(X)

)
< xi <

(
X + 2 ∗

√
Var(X)

)
}

3: rssi =
∑ri∈R ri

|R|
4: end procedure

In this way a lot of the noise is filtered out, by throwing away all of the outliers and taking the average of the

more likely correct measurements. Keeping the array’s size to a maximum of 10 does however ensures the

reading remains updated frequent enough to produce accurate results.

12.1.2 Determine position

One of the problems in determining the position is that the correlation between RSSI and distance is not

linear. The opposite even, whilst the RSSI values range from around −40dB when the beacons are 1m away

to −60dB at around 4− 5m to −100dB at 30+ meters. The next problem is that the default way of determining

the distance as described in [6] assumes it works on a logarithmic scale that is continuous. However they are

using a limited equation that is not specifically optimized for our setup. The Friis transmission equation [97]

is a more advanced method. This equation takes into account what the gains of the sender and receiver

antenna, the broadcasting strength and the exact frequency at which the signal is broadcast. However both of

these methods do not incorporate a way to prevent wrong distance calculations in case an object is between

the sender and the receiver. Thus resulting in a faulty outcome that is higher then it actually is, since the

signal strength is lower at the receiver. There are ways to overcome this as described in [98] where they

take the multipath propagation (the signals that bounce off of walls in the room and reach the receiver) into

account.
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The downside to all of these is that you would need to know exactly what the values are for each of the

parameters. An easier way to correctly optimize the way the position is calculated would be to use neural

networks, which have a much better precision [99]. With these the various levels of RSSI could be correctly

linked to a position after enough training has been done. The problem with neural networks however is

that they normally require a fixed size input and the signals from all of the beacons might not be available

everywhere at all times. For this issue a solution has been devised by [18] where they proposed a Modular

Multi Layer Perceptron (MMLP) architecture as seen in Figure 12.1

Figure 12.1: Modular Multi Layer Perceptron [18]. Left is the selector which selects which of the trained
networks is used. Right are the networks with the input layers and the Acces Points (AP 1-3), the hidden
layer and the Location ID which comes out of the output layer

This MMLP enables you to calculate the position even in the case of a loss of signal from one or perhaps

multiple beacons. The selection logic will however always choose the network with the most available inputs

to make sure all of the available data is used. In the case of our BB-8 robot the networks themselves have been

adjusted according to [99] to produce actual x and y values in meters instead of location ID’s, with which

they labeled their positions. Besides this the input and hidden layer have more nodes in our case of course to

incorporate for the extra beacons we have.

Finally after getting the x and y values out of the MMLP the retreived x and y values are fed into a smoothing

algorithm. This smoothing algorithm was initially proposed by [7] to smooth the RSSI values, but in this case

it is also useful to smooth out jumps in the position because of the multiple networks that are used. This

algorithm can be seen in Algorithm 17.
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Algorithm 17 Position smoothing [7]
1: procedure smoothing(α, β, Ts, xprev(i))

2: xest(i) = xpred(i) + α
(

xprev(i) − xpred(i)

)
3: vest(i) = vpred(i) +

β

Ts

(
xprev(i) − xpred(i)

)
4: xpred(i+1) = xest(i) + vest(i) ∗ Ts
5: vpred(i+1) = vest(i)
6: end procedure

In these algorithm Ts is the timestep between measurement i and i− 1, α and β are the gain constants, which

are usually fixed for a specific situation. xest(i) is the smoothed x value, xpred(i) is the predicted value and

xprev(i) is the value from the neural networks. vest(i) and vpred(i) are the estimated and predicted speeds with

which the xest(i) is updated and with which it thus moves closer to the calculated value xprev(i).

12.2 Radar collision detection

The indoor positioning system has now been defined with the aid of bluetooth for quick global positioning

in a building. The next step would be to start with sensing the environment around the robot in order to start

with collision avoidance. In order to do so the easiest way would be to start using radar sensors.

The advantage over the proposed BPS is that in the field of radars various prepackaged sensors are available.

This ensures that signal processing is less of a concern and this section can go more into detail about how to

use the gained information in conjunction with the previously proposed and/or implemented levels. Some

of these radar sensors also have the capability of providing the user with speed and direction information.

This direction information however is usually restricted to inbound or outbound.

As mentioned in Section 5.3, where a recommendation was made for the used mapping techniques, the most

obvious approach for mapping would be to use occupancy grid. Due to the radars ability to tell at what

distance an objects is not much more information can be gained except an object being at a certain position.

Furthermore as mentioned in section 4.5 the best localization technique to use in combination with larger

maps would be the Particle Filter. A recent study has combined both of these recommendations where they

implemented a Real-Time Radar SLAM method in tracking a driving car [19]. Their proposed SLAM method

can be seen in Figure 12.2.

If the method as proposed in [19] is used for the BB8 robot there would be an extension to their method

as seen in Figure 12.2. In order to improve the Odometer data an EKF would be placed in between the

Sensor buffering and Update particle poses as mentioned in Section 4.5. This would probably increase the

effectiveness of the method since the odometer data as used in their study came straight from a very expensive

car with various very precise systems. Their odometry precision can probably not be achieved with the

unfiltered odometry data due to the instability as caused by the spherical shape.
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Figure 12.2: Radar based SLAM implementation [19]

12.3 RGB-D Camera

In order for the robot to eventually give guided tours to humans it has to be able to recognize those humans.

The easiest way to do so is with the use of cameras, with the addition of a depth sensor with which point

clouds can be made as well. Some work into using an RGBD camera has been done already and as such will

be discussed here and recommendations for its implementation will be made. Note that this was early work

and is far from optimal, much can be improved in its implementation. This is also seen later on in the images

which do not yet correctly represent the surroundings.

The usage of RGB-D camera’s makes it a lot easier to distinguish individual places. With these camera’s

objects like paintings, poster, etc can quickly be identified and stored as a landmark with their unique ap-

pearance. This in turn leads to making the localization problem easier to solve. In the case of the robot for

which this navigation architecture is proposed it also has a few other benefits. One of such benefits is the

ability to detect humans which it is giving a guided tour to. It could then be able to directly look at those

persons whilst talking creating a more personal experience.

During earlier work on the robot some work has been put into realizing a working setup with an RGB-D

camera. This camera was eventually removed in order to focus on the basics of the movement before moving

on to more complex sensors such as cameras. The camera in question was a XBOX Kinect V2 capable of

delivering a full HD output at 30 FPS. The live RGB data was then combined with a lower resolution infrared

depth camera to create a point cloud. The advantage of using these point clouds is that they can be converted

to occupancy grids [100]. These occupancy grids can then be used to quickly calculate a path since it simply

has less dimensions for which to calculate it. To see the point cloud and the occupancy grid which were used

see Figure 12.3. In that figure both of the images have a top down view.

A good solution to using the RGB-D camera as a sensor for SLAM has been given in [21]. This method

proposes an advanced set of techniques used to enable autonomous driving. The entire method can be found

in Figure 12.4. The advantage of this method is that is enables the use of Long Term Memory (LTM). This is

very useful in the case of this robot since this enable the robot to quickly find its position based on landmarks
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(a) Point cloud
(b) Occupancy grid

Figure 12.3: Occupancy grid visualization of obtained point cloud for lab [20]

stored from previous guided tours, this is as proposed in section 5.3. These landmarks are imported into the

Working Memory (WM) which is used to actually detect the robot position. With such a known position loop

closures can then also be applied in order to improve the localization. If these loop closures are found the

robot could then localize itself more precisely using the recommended Particle Localization technique in order

to pinpoint its position within either the point cloud or occupancy grid as proposed in section 4.5. After the

localization the Topological and Metric Path Planners as seen in Figure 12.4 simply use Dijkstra’s algorithm

to compute a path. However using the occupancy grid to more precisely calculate the robots position it might

be better to use Approximate Cell Decomposition as proposed in section 7.3.

Figure 12.4: RGB-D base SLAM implementation [21]
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12.4 Future evaluation

For now the robot is quite limited in capabilities due to its highly unstable nature and no external references

with the aid of sensors. These future navigation architecture levels should improve this and be capable of

more difficult tasks. Thus more research can be done towards its effectiveness when these levels are added.

Future test setups could include the following:

1. Incorporating more turns and turns whilst driving.

2. Moving around obstacles.

(a) Example of future test setup 1, moving with turns
(b) Example of future test setup 2, moving around ob-
stacles

Figure 12.5: Future test setup examples.

More light could also be shed on the aspect of speed during movement and rotation. Whereas in the test

setups used in the results as given in section 10.3 were performed at slow speed, the influence of speed was

not researched. Furthermore it might be interesting to see how the errors in rotation exactly occur. This can be

achieved by either following the path of the robot with a method to determine the true ground path. Another

option might be to install a camera on the inside of the sphere. This camera can be used in order to see what

happens when the internal platform drives over the joint connecting the two halves of the sphere. Another

interesting this that might be seen with this camera is what exactly happens during driving and rotation as

this is unknown at this moment.
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Chapter 13

Discussion

Due to the limited resources and budget available to build the robot, much could be improved in terms of

precision. The fabrication of the entire frame and motor mounts together with the assembly of all parts were

done by one or more students. This leads to an imperfect internal drive platform which is a part of the errors

found in the results. Also due to the limitation in budget cheaper sensors and motors where used. These

cheaper parts have a lower resolution and higher noise which result in worse performance of the navigation

architecture as a whole. Therefor with a higher budget and higher quality parts, frame, etc. a better result

could be found than given here.

Furthermore due to the manual guidance of the robot to the let go point the path towards that let go point is

suboptimal. But as mentioned due to the spherical shape an orientation error can arise easily. When guiding

the robot by hand to its let go point dead ahead it will also move slightly to the sides. This sidewards

movement will also lead to orientation errors and therefor reduce the outcome. However, in the case of a

navigation architecture capable of perfect position and orientation awareness this should not be a problem.

All of the test runs were also set up by hand. This means that the robot was not exactly at position 0,0 when it

comes down to centimeters. Knowing that the length of each run is quite small and the size of the robot is big

compared to this run, some of the precision errors can be traced back to the setup. As proposed in chapter 12

better test run setup can be done in order to more precisely measure the precision and orientation errors.
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Appendix A

BB-8 technical details

In this appendix more details of the robot are given, elaborating on the the actual components and their

characteristics. In the first section the shell is explained in more detail, followed by the motors and servo’s.

Finally the computing hardware and electrical components are shown together with a complete electrical

diagram how everything is connected.

A.1 Shell

Each of the shells’ hemispheres is made up of 20mm thick PU foam which is milled with a CNC machine. The

milling was done up to 8cm of height per slice of the hemisphere due to the limitations of the CNC machine,

later on these are glued together to form a complete hemisphere. Around this foam two layers of 225 g/m2

fiberglass and epoxy resin are placed, enveloping both hemispheres completely. The closing mechanism is

provided by two 2cm long rabbets that interlock. These are first milled into the PU foam to make sure the

fiberglass is molded to their correct shape. The rabbets are then covered with hook-and-loop fasteners all

around the hemisphere. Some parts are intentionally left open to prevent the connection from becoming to

strong to open by hand.
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Figure A.1: BB-8 shell mock-up sketch

In Figure A.1 a mock-up sketch of the shell is given which was used during its design and construction. This

sketch is zoomed in on the edge between the two hemispheres, with the rest continuing to the left and right.

The dotted green part in the center represents the 20mm thick PU foam, the red are the layers of fiberglass

and epoxy and the black part is the hook-and-loop fasteners, which are placed on the two 2 cm long rabbets.

A.2 Motors and servo’s

The motors are Trinamic QSH6018-65-28-210 stepper motors, each of which is controlled by its own driver.

The stepper motors are capable of delivering 2.1Nm of holding torque, run at 36V and use up to 2.8A of

power, making 200 steps per full rotation. The drivers that are used are Trinamic TMCM-1160 stepper motor

drivers, built specifically for the used stepper motors. They have a voltage range of 9 to 51V and can, with

proper heat sinks, deliver up to 4A continuously. Communication with these drivers is possible via serial

USB. The USB connection is made over USB 1.1 (FullSpeed 12Mbit/s) which is more then enough for the

simple data that is sent back and forth. Each motor has its own USB cable to control them directly without

interference of data being sent to other devices that are also connected like with I2C or SPI.

For the head mount two types of servo’s were used, the more powerful being the Hitec HS-805MG’s with

the smaller for just the rotation being the Hitec HS-645MG. These servo’s are controlled by PWM signals

originating from a simple arduino.
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A.3 Hardware and electrical components

The entire robot will eventually be controlled by a powerful Jetson TX1 development board, which has a

quad-core ARM Cortex-A57 together with a 256 cuda-core Maxwell GPU. The CPU and GPU together run

under 10W of power at full load, whilst still providing over 1TFLOPS of performance. To see all of the other

available connections for the Jetson TX1 view Figure A.2. This board is located in the head for the fact that it

has USB 3.0 built that probably will be required by camera’s for its increased speed, since these camera’s can

only be placed in the head (the body is completely closed). It also operates in cooperation with a Raspberry

Pi 3 Model B located in the body of the robot which are connected to each other via an ad-hoc Wi-Fi network.

The Pi then communicates with the four motor controllers via serial USB and the arduino for the head mount

via I2C [101]. This Pi is more than capable of handling simple instructions and sending commands to the

motor due to its quad-core 1.2GHz processor.

Furthermore there is a 720 Wh 4 cell LiFePo4 battery (3.2V, 60Ah per cell) inside the body for the motors

and other internal hardware. These four separate cells are hooked up to a Simple Battery Management (SMB)

board. This SBM Board combines the four cells to a 12.8V circuit capable of delivering 60A of current. With

the use of this SBM Board the cells are charged and it also continuously balances the cells to increase their

lifespan. In the head the same types of batteries are used however only with a capacity of 120 Wh, though

enough to keep the Jetson and some sensors operating for a prolonged amount of time. To convert some

power as the servo’s run at 6V XL4015 step down converters are used, they are set parallel to make sure over

current does not occur, since they cannot provide enough power when set up with one step down converter

per servo. When they are put in series they can provide enough current since the smaller servo requires a lot

less. To give the stepper motors some more speed, since they are able to attain higher rot/s when given a

higher voltage, LTC1871 step up converters are used to boost the voltage up to 36V. A complete diagram of

all the connections in the sphere can be found in Figure A.3.
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Figure A.2: Jetson TX1 Connections [22]
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Figure A.3: BB-8 electrical diagram
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Appendix B

Implementation into ROS

This chapter of the appendix will show the workings of the packages that work together with the aid of the

ROS framework in order to make the robot move. To correctly understand everything that is mentioned a

good understanding of the ROS framework is essential. First of all each of the packages will be reviewed.

This will be followed by showing how these packages work together for each of the two proposed navigation

architecture levels.

B.1 Packages

In order to show how the robot works the usage of each of the packages is explained. This will encompass all

of the packages used for the navigation architecture, including packages readily available from the commu-

nity. In Table B.1 all of the packages are mentioned together with their usage. Each of these packages works in

a separate process and communicates with each other through their respective topics via the ROS framework.

After the quick overview of Table B.1 a more elaborate list is given in which all of the topics which it listens

or broadcasts to are explained.

Package name Use
phidgets imu node Converts the IMU data from the installed Phidgets IMU drivers to ROS for-

mats, does not filter or alter any data
imu filter node Filters the IMU data to combine it to yaw, pitch and roll angles ready for

usage in other packages
ekf localization Applies a EKF filter to odometry and IMU data in order to correctly fuse

them and remove part of the noise
bb8 control node Takes input from the /dev/js/input file (the PS3 controller) and converts

this to velocity commands and starts the homing sequence
bb8 homing node Takes odometry input which portrays the current position and tries to back-

track it with velocity commands in order to end up at the home position
bb8 movement node Takes velocity commands and controls the wheel speeds reports the odome-

try back after movement

Table B.1: List of packages used in combination with ROS
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• Phidgets IMU node. This package converts the data from the IMU to a format that can be transmitted

over the local network through the ROS framework. The used Phidgets IMU has an included driver

which can be installed on any device, but is therefor out of the box not compatible with ROS. This

driver is used in this package in order to obtain the raw IMU data. The raw data is then transmitted via

ROS to other packages via the /imu/data raw topic.

• IMU filter node. The raw data from the IMU cannot be readily used since it does not include a heading.

In order to obtain this heading the raw data is filtered with the Madgwick filter as mentioned in 9.2.1.

This filter combines the gyroscope and acceleration data in order to determine roll pitch and yaw. As

input this topic uses the /imu/data raw topic from the phidgets imu node. When the data from this

input topic has been converted the data is then broadcast on the /imu/data topic.

• EKF Localization. In the chapter 4 various localization techniques have been discussed. One of these is

an EKF, which this node implements. It takes odometry data from the /bb 8/odom topic and IMU data

from the /imu/data and fuses them together. By design it also filters out some noise that is introduced

by the IMU sensor itself. The fused odometry data is then broadcast in the /odometry/filtered topic

in the same structure as is the case on the /bb 8/odom topic.

• BB8 control node. This package connects the used PS3 controller to the ROS framework. By reading

from the /dev/js/input file on a linux machine to which the PS3 controller is automatically connected

after a bluetooth connection has been established. It then partially decodes the commands as sent over

bluetooth and pre-processed by the Linux Joystick drivers. The values obtained afterwards are then

converted to a ROS compliant structure and sent via the /bb 8/cmd vel topic as velocity commands to

move the robot. Once the PS button on the PS3 controller is pushed it calls the /bb 8/homing service

once to hand over control to the homing node.

• BB8 homing node. The goal of the proposed navigation architecture is to move back to its home posi-

tion. In order to complete that task this package takes odometry information as input from either the

/bb 8/odom or /odometry/filtered topics. Depending on which navigation architecture level is being

tested one of the two topics is chosen at the start. The odometry information is then stored in order to

be used later when the homing procedure is started. This homing procedure is advertised as a service

as /bb 8/homing. Once this service is called control of the velocity commands is handed over to this

package which then starts to move the robot back to its home position. Only after calling that service

for a second time during the homing procedure or after the homing procedure is finished the control

is handed back to the control node to have the robot move through controller commands. During the

homing procedure velocity commands are sent over the /bb 8/cmd vel topic.

• BB8 movement node. This package actually controls the physical robot. It is the link between all of

the logic implemented through the ROS framework and the physical wheels. This package listens to

the velocity commands from the /bb 8/cmd vel topic. These velocity commands are then converted to

speeds used by the stepper motor drivers. These stepper motor drivers are attached to this package

over an USB connection. Every cycle the stepper motor drivers are asked for the current step position

in order to calculate the difference in steps. This step difference is then converted to distance and lastly

the odometry for the entire robot is calculated from these values. The odometry is then broadcast on
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the /bb 8/odom topic.

B.2 ROS computation graphs

In the last section each of the built and used packages were explained. These packages listen and broadcast

to a lot of the same topics in order to make them all work together in order for the navigation architecture

to achieve its task. In the first level of the navigation architecture only the BB8 control, BB8 homing and

BB8 movement nodes are used. Their connections are displayed in Figure B.1. This figure does not however

display the services that can be called, such as the /bb 8/homing service, since these are called only once.

The topics displayed there however continuously transfer data in the direction of the arrows (outgoing for

broadcasting and incoming for listening to that topic).

The second level of the navigation architecture introduces the IMU and therefor the packages needed to use

it. The added packages are the Phidget IMU, IMU filter and EKF localization nodes. The homing service is

once again not displayed. The ROS computation graph for the inclusion of the IMU can be found in Figure

B.2.

Figure B.1: ROS computation graph for the first navigation architecture level

Figure B.2: ROS computation graph for the first navigation architecture level
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[50] R. Stricker, S. Müller, E. Einhorn, C. Schröter, M. Volkhardt, K. Debes, and H.-M. Gross, Konrad and

Suse, Two Robots Guiding Visitors in a University Building, pp. 49–58. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012.

[51] R. Simmons, D. Goldberg, A. Goode, M. Montemerlo, N. Roy, B. Sellner, C. Urmson, A. Schultz,

M. Abramson, W. Adams, A. Atrash, M. Bugajska, M. Coblenz, M. MacMahon, D. Perzanowski, I. Hor-

swill, R. Zubek, D. Kortenkamp, B. Wolfe, T. Milam, and B. Maxwell, “Grace: An autonomous robot for

the aaai robot challenge,” AI Mag., vol. 24, pp. 51–72, June 2003.

[52] A. Haasch, S. Hohenner, S. Hwel, M. Kleinehagenbrock, S. Lang, I. Toptsis, G. A. Fink, J. Fritsch,

B. Wrede, and G. Sagerer, “BIRON - The Bielefeld Robot Companion,” in Proc. Int. Workshop on Advances

in Service Robotics (E. Prassler, G. Lawitzky, P. Fiorini, and M. Hgele, eds.), pp. 27–32, Fraunhofer IRB

Verlag, 2004.

91
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