
Opleiding Informatica

Quantifying fuzzer performance

on spatial and temporal memory errors

Vincent van Rijn

Supervisors:

Dr. E. van der Kouwe & Dr. K.F.D. Rietveld

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 13/08/2018

Abstract

Using fuzzers is an effective way of finding security-related bugs in software. Quantifying exactly how effective

fuzzers are at detecting bugs remains a difficult question to answer however, as there is a lack of information

about how many bugs were in the program to begin with, a lack of a ground truth. We present a framework

that can automatically inject vulnerabilities in real-world applications. The framework establishes a class

hierarchy which enables for trivial introduction of new vulnerability injections, by providing both helper

functions and built in examples of vulnerability injections. The general design is then further explained and

the built in injections are discussed. Using this framework, we establish a ground truth, and we quantify fuzzer

performance in detecting the two distinct types of memory errors, namely spatial and temporal memory errors.

In an evaluation, we found that the two types memory errors exhibit different detection behaviour. Spatial

memory error injections were almost always detected by the fuzzer, while the temporal memory errors were

either immediately or never detected.

Contents

1 Introduction 1

1.1 Thesis Overview . 2

2 Background 3

2.1 Fuzzing and AFL . 3

2.2 Vulnerabilities . 4

2.2.1 Common vulnerability examples . 4

2.3 Basic blocks and control flow graphs . 6

3 Related Work 8

3.1 Injection frameworks . 8

3.2 Datasets . 9

4 Overview 10

5 Design 12

5.1 Built in vulnerabilities . 12

5.1.1 Unsafe C function injection . 13

5.1.2 Off-by-n injection . 13

5.1.3 Loop detection . 13

5.1.4 Erroneous memory allocation injection . 14

5.1.5 Dangling pointers and use-after-free . 14

5.2 Introduction of new vulnerabilities . 15

5.3 LLVM . 15

5.4 Passes . 16

5.4.1 Dump pass . 16

5.4.2 Strategic analysis pass . 17

5.4.3 Modify pass . 18

6 Implementation 19

6.1 Class hierarchy of the framework . 20

6.1.1 Replacing instructions . 20

3

7 Evaluation 21

7.1 Results . 22

7.1.1 Spatial memory errors . 22

7.1.2 Analysing spatial memory error injections . 23

7.1.3 Temporal memory errors . 26

7.1.4 Analysing temporal memory error injections . 27

7.2 Evaluation summary . 28

8 Conclusions 29

Bibliography 30

A Appendix 32

Chapter 1

Introduction

Using fuzzers is an effective way of finding security-related bugs in software. Fuzzers find bugs that could

otherwise be hard to find by providing the program with a large number of different inputs, hoping that it

stumbles upon a crash. This in turn could be in indication of the existence of a bug. Determining exactly how

effective a fuzzer is at finding bugs remains a difficult question to answer, as there often is a lack of a ground

truth: when fuzzing a program it is unknown how many bugs there are in total, and it is therefore impossible

to determine crucial statistics such as the percentage of total bugs found. Moreover, it also remains unclear

whether fuzzers are more effective at finding certain types of bugs over other types. In particular we will be

looking at the two types of memory errors: spatial memory errors (accessing memory outside of what was

allocated) and temporal memory errors (accessing at a time which makes the access illegal).

Fuzzer performance in general can be evaluated using synthetic datasets but often do not represent real-world

applications. Fuzzing real-world applications however lacks the ground truth as explained above. In this text,

we present a framework that can automatically inject the two different types of memory errors in real-world

applications. Using this framework, we will benchmark the well-known fuzzer AFL [Zal] on the widely used

GNU Bash [Bas], and quantify how well it performs in detecting spatial- and temporal memory errors. With

this, we make the following contributions:

• We present a framework that can automatically inject vulnerabilities, that can be used for software testing

tool evaluation

• We implement a prototype of the framework in a way so that it can be easily expanded on

• We evaluate the AFL fuzzer in general, and compare spatial- and temporal memory error detection rates

1

1.1 Thesis Overview

This chapter contains the introduction; Chapter 2 briefly explains background information necessary to

understand the text; Chapter 3 discusses related work; Chapter 4 shows an overview of the developed

framework. Chapter 5 highlights the general design of the framework and touches upon the implemented

vulnerabilities, while Chapter 6 explains the implementation of the framework in more detail. Chapter 7

evaluates the performance of AFL on Bash; Chapter 8 concludes and mentions some potential future work.

This bachelor thesis was supervised by Dr. E. van der Kouwe at the Leiden Institute of Advanced Computer

Science (LIACS) from Leiden University.

2

Chapter 2

Background

2.1 Fuzzing and AFL

Fuzzing is a popular automated technique of finding bugs in software. A fuzzer finds bugs by supplying a

large volume of different input data to an executable file, in the hope of finding new and interesting program

states, with crashes in particular.

American Fuzzy Lop (commonly referred to as AFL) is the fuzzer we picked as our main benchmarking fuzzer

in this research [Zal]. AFL is a grey-box fuzzer, meaning that it uses some form of instrumentation to retrieve

data about the program it is fuzzing. AFL in particular injects instrumentation instructions at certain locations

to track at run-time which paths have been visited already, and which inputs trigger the discovery of new

paths. A limitation of AFL is that this instrumentation is done during compile-time using wrappers for Clang

and GCC. The source code of the tested program therefore has to be in possession by the testers. Note that this

possession of source code is not strictly necessary, AFL can fuzz without instrumenting the target binary, but

this significantly reduces the fuzzing performance as it is in that case blindly supplying input data, program

state agnostic.

AFL generates new input in a mutation-based fashion (akin to how evolutionary algorithms evolve their

solutions). Input that triggered new program states are more likely to be mutated again, instead of using

CPU cycles on inputs that have not revealed any new program states for a while. AFL implements a wide

range of possible mutations on the input such as byte/bit flipping, applying simple arithmetic operations to

byte/words/dwords and splicing inputs at a random location. A drawback to the particular approach in AFL

is that the mutation is chosen arbitrarily. Other fuzzers, such as the VUzzer, base the mutations on control-

and data-flow analysis of the program [RJK+
17]. This can be leveraged to prioritise deeper paths over frequent

paths, which arguably yields more interesting paths. The Angora fuzzer adds context to branch coverage, a

technique that enables the fuzzer to distinguish executions of the same branch in different contexts, allowing

for better program state exploration [CC18]. When it comes to fuzzers, it is generally desirable that the input

it generates is both good, meaning that it has a high chance of discovering new program states, and at the

3

same time can be generated relatively fast. This provides for a tough challenge, and as a result existing fuzzers

usually perform a balancing act between the two.

2.2 Vulnerabilities

A software vulnerability is a weakness in a program that could potentially be exploited by an adversary, usually

by means of exploiting faults (bugs) in software. There are many kinds of software vulnerabilities, weaknesses

and bugs (the Common Weakness Enumeration is a community-developed list of software weaknesses, and at

the time of writing lists 716 different categories [CKMM13]).

There is a distinction between two specific types of memory bugs: spatial memory errors and temporal memory

errors. [SPWS13]. Spatial memory errors are caused by dereferencing memory addresses out of the bounds

set by a certain memory allocation. The buffer overflow/underflow is an archetypical example of a spatial

memory error. By being able to write out of bounds, adversaries could potentially overwrite crucial data. For

example, by overwriting the return pointer an attacker could manipulate the flow of control of a program, and

let the return pointer point to malicious shellcode that has been inserted by the attacker.

Temporal memory errors are essentially caused by (de)referencing memory at the wrong time. This can happen

when a memory address has been declared free (by a call to free in C or delete in C++), ready to be allocated

again. Whenever a pointer points to a memory address that has been freed already, we call that pointer

dangling. Dereferencing a dangling pointer can lead to unpredictable behaviour and can be taken advantage of

by attackers.

In the next subsections, we will briefly discuss some typical examples of vulnerabilities and also touch upon

how these vulnerabilities can be taken advantage of. The vulnerabilities that are built-in to the framework,

most of which are similar to the vulnerabilities discussed here, are discussed in section 5.1

2.2.1 Common vulnerability examples

An infamous and typical example of a function vulnerable to spatial memory errors is the gets function: this

function takes user input and writes it to a variable but checks no bounds when writing the input data to the

specified variable. Another typical example is strcpy function, where the unsafe functions differs in just the

one argument with its safe counterpart:

Yet the difference is crucial: strcpy copies a string until the the null terminator is found, while strncpy copies

only a set length of characters (note that this is not always used in a safe way either , although it is generally

1 char * s t rcpy (char * dst , const char * s r c) ;
2 char * strncpy (char * dst , const char * src , s i z e _ t len) ;

Listing 2.1: Difference between safe and unsafe C function prototypes

4

1 i n t main (i n t argc , char * * argv) {
2 char *p = malloc (5 1 2) ;
3 i f (argc >= 2)
4 s t rcpy (p , argv [1]) ;
5 f r e e (p) ;
6 return 0 ;
7 }

Listing 2.2: Example of a vulnerable malloc call due to a lack of bound checking

considered a safe function [Kli18]). If somehow an attacker could write out of bounds of the input buffer src

and overwrite the null terminator, crucial data placed after dst in memory could be overwritten.

In addition to unsafe C functions, manual memory allocation is a rich source of bugs as well, especially for

programmers that are not used to having to deal with memory management. An example of such a mistake: a

call to malloc malloc(10) for an integer of length 10, or simply forgetting to check bounds:

Which leads to being able to write past the allocated 512 bytes on line 2. This becomes problematic when a

second buffer q gets allocated right after p, as the adversary is now able to overwrite the metadata of q and

flip the in-use status bit to zero and manipulate the size attribute. Then, when free() is called on the buffer

p, it will also try to free the adjacent buffer q and merge it into one big buffer and the pointer pointing to

the beginning of q can be overwritten [Bro]. This can have serious consequences, as is for example seen in

CVE-2004-0200 [jpe], where a heap overflow allowed attackers to execute arbitrary code via a JPEG image,

completely compromising confidentiality, integrity and availability of the system. In general, when the user

data is larger than the variable its allocated size, it will simply write beyond the bounds of the allocated

memory and therefore introduce a memory error.

A third example of a spacial memory error are called off-by-one. Off-by-one errors are errors in which, as the

name suggests, an argument or boundary check is off by one. Off-by-one errors are especially commonplace in

C library function calls because whether or not the length argument includes the null terminator is inconsistent.

For example, the manpage for strncpy reads “If src is less than len characters long, the remainder of dst is

filled with \0 characters. Otherwise, dst is not terminated." while the fgets manpage reads “If any characters

are read and there is no error, a \0 character is appended to end the string". This discrepancy naturally leads

to off-by-one errors, and can only be overcome by simply knowing (or looking up) how it is implemented

for every similar function. The consequence of this is that the least significant byte of the return pointer can

sometimes be overwritten.

The most common temporal memory error occur when memory allocated on the heap is released too early,

while the reference to the, now deleted, object remains (this is called a dangling pointer): In the example in

listing 2.3, the pointer becomes dangling after line 111, yet still gets dereferenced at line 15, in the case the if

statement evaluates to true. This leads to an immediate vulnerability, as the memory that was declared free

could have been claimed and written to again (potentially by an attacker).

5

1 typedef s t r u c t account {
2 char *name ;
3 double balance ;
4 } account_t ;
5

6 i n t main () {
7 account_t * account1 = (account_t *) malloc (s i ze of (account_t)) ;
8

9 i f (! check_balance (account1)) {
10 error_found = 1 ;
11 f r e e (account1) ;
12 }
13 / / . . .
14 i f (error_found)
15 p r i n t f (" Error found in account %s " , account1−>name) ;
16 return 0 ;
17 }

Listing 2.3: Use-after-free vulnerability example

2.3 Basic blocks and control flow graphs

In general, a program consists of data (variables) and instructions. These instructions will (after loading them

into memory) be executed whenever their corresponding function has been called. Instructions by themselves

are simple, but can exhibit complex behaviour when strung together, in particular when constructs like

conditionals and functions calls are introduced.

A basic block then is a list of consecutive instructions which will always be executed in exactly the listed

order, even when conditional statements and function calls are taken into account. This consecutive execution

is guaranteed by the property that there is no other way of entering the basic block other than at the first

instruction (entry), and no way to branch out other than by the final instruction (exit). Basic blocks can be

found by using leaders, instructions that satisfy any of the following three properties:

• It is the first instruction of a program (by definition)

• It is a target of an (un)conditional jump or goto instruction

• It directly follows an (un)conditional jump or goto instruction

Then, for each leader, its corresponding basic block is found by adding all instructions, beginning from that

leader until the next leader is found (or until the program ends).

The basic blocks of a program can be used to construct the control flow graph (CFG) of the source code by

connecting the blocks in a way that aligns with the branching instructions of the source code. An example of

source code, basic blocks and a corresponding CFG can be seen in figure 2.1. A control flow graph can be used

to both optimise and statically analyse source code.

6

Figure 2.1: From left to right: pseudo code, three-address code intermediate representation (leaders are lines 1, 2, 3, 10, 12,
13), control flow graph. Taken from [Aho03]

7

Chapter 3

Related Work

Fault injection has been around for at least since 1989 [ACL89]. Back then it was primarily used for check-

ing the fault tolerance (being able to withstand different kinds of failures) of complex computing sys-

tems [BCSS90] [HSR95] [HTI97]. Fault injection comes in all shapes and sizes, ranging from electromagnetic

injections on the hardware [RNR+
15] to simulating instance (server) failures in cloud environments [sim]. The

most relevant category are the fault injection frameworks and techniques that inject simple bugs in software,

as the framework presented in this text belongs to that category.

3.1 Injection frameworks

One recently developed technique for automatically injecting bugs is LAVA [DGHK+
16]. In addition to being

able to inject those bugs, the authors of LAVA have focussed primarily on injecting bugs that would be

considered realistic. Every bug LAVA injects is accompanied by an input that triggers that bug, in order to

ensure that the bug can be hit during execution (meaning that there is a path from the entry to the program

state of that bug). It needs an execution trace to do this, which in this case is done by running a program

under a dynamic taint analysis for a specific input. The framework presented in this text does not need an

execution trace.

An older but relevant framework for injecting bugs is FERRARI [KKA95]. FERRARI inserts software traps

(a special type of interrupt to inform the operating system something out of the ordinary has happened) in

the target program that can be triggered during execution. This trap alters the program state, resulting in

unpredictable and sometimes exploitable behaviour. As opposed to LAVA, there is no guarantee that injected

bugs (traps) will be hit during execution. On the other hand, FERRARI is able to remove the traps after they

are used, something neither our framework nor LAVA can do.

A third approach taken by existing fault injection frameworks is implemented in Xception [CMS98]. Xception

does not modify the target application nor does it insert software traps. Unlike LAVA, it does not require an

8

execution trace. Xception leverages the advanced debugging options on modern CPUs to jump to Xception its

own (faulty) code. It does this by interrupting the CPU using five different types of exceptions, making the

CPU jump to the injected code and triggering the injection. Injecting faults using Xception therefore comes

down to testing the fault tolerance of a system, rather than being a suitable way of benchmarking a fuzzer, as

Xception just injects and runs faulty code, rather than injecting faults introduced by insecure programming.

3.2 Datasets

In the frameworks above, injections are performed on existing software projects. This is the most relevant to

us, as we are the framework we present in this text does exactly that. There are other ways of benchmarking

fuzzer performance too however, mainly by using datasets that contain vulnerable programs. These programs

are specifically made to be vulnerable, to be used by software testing tools such as fuzzers. The downside of

such datasets is that they are often limited in both volume (number of programs) and size (of the programs),

as the programs are usually written by hand.

One such dataset is the Juliet dataset, a collection of more than 81,000 artificial C/C++ and Java programs.

All of these programs contain known vulnerabilities, in total covering 181 entries in the Common Weakness

Enumeration [CKMM13]. Most of the programs in this dataset contain around 70 lines of code, severely

limiting realistic simulation of real-world programs.

9

Chapter 4

Overview

Benchmarking fuzzers in general is difficult because it is hard to specify exactly how many bugs there are

in a program. If a fuzzer stumbles upon a certain number of crashes, it is in the general case impossible to

determine the ratio of detected bugs versus the total number of bugs that were in the program. It lacks a

certain ground truth.

One way of determining this ratio is by benchmarking on a dataset with a set number of bugs injected in

them. Using such a dataset establishes a ground truth, because the exact number of bugs is known beforehand.

Because of this ground truth, not just the detection rate, but other metrics such as the false negative rate on

that particular dataset can be accurately determined.

Existing modern injection frameworks generally analyse execution traces of programs to determine at which

locations in the source code injections should be performed [DGHK+
16]. This detailed execution trace makes

it possible to effectively determine instructions where input bytes are available that do not determine control

flow. Altering variables that do affect flow control leads to unpredictable behaviour when executing programs.

This behaviour would be fixed before releasing the program, and is therefore not a realistic bug. Then, using

the execution trace, the possible injection targets are found that are near (near in the sense of being close to

each other in the execution trace) those instructions and are finally injected. This approach leads to what we

would consider realistic bugs, as variables that affect control flow are not modified.

What we present here is a framework that can automatically inject vulnerabilities in a configurable target, with

static analysis built in to the framework, establishing a ground truth for accurately benchmarking fuzzers.

The fact that static analysis is built in eliminates the aforementioned need of having an execution trace and

therefore makes it simpler to use. The obvious drawback is how realistic the injected bugs are, which is,

depending on the context, not always a necessity. For example, when performance of fuzzers relative to each

other is quantified realistic bugs are not a strict necessity. In the case of wanting to quantify exactly how a

fuzzer performs on real-world applications, it would be advisable to use a fault injection framework like LAVA

instead. When benchmarking fuzzer performance on finding memory errors, not necessarily in real-world

applications but in applications in general, using the presented framework here is appropriate.

10

Figure 4.1: Overview of how all components work together

The framework has been built on top of the LLVM framework (see chapter 6 for implementation details),

and has been built with modularity and extensibility in mind. A general overview of how the framework

works including all utilized components, from initial source code to fuzzing statistics, is shown in figure 4.1.

The front end used is Clang. The used fuzzer toolchain in this case is the AFL toolchain, which primarily

consists of wrappers of existing tools like assemblers (afl-as) and compilers (afl-clang and afl-gcc). Our

framework consists of the injection analyser and injector components, and because of its modularity any other

front end or fuzzer can be adapted to use the framework. The two main components of our framework, the

injection analyser and injector, are custom LLVM passes, which are thoroughly explained in section 5.4.

This framework has been built by the author of this text in collaboration with Vincent den Hamer and Wampie

Driessen. We have worked together on most parts within the framework. I am primarily responsible for the

following parts:

• Off-by-n injection (strncpy, fgets, loops)

• Temporal memory error injection (use-after-free)

• Reimplementation of alloca and malloc injection in new framework

• Initial injection implementation and improvement of general framework

• Loop detection and dominator tree construction

• Instruction deletion and replacement

All injections and the general workings of the framework are discussed in this text, with emphasis on the parts

I am primarily responsible for.

11

Chapter 5

Design

In this chapter we will be looking at the general design of the framework. We will briefly discuss the

implemented injections, why we have chosen those particular injections and which way they properly emulate

real-world vulnerabilities.

5.1 Built in vulnerabilities

The built in injections in this framework primarily focus on memory errors, errors that are prevalent in

programming languages where the programmer is responsible for memory management. Because there is no

guarantee of memory safety in such languages, as the programmer is solely responsible, attackers are often

able to exploit programs written in those languages. The reason why we have chosen to focus on memory

errors is because these types of mistakes are easily (and often) made by programmers. Therefore injections

of this type resemble mistakes that could realistically be made in real software projects. In table 5.1 a list

containing all implemented vulnerability injections can be found.

In the next subsections, we give reasons why we have picked certain injections and also explain how we

implemented them.

Category Subcategory Injection
Unsafe C strncpy Replace by strcpy
Unsafe C strtol Replacement by atol
Unsafe C strtoll Replacement by atoll
Memory allocation alloca Allocation size manipulation
Memory allocation malloc Allocation size manipulation
Off-by-n strncpy N argument manipulation
Off-by-n fgets N argument manipulation
Off-by-n strncat N argument manipulation
Off-by-n loop N argument manipulation
Temporal use-after-free Insert free calls right after initial allocation

Table 5.1: List of all implemented injections

12

5.1.1 Unsafe C function injection

The built-in category UnsafeC implements several different injections that replace safe C functions by unsafe

C functions. Most unsafe C functions are explicitly marked as such (in the form of a compiler warning) but

are nonetheless still used in production software today. As an example, whenever a strncpy function call is

detected, it is replaced by a function call to strcpy.

The injections in this category are all similar to that particular example. We argue that this is a mistake easily

made by inexperienced programmers, as programs will work exactly as they should when using the unsafe

functions. The only difference is that when given unexpected input, the program will exhibit undefined and

unstable behaviour.

5.1.2 Off-by-n injection

The second injection of spatial memory errors we inject are off-by-n errors, with a configurable n. Off-by-n

errors can occur in both loops as well as in function calls. In loops it is quite natural and not erroneous to have

one extra iteration, as long as pointer in the final iteration does not get dereferenced [SPWS13]. When pointers

do get dereferenced in the final iteration this can cause direct vulnerabilities, as we have seen that for example

overwriting the null terminator at the end of a string can have serious implications in strcpy. The details of

the loop detection that is needed to inject such vulnerabilities can be found in the following subsection 5.1.3.

5.1.3 Loop detection

Loop detection is extensively used within the framework. First, for every user-defined function call a control

flow graph is constructed. Then if the following two statements hold for any pair of basic blocks h and b:

• b→ h is a back edge (h has already been visited through a depth-first-search before b)

• h dominates b (basic block b will always be executed before b)

Then h and b induce a natural loop (a loop in a control flow graph). A visual representation of a general

natural loop, a back edge and a basic block dominating another can be seen in figure 5.1

LLVM has already implemented this natural loop detection algorithm as a standalone function. In our

framework, we check for every icmp integer comparison instruction whether it its references has been

previously detected as a loop. If that particular icmp instruction was detected as part of a natural loop, it is

added to the list of potential injection targets (in the off-by-n category). The implementation is done this way

so that it works exactly the same as all the other built-in vulnerabilities, in order to retain consistency across

the framework. The limitation of this approach is that it only works with the icmp instruction, excluding loops

based on fcmp instructions for example. Another limitation is that loops might get optimized away, leading to

a situation where a loop was written in the program but not detected as a potential vulnerability injection

target.

13

Figure 5.1: Example of a general natural loop, where h dominates b and b→ h is a back edge

5.1.4 Erroneous memory allocation injection

Another spatial memory error category called memory allocation addresses the common error of allocating too

little (or too much) data on either the stack or heap. This could happen in cases such as where the programmer

is not familiar with how a certain data type might look like in memory (and bound checking might not align

with the actual allocated number of bytes). We have chosen to implement this vulnerability because mistakes

using memory allocations are made often (by inexperienced programmers in particular).

The root of all allocations in C lie at the functions malloc and alloca. We have chosen to implement injections

on these functions rather than on its derivatives like calloc exactly because they are the most generalised

way of allocating memory on the stack and heap. The actual injection changes the number of allocated bytes,

which can be adjusted to anything the user wants in the source code of the corresponding subcategory. The

default built in adjustment subtracts 5 bytes from the original allocation size.

5.1.5 Dangling pointers and use-after-free

We have implemented one temporal memory error, use-after-free. This is the most important vulnerability in

this category. The way we have implemented this injection is:

1. Whenever a malloc call is found;

2. Find all its usages, and if the usage is a call to free, delete it;

3. Insert a new free call right after the initial malloc

14

Performing those steps on the code in figure 5.2, it would effectively move the free call on line 5 to line 3.

This way we can introduce a temporal error while preventing injecting a (temporal) double-free error as well.

Although this is one other important injection in this category, calling free on an already freed memory object

caused immediate crashes.

5.2 Introduction of new vulnerabilities

Because of the way this framework has been set-up, it is not difficult to introduce new vulnerabilities that can

be injected. In general, when implementing a new vulnerability, three specific things about the vulnerability

should be addressed:

• The (sub)category the vulnerability belongs to. This may be an existing or entirely new category, both

of which can be implemented with relative ease (in the latter case, most of the implementation can be

copied over from existing vulnerability categories).

• When a vulnerability can be injected. In most cases this boils down to when a certain instruction has

been found with a particular number of arguments, it can be injected. Another common case is when a

call instruction has been found with a particular name (malloc, strncpy, fgets).

• How the vulnerable instruction should be constructed or modified. This can be done by cloning

and subsequently altering the original instruction, or alternatively, the vulnerable instruction can be

constructed from scratch.

After the desired vulnerabilities are implemented and the target has been properly configured, the target will

be built from source using the appropriate building tools. The program then goes through our compiler passes,

which are described in detail in the next section. The framework will assess all of the potential vulnerable

injection targets and list them by category and their subcategory. The list of potential vulnerable injection

targets found by our framework in Bash is shown in subsection 5.4.2. The injection target will be arbitrarily

picked (or based on a given seed, passed as environment variable. See Appendix A), and then the actual

injection will be performed on the target that was picked.

5.3 LLVM

We have built our framework on top of the LLVM 4.0 framework. LLVM is a compiler infrastructure for code

generation and low-level optimisations. [LA04] LLVM is extensively used in academic research, but also in

wide use in commercial and open source projects. LLVM has gained huge popularity over the past few years

because of two particular reasons that is of special interest to developers and academics:

• LLVM is built in a very modular fashion. LLVM can be used for more than just merely writing

optimisation passes. Two prime examples that demonstrate LLVM its versatility, and nothing more than

15

its versatility, is that it can for example be used to make multithreaded processes deterministic [BAD+
10]

and verifying pointer integrity [KSP+
14]

• The LLVM intermediate representation (IR). The LLVM IR is both language and CPU independent, and

preserves most of the knowledge of the code. LLVM’s IR can be represented in a way that is syntactically

similar to assembly languages (just like machine code can be represented as assembly language). An

example of LLVM IR and its corresponding C code is shown in figure 5.2.

Example function in C

1 i n t main (i n t argc , char * argv []) {
2 char * a = (char *) malloc (1 5) ;
3 gets (a) ;
4

5 p r i n t f ("%s " , a) ;
6 f r e e (a) ;
7 return 0 ;
8 }

Example function in LLVM IR

1 def ine i 3 2 @main (i32 , i 8 * * nocapture
readnone) local_unnamed_addr #0 {

2 %3 = t a i l c a l l n o a l i a s i 8 * @malloc (i 6 4

15) #3

3 %4 = t a i l c a l l i 8 * @gets (i 8 * %3)
4 %5 = t a i l c a l l i 3 2 (i 8 * , . . .) @pr int f (i 8 *

gete lementptr inbounds ([3 x i 8] , [3 x
i 8] * @. s t r) , i 8 * %3)

5 t a i l c a l l void @free (i 8 * %3) #3

6 r e t i 3 2 0 }

Figure 5.2: Original C code example (left) and a corresponding LLVM Intermediate Representation (right)

5.4 Passes

The compilation process using our passes, in short, is as follows. First, all the source code gets tokenised and

parsed by Clang (the compiler front end), one file at a time. This results in LLVM IR separate for each source

file. We then link this intermediate representation together, resulting in one large file in linked LLVM IR. This

goes through an initial optimisation step. This step is called link time optimisation (LTO). This one large

optimised file of LLVM IR then gets passed down several LLVM passes, where the actual injection analysis

and the injection itself happens. We introduce several new passes in addition to using existing passes. The

order in which the passes are run can be seen in figure 5.3. What each pass does is described in detail in the

subsections below.

5.4.1 Dump pass

The dump pass simply writes out all intermediate code to a file. It is called twice: once before injection and once

after. This is useful for debugging purposes. Note that the final dump produces linked bitcode for the injected

Figure 5.3: Overall passes

16

target (GNU Bash) that can later on be handed to the AFL toolchain, namely the AFL assembler wrapper

afl-as, in order to generate a fully instrumented GNU Bash binary. Instrumenting using the other option,

something that AFL calls QEMU mode, implicated two major disadvantages:

1. Significant fuzzing performance overhead. In our measurements, performance dropped to approxi-

mately 25% of the initial exec speed, which is line with the reported slowdown in the original QEMU

paper [Bel05].

2. In this particular case, fuzzing GNU Bash would always hang AFL after some time, thwarting reliable

fuzzing.

Which is why we opted for using our dump pass in cooperation with afl-as to generate an instrumented

and injected Bash executable. Note that these two things are separate, but are called in succession merely to

generate the executable, and therefore does not harm the modularity of the framework.

5.4.2 Strategic analysis pass

This pass determines exactly which instructions are injectable and how they should be injected. It goes through

every single LLVM IR instruction, checking whether they satisfy the requirements of at least one of the

injections in the framework. These requirements are the requirements mentioned in item 2 in section 5.2.

Every time an injectable instruction is found, a new instance of the relevant subcategory class is created, and

a reference to this instance is returned. The StrategicAnalysis pass collects these references in a list and

prints them out to show the user which potential injection targets are found (target is GNU Bash, the number

following the subcategories denote the number of times an injection in that subcategory has been detected):

------ Potential targets ------

offbyn->fgets x1

unsafec->strtol x2

unsafec->strncpy x50

offbyn->loop x398

allocation->alloca x113

allocation->malloc x36

offbyn->strncopy x50

temporal->uaf x36

And then is handed to the Modify pass. In cases where two potential targets have a reference to the same

instruction, as is the case with allocation → malloc and temporal → uaf, a coin is flipped for each such

conflict to determine which target is added as an injection target. Because a coin is flipped and only one target

is added as an injection target, the problematic situation of trying to inject the same instruction twice cannot

occur.

17

5.4.3 Modify pass

From the list of injectable instructions an arbitrary injection target is picked and injected, by calling the modify

function on the chosen instance. By default, one random injection is picked, but this can changed as desired

in the source code. At this stage the instruction to be modified and original instruction have been set by the

previous pass, so as the name suggests, modify only modifies the instruction (injecting the vulnerability).

In general, the modify function asserts that no prior modification has been performed on the target instruction

and sets up some essential variables for adding new instructions. In most modify implementations the target

instruction is copied, altered to introduce the chosen vulnerability and then inserted in the IR code. The old

instruction is then deleted. In general a distinction is made between whether the argument (of a call to alloca

for example) is a constant number or a variable. In the constant number case, a simple arithmetic operation is

directly applied to change the value. In the case of a variable, an instruction is added to alter the value of the

variable, because the argument value is not known compile-time.

An alternative to this implementation is having one bigger modify function, that takes a vulnerable instruction

and the type of injection as arguments, and then performs the injection. The main advantage of this implemen-

tation is that there is no redundant code at all (the current implementations of the modify function share some

code, but not enough to warrant a helper function). The drawback, why we decided to not take this road, is

that it leads to a lack of structuredness, something the framework in its current state excels at.

18

Chapter 6

Implementation

In figure 6.1, a class diagram of one branch (only the OffByN class is shown here, for the sake of simplicity)

shows how the general structure of the framework plays out. This diagram is then followed by an explanation

of the general framework hierarchy.

Figure 6.1: Class diagram illustrating the class hierarchy of the off-by-n injection

19

6.1 Class hierarchy of the framework

At the root of every potential target instruction lies the abstract standalone InjectableMemoryError class.

This class describes an interface for injections (such as pure virtual functions for getting the error type and

applying the injection).

Every vulnerability category is a derivative of the InjectableMemoryError class, as is seen with the OffByN

class in figure 6.1. The primary reason for this is to group all similar injections to retain orderliness and being

able to easily enable or disable those categories when injecting targets. Additional fields relevant to all child

classes can be introduced in this class as well, as is for example seen in the protected field offset in OffByN,

where offset represents the n in off-by-n. Another responsibility of the category classes is having a general

analysis function, which calls the analysis function for each of its children. In the figure above, this function is

called analyseOffByN.

Every subcategory (synonymous with injection in this context) is a derivative of the category it belongs to, and

therefore an indirect derivative of InjectableMemoryError. Its main functions are a static boolean function

for analysing whether an instruction is injectable or not, whether it has been injected already and how to

inject that particular vulnerability. In the diagram above, the modification function modify could be abstracted

one class up, to the OffByN class. In general, the modify functions work as described in subsection 5.4.3.

Other functions as implemented in the subcategories are for getting the original and modified instructions

(returnTargetInstruction and returnModifiedInstruction) and getting the main and secondary error

type (getMainErrorType and getSecondaryErrorType).

6.1.1 Replacing instructions

The InjectableMemoryError class implements a helper function replaceAllUsages, as the built-in functions

llvm::replaceAllUsesWith and llvm::ReplaceInstWithInst perform checks for whether the old and new

instruction are of the exact same type. If the types are not equal it does not perform the replacement.

Those checks do enforce type safety, but this safety is exactly what we are trying to break when injecting

vulnerabilities. Therefore, to break that type safety, a custom function was necessary that implements a general

way of replacing any instruction with any other possible instruction.

20

Chapter 7

Evaluation

This chapter presents an evaluation of fuzzer performance of AFL on spatial and memory errors, injected using

the developed framework. Fuzzers in general can fuzz programs that take all kinds of input, ranging from

images to mouse input. To limit the scope of this evaluation, we will be focusing on injecting vulnerabilities

into a single target, GNU Bash. GNU Bash is the most popular Unix shell and has been distributed as the

default shell for Linux and macOS. GNU Bash being both extensively used and only accepting textual input

makes it a realistic target.

In this evaluation, we perform one injection on Bash at the time, aiming to quantify whether AFL can detect

injected vulnerabilities in Bash or not. During our initial testing phase, injecting more than one vulnerability

in one run lead to unstable behaviour unsuitable for evaluating detection rates. This injected executable

will then be fuzzed using AFL for a maximum of 5 hours each, the time usually given when benchmarking

fuzzers [DGHK+
16] [RJK+

17] [CC18]. This process will be repeated for the categories off-by-n and allocation

representing the spatial memory errors, and user-after-free representing the temporal memory error type. Note

that this does not include the built in Unsafe C category. For each category, there are 10 runs on different

vulnerabilities in that category. This means that for each run, one unique injection has been performed, and is

then fuzzed for 5 hours. We do not repeat runs on the same injected vulnerability. AFL does generate new

input based on the given testcases (which are always the same testcases and in the same order), but because

we perform 10 different runs we argue that this does not harm the evaluation. The results are shown in the

next section, providing possible explanations for the results.

We evaluated on a Ubuntu 16.04 LTS system, equipped with a 4-core Intel i5 CPU and 8GB of RAM. The

custom testcases handed to AFL (which is used by AFL to generate new input) are based upon the regression

tests included in Bash. More information on how and where they were collected can be found in the bachelor

thesis of Vincent den Hamer [VdH].

It is worth noting that during the initial tests when fuzzing Bash without injections, AFL already detected

a maximum of 12 unique crashes. These crashes were only found when using our own custom testcases

(mentioned above). Supplying AFL with the the general testcases included in Bash did not find any crashes. It

21

Run Crashes
1. 12

2. 11

3. 11

4. 12

Table 7.1: Fuzzing results on Bash without injections

turned out this is a integer overflow resulting in Bash crashing, and was already reported in 2015 but never

fixed [Bas15]. The results of fuzzing Bash without any injections can be found in table 7.1. These are 4 repeated

runs on the same uninjected Bash binary, under the same conditions.

7.1 Results

First, the fuzzer detection rates for the spatial and temporal memory errors are shown separately. Then, we

analyse two runs (and therefore injections) for each category in order to gain understanding about why certain

injections did or did not cause any additional crashes. Concluding, those results are compared and discussed,

and we provide possible explanations for the difference. Considering that a maximum of 12 unique crashes

were already found in an uninjected version of Bash, we take that number as the baseline. Crash results in

the following tables are therefore calculated by max(0, #crashes - 12), with the original number of unique

crashes found shown in parentheses. What follows from this is a ground truth, by knowing exactly how many

bugs can be found by the fuzzer with and without injecting vulnerabilities. Crashes on initial testcases are

denoted by a *, followed by the name of the testcase it crashed on.

AFL reports both the number of unique crashes as well as total crashes, and we will be using the unique

crashes statistic. AFL considers a crash unique when the execution path involved any transitions that were not

previously seen in crashes [AFL]. Each run injects a different fault in the category it belongs to, based on a

different seed. The reachability of an injection, whether or not it can be hit during execution, is not guaranteed

by the framework in its current state.

7.1.1 Spatial memory errors

The fuzzing results for the off-by-n (n = 2) category are shown in table 7.2. We chose n = 2 because it

represents the often occurring off-by-one error and, in order to make it easier for the fuzzer to detect errors,

added 1 to it. We have done something similar for the allocation category, where an inexperienced programmer

might allocate one integer less than desired (4 bytes), and then subtracted 1 from it. The results of the off-by-n

category are followed by the results the allocation category in table 7.3.

The results in table 7.2 show that AFL is not particularly good at detecting the injected bugs. Only in 3 out of

10 cases AFL could generate input that crashed Bash, with strncpy in particular only crashing one out of 5

times. The loop subcategory injection caused crashes only 2 out of 5 times.

22

Run Crashes Subcategory
1. 3 (15) loop
2. 1 (13) loop
3. 0 (12) loop
4. 0 (12) loop
5. 0 (11) loop
6. 0 (12) strncpy
7. 0 (11) strncpy
8. 0 (9) strncpy
9. 2 (14) strncpy
10. 0 (11) strncpy

Table 7.2: Fuzzing results on the off-by-n category (n = 2)

Run Crashes Subcategory
1. 0 (9) alloca
2. 2 (14) alloca
3. 78 (90) alloca
4. 0 (12) alloca
5. 1 (13) alloca
6. 106 (118) malloc
7. * array11.sub malloc
8. 372 (384) malloc
9. 12 (24) malloc
10. 3 (15) malloc

Table 7.3: Fuzzing results on allocation injection (subtracted 5 from size argument).

Compared to the off-by-n results in table 7.2, the allocation category in table 7.3 shows promising results.

There does not seem to be an average case, with 8 out of 10 runs resulting in crashes. In one case, one of the

testcases immediately crashed Bash. This could be explained by the fact that both alloca and malloc are both

very common and crucial instructions (calls). If these instructions are then modified, it will naturally lead to

many crashes. Comparing this to the strncpy subcategory, which caused crashes in only 1 out of 5 cases, it

could be argued that the allocation category crashes more often due to its lower level nature.

7.1.2 Analysing spatial memory error injections

For run 10 an injection in the malloc subcategory has been performed. The injection was performed in the

function xrealloc, used, like the GNU libc realloc, for reallocating memory that has been allocated using

malloc before. This function is part of Bash its custom implementation of realloc and is not the same as the

implementation found in GNU libc [Mal]. This version of realloc is faster but also allocates more space than

it strictly needs, which could hamper fuzzer detection performance (as it would take more to trigger a spatial

memory error, because more memory is allocated).

The injected intermediate code can be found in listing 7.1, where we see an additional subtraction of the first

argument at line 8, and then a call to malloc with that new argument. This injection caused 3 additional

crashes. This is a fundamental function for the internal workings of Bash, and the three crashes all have in

common that it wants to expand a command that it cannot store in memory, such as echo \{1..329467295\}

(taken from crash 15), resulting in a segmentation fault. A fuzzer can trigger a crash using this vulnerability

23

1 def ine i 8 * @xrea l loc (i 8 * , i 6 4) local_unnamed_addr #4 {
2 . . .
3 ; < l a b e l > : 1 1 : ; preds = %9

4 %12 = c a l l i 8 * @rea l loc (i 8 * nonnull %0 , i 6 4 %1) #13

5 br l a b e l %16

6

7 ; < l a b e l > : 1 3 : ; preds = %9

8 %14 = sub i 6 4 %1 , 5

9 %15 = c a l l i 8 * @malloc (i 6 4 %14)
10 br l a b e l %16

11
12 }

Listing 7.1: Snippet of injected IR in the malloc subcategory in the xrealloc function (run 10)

with relative ease because it is injected in the body of a function that is called often, as opposed to a single call

that might only be run once. This could be a general explanation of the high detection rates in the allocation

category, in addition to the the fact that it might be caused due to the lower level nature of the allocation

functions.

For run number 5 in the allocation category, we have performed an injection in the alloca subcategory. We

decreased the allocation size by 5, as has been explained in at the beginning of the previous section. The

unique vulnerability injection that was picked by the framework ended up in Bash its adjust_shell_level()

function, a function that is responsible for keeping track how many levels of recursion the current shell is in.

This is relevant when bash is run within Bash, for example. The intermediate representation prior to injection

can be found in listing 7.2, with the relevant allocation at line 2, of which its argument is changed to 1.

From the results in table 7.3, run 5, we can see that it caused one additional crash besides the 12 that were

already found in the uninjected versions of Bash. The input generated by AFL that triggered the additional

crash does not seem related directly to adjusting the shell level, as one might expect, but manually entering

the input in the injected version of Bash did crash Bash.

1 def ine void @ a d j u s t _ s h e l l _ l e v e l (i 3 2) local_unnamed_addr #4 {
2 %2 = a l l o c a [6 x i 8] , a l i g n 1

3 %3 = a l l o c a i64 , a l i g n 8

4 %4 = c a l l i 8 * @get_str ing_value (i 8 * gete lementptr inbounds ([6 x i 8] , [6 x i 8] *
@. s t r . 3 9 . 6 2 0 , i 6 4 0 , i 6 4 0))

5 %5 = icmp eq i 8 * %4 , n u l l
6 br i 1 %5 , l a b e l %14 , l a b e l %6

7

8 ; < l a b e l > : 6 : ; preds = %1

9 %7 = load i8 , i 8 * %4 , a l i g n 1

10 %8 = icmp eq i 8 %7 , 0

11 br i 1 %8 , l a b e l %14 , l a b e l %9

12 }

Listing 7.2: Injection in the alloca subcategory in the adjust_shell_level function (run 5)

24

1 def ine i n t e r n a l f a s t c c void @dispcolumn (i32 , i 8 * , i32 , i 3 2) unnamed_addr #4 {
2 . . .
3 %16 = gete lementptr inbounds i8 , i 8 * %1 , i 6 4 1

4 %17 = add nsw i 3 2 %2 , 2

5 %18 = s e x t i 3 2 %17 to i 6 4

6 %19 = c a l l i 8 * @strncpy (i 8 * %16 , i 8 * %9 , i 6 4 %18) #13

7 %20 = gete lementptr inbounds i8 , i 8 * %1 , i 6 4 %18

8 . . .
9 br i 1 %27 , l a b e l %28 , l a b e l %31

10 }

Listing 7.3: Snippet of injected IR in the strncpy subcategory in the dispcolumn function (run 10)

Injections in the strncpy subcategory generally did not lead to any additional crashes, as is seen in table 7.2.

The IR modified in run 10 of the off-by-n category is shown in listing 7.3. No additional crashes were found in

this run.

Injection of strncpy would allow for copying a string longer than is actually desired, and therefore open up

the possibility of a spatial memory error. The actual injection in this run was in the function dispcolumn. The

injected instruction can be found at line 4, an addition of 2 to the second function parameter. This specific

function is used for displaying columns when help is run in Bash. The fuzzer did not manage to crash Bash

with this injection, and manually running help in the injected Bash did not crash either. Although this injection

is reachable, it is not likely that it can trigger any crashes as it does not depend on the input given.

The injection in the loop category in run 5 in the off-by-n category showed no additional crashes, but did show

interesting behaviour when manually run. The loop injection ended up in the IR shown in figure 7.1 (left),

in the spname function. This function is responsible for correcting names that are not spelled exactly as they

should. Its corresponding C source code is shown next to it.

Injected IR in loop subcategory (run 5)

1 def ine i 3 2 @spname (i 8 * , i 8 *) {
2 . . .
3 ; < l a b e l > : 1 9 :
4 s t o r e i 8 0 , i 8 * %13 , a l i g n 1

5 %20 = load i8 , i 8 * %12 , a l i g n 1

6 %21 = icmp eq i 8 %20 , 2

7 br i 1 %21 , l a b e l %22 , l a b e l %40

8 . . .
9 ; < l a b e l > : 4 0 :

10 switch i 8 %41 , l a b e l %44 [
11 i 8 47 , l a b e l %52

12 i 8 0 , l a b e l %52

13]
14 . . .
15 r e t i 3 2 %64

16 }

Corresponding C source code in Bash

1 while (* op == ' / ')
2 *np++ = *op++;
3 *np = ' \0 ' ;
4

5 i f (* op == ' \0 ')
6 {
7 for (p = guess ; *op != ' / ' && *op !=

' \0 ' ; op++)
8 i f (p < guess + PATH_MAX)
9 *p++ = *op ;

10 *p = ' \0 ' ;
11 }

Figure 7.1: Injected LLVM IR (left) with corresponding original C source code (right)

25

The injection added the instruction on line 6, and breaks proper functioning of the first loop in the C code.

Although AFL was not able to trigger any additional crashes, using this injected version of Bash in real life

is impossible because of the broken spname function, resulting in Bash returning nonsensical output and

behaviour when entering commands. An example of this can be seen in figure 7.2, showing the output after

entering cat *, where Bash attempts to run multiple commands (unintended) and improperly displays the

input prompt.

Figure 7.2: Output of Bash after injection in the loop subcategory (run 5)

7.1.3 Temporal memory errors

The detection rates of fuzzing temporal memory errors, consisting of the use-after-free category, is shown in

table 7.4

Run Crashes Subcategory
1. * array11.sub use-after-free
2. * globstar1.sub use-after-free
3. 0 (12) use-after-free
4. * arith5.sub use-after-free
5. * globstar1.sub use-after-free
6. 0 (10) use-after-free
7. 0 (12) use-after-free
8. 0 (11) use-after-free
9. 0 (12) user-after-free
10. * array11.sub use-after-free

Table 7.4: Fuzzing results on use-after-free injection. A * denotes a crash, following by the testcase it crashed on.

The results for temporal memory error detection show that Bash either immediately crashes (1), or it never

crashes (2). The following can be said about those 2 cases:

• The bug would almost certainly fixed before releasing the application. Real-world software is subject to

testing tools like unit tests, which would trigger crashes such as the ones we observed while running the

testcases.

• The bug would go unnoticed. In this case, it is extremely hard for a fuzzer to find any crashes.

26

This clearly contrasts the behaviour exhibited in the spacial memory error category, where injections on most

subcategories resulted in an increase in crashes generated by fuzzers.

7.1.4 Analysing temporal memory error injections

In run 9 of table 7.4 we can see that it did not find any additional crashes. The intermediate representation of

the section that was injected is shown in listing 7.4.

1 %18 = c a l l f a s t c c i 6 4 @xdupmbstowcs2 (i 3 2 * * nonnull %0 , i 8 * nonnull %2)
2 . . .
3 ; < l a b e l > : 2 4 : ; preds = %19

4 %25 = c a l l n o a l i a s i 8 * @malloc (i 6 4 256) #13

5 %26 = icmp eq i 8 * %25 , n u l l
6 br i 1 %26 , l a b e l %27 , l a b e l %28

7

8 ; < l a b e l > : 2 7 : ; preds = %24

9 c a l l void @free (i 8 * %20) #13

10 s t o r e i 3 2 * null , i 3 2 * * %0 , a l i g n 8

11 s t o r e i 8 * * null , i 8 * * * %1 , a l i g n 8

12 br l a b e l %98

13 . . .
14 }

Listing 7.4: Snippet of injected IR in the temporal subcategory (run 9)

In the IR, the distance from the initial malloc (line 4) to the free (line 9) is relatively small. This could be an

explanation why no additional crashes could be triggered by AFL, as the chance of allocating that same space

of memory again are slim. This is supported by the fact that there are no additional allocations between the

initial allocation and its corresponding free. After injection, the call to free is moved from line 9 to line 5 (per

the algorithm explained in subsection 5.1.5).

The final run (run 10) in the temporal subcategory supports the claim that the distance between initial

allocation and freeing plays a role in detecting temporal memory errors. The distance between the allocation

and free in this run is relatively large, about 20 lines of code, as can be seen in listing 7.5. In addition to the

larger distance, another allocation using malloc is performed in between as well. As a result, as we can see in

the results in table 7.4, it crashed on one of the initial testcases provided to AFL.

1 def ine i 8 * * @glob_filename (i 8 * , i 3 2) local_unnamed_addr #4 {
2 %3 = c a l l n o a l i a s i 8 * @malloc (i 6 4 8) #13

3 . . .
4 %21 = add i 6 4 %19 , 2

5 %22 = and i 6 4 %21 , 4294967295

6 %23 = c a l l n o a l i a s i 8 * @malloc (i 6 4 %22) #13

7 . . .
8 ; < l a b e l > : 2 5 : ; preds = %15

9 c a l l void @sh_xfree (i 8 * nonnull %3 , i 8 * gete lementptr inbounds ([7 x i 8] , [7 x i 8] i 6 4

0 , i 6 4 0) , i 3 2 1065)
10 }

Listing 7.5: Snippet of injected IR in the temporal subcategory (run 10)

27

This testcase (array11.sub) consists of numerous array declarations, something that would likely allocate

memory. Therefore, it is likely to trigger a crash on a temporal memory error injection, given that the distance

between allocation and free is large enough. This varying distance can explain the stark contrast observed in

the temporal memory error detection rates in table 7.4

7.2 Evaluation summary

Using our framework we can establish a ground truth and easily inject common vulnerabilities into existing

software. After evaluating the two different categories on Bash, it can be concluded that there is a difference in

detection behaviour between spatial and temporal memory errors. Temporal memory errors were either never

or instantaneously detected, while spatial memory errors were detected most of the time.

28

Chapter 8

Conclusions

In this text, we presented a design as well as an implementation of a framework that can automatically inject

vulnerabilities in real-world applications. This framework can be used to establish a ground truth to accurately

quantify performance of software testing tools, with fuzzers in particular. The framework has been built with

extensibility in mind, and a wide range of vulnerabilities have been discussed and implemented as injections

in the framework already.

Using the presented framework we injected two types of memory errors, spatial and temporal memory errors,

in GNU Bash. We put the state-of-the-art fuzzer AFL to the test in order to quantify whether there is a

difference in fuzzer performance of those two types of memory errors. From the obtained results, we can

conclude that the two different types show different behaviour in detection. In the spatial memory error

category, AFL was able to trigger additional crashes more often than not, with the allocation category in

particular being relatively easy to detect. The temporal category exhibited all or nothing behaviour in our

evaluations, by either crashing in the initial testcases, or not at all.

A limitation of this research is that both memory error categories are represented by a subset of the whole

category, not including all types of possible common spatial memory errors. Implementing and evaluating all

common vulnerabilities would support confidence in the claims made. Performing multiple runs on the same

injection or simply performing more runs would improve confidence as well.

We believe we have built a solid foundation for further research. It would be beneficial to implement more

injections, and using these injections, more research could be carried out. The results shown in the evaluation

raised suspicion about whether detection rates are coupled to the level of abstraction of the instruction, with

lower level instructions being easier to detect than higher level instructions. Additional research to either

confirm or deny these suspicions can be performed. Lastly, besides continued development of this framework,

more research using the framework in its current state is viable too. It would be interesting to investigate the

effect of injecting multiple vulnerabilities on fuzzer performance. Investigating how much of an impact the

distance between initial allocation and freeing of resources in temporal memory errors really has would be

interesting as well.

29

Bibliography

[ACL89] Jean Arlat, Yves Crouzet, and J-C Laprie. Fault injection for dependability validation of fault-

tolerant computing systems. In 1989 The Nineteenth International Symposium on Fault-Tolerant

Computing. Digest of Papers, pages 348–355. IEEE, 1989.

[AFL] Afl readme. http://lcamtuf.coredump.cx/afl/README.txt. Accessed: 2018-08-13.

[Aho03] Alfred V Aho. Compilers: principles, techniques and tools (for Anna University), 2/e. Pearson Education

India, 2003.

[BAD+
10] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Coredet: a

compiler and runtime system for deterministic multithreaded execution. In ACM SIGARCH

Computer Architecture News, volume 38, pages 53–64. ACM, 2010.

[Bas] Gnu bash. https://www.gnu.org/software/bash/.

[Bas15] Integer overflow in braces. https://lists.gnu.org/archive/html/bug-bash/2015-08/

msg00093.html, 2015. Accessed: 2018-07-14.

[BCSS90] James H. Barton, Edward W. Czeck, Zary Z Segall, and Daniel P. Siewiorek. Fault injection

experiments using fiat. IEEE Transactions on Computers, 39(4):575–582, 1990.

[Bel05] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual Technical

Conference, FREENIX Track, volume 41, page 46, 2005.

[Bro] Andries E. Brouwer. Exploiting the heap. https://www.win.tue.nl/~aeb/linux/hh/hh-11.

html. Accessed: 2018-07-04.

[CC18] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. arXiv preprint

arXiv:1803.01307, 2018.

[CKMM13] Steve Christey, J Kenderdine, J Mazella, and B Miles. Common weakness enumeration. http:

//cwe.mitre.org/documents/views/view-evolution.html, 2013.

[CMS98] João Carreira, Henrique Madeira, and João Gabriel Silva. Xception: A technique for the ex-

perimental evaluation of dependability in modern computers. IEEE Transactions on Software

Engineering, 24(2):125–136, 1998.

30

http://lcamtuf.coredump.cx/afl/README.txt
https://www.gnu.org/software/bash/
https://lists.gnu.org/archive/html/bug-bash/2015-08/msg00093.html
https://lists.gnu.org/archive/html/bug-bash/2015-08/msg00093.html
https://www.win.tue.nl/~aeb/linux/hh/hh-11.html
https://www.win.tue.nl/~aeb/linux/hh/hh-11.html
http://cwe.mitre.org/documents/views/view-evolution.html
http://cwe.mitre.org/documents/views/view-evolution.html

[DGHK+
16] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil Robertson,

Frederick Ulrich, and Ryan Whelan. Lava: Large-scale automated vulnerability addition. In

Security and Privacy (SP), 2016 IEEE Symposium on, pages 110–121. IEEE, 2016.

[HSR95] Seungjae Han, Kang G Shin, and Harold A Rosenberg. Doctor: An integrated software fault

injection environment for distributed real-time systems. In Computer Performance and Dependability

Symposium, 1995. Proceedings., International, pages 204–213. IEEE, 1995.

[HTI97] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault injection techniques and tools.

Computer, 30(4):75–82, 1997.

[jpe] Cve-2004-0200: Buffer overflow in the jpeg parsing engine. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2004-0200l. Accessed: 2018-07-04.

[KKA95] Ghani A Kanawati, Nasser A Kanawati, and Jacob A Abraham. Ferrari: A flexible software-based

fault and error injection system. IEEE Transactions on computers, (2):248–260, 1995.

[Kli18] Evan Klitzke. Beware of strncpy and strncat. https://eklitzke.org/

beware-of-strncpy-and-strncat, 2018.

[KSP+
14] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar, and Dawn Song.

Code-pointer integrity. In OSDI, volume 14, page 00000, 2014.

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis

& transformation. In Proceedings of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization, page 75. IEEE Computer Society, 2004.

[Mal] Optional features. https://www.gnu.org/software/bash/manual/html_node/

Optional-Features.html.

[RJK+
17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos.

Vuzzer: Application-aware evolutionary fuzzing. In Proceedings of the Network and Distributed

System Security Symposium (NDSS), 2017.

[RNR+
15] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien Bringer, and Laurent Sauvage.

High precision fault injections on the instruction cache of armv7-m architectures. arXiv preprint

arXiv:1510.01537, 2015.

[sim] Simianarmy. https://github.com/Netflix/SimianArmy. Accessed: 2018-07-11.

[SPWS13] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In

Security and Privacy (SP), 2013 IEEE Symposium on, pages 48–62. IEEE, 2013.

[VdH] Todo: add proper reference to bachelor thesis vincent den hamer.

[Zal] Michal Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/. Accessed: 2018-07-

04.

31

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0200l
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0200l
https://eklitzke.org/beware-of-strncpy-and-strncat
https://eklitzke.org/beware-of-strncpy-and-strncat
https://www.gnu.org/software/bash/manual/html_node/Optional-Features.html
https://www.gnu.org/software/bash/manual/html_node/Optional-Features.html
https://github.com/Netflix/SimianArmy
http://lcamtuf.coredump.cx/afl/

Appendix A

Appendix

Table A.1: List of environment variables that are read

Environment variable Effect
INTEGER_SEED Sets the seed used in selecting the injection
JOBS Sets the argument given to make -j flag
BUILD_BASH If set, builds Bash
NO_PACKAGES If set, does not build packages besides Bash
DO_NOT_MODIFY If set, does not modify the target

32

	Introduction
	Thesis Overview

	Background
	Fuzzing and AFL
	Vulnerabilities
	Common vulnerability examples

	Basic blocks and control flow graphs

	Related Work
	Injection frameworks
	Datasets

	Overview
	Design
	Built in vulnerabilities
	Unsafe C function injection
	Off-by-n injection
	Loop detection
	Erroneous memory allocation injection
	Dangling pointers and use-after-free

	Introduction of new vulnerabilities
	LLVM
	Passes
	Dump pass
	Strategic analysis pass
	Modify pass

	Implementation
	Class hierarchy of the framework
	Replacing instructions

	Evaluation
	Results
	Spatial memory errors
	Analysing spatial memory error injections
	Temporal memory errors
	Analysing temporal memory error injections

	Evaluation summary

	Conclusions
	Bibliography
	Appendix

