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Abstract

Due to the growing amount of data stored by organisations, the cost of the eDiscovery process of
legal proceedings and government investigations has increased significantly. Technology-Assisted
Review (TAR) is used to reduce the cost of eDiscovery and speed up the process. In eDiscovery,
achieving high recall is paramount and TAR protocols are in place to ensure defensibility of the
TAR process in court. This research focuses on minimising the amount of manual labour performed
by lawyers and paralegals during the TAR process while maintaining the certainty of reaching high
recall on a par with the current state-of-the-art TAR standards and protocols.

We have identified three methods for reducing the amount of manual labour: (1) reducing the size
of the problem, (2) increasing the return set precision and (3) changing the protocol by which the
documents are labelled. The Reuters RCV1-v2 data set and a reviewed client data set are used to
simulate the TAR process. Within this TAR simulation, the performance of the methods is evaluated
by on the return set precision and the amount of manual labour necessary to reach a predefined recall.

We introduce a novel method to reduce the size of the problem called Topic Model-Based Filtering
which utilises the cosine distances of the responsive documents in the initial training set to filter
the documents in the corpus furthest away from the centroid of these responsive documents. We
implement existing Machine Learning techniques to increase the precision of the return set and
we introduce a novel labelling technique called Sampled Labelling, which is an extension of the
current standard TAR protocol Continuous Active Learning. Sampled Labelling uses sampling to
skip labelling when the precision is above a predefined threshold.

Results show that applying these techniques can reduce the necessary amount of manual labour
significantly. The reduction in manual labour ranges from 10.6% to 96.9% depending on the
difficulty of the task.
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Chapter 1

Introduction

Over the last few years, the amount of data stored by companies and organisations has increased
exponentially [23]. Corporate data such as email correspondence and corporate documents are
highly unstructured and consist predominantly of natural language. Text mining techniques can
be used to extract knowledge from these textual documents. Within the area of text mining, text
classification focuses on assigning textual documents to one or more classes or categories.

The increase in corporate data can be of significant value, when effectively leveraged to provide
benefits for the company. However, data can also become a liability when not stored the right way.
Research shows that the risk of data loss is particularly a concern in the case of electronic discovery
(eDiscovery) [38]. eDiscovery refers to the process used by organisations to deliver data such as
email correspondence and other corporate documents to opposing counsel or investigators as part
of legal proceedings such as litigation, acquisitions and mergers or government investigations. Such
a legal request for documents and information is called a request for production. During eDiscovery,
lawyers and paralegals conduct legal review by reviewing the documents to decide whether the
documents are responsive to any of the eDiscovery requests, or should be withheld because they
are confidential or privileged. Due to the increasing amount of electronically stored information,
this process can be time consuming and therefore, costly. To decrease the costs and duration of
legal review, Technology-Assisted Review is used.

Technology-Assisted Review (TAR) is the process of having computer software classify documents
based on the contents of the documents and input from expert reviewers, in an effort to expedite
the organisation and prioritisation of the document collection and review [9]. TAR assists reviewers
during Issue Coding, the process in which reviewers evaluate the content of document to determine
whether it relates to topics of interest in the legal proceeding. When a document is relevant for a
certain case issue, the reviewers tag the document as responsive. Issue Coding is part of the legal
review process. Research has shown that the use of TAR can be more accurate and time efficient
than exhaustive manual review by humans [11].

Current TAR standards are to use machine learning techniques to predict which documents are
responsive and which are not responsive based on the decisions applied by an expert reviewer to a
small sample of documents. An often used term to describe the use machine learning to predict the
issue codes for a document is Predictive Coding.

In this research we seek to minimise the amount of manual labour performed during the TAR
process. We introduce a novel labelling technique that can significantly reduce the amount of labour
necessary. Furthermore, we perform experiments on a number of methods to increase the precision
of the presented documents.

1



CHAPTER 1. INTRODUCTION

1.1 Problem statement

The process of reviewing the documents is time consuming and costly, therefore automation is a
popular method to reduce the time and costs of the eDiscovery process. A decrease in amount
of labour performed during TAR can save a significant sum of money and could speed up this
time-consuming process.

Strict protocols are in place to ensure the use of TAR is defensible in court and during preliminary
meetings about the request for production. The defensibility of TAR is highly dependent on the
certainty with which the documents are labelled as responsive and non-responsive. Changing the
protocol to an alternative with lower certainty, could cause the change not to be implemented
in real cases, even though it might reduce labour significantly. Therefore, these strict protocols
restrict the possibilities of reducing manual labelling. Machine learning methods that introduce a
more approximative and probabilistic approach, must be validated to guarantee performance on a
par with current standards.

In investigative and legal applications, high recall is of great significance. Hence, most research in
TAR is focused on increasing the recall and robustness of the learners. A lot of research is done in
the field of text classification [32]. Research focusing specifically on reducing the manual effort in
eDiscovery is limited.

The amount of effort necessary during legal review is determined during the Rules of Engagement
meeting. The Rules of Engagement meeting is a meeting between the counsel for the defendants
and the opposing counsel or investigator in which the protocol and workflow of TAR are determined
and rules are discussed. One of the rules that is discussed, is the stopping criteria of legal review. An
example of a stopping criteria is when the classifier labelling the documents reaches 80% precision
and recall on a validation set. Even though finding all responsive documents is the objective, the
precision of the classifier is important to ensure a limited number of non-responsive documents are
added to the production set.

The goal of this research is to develop and evaluate methods to reduce the manual labour needed
to reach the stopping criteria while maintaining the necessary degree of certainty to be defensible
in court and usable in real-world applications.

1.2 Research questions

In order to find a solution for the general problem statement, three research questions were defined.
The first research question focuses on identifying methods to reduce the amount of manual labour
needed during legal review.

How can the necessary amount of manual labour during legal review be reduced?

After methods that could potentially reduce the amount of labour are identified, we will fur-
ther investigate these methods in order to answer research question two, which focuses on the
performance enhancement.

What is the effect of the identified methods to reduce the amount of manual labour?

To test the performance of the methods, we use two data sets, Reuters RCV1 and a reviewed
client data set. The focus of the final research question is to investigate whether the Reuters RCV1

2



CHAPTER 1. INTRODUCTION

corpus is a suitable data set to test the performance of TAR. The performance of the experiments
using Reuters data will be compared to the performance of the experiments using client data. For
future research it is relevant to know whether the Reuters data set is capable of simulating a TAR
process comparable to a real life case.

To what extent does the performance of the TAR simulation using the Reuters RCV1 corpus
reflect the performance of the TAR simulation using client data?

1.3 Structure of thesis

The structure of this thesis is as follows. Chapter 2 provides the theoretical background for Document
Classification in general and TAR more specifically. In Chapter 3, all methods and techniques used
in our experiments are described and the two data sets used in the experiments are introduced. Any
necessary information to implement and reproduce this work is also provided in the aforementioned
chapter. The experimental setup consists of three separate experiments that are performed within
the TAR simulation and is described in detail in Chapter 4. After describing all the experiments,
the results of these experiments are presented in Chapter 5. In Chapter 6, we elaborate on the
results and discuss our findings. In the final chapter, we answer the research questions, share our
conclusions and specify what we would consider feasible and valuable future work.

3



Chapter 2

Background

In the background, an overview of the field of research is provided and relevant previous work is
discussed. First, text classification in general is discussed and afterwards the application of text
classification in TAR.

2.1 Binary text classification

The problem as described in the problem statement is a binary text classification problem. The
goal of text classification, which is also know as text categorisation, is to classify documents
into a fixed number of predefined classes. Each document can be classified in either multiple,
exactly one, or no category at all. Binary text classification is a distinctive type of single-label
text classification, where every document must be assigned either to class ci or to its complement ci.

2.2 Document Representation

In order for classifiers to be able to work with text documents, the data needs to be converted to a
suitable representation. A common way to represent a document dj in the field of text classification
is as a vector of term weights dj = {w1j , . . . , w|T |j} where T is set of terms. There are numerous
different approaches to calculate this term feature vector since there are different ways to define
a term and different ways to compute the term weights. A collection of documents, also known
as a corpus, is represented by a document-term matrix where each row is a term feature vector
for a document. Feature vectors where the terms represent the words in the documents are most
commonly used. Using this document representation, the word order of the text is lost and is
therefore called Bag-of-Words. Another type of terms are N -grams, where each term is represented
by a combination of N words, this is used to store spatial information and maintain some sense
of the word order within the text. A straightforward example of term weight is Term Frequency,
counting all the occurrences within a document.

2.2.1 TF-IDF

The Term Frequency Inverse Document Frequency (TF-IDF) feature vector representation identifies
terms with words. TF-IDF is an extension of the regular Bag-of-Words approach, which solely
counts the occurrences of each term in the documents. TF-IDF also incorporates how often it
occurs in all other documents. TF-IDF embodies the intuitions that (1) the more often a term
occurs in a document, the more it is representative of its content, and (2) the more documents the
term occurs in, the less discriminating it is [32]. The function for determining the TF-IDF weight
wk,j of term k in document j is as follows [30]:

4



CHAPTER 2. BACKGROUND

wk,j = tfk,j · log
N

dfk

where tfk,j denotes the term frequency, the number of times term k occurs in document j, and
dfk denotes the document frequency, the total number of documents N in which term k occurs.
A log function is used to ensure terms with a high IDF value are not disproportionately boosting
the document scores and to stop a floating point underflow from occurring [28]. Floating point
underflow occurs when a float is so small that the value can no longer be stored properly.

2.3 Learning scenarios

Throughout this thesis, three distinct learning scenarios are used. All three learning scenarios are
described below.

2.3.1 Supervised learning

In supervised learning, the training data consists of an input object and a desired output. Hence,
the data is labelled. The labelled data is used to train an algorithm which subsequently makes
predictions for all unseen data. This learning scenario is associated with classification, regression
and ranking problems [24]. The downside of using this learning scenario, is that it requires a lot of
manual labour to label the data required to effectively train the learner.

2.3.2 Semi-supervised learning

When semi-supervised learning is used, the learner receives a training set containing both labelled
and unlabelled data. Semi-supervised learning is a common scenario in problems where unlabelled
data is easily accessible but labelled data is expensive to obtain [24]. Various applications can
be framed as instances of semi-supervised learning, such as classification, regression and ranking.
Compared to supervised learning, this learning scenario makes use of unlabelled data to learn and
therefore requires less labelled data. Hence, less manual labour is required to create the training
data.

2.3.3 Unsupervised learning

In the unsupervised learning scenario, the algorithm receives exclusively unlabelled data and makes
predictions about the unlabelled data. Given that no labels are provided, it is often difficult to
quantitatively evaluate the performance of an unsupervised learner. Clustering and dimension reduc-
tion are problems associated with unsupervised learning [24]. The advantage of using unsupervised
learning is that no additional labelling is required.

2.4 Technology-Assisted Review

To reduce the time needed for experts to review the documents involved in an eDiscovery request,
TAR is used. The TAR process starts with a set of documents and request to produce a set of
responsive documents. The request for production one or more issues that define the topic and
scope of the documents that should be labelled as responsive. An increasing amount of tools
are available to the human operator to identify documents that should be shown to one or more
human reviewers. Traditionally, boolean search was one of the common tools used. A disadvantage
of boolean search is that the returned result is all or nothing. Therefore, in recent years, a shift
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CHAPTER 2. BACKGROUND

has been made to more sophisticated machine learning techniques to help the human operator
determine the next batch of documents to be reviewed.

The reviewers examine the documents that are served to them and label ("code") them as responsive
to the issue or not. Iteratively, more documents to be labelled are identified using the tools and in
turn examined by the reviewers. This process continues until enough of the responsive documents
have been reviewed and coded. The definition of ’enough’ is determined by lawyers during the
production request meetings. ’Enough’ is often based on how much additional effort it would likely
take to find more responsive documents and how important those documents will be in resolving
the legal dispute [5]. A strict protocol is followed during the TAR process to ensure the validity and
defensibility of the TAR process. A number of different protocols can be used to find the responsive
documents, which are described in the next section.

Research has shown that exhaustive manual review, where the reviewers go through all the doc-
uments and manually label them, is not always the most effective approach [11]. Grossman and
Cormack list a number of studies where inconsistencies were found between two or more teams
reviewing the same documents [11]. The question is raised as to whether there is a gold standard
in legal review. In the studies, different approaches to resolve this problem are followed. In one
study [42], the primary assessor composed the request for production and is therefore deemed the
gold standard. In another study, documents lacking consensus were reviewed by a senior litigator,
who decided which team had made the correct decision [29]. Aside from the inconsistencies in
the manual review, the performance of the manual review in terms of F1-score was inferior to the
performance of review using TAR.

A study of popular eDiscovery algorithms which compared the performance of Logistic regression,
Linear SVM, Gradient Boosting, Multi-layered Perceptron and 1-Nearest Neighbour found that
Linear SVM outperforms all other methods [43]. The study also compares three different types of
document representations: (1) Bag-of-words, (2) Term frequency and (3) TF-IDF. TF-IDF is the
superior document representation to use with Linear SVM in terms of classification performance.

Given that humans make mistakes when labelling the documents [8], a study investigated what the
effect of errors in the training data is on the performance of the classifier [31]. By injecting up to
25% erroneous training documents, they found that, for 25% incorrect training documents, the loss
in F1-score ranges from 3.2% to 5.3%. The study also researched the effect of rolling collections
on the performance of the classifier. In legal and investigative applications, it is often the case
that not all data is available from the start. Meaning that new data is constantly added to the
collection, which is called a rolling collection. This leads to a document representation that does
not take all features of the entire document collection into consideration. The study found that
rolling collections cause a significant drop in performance and it is recommended to recalculate,
train and verify the entire machine learning model on the entire document collection for every
addition of new documents [31].

The effect of errors in the training data was also researched within a TAR simulation in another
study and finds that within the simulated TAR process, the loss in performance is also limited
[36]. The study investigated what the effect is of circumstances that may negatively affect the
performance of TAR such as human review error, difference in document length and class imbalance.
The study looks at approaches to counter these influences on performance.

The TREC 2015 Total Recall Track focused on methods designed to achieve very high recall with a
human assessor in the loop [10]. Beating the baseline turned out to be difficult [40]. The baseline
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CHAPTER 2. BACKGROUND

was created by two program coordinators, who implemented a continuous activate learning solution
in combination with logistic regression [4].

Effective similar document detection can dramatically decrease the costs of the TAR process, as the
number of similar documents in typical electronic discovery corpus ranges between 25% and 50%
[37]. The study investigates the use of similar document detection in eDiscovery and introduces a
novel algorithm to detect similar documents [37].

A paper published at the 2015 DESI workshop discussed the use of statistical sampling to approxi-
mate the number of relevant documents in a corpus and perform quality control on the predictive
coding results [26]. This paper also states that the use of TAR versus traditional linear review could
cut costs by 30% and save 74% of the hours spent on review.

Another paper published at the 2015 DESI workshop researched the effect of including metadata
in the machine learning process on the performance of TAR [16]. Multiple ways of including the
metadata in the machine learning process were investigated. The best performing method for
including the metadata is to create two separate models, one for the metadata and one for the
text, and combine them afterwards. This method is sometimes called Late Fusion [3]. The results
show that all available metadata can increase performance significantly [16].

2.5 TAR protocols

In this section, the different protocols for the TAR process are described. Research has shown that
Continuous Active Learning achieves the highest performance of the three protocols [5]. Table 2.1
shows an overview of the main characteristics of the TAR protocols discussed below.

Initial training set New training documents
SPL random random
SAL search query or random least certain
CAL search query top scoring

Table 2.1: Main characteristics of TAR protocols [36]

2.5.1 Simple Passive Learning

The Simple Passive Learning (SPL) protocol is dependent on the operator or random selection,
and not the learning algorithm, to identify the training set. The operator is a person appointed to
operate the TAR software and may or may not be a member of the team of reviewers. The operator
can use tools such as boolean search to identify and select documents that will be part of the
initial training set (seed set). The initial training set contains both responsive and non-responsive
documents. The candidate training set is used to train a classifier and the classifier is in turn
used to generate a candidate review set from the unlabelled set. If the candidate review set is of
"inadequate" quality, the operator creates a new candidate training set, generally by adding new
documents that are found by the operator, or using random selection. This process continues until
the quality of the review set is adequate and the review set is served to and coded by the reviewers.
SPL is outperformed by Simple Active Learning and Continuous Active Learning [5].
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2.5.2 Simple Active Learning

The Simple Active Learning (SAL) protocol begins with the creation of an initial training set. The
initial training set may be selected using keyword search, random selection or both. Same as SPL,
the initial training set contains both responsive and non-responsive documents. The initial training
set is used to train a learning algorithm which is to compute a probability to be responsive for
each of the unlabelled documents. The review set is selected using uncertainty sampling, a method
that selects the documents about which the classifier is least certain. The review set is reviewed,
coded and added to the training set. This iterative process continues until the cost of reviewing
and coding more documents outweighs the benefit of adding more documents to the training set.
This point is often referred to as "stabilisation" in the context of TAR. At this point, the classifier
is used a final time to create a set or ranking of likely relevant documents, which are manually
labelled. Uncertainty sampling shares a fundamental weakness with passive learning: the need to
define and detect when stabilisation has occurred [5]. Stopping early could result in insufficient
recall.

2.5.3 Continuous Active Learning

The Continuous Active Learning (CAL) protocol consists of a keyword search system and a learning
algorithm. The operator typically uses a keyword search to select the initial training set to be
reviewed and coded. Just like SAL, the initial training set is used to train a learning algorithm which
is used to assign each document with a probability to be responsive. Unlike SAL, the documents
with the highest probabilities to be responsive are reviewed and coded. Reviewing and coding is done
in batches, after which a new classifier is train. These newly reviewed documents are added to the
training set of the next iteration. This iterative process continues until ’enough’ of the responsive
documents have been found. Research has shown that CAL achieves superior performance compared
to SAL and SPL [5]. An example of a stopping criteria for CAL could be to continue until the
return set precision has dropped below 5%.
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Chapter 3

Methodology

To reduce manual labour in the TAR process we have implemented a number of techniques. All
methods and techniques we have implemented are described in this chapter. There are multiple
methods for reducing the amount of manual labelling needed to reach the recall as defined in the
rules of engagement meetings. The strategy to reduce manual labour is highly dependent on the
TAR protocol. Given that the CAL protocol is the current state-of-the-art TAR protocol [5], we
focused on reducing the manual labour using this protocol as the baseline.

The first identified method to reduce the amount of labour necessary to reach the predetermined
recall is reducing the size of the problem. Reducing the size of the problem prior to starting the
TAR process could potentially decrease the required labelling effort.

The CAL protocol requires all the documents that are labelled as responsive to be manually labelled.
Therefore, in order to reduce the number of documents that have to be manually labelled, the
return set precision must be increased. Increasing the return set precision will allow the legal expert
to reach the needed recall faster because less non-responsive documents have to be manually
labelled. Multiple approaches to increase the precision of the return set are described in Section 3.3.

As an extension to the CAL protocol, we present a novel labelling method that reduces the amount
of labelling effort required while preserving the certainty that no documents are incorrectly labelled
as non-responsive. Hence, diminishing the disadvantage of CAL which requires all responsive
documents to be manually labelled.

Figure 3.1 portrays the different methods explained in this section and how they were used in the
three different experiments which are described in the next chapter. The figure also shows how
the experiments are the input for one another. The Topic Model-Based Filtering results were used
in the ’Increasing Return Set Precision’ experiment and the highest scoring component from that
experiment was used in the Sampled Labelling experiment.

This chapter starts with a description of the baseline algorithm. In the following sections, the
algorithms used in the three experiments are described. Afterwards, we the data sets used to
conduct the experiments are elaborated on. The last section of the chapter provides any necessary
information about the implementation of the algorithms to reproduce the experiments.

9
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Figure 3.1: Overview of experiments and methods within the TAR simulation.

3.1 Baseline

The baseline implementation used in this research is a standard Linear Support Vector Machine
without any parameter tuning. Support Vector Machines (SVMs) were first introduced by Vapnik
et al. [41]. SVMs are supervised and require labelled training data. Jaochims first explored the
benefits of SVMs for text classification [15]. SVMs are one of the most theoretically substanti-
ated classification algorithms in modern machine learning [24]. The goal of a SVM is to find a
hyperplane that separates the training set into a positive and a negative labelled set. From all
possible hyperplanes, the SVM seeks to find the hyperplane with the maximum margin, or distance
to the closest points, and is thus known as themaximum-margin hyperplane illustrated in Figure 3.2b.

(a) Possible hyperplane (b) Hyperplane that maximises margin

Figure 3.2: Two possible separating hyperplanes [24]

Given a training set of l instance label pairs (xi,yi) with labels yi ∈ {−1,+1} and xi as feature
vectors for i = 1,...,l. SVMs try to find a maximum-margin hyperplane. The hyperplane is given by:

w · x+ b = 0 (3.1)

where w ∈ RN is the weight vector normal to the hyperplane and b ∈ R is a scalar. The maximum-
margin hyperplane can be found by solving an optimisation problem. When the data is not fully
linearly separable, slack variables can be introduced to allow a number of misclassified instances and
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still be able to find a maximum-margin hyperplane. This is referred to as soft margin, as opposed
to hard margin in the linearly separable case. The optimisation problem is formulated as follows

min
w,b,ξ

1

2
‖ w ‖2 +C

l∑
i=1

ξpi

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1,...,l

(3.2)

where ξi are slack variables and the second term is a regularisation term with the parameter C
that controls the insignificance of misclassification. A slack variable ξi measures the distance by
which vector xi violates the desired inequality, yi(w · xi + b) ≥ 1. The size of the penalty for slack
variables is determined by p. The values p = 1 and p = 2 lead to the most straightforward solutions
and analyses and are called hinge loss and quadratic hinge loss, respectively. Hinge loss is the most
widely used loss function for SVMs.

The optimisation problem in combination with the constraints can be solved using the method
of Lagrange multipliers. The Lagrange multiplier uses the formula: L(α,X) = f(X) + αg(X)
where f(X) is the optimisation condition that is subject to the constraint g(X). In the case of the
aforementioned optimisation problem, the dual form is formulated as follows:

max
α

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyj(xi · xj)

subject to
l∑

i,j=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1,...,l

(3.3)

Solving equation 3.3 and finding the optimal values for αi, it can be written that:

w =

l∑
i=1

αiyixi (3.4)

Most of the weights wi will be zero, only the support vectors will have nonzero weights and
determine the position of the hyperplane. The solution α of the dual problem (3.3) can be used
directly to determine the hypothesis returned by SVMs:

h(x) = sgn(w · x+ b) = sgn(
l∑

i=1

αiyi(xi · x) + b) (3.5)

The hypothesis solution depends solely on the inner products between vectors and not directly on
the vectors themselves. This characteristic can be used to extend SVMs to find non-linear decision
boundaries using kernels.

One remarkable property of SVMs is that their ability to learn is independent of the dimensionality
of the feature space [15] making them highly suitable to work with high dimensional input data.
Additionaly, Joachims proved there are few irrelevant features in text classification and demonstrates
that most text classification problems are linearly separable. Furthermore, he shows that SVMs
perform well with sparse document vectors [15].

The baseline implementation does not use any parameter optimisation and therefore uses the default
parameters and weights. The default weight for the C parameter is 1 for both the positive and
negative class.
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3.2 Topic Modelling

The first labour reduction method is based on Topic Modelling. By significantly reducing the
feature space, distances between documents can be calculated relatively quick and without a lot of
processing power. These distances are utilised to determine the responsiveness of the documents.

Nonnegative Matrix Factorisation (NMF) is used to create the topic models for the TF-IDF matrix of
the full corpus. The goal of NMF is reducing the dimensionality of the data. NMF is an unsupervised
learner that can be used to cluster documents. Contrary to alternative dimensionality reduction
methods, such as LDA and PCA, NMF does not allow negative factorisation. The non-negative
constraint is especially important for textual data, since terms cannot have a negative number of
occurrences or a negative TF-IDF value. Adding the nonnegative constraint makes NMF particularly
suitable for clustering textual data[1].

NMF is used to compute a lower rank approximation of a large sparse matrix by clustering documents
on the basis of shared semantic features [33]. NMF is used as a technique for document clustering
and topic modelling [17]. Given a data matrix V of dimensions N × F with nonnegative entries,
NMF is the problem of finding a factorisation

V ≈WH (3.6)

where W and H are nonnegative matrices of dimensions N ×K and K × F [7]. K is generally
chosen so that (N + F )K � FN [17]. Figure 3.3 illustrates how matrix V is decomposed into
matrix W and H. The matrix V is a document-term matrix with N documents and F TF-IDF
features. With a chosen K, factorisation of matrix V results in a document-topic matrix W with N
documents and K topic weights for each of the documents. Hence, in the document-topic matrix
the weights with which a document belongs to the topics are stored.

Figure 3.3: NMF: The factorisation of matrix V in Matrix W and H[12]

NMF differs from other rank reduction methods due to the use of constraints that produce non-
negative basis vectors W and H. These constraints are imperative for the success of parts-based
representation [17]. Since W and H contain no negative entries, this allows only additive combina-
tions of the vectors to reproduce the original. This implies that each document vector in the matrix
V can be explained by a linear combination of the topics.

We use the responsive seed set, the set of responsive documents with which the TAR process
is started, to calculate the centroid of the NMF vectors for the categories at hand. To get the
centroid of the NMF vectors, the mean value for each of the topics was calculated and a new
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vector containing these values was created. After determining the centroid of the category, the
cosine distance is calculated from each instance in the corpus to this centroid. The cosine similarity
between two vectors di and dj is given by:

cos(di,dj) =
dTi dj
‖di‖‖dj‖

=

∑t
k=1 dikdjk√∑t

k=1 d
2
ik

√∑t
k=1 d

2
jk

(3.7)

where t denotes the number of terms or features in the vector. To obtain the distance, the cosine
similarity is subtracted from the value 1. It is important to note that the cosine distance is not a
proper distance metric, since it does not have the triangle inequality property. For textual data, a
valuable property of the cosine distance is the document length independence.

Two distance distributions are created for the corpus: (1) distance from the documents in the seed
set to the centroid and (2) distance from all other documents to the centroid. All cosine distances
are values between 0 and 1. These distances are the starting point for the technique described
below.

3.2.1 Topic Model-Based Filtering

The hypothesis is, that the documents furthest away from the centroid are most likely to be
non-responsive. This would allow a number of documents to be labelled as non-responsive before
even starting the TAR process, thereby significantly reducing the size of the problem and increasing
the size of the negative training data.

To determine the number of documents to be filtered, the following steps are executed:

1. Create two histograms by binning (1) the distances of the documents in the seed set to the
centroid and (2) the distances of all other documents in the corpus to the centroid. This is
illustrated by Figure 3.4.

2. After retrieving the count for each bin, all the bins are normalised to attain the percentage
of documents in each bin for both histograms. This is illustrated in Figure 3.5

3. Both bins are compared starting from the bins containing the documents with the highest
distances. Whenever the percentage of the bin containing the responsive documents from
the seed set is lower than p percent of the percentage of the bin containing all documents,
the complete bin will be filtered. p is a threshold for the trade-off between filtering a large
number of documents and the certainty that not many responsive documents are filtered.
This step is demonstrated in Table 3.1.

In the example of Table 3.1, where p = 0.01, the bins 0.8− 0.9 and 0.9− 1 are both filtered. For
all the other bins, Bin 1 is not smaller than Bin 2 ∗ p.

After computing the bins that have to be filtered, the documents inside the bins are automatically
labelled as non-responsive. Hence, the initial seed set is enlarged with non-responsive documents.
Topic Model-Based Filtering is used as a way to quickly increase the amount of training data to
increase the return set precision.
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Figure 3.4: Distance histograms
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Figure 3.5: Normalised distance histograms

Distance Bin 1 Bin 2 Bin 2 ∗ p
0− 0.1 0.3060 0.0048 0.0000
0.1− 0.2 0.2620 0.0080 0.0001
0.2− 0.3 0.2140 0.0111 0.0001
0.3− 0.4 0.1100 0.0159 0.0002
0.4− 0.5 0.0600 0.0179 0.0002
0.5− 0.6 0.0240 0.0346 0.0003
0.6− 0.7 0.0160 0.0438 0.0004
0.7− 0.8 0.0060 0.0809 0.0008
0.8− 0.9 0.0020 0.2540 0.0025
0.9− 1 0.0000 0.5291 0.0053

Table 3.1: Bins for p = 0.01
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3.3 Increase return set precision

The second method for reducing the amount of manual labour necessary during TAR is to increase
the return set precision of the classifier. Five methods for increasing the return set precision were
identified and described below.

One characteristic of the TAR problem is that the amount of available labelled data is limited,
especially at the beginning of the review process. Therefore, it is important that the classifier is able
to learn quickly from limited labelled data. The most intuitive way to achieve this is by looking for
classifiers that learn using the information stored in the unlabelled data. Hence, we are switching
from supervised learning to semi-supervised learning.

3.3.1 Self-training

To increase the batch size precision and reaching a higher recall faster, we implement a wrapper-
algorithm that utilises self-training. A wrapper-algorithm is an algorithm that is uses another
algorithm as basis to establish what the possible class for each document is. The idea is to reduce
reviewing effort by training on unlabelled data. Self-training is one of the earliest ideas about using
unlabelled data in classification [25]. Only labelled data is used to train a supervised method in the
first iteration. The supervised method is retrained using its own prediction as additional labelled
training data. Self-training can continue for multiple iterations, each iteration adding the instances
with high confidence to the training data. The self-training method can be used to wrap any
supervised learning method.

Algorithms using the approach of self-labelling, of which self-training is one example, can be divided
into two categories [39]: (1) inductive learning and (2) transductive learning. Inductive learning
is viewed as traditional supervised learning, where a model is trained using labelled training data
and the main objective is to make predictions about the labels of instances that are unseen and
unknown. Hence, inductive learning attempts to create generalisations based on the training data.
Opposed to inductive learning, the aim of the transductive learning is to predict the true label of
unlabelled instances which are also used to train the model. Instead of building a generalised model,
the information contained in the unlabelled instances is leveraged to make better predictions.

Self-training is an inductive learner that shows promising results with limited amounts of labelled
data. A limitation of self-labelling methods is that the performance is upper-bounded by the
traditional supervised learning algorithms used as base classifiers [39].

Self-training seems to be suitable for the TAR process, since there is always limited available labelled
training data and plenty of unlabelled documents.

3.3.2 Biased Support Vector Machine

The Biased Support Vector Machine (BSVM) is an alternative classifier that we implement to
see whether this improves the performance. The BSVM is an approach to tackle the PU learning
problem. PU learning is the task of learning from Positive and Unlabelled data. PU learning could be
very useful for reducing manual labour since it changes the SVM from a supervised learning method
to a semi-supervised learning method. The ability to train on unlabelled data could eliminate the
necessity to label documents.

There are three distinctive methods for solving the PU learning problem: (1) using only the labelled
positive examples, (2) a two-step strategy and (3) a one-step strategy. The perfect example of a
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classifier following the first strategy is the one-class SVM [22]. The two-step strategy iteratively
goes through the following two steps. Step 1: Determine the reliable positive or negative instances
from the unlabelled set to enlarge the original training set. Step 2: Building a set of classifiers by
iteratively applying a classification algorithm and then selecting the best classifier from the set
[20]. The one-step methods transform the PU problem into an imbalanced binary classification
problem by assigning the unlabelled data to the negative class. The BSVM used in this research is
an approach from the third category using a one-step strategy.

To use the BSVM, the problem is converted to an imbalance binary classification problem by
supposing that the unlabelled data belongs to the negative class. Therefore, x1, ..., xl are positive
and xl+1,...,xm belong to the negative class. The formula for the regular SVM (3.2) is altered to
allow for two separate penalty factors of misclassification for the positive and unlabelled data. The
BSVM optimisation problem is as follows.

min
w,b,ξ

1

2
‖ w ‖2 +Cp

l∑
i=1

ξi + Cn

l+m∑
i=l+1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1,...,l +m

(3.8)

Where Cp and Cn are the penalty factors for the positive and unlabelled instances, respectively.
Most often, the Cp is larger than Cn since the the unlabelled set also contains positive data [21].

Previous work shows that the BSVM’s performance is superior to existing two-step techniques [21].
The BSVM seems to be very suitable for a problem where there is a lot of unlabelled data and
labelled data is scarce. The advantage of using a BSVM versus a regular SVM is that it utilises
this unlabelled data. The aim of this component is to increase the return set precision and thereby
reducing the amount of manual labour needed to reach a high recall.

Since there is a large class imbalance in the training data compared to the regular SVM, the defaults
weights for the positive and negative class are not equal. The negative class also contains positive
instances that are labelled as negative for training purposes. The default weights for the BSVM
are: Cp = 1 and Cn = 0.001. Cp should be significantly larger than Cn, this asymmetric cost
formulation has been used to solve the unbalanced data problem [21]. For the experiment, we will
use the default weights, parameter optimisation will be covered as a separate component which we
discuss later in Section 3.3.5.

3.3.3 Transductive Support Vector Machine

We use a second alternative classifier called the Transductive Support Vector Machine (TSVM).
The TSVM is a transductive learner and uses both labelled and unlabelled data to train [14]. The
implementation of the TSVM we use in our experiment, as described in Section 3.6, implements
large scale version of the TSVM [34]. Transductive SVM appends an additional term in the SVM
objective function whose role is to drive the classification hyperplane towards low data density
regions.
The TSVM optimisation problem is as follows:

min
w,b,ξ

1

2
‖ w ‖2 +Cp

l∑
i=1

ξi + Cu

l+m∑
i=l+1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1,...,l +m

|w · xi + b| ≥ 1− ξi

(3.9)
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Where x1, ..., xl are positive and xl+1,...,xm are unlabelled instances. For Cu = 0 in Equation 3.9
we obtain the standard SVM optimisation problem. For Cu > 0, unlabelled data that is inside
the margin is penalised. The default parameters are Cp = 10−5 and Cn = 10−5 [14]. The last
parameter which can be passed to the algorithm is R, the fraction of the unlabelled data that
should be labelled as positive. Previous work shows that the TSVM outperforms the regular SVM
when classifying text [14].

3.3.4 Applied Topic Model Based-Filtering

For the third component, the result of the Topic Model-Based Filtering experiment is used to de-
crease the size of the problem in TAR and quickly increase the size of the training data. The filtered
documents will be added to the negative class and used to train the classifier. The parameter p for
the Topic model-based filtering we use in this experiment will be described in the Experimental Setup.

Our hypothesis is, that by decreasing the size of the problem and starting with more (negative)
training data, the performance of the classifier will increase.

3.3.5 Grid Search

Hyperparameter optimisation is an important strategy to improve the precision of a classifier and
therefore decrease the manual labour needed to reach a certain recall. To effectively tune the
parameters of the classifiers, we used Grid Search in combination with a hold-out validation set.
The validation set has to be manually labelled, therefore a trade-off is made between the size of
the validation set and the amount of manual labour required to label the validation set.

For the parameter optimisation strategy to be effective, the performance of the classifier must
increase enough to overcome the extra labelling effort to create the validation set. Therefore, the
size of the validation set is very important. A larger validation set can approximate the performance
on the full corpus more accurately but requires more manual labelling. The validation set should be
large enough to provide an accurate indication of the performance of the classifier, but not larger
than necessary.

Grid search can be used to optimise any parameters of the other components, meaning this
component could be be combined with for instance the BSVM or TSVM. What the range of
parameters for each classifier is, will be discussed in the next Chapter. The validation set will also
give an approximation of the prevalence of the responsive documents. Which could help determine
when to stop the TAR process.

3.4 Sampled Labelling

In order not to manually label all responsive documents, we have created a novel labelling method
to skip parts of the labelling process while maintaining a high degree of certainty. The regular CAL
protocol forces every responsive document to be manually labelled. Following this protocol yields
the highest performance in terms of obtaining high recall but does require a lot of manual labour.
Especially for issues where the classifiers are performing well from the start, where the return set
precision is high, the labelling performed by the legal expert could be called redundant labelling
effort. In order to decrease the redundant labelling effort, a method we call Sampled Labelling is used.

Sampled Labelling makes use of the CAL protocol property that every iteration yields the most
probable documents from the return set. Instead of labelling all the top documents, a batch of
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documents of size skip size are skipped. The skipped documents are not immediately labelled as
responsive, instead, they are validated by a batch of documents succeeding the initially skipped
documents. A batch of the succeeding documents are manually labelled and if the precision of
these documents is above a certain threshold, the skipped documents are automatically labelled as
responsive. The batch of documents manually labelled to validate the skipped documents can be
adjusted in size, a larger batch for greater certainty that the batch precision corresponds to the
skipped documents precision. Whenever the return set precision of the manually labelled documents
is above the predefined skip threshold, documents are skipped. Our hypothesis is that the preceding
batch will also have a high precision and can therefore be labelled as responsive. When the return
set precision is above a second threshold, double threshold, the Skip size is doubled. If the return
set precision is not above the predefined skip threshold, the skip size is divided by two. If the skip
size is smaller than 10% of the batch size, the initially skipped documents are manually labelled
and no documents are skipped. When no documents are skipped, Sampled Labelling works identical
to the regular CAL protocol.

The psuedocode below demonstrates how Sampled Labelling is implemented. The input of Sampled
Labelling is the output of the classifier within the TAR simulation: a list of predicted probabilities
for each document to be responsive. Sampled Labelling will serve the reviewer with documents
to review, in batches of the size Sample size. It will continue serving the reviewer with new
documents to review until Batch size documents are reviewed and a new classifier is trained.

Sampled Labelling
Input:
Sorted predicted document probabilities
Batch size, Sample size, Skip size, Skip threshold, Double threshold

while #Labelled documents < Batch size do
Select batch of Skip size documents to skip from top of document list
Select succeeding batch of Sample size documents to validate result
Review documents in sample and calculate the Batch precision
#Labelled documents + = Sample size
if Batch precision > threshold then

Label skipped documents as responsive
if Batch precision > Double threshold then

Skip size = Skip size ∗ 2
end if

else
if Skip size > (Batch size / 10) then

Skip size = max(Skip size/2, Batch size / 10)
else

Review batch of skipped documents until Batch size documents are reviewed
#Labelled documents = Batch size

end if
end if

end while

output:
Updated document labels
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Figure 3.6 shows the distinction between CAL and Sampled labelling as to how the review batch
is selected. CAL selects the top n documents as review batch, where n can be set to any value
the users prefer. The default value for n is 1,000 meaning documents are reviewed in batches of
thousand documents and after every batch has been reviewed, the model is retrained. Sampled
Labelling does not pick the top n documents for review but instead skips a number of documents.
To validate the precision of the skipped documents, the return set precision of a sample review
batch of a smaller size (e.g. n/10) is calculated and when this is above a certain threshold (e.g. 0.9
precision) the documents are skipped indefinitely and added to the responsive training set. Without
retraining the model, the next sample review batch is selected after more documents have been
skipped. This process of skipping and reviewing samples continues until n documents are manually
reviewed, after which the model is retrained.

Figure 3.6: Sampled Labelling compared to CAL

Certainty about the responsiveness of the automatically labelled documents is exchanged for a
labour reduction. However, this method will only allow non-responsive documents to be labelled as
responsive, not vice versa. In eDiscovery, labelling non-responsive documents as responsive is less
erroneous than labelling responsive documents as non-responsive [2]. This is due to the fact that
after finding all the responsive documents, the documents have to be checked for privilege and
non-responsive documents can be filtered there.

The number of skipped documents, the skip size, is in turn determined by the manually labelled
batch’ precision. When this precision is above a certain threshold, the skipped size is increased,
doubled for instance. This technique allows for faster labelling when the precision is high. If the
precision is not above the threshold to skip the documents, the skip size is decreased, divided by
two for instance.
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3.5 Data sets

Two data sets are used to test the performance of our methods. One of the data sets is a generic
text classification data set of Reuters news articles. The second data set is a collection of documents
that has been labelled using TAR by one of the clients.

3.5.1 RCV1-v2

The Reuter Corpus Volume 1 (RCV1) data set consists of 804,414 categorised English newspaper
articles [19] made available by Reuters, ltd. for research purposes. RCV1-v2, the corrected version
of the corpus, is one of the common standards used to evaluate the quality of automatic document
classification. The corpus is labelled for 103 topic codes, where one document can be assigned to
multiple topics. Each document belongs to at least one topic and at most 17 topic. The size of the
topics span five orders of magnitude, ranging from 5 occurrences up to 381,327.

The corpus does not include the full text, solely the TF-IDF feature matrix and target matrix.
The full text license agreement states that a feature matrix may be distributed as long as the
original data can not be reconstructed. Therefore, words are removed from a large stop list and the
remaining words are stemmed. As a result, the TF-IDF matrix consists of 47,236 features.

Statistics of the RCV1 corpus such as description of the topic, number of documents in the category
and prevalence can be found in Table A.1 in the Appendix.

3.5.2 Client data

To test the performance of the methods on a real-world case, client data is used on which TAR was
performed and the responsiveness of all documents is known. Due to confidentiality, we are unable
to disclose which client or what kind of case it is. We received preprocessed TF-IDF vectors and
labels for the documents. The case consists of 99,957 documents and the TF-IDF matrix consists
of 901,956 features. Of these documents, 10,206 are responsive to the issue.

Even though the feature space of the client data is significantly larger than the feature space of the
Reuters data, it is possible that the Reuters data set is capable of simulating the TAR process with
similar results as the client data.

3.6 Implementation

The full implementation of the experiments was done in Python. The linear SVM was implemented
using version 2.11 of LIBLINEAR [6] which allows weights for data instances to passed during
training. LIBLINEAR is an open source library that uses a coordinate descent method to solve the
optimisation problem [13]. We adjusted the LIBLINEAR package to support probability outputs
as described in the LIBLINEAR FAQ 1. Both the SVM and BSVM are implemented using LIBLINEAR.

The Transductive SVM is implemented using SVMlin. This package implements a Linear Trans-
ductive L2-SVMs with multiple switchings [35]. We use version 1.0 of the SVMlin package. For
the calculation of the NMF topic models we used the scikit-learn implementation using default
parameters. Scikit-learn version 0.19.0 [27] was used implement NMF. The number of components
used to calculate NMF was 20.

1https://www.csie.ntu.edu.tw/ cjlin/liblinear/FAQ.html
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3.7 System information

All the experiments were run on the DSLab servers from Leiden University. In particular, Latinum,
Adamant and Octiron. All three servers are equipped with 16 Intel Xeon E5-2630v3 CPUs @
2.40GHz (32 threads). Latinum has 1.5TB RAM and Adamant and Octiron 512GB RAM.
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Experimental setup

Multiple experiments were performed to research the possible reduction in manual labour. All
the different experiments were conducted using the same experimental framework. Within this
framework, the TAR process is simulated to measure the difference in performance between the
baseline and the individual components. A large number of statistics were measured during the
simulation and these measures were used to compare the performance. This way, the components
best suitable to reduce the manual labour in TAR were identified. The same experimental framework
was used to measure and validate the effect of our novel techniques Sampled labelling and Topic
Model-Based Filtering.

First the experimental framework and the metrics which are stored during the simulation are
described. Afterwards, the experiments performed within the experimental framework are specified.

The performance is compared by simulating the TAR process as if it were a real legal case. The first
step is to create a seed set as a starting point for the simulation. The seed set consists of 500 random
responsive and 500 random non-responsive documents. For the Reuters data set, all documents
from categories that are not the responsive category make up the complete non-responsive set and
500 are randomly selected from these non-responsive categories for the initial seed set. For the client
data, the labels define the responsive and non-responsive documents and 500 are selected at random
to be the initial seed set. In legal review, the seed set is often constructed using search. The seed set
is used to train a classifier and in turn the resulting model classifies all unlabelled documents. The
probability output ranks the documents from most-probable responsive to least-probable responsive.
When using the CAL protocol, a batch of the top 1,000 documents are presented to the reviewer
and are manually labelled. Given that the data sets are fully annotated, the manual labour is
simulated and the documents are labelled instantly.

The labelled documents are added to the training data of the next iteration and another classifier
is trained which in turn classifies all unlabelled documents again. This iterative process continues
until 90% recall has been achieved or 100,000 documents have been manually labelled. Within this
TAR simulation, three experiments will be conducted. To ensure a valid comparison, the seed set is
kept the same for all experiments.
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4.1 Evaluation

To evaluate the performance of the classifiers, a number of evaluation measures are employed.
The precision of a classifier indicates how many of the selected documents are in fact responsive.
Formula 4.1 shows the precision, where tp is the number of true positives and fp is the number of
false positives.

Precision =
tp

tp+ fp
(4.1)

The recall of a classifier measures how many of the total responsive documents are found. Formula
4.2 calculates the recall, where fn is the number of false negatives.

Recall =
tp

tp+ fn
(4.2)

For both these measures, a variant is used to measure the performance of the classifier for every
iteration in the TAR process. Since the labels of the documents are unknown, the documents
that are manually reviewed are used to calculate the return set recision. Given a batch of doc-
uments that the classifiers deems likely to be responsive, how many are of the documents are
indeed responsive. The Full corpus recall calculates what percentage of responsive documents have
been found by dividing the number of responsive documents in the current training set by the
total number of responsive documents in the corpus. Therefore, the full corpus recall can only be
calculated when all the labels are known. Nevertheless, the full corpus recall is very useful in research.

An important metric to measure the performance of the classifier in the TAR process is the F1score.
The F1score is the harmonic mean of the recall and precision and is formulated as follows:

F1score = 2 ∗ precision ∗ recall
precision+ recall

(4.3)

The performance of the labour reduction methods within the simulation is evaluated based on
various measures. These measures are used to analyse how the process is progressing. Every iteration
of the simulation, the following results are stored:

• The amount of manual labour om terms of number of documents labelled
• Responsive documents found
• Non-responsive documents found
• Number of unlabelled documents left
• F1-score on unlabelled
• True positives, True negatives, False positives, False negatives
• Return set precision
• Full-corpus recall
• Time elapsed
• Parameters

Using these measures, the performance of the algorithms is compared in a number of ways. One
very important measure used in the experiments is the Manual labour for Recall. This value indi-
cates for each algorithm how many documents need to be reviewed to reach a given recall (e.g. 90%).

The goal of the first experiment is to measure the extend to which the topic modelling distances can
be used to classify documents as responsive or non-responsive. The goal of the second experiment
is to identify the best method to increase the return set precision. In the last experiment, the effect
of sampled labelling on required manual labour is investigated and the precision of sampled labelling
is researched.
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4.2 Topic Model-Based Filtering

The Topic Model-Based Filtering experiment does not go through the complete TAR simulation and
exclusively uses the seed set of the TAR simulation. The Topic modelling filtering component selects
documents that are non-responsive with a high certainty. We use all available categories from the
Reuters RCV1 corpus in the topic modelling experiment. Information about all Reuters categories
such as description, number of documents and prevalence can be found in table A.1 in the Appendix.

Before the start of the TAR simulation, the NMF topic models for each document in the corpus
are calculated. The seed set is used to calculate the centroid of the NMF topic vectors for the
topic. One of parameter experimented with is the number of topics to calculate the NMF topics
for. The distance from the centroid to all the instances is calculated and two distance distributions
as described in Section 3.2.1 are created.

We experiment with Topic Model-Based Filtering results to determine the number of documents
that can be filtered for each category and what the precision is of the documents that are filtered.
In the experiment, we test our method of defining the number of documents to be filtered, we
want to filter as many negative documents as possible without filtering many responsive documents.
In order to quantify the performance of the topic modelling filtering, we measure the number of
filtered documents, the number of documents in the filtered set that are responsive (false negatives)
and the lost recall by filtering these responsive documents.

Two different settings for p, namely p = 0.01 and p = 0.05, have been compared to research the
effect of this threshold on the precision of the filter. The number of bins used to bin the distances
is set to 50. In the experiment focused on increasing the return set precision, Topic Model-Based
Filtering is used as a method to increase the amount of training data and thereby increasing the
return set precision.

4.3 Improving return set precision in the simulation

The second experiment within the TAR simulation focuses on increasing the return set precision. In
chapter 3 we identify various methods to reduce the manual labour required to reach a certain
recall by increasing the return set precision. The performance of these methods is compared to
the performance of the baseline. The implementation of the methods are described as components
that are added to the baseline. Components can either be adjustments or additions to the baseline
algorithm. Most components are independent and can be combined.

The baseline algorithm is a linear SVM using the default parameter C = 1. Initial benchmarks show
that the SVM outperforms k-NN and Rocchio in the topic classification task [18]. The results of
the baseline will be indicated as SVM.

Topic Code Description Number of documents Prevalence
GVIO War, civil war 32,615 4.0%
GSPO Sports 35,317 4.4%
C11 Strategy / Plans 24,325 3.0%
C13 Regulation / Policy 37,410 4.6%

Table 4.1: Characteristics of topic codes in RCV1 corpus used for experiments

From the Reuters RCV1 corpus, the topics chosen to evaluate the performance of algorithms are
shown in Table 4.1. Previous work has shown that well-defined and clear categories such as "sports"
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achieve higher performance than more vaguely defined categories such as "strategy/plans" [36].

The five components which are compared to the baseline are described below. The parameters used
in the experiment are elaborated on here.

1. Self-training
The self-training components applies self-training to the classifier. Since this is an addition
to the classifier, the self-training results will be indicated with the prefix ST-.

2. BSVM
To increase the return set precision of the classifier, this component changes the classifier
from an SVM to a BSVM. The BSVM implementation uses the unlabelled data as part of the
training data and afterwards predicts the responsiveness of each of the unlabelled documents.
The default parameters for the BSVM are used, meaning Cp = Cn = 1. Since the BSVM is
an alternative classifier, the results are indicated as BSVM. The BSVM can be combined
with components that are additions to the classifier.

3. TSVM
The TSVM component changes the classifier from an SVM to a TSVM. The default parameters
will be used, therefore Cp = Cu = 10−5. The TSVM will be indicated in the results as TSVM.
Same as the BSVM, the TSVM can be combined with other components whenever those
components are additions to the classifier.

4. Applied Topic model-based filtering
Topic Model-Based Filtering is done to create a set of filtered documents. These filtered
documents are used to decrease the size of the unlabelled set and increase the size of the
training data, which could yield an improvement in performance. Since this is an addition
to the classifier, the results are shown with the prefix TMF- and the component can be
combined with other components.

5. Grid Search
The Grid Search component implements grid search parameter optimisation to find the
optimal weights every iteration. For Grid Search it is important to research at which point
the extra labour to create the hold-out validation set is saved by the increased performance.
We have chosen a random validation set size of 1%. The validation set size will be rounded
to the closest thousand so the manual labour can be expressed in thousands of documents
reviewed, which allows for the comparison of performance with other components for every
iteration in the TAR process. We investigate whether using Grid Search with a validation set
of this size is capable of improving the return set precision. A larger validation set makes
it significantly harder to reach the break-even point. For the Reuters data set, containing
804,414 documents, the validation set size is 8,000 documents.

The weights optimised with the Grid search are Cp and Cn, for the positive and negative
instances. For the regular SVM and the BSVM, the search space for Cp ranges from 1 to 0.01
in 20 steps and the search space for Cn ranges from 1 to 0.001 in 20 steps. The grid will
therefore search 400 combinations of parameters. The experiment we did only includes Grid
Search as addition to the baseline SVM but could be tested for other components in the future.

The results of the grid search component are indicated using the prefix GS-. Grid search can
be combined with different components.
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4.4 Sampled labelling

This experiment focuses on Sampled Labelling. The effect of the precision threshold on the precision
of the skipped documents is researched. Furthermore, we research which problems are suitable for
the use of Sampled labelling. For the Sampled Labelling experiment, all available categories from
the Reuters RCV1 corpus are used.

The labelling method in the TAR simulation is adjusted to Sampled Labelling and the full simula-
tion is ran. In addition to all the performance measures for the TAR simulation, the number of
skipped documents and the number of non-responsive documents that are automatically labelled
are measured. These measures are used to calculate the precision of the skipped documents.

The settings for Sampled Labelling are as follows. The initial skip size is set to 400. This number
was chosen since it can be easily divided by two and leave round numbers. The batch size, the
number of documents to be reviewed to calculate the return set precision, is set to 100. The method
needs two more parameters, the skip threshold indicates whether the documents should be skipped
or not and the double threshold indicates whether the skip size should be doubled or not. When
the return set precision of the reviewed batch is below the skip threshold, the skip size is divided by
two. In the Sampled Labelling experiment, the skip threshold will be set to 0.9, 0.95 and 0.98 and
the double threshold is set to 0.95, 0.97 and 0.99. The double threshold must always be larger
than or equal to the skip threshold.

The simulation is terminated when sampled labelling has not been used for three iterations of the
simulation in a row. Since the return set precision is highest at the start of the TAR simulation, if
the return set precision is not high enough at the start of the simulation, no Sampled Labelling will
be used. Hence, the labelling protocol is equal to the regular CAL protocol. The categories which
will benefit from this new labelling protocol are identified in this experiment.

After experimenting with the parameters for all the Reuters categories, the Sampled Labelling
experiment continues by researching the effect of Sampled Labelling on the manual effort needed to
reach a certain recall. For this part of the experiment, the same four Reuters categories were used
as in the Increasing return set precision experiment. Sampled Labelling was added as a component
with the prefix SL-. This experiment was performed for all three sets of parameters. The component
from the previous experiment that performs best was used as the basis on which Sampled Labelling
is applied.
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Chapter 5

Results

In this chapter, the results of our experiments are presented. First, the Topic model-based filtering
experiment are presented, followed by the Increase return set precision results and finally the Sampled
labelling results. The results for each experiment will be split into a section about experiments on
the Reuters corpus and a section about the experiments on the client data.

5.1 Topic model-based filtering

In this section, we present the results of the Topic model-based filtering experiment. Starting with
the results of the experiment on the Reuters data set, followed by the results using the client data.

Reuters

The full table with results of the Topic model-based filtering experiment for p = 0.01 and p = 0.05
are shown in the Appendix in Tables B.1 and B.2 respectively. To summarise the results, three pairs
of histograms show the number of filtered documents, the number of filtered responsive documents
and the lost recall by filtering these responsive documents for each of the 103 categories from
Reuters. Figure 5.1 shows the number of categories binned for the number of documents that are
filtered using topic model-based filtering. For p = 0.01, an average of 312,532 documents are filtered
for each category. An average of 40% of the unlabelled documents are filtered. Topic model-based
filtering filters a maximum of 736,079 documents for the category containing documents about
Sports. For p = 0.05, an average of 372,494 documents are filtered for each category, which
translates to an average of 47% of the unlabelled documents. A maximum of 748,509 documents
are filtered, also in the category about Sports.
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Figure 5.1: Histogram of number of filtered documents for each of the categories
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The number of false negatives, filtered responsive documents, are shown in Figure 5.2. For p = 0.01,
an average of 59 responsive documents are filtered. A maximum of 1,084 responsive documents are
skipped, the category where these responsive documents are skipped contains 204,820 responsive
documents in total. 22 out of 103 categories in the Reuters corpus filter no responsive documents
and 53 out of 103 categories filter 10 or less documents. For p = 0.05, an average of 81 responsive
documents are wrongly filtered. A maximum of 1,194 documents are skipped for a category that
contains 151,785 responsive documents. 14 out of 103 categories filter no responsive documents
and 43 out of 103 categories filter 10 documents or less.
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Figure 5.2: Histogram of number of filtered responsive documents for each of the categories

The last pair of histograms, shown in Figure 5.3, displays the lost recall. The lost recall is the
decrease in maximum attainable recall in the TAR process after filtering the documents. This
decrease is caused by responsive documents that are wrongly filtered. For p = 0.01, the lost recall
is 0.18% on average. The maximum lost recall is 1.03%, meaning the maximum attainable recall
in TAR will drop from 100% to 98.97%. 93 of the 103 categories have a lost recall below 0.5%.
For p = 0.05, the average lost recall is 0.3% and the maximum lost recall is 2.4%. The number of
categories with a lost recall below 0.5% is 80.
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Figure 5.3: Histogram of lost recall for each of the categories.
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Client data

The same experiment was done using client data. For p = 0.01, 22,169 documents are filtered. Of
these documents, 8 documents are in fact responsive. Therefore, the lost recall for the experiment
on the client data is 0.07%. Topic model-based filtering filters 25% of the unlabelled documents.
For p = 0.05, 25,670 documents are filtered. Of these documents, 23 documents are in fact
responsive, this means there is a lost recall for the experiment on the client data of 0.22%. 28% of
the unlabelled documents are filtered in the experiment.

5.2 Improving return set precision in the simulation

For each of the categories that we use to simulate the TAR process, we have created a Gain Chart
which plots the recall achieved at a certain point in the simulation against the manual reviewing
labour performed up to that point.

A partial result for the category Strategy / Plans is shown in Figure 5.4. We can see that the SVM
performs best in the beginning of the TAR simulation but is overtaken by the TSVM. The GS-SVM
starts with 8,000 documents already labelled to create the validation set, but has a higher return
set precision and therefore reaches higher recall than the SVM. The complete collection of gain
charts can be found in Appendix C.
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Figure 5.4: Gain Chart: Strategy / Plans

In order to show the progression of the return set precision, this value has been plotted for every
iteration. Each iteration represents a batch of 1,000 manually reviewed documents. We haven
chosen to show the iterations instead of the manual labour on the x-axis in order to paint a clear
picture of the return set precision at any point in the TAR process, especially for the Grid Search
SVM that starts at 8,000 reviewed documents because of the validation set. Due to the high
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dimensionality of the training data for the client data, we were unable to run the BSVM experiment
on the client data. The LIBLINEAR package had a bug that caused the implementation to fail when
training with data containing more than 232 zero values. Since the BSVM uses all the available
data to train, an error occurs.

Table 5.1 presents the results for the Increase return set precision experiment. The top two categories,
Strategy / Plans and Regulation / Policy, show the amount of manual labour necessary to reach
0.8 recall since 0.9 recall was not reached within 100,000 labelled documents. The bottom two
categories, Sports and War / Civil War, show the amount of labour needed to reach 0.9 recall.

Experiment Baseline ST-SVM BSVM TSVM TMF-SVM GS-SVM
Recall > 0.8 Strategy / Plans 85,000 81,000 85,000 73,000 82,000 77,000
Recall > 0.8 Regulation / Policy 87,000 84,000 87,000 78,000 83,000 85,000
Recall > 0.9 Sports 32,000 32,000 32,000 32,000 32,000 40,000
Recall > 0.9 War / Civil War 46,000 44,000 46,000 44,000 45,000 51,000
Recall > 0.9 Client data 24,000 25,000 - 20,000 24,000 23,000

Table 5.1: Minimum manual labelling effort needed to reach recall

Table 5.2 shows the amount of second it takes to execute an iteration for each of the components.
The longest execution time is needed by the Grid Search SVM, which trains 400 SVM’s to find the
right parameters. The fastest component is the Topic Model-based filtered SVM.

Average time (s)
SVM 95
ST-SVM 198
BSVM 100
TSVM 168
TMF-SVM 71
GS-SVM 611

Table 5.2: Average time per iteration of the TAR process
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5.3 Sampled labelling

The full results of the Sampled Labelling experiment can be found in the appendix in Tables D.1,
D.1 and D.1. A table for each of the three different settings of the parameters. Below, the results
are consolidated by comparing the number of categories where Sampled Labelling had an effect,
the average number of documents skipped, the average number of false positives and the average
gained recall. The gained recall is the amount of recall that was gained by skipped documents that
were not manually labelled. The table also shows the maximum skipped number of documents, the
maximum gained recall of any category and the minimum precision of any category. In Table ??
below, ts is the skip threshold and td is the double threshold.

ts = 0.9 td = 0.95 ts = 0.95 td = 0.97 ts = 0.98 td = 0.99

Number of categories 63 49 43
Average skipped documents 21,956 24,467 21,667
Average false positives 820 610 287
Average gained recall 0.336 0.326 0.249
Average precision 0.942 0.946 0.979
Maximum skipped documents 305,400 283,400 237,700
Maximum gained recall 0.923 0.883 0.847
Minimum precision 0.870 0.925 0.944

Table 5.3: Sampled labelling results

Table 5.4 shows the results of the experiments of the four Reuters categories with Sampled Labelling
enabled. Since the TSVM displayed superior performance in the previous experiment, this was the
base implementation on top of which Sampled Labelling is applied. The results for all three sets of
parameters are shown below.

Category Measure
Experiment TSVM SL-TSVM 1 SL-TSVM 2 SL-TSVM 3

Recall >0.8 Strategy / Plans
Labour 73,000 73,000 73,000 73,000
Skipped - 0 0 0
FP - 0 0 0

Recall >0.8 Regulation / Policy
Labour 78,000 78,000 78,000 78,000
Skipped - 0 0 0
FP - 0 0 0

Recall >0.9 Sports
Labour 32,000 1,000 2,000 3,000
Skipped - 32,800 32,100 30,200
FP - 517 408 243

Recall >0.9 War / Civil War
Labour 44,000 33,000 40,000 42,000
Skipped - 9,200 3,400 1,300
FP - 775 186 57

Table 5.4: Sampled labelling experiment on Reuters categories

1ts = 0.90; td = 0.95
2ts = 0.95; td = 0.97
3ts = 0.98; td = 0.99
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Discussion

This chapter is where we discuss the results and the implications of the results. We will start by
discussing the results of the Topic model-based filtering experiment, followed by the Improving the
return set precision in the simulation experiment and finally the Sampled Labelling experiment.

6.1 Topic model-based filtering

The value of p can be used to set the threshold of how many documents should be filtered and to
what degree of certainty the filtered documents should not contain responsive documents. A lower
value for p will result in a lower average lost recall, meaning less filtered responsive documents. A
higher value for p will result in more documents being filtered.

The results show that a relative large number of documents can be filtered, over 40% for both
parameters, while maintaining a high precision. The maximum lost recall is close to 1% for p = 0.01,
which can be argued by lawyers to be acceptable since the goal of TAR is often to reach a recall
well below 100%.

Topic model-based filtering can be applied to filter noise and significantly increase the number of
negative training documents before even starting the TAR simulation. This decrease in unlabelled
documents leads to a decrease in time needed per iteration which could allow for more computa-
tionally expensive methods to be performed within the same time frame as a regular SVM. The
noise filtering could also be used to decrease the noise in the TF-IDF matrix by recalculating it
after the documents have been filtered. Future work could research whether this has an impact on
the overall TAR performance.

The experiments show that using Topic model distances to the centroid are an effective way to
filter non-responsive documents.

6.2 Improving return set precision in the simulation

The four Reuters categories can be divided in two categories, easy and hard. Sports and War
/ Civil War are categorised as easy TAR tasks, Strategy / Plans and Regulation / Policy are
categorised as hard tasks. As seen in Figure C.8, the return set precision is near 1 during a
significant part of the simulation. Therefore, Sports is a category that does not leave a lot of
room for improvement of the return set precision. None of the proposed components for increasing
the return set precision shows a decrease in manual labelling effort needed to reach the required recall.
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The Self-training SVM (ST-SVM) shows a decrease in labelling effort necessary to reach the
required recall in three out of four categories. Interestingly, judging from Figures D.1 and C.2, the
ST-SVM outperforms all other components in the first half of the simulation but is outperformed
in the second half.

The results of the Biased SVM (BSVM) are identical to the baseline. No significant improvement is
found when using the default parameters. Our hypothesis is that the performance of the BSVM is
highly dependent on choosing the right parameters.

The component with the most significant decrease in manual labelling effort needed to reach the
required recall is the Transductive SVM (TSVM). For each category it requires the lowest amount
of labelling effort needed. The TSVM shows superior performance compared to all other proposed
components. During the first half of the TAR simulation, the ST-SVM does have a higher return
set precision, but the TSVM has higher return set precision in the second half of the simulation.
Averaged over all four categories, the TSVM decrease the amount of labelling necessary by 7%.
The most significant decrease in labelling effort is for the category Strategy / Plans with a decrease
of 14.1%.

The Applied Topic Model Based filtering component (TMF-SVM) shows a small increase in return
set precision and therefore decrease in necessary manual effort. Noteworthy is that the average time
per iteration decreases when using this component. This is caused by the fact that not training
the SVM but predicting the labels is the most time-consuming task each iteration. By significantly
increasing the amount of (negative) training data by filtering up front, less labels have to be
predicted and the process is therefore sped up.

The Grid Search SVM (GS-SVM) starts behind the other approaches due to the fact that the
validation set has to be labelled for this technique. For the categories Sports and War / Civil War,
the increase in return set precision is not big enough to make up for this. However, for the categories
Strategy / Plans and Regulation / Policy, the increase in return set precision is significant enough to
reach the break-even point between regular SVM and GS-SVM before 0.8 recall, therefore reaching
0.8 recall with less manual reviewing effort.

The TSVM performs best for the client data experiment as well, reducing the amount of manual
labour from 24,000 reviewed documents to reach 90% recall to 20.000 documents, a decrease of
16.7%. The financial implications of reducing the manual labour are very significant. If lawyers
would have to review 16.7% less documents, this could save an equal percentage in costs for the
complete TAR process. Not all the components show similar results as the TSVM on the client
data. The ST-SVM even performs slightly worse than the baseline implementation. The TMF-SVM
shows no improvement aside from reducing the time per iteration and the GS-SVM shows a modest
reduction in labelling effort.

Overall, increasing the return set precision is an effective method for reducing manual labour for
harder TAR tasks. Easier TAR tasks leave less opportunities for enhancement and therefore the
performance improvements are less significant using these techniques.

When comparing the Reuters experiments to the client data experiments, it stands out that the
component that performs best is the same in both experiments. The TMF-SVM shows no difference
in performance on the client data, while for the experiments with the Reuters data it does cause a
reduction in necessary labour. The GS-SVM only performs better for the harder tasks. It could be
argued that, given the return set precision graph of the client data, the experiment with the client
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data falls in this more difficult category. Hence, the results of the GS-SVM are also similar for the
client data and Reuters data. The ST-SVM even causes a small increase in necessary labelling
effort for the client data, while for the Reuters data the labelling effort decreases. Even though
the results of the client data are not completely similar to the results of the Reuters data, and a
Reuters category could maybe be found that is more similar to the client data, the results on the
Reuters data could give a decent indication of the performance on the client data. If more client
data is available to experiment with, better research can be done into the effectiveness of using
Reuters data to simulate client data experiments.

6.3 Sampled Labelling

In order for Sampled Labelling to skip documents, the precision of the sampled batch must be
above the threshold. Therefore, the number of categories on which Sampled Labelling has an effect
changes depending on the threshold. Using the highest threshold, 43 out of 103 categories in the
Reuters corpus use Sampled labelling. Likewise, the average precision of the skipped documents
changes between thresholds, with a higher thresholds corresponding to higher precisions. On average,
over 20,000 documents are skipped for each of the settings and can therefore reduce the amount of
labour necessary significantly. When 20,000 documents are skipped, more than 20 review iterations
of 1,000 document’ batches are saved.

From the results of the previous experiment, in Figures C.6 and C.7, we know that the experiments
Strategy / Plans and Regulation / Policy never reach a return set precision above 90%. Therefore,
Sampled Labelling has no effect on these categories and performs exactly the same as the regular
CAL protocol.

For the two other categories, which achieve higher return set precision in the previous experiment,
Sampled Labelling has a significant impact. The amount of labour required to reach the required
recall is decreased considerably. For the category Sports the decrease in labour ranges from 90.6%
to 96.9%, reaching 90% recall after only labelling 1,000 documents for ts = 0.90 and td = 0.95.
For the War / Civil War category, the reduction is smaller but still very significant. The decrease in
labour ranges from 4.5% to 25.0%, depending on the threshold.

The return set precision of this particular client data is not high enough for Sampled Labelling
to have an effect. Future work could research the effect on a client data set that does reach the
required precision threshold. On the Reuters data set, Sampled Labelling proves to be an effective
method for reducing the amount of manual labour.
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Conclusion

In this chapter, we share our conclusions and answer the research questions. After answering the
research questions, we describe what possible future work could lead to valuable research insights.

7.1 Research Questions

1. How can the necessary amount of manual labour during legal review be reduced?

We have identified three methods for reducing the amount of manual labour necessary
to reach the required recall: (1) reducing the size of the problem, (2) increasing the return
set precision and (3) changing the protocol by which the documents are labelled. For each of
the three methods we set up experiments to research the effect on performance. Due to the
strict protocols, options for changing the way documents are labelled are limited. Sampled
Labelling is an addition to the existing CAL protocol.

2. What is the effect of the identified methods to reduce the amount of manual labour?

The results of our experiments show the effect of all identified methods for reducing the
amount of manual labour. For increasing the return set precision, the TSVM shows the most
significant labour reduction, especially in more difficult tasks. For tasks that start with a high
return set precision, we introduced a novel labelling technique, Sampled Labelling, which
shows very promising results. In our experiments Sampled Labelling considerably reduced the
amount of necessary labour. By combining these two techniques, our research found methods
to improve the performance of both easy and hard tasks, potentially leading to a significant
cost reduction of fulfilling a request for production.

Defensibility of the methods leading to these potential reductions in manual labour is
important. Applying an improved classifier like TSVM is very defensible since it still works
within the same TAR protocol, Continuous Active Learning. However, Sampled Labelling
does change the TAR protocol and defensibility could be affected. Given the fact that, using
Sampled Labelling, no documents can be automatically labelled as non-responsive, we believe
that defensibility will not be a big issue.

3. To what extent does the performance of the TAR simulation using the Reuters RCV1 corpus
reflect the performance of the TAR simulation using client data?

From the experiments we did with one client data set, we are unable to generalise how good
the performance of the TAR simulation using Reuters data reflects the performance using
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client data. However, for this client data set, the classifier that improved the baseline the
most is the same for both corpora and it seems that an improved performance on the Reuters
corpus also indicates an improvement on this particular client data set.

7.2 Future work

A lot of research can still be done to improve the performance of the TAR simulation. In this
section we will present some ideas for future research.

Topic Model-Based Filtering can be used before starting TAR to filter noise. Especially the client
data includes a lot of noise, which is apparent from the almost one million terms in the TF-IDF
matrix. Future work could try to figure out, whether using the filtering method and afterwards
recalculating TF-IDF with reduced noise could improve performance. Additional research could be
done to investigate what the effect is on performance when combining Grid Search with different
components such as TSVM and BSVM. Our hypothesis is that the BSVM relies heavily on the
parameters to perform well. An experiment with GS-BSVM compared to GS-SVM could be used to
proof this hypothesis.

Sampled Labelling has not yet been tested on client data that does reach a high enough return set
precision. Future work could research the effect of Sampled Labelling on client data by getting data
of a completed TAR process that does reach the threshold.

Future research could look into what specific Reuters categories are best suitable for simulating the
TAR process. In order to do so, more client data would be necessary to provide a better picture of
the scope of the differences from corpus to corpus and issue to issue. With the limited client data
we have performed experiments with, we were unable to research which categories are best suitable
for simulating TAR and how good the reflection of performance is for client data in general.

Shifting from supervised to semi-supervised learning is a step in the right direction of improving
the TAR performance. However, from the results we can learn that some classifiers work better
in different segments of the TAR process. A Reinforcement Learning approach might be able to
learn from the current state of the TAR process, what classifier to use next. Since SAL with the
use of uncertainty sampling can be used to increase the performance of the classifier by selecting
and labelling documents that the classifier is least certain about. Research could look in whether
switching between TAR protocols could be an effective method to improve the performance and
reduce manual labour even further.
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Appendix A

Reuters statistics

This Appendix contains a table which displays all the statistics about the Reuters Corpus. For
each of the 103 Reuters categories, the category name, the category description, the number of
documents in the category (#) and the prevalence (%) is shown. The largest category is Corporate /
Industrial with 381,327 documents and a prevalence of 47.4%. The smallest category is Millennium
issues containing only 5 documents.
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Cat Description # % Cat Description # %
C11 Strategy / Plans 24325 3 E411 Unemployment 2136 0.3
C12 Legal / Judicial 11944 1.5 E51 Trade / Reserves 21280 2.6
C13 Regulation / Policy 37410 4.7 E511 Balance of payments 2933 0.4
C14 Share listings 7410 0.9 E512 Merchandise trade 12634 1.6
C15 Performance 151785 18.9 E513 Reserves 2290 0.3
C151 Accounts / Earnings 81890 10.2 E61 Housing starts 391 0.05
C1511 Annual results 23211 2.9 E71 Leading indicators 5268 0.7
C152 Comment / Forecasts 73092 9.1 ECAT Economics 119920 14.9
C16 Insolvency / Liquidity 1920 0.2 G15 European community 20672 2.6
C17 Funding / Capital 42155 5.2 G151 Ec internal market 3307 0.4
C171 Share capital 18313 2.3 G152 Ec corporate policy 2107 0.3
C172 Bonds / Debt issues 11487 1.4 G153 Ec agriculture policy 2360 0.3
C173 Loans / Credits 2636 0.3 G154 Ec monetary / Economic 8404 1
C174 Credit ratings 5871 0.7 G155 Ec institutions 2124 0.3
C18 Ownership changes 52817 6.6 G156 Ec environment issues 260 0.03
C181 Mergers / Acquisitions 43374 5.4 G157 Ec competition / Subsidy 2036 0.3
C182 Asset transfers 4671 0.6 G158 Ec external relations 4300 0.5
C183 Privatisations 7406 0.9 G159 Ec general 40 0.01
C21 Production / Services 25403 3.2 GCAT Government / Social 239267 29.7
C22 New products / Services 6119 0.8 GCRIM Crime, law enforcement 32219 4
C23 Research / Development 2625 0.3 GDEF Defence 8842 1.1
C24 Capacity / Facilities 32153 4 GDIP International relations 37739 4.7
C31 Markets / Marketing 40509 5 GDIS Disasters and accidents 8657 1.1
C311 Domestic markets 4299 0.5 GENT Arts, culture, entertainment 3801 0.5
C312 External markets 6648 0.8 GENV Environment / natural world 6261 0.8
C313 Market share 1115 0.1 GFAS Fashion 313 0.04
C32 Advertising / Promotion 2084 0.3 GHEA Health 6030 0.7
C33 Contracts / Orders 15332 1.9 GJOB Labour issues 17241 2.1
C331 Defence contracts 1210 0.2 GMIL Millennium issues 5 0.001
C34 Monopolies / Competition 4835 0.6 GOBIT Obituaries 844 0.1
C41 Management 11355 1.4 GODD Human interest 2802 0.3
C411 Management moves 10272 1.3 GPOL Domestic politics 56878 7.1
C42 Labour 11878 1.5 GPRO Biographies / personalities 5498 0.7
CCAT Corporate / Industrial 381327 47.4 GREL Religion 2849 0.4
E11 Economic performance 8568 1.1 GSCI Science and technology 2410 0.3
E12 Monetary / Economic 27100 3.4 GSPO Sports 35317 4.4
E121 Money supply 2182 0.3 GTOUR Travel and tourism 680 0.1
E13 Inflation / Prices 6603 0.8 GVIO War, civil war 32615 4.1
E131 Consumer prices 5659 0.7 GVOTE Elections 11532 1.4
E132 Wholesale prices 939 0.1 GWEA Weather 3878 0.5
E14 Consumer finance 2177 0.3 GWELF Welfare, social services 1869 0.2
E141 Personal income 376 0.05 M11 Equity markets 48696 6.1
E142 Consumer credit 200 0.03 M12 Bond markets 26036 3.2
E143 Retail sales 1206 0.1 M13 Money markets 53634 6.7
E21 Government finance 43130 5.4 M131 Interbank markets 28185 3.5
E211 Expenditure / Revenue 15768 2 M132 Forex markets 26752 3.3
E212 Government borrowing 27405 3.4 M14 Commodity markets 85440 10.6
E31 Output / Capacity 2415 0.3 M141 Soft commodities 47708 5.9
E311 Industrial production 1701 0.2 M142 Metals trading 12130 1.5
E312 Capacity utilization 52 0 M143 Energy markets 21957 2.7
E313 Inventories 111 0 MCAT Markets 204820 25.5
E41 Employment / Labour 17035 2.1

Table A.1: Reuters categories with the number of documents in the category (#) and the
prevalence (%)
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Appendix B

Topic model based filtering results

This Appendix contains all the results of the Topic Model-Based Filtering experiments. The next
two pages display two tables that show the number of filtered documents, False negatives and lost
recall for each of the 103 Reuters categories. Table B.1 shows the results for p = 0.01 and Table
B.2 for p = 0.05.

For p = 0.01, an average of 312,532 documents are filtered for each category. An average of 40%
of the unlabelled documents are filtered. Topic model-based filtering filters a maximum of 736,079
documents for the category containing documents about Sports. For p = 0.05, an average of
372,494 documents are filtered for each category, which translates to an average of 47% of the
unlabelled documents. A maximum of 748,509 documents are filtered, also in the category about
Sports.
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Cat # Filtered False N Lost recall Cat # Filtered False N Lost recall
C11 47768 0 0.0000 E411 482663 7 0.0033
C12 17584 0 0.0000 E51 166607 35 0.0016
C13 224871 120 0.0032 E511 222716 1 0.0003
C14 100539 0 0.0000 E512 213620 30 0.0024
C15 259662 174 0.0011 E513 501676 5 0.0022
C151 376970 140 0.0017 E61 237570 0 0.0000
C1511 371677 14 0.0006 E71 730658 28 0.0053
C152 284898 332 0.0045 ECAT 113220 417 0.0035
C16 107870 1 0.0005 G15 399948 43 0.0021
C17 287047 379 0.0090 G151 632805 9 0.0027
C171 220177 3 0.0002 G152 186468 0 0.0000
C172 323712 15 0.0013 G153 228140 1 0.0004
C173 405335 10 0.0038 G154 394981 11 0.0013
C174 373048 4 0.0007 G155 563926 10 0.0047
C18 136007 38 0.0007 G156 504722 0 0.0000
C181 364083 51 0.0012 G157 527635 3 0.0015
C182 343630 7 0.0015 G158 475936 15 0.0035
C183 216568 4 0.0005 G159 616679 0 0.0000
C21 147116 25 0.0010 GCAT 198147 353 0.0015
C22 306088 31 0.0051 GCRIM 302948 39 0.0012
C23 350685 18 0.0069 GDEF 391425 13 0.0015
C24 196757 55 0.0017 GDIP 297730 22 0.0006
C31 101805 30 0.0007 GDIS 423500 78 0.0090
C311 216259 0 0.0000 GENT 151481 2 0.0005
C312 298168 9 0.0014 GENV 172479 5 0.0008
C313 155228 2 0.0018 GFAS 110820 0 0.0000
C32 195654 3 0.0014 GHEA 298880 9 0.0015
C33 144658 11 0.0007 GJOB 228845 41 0.0024
C331 265254 1 0.0008 GMIL 610833 0 0.0000
C34 282331 2 0.0004 GOBIT 303876 0 0.0000
C41 246344 16 0.0014 GODD 458164 11 0.0039
C411 305334 62 0.0060 GPOL 511063 584 0.0103
C42 106819 10 0.0008 GPRO 377910 4 0.0007
CCAT 43949 799 0.0021 GREL 591915 26 0.0091
E11 143368 1 0.0001 GSCI 284471 0 0.0000
E12 212593 26 0.0010 GSPO 736079 49 0.0014
E121 50049 0 0.0000 GTOUR 122556 0 0.0000
E13 207500 3 0.0005 GVIO 429783 44 0.0013
E131 325450 6 0.0011 GVOTE 464998 49 0.0042
E132 711414 0 0.0000 GWEA 212891 10 0.0026
E14 115891 0 0.0000 GWELF 216410 0 0.0000
E141 322362 0 0.0000 M11 131574 4 0.0001
E142 491464 0 0.0000 M12 499653 149 0.0057
E143 531206 3 0.0025 M13 519455 226 0.0042
E21 3408 0 0.0000 M131 478908 22 0.0008
E211 237396 26 0.0016 M132 405243 24 0.0009
E212 16339 1 0.0000 M14 354670 70 0.0008
E31 546656 12 0.0050 M141 331103 19 0.0004
E311 474916 4 0.0024 M142 287510 11 0.0009
E312 428719 0 0.0000 M143 598112 56 0.0026
E313 324987 0 0.0000 MCAT 264339 1084 0.0053
E41 255433 61 0.0036

Table B.1: Topic model-based filtering results on the Reuters corpus for p = 0.01
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Cat # Filtered False N Lost recall Cat # Filtered False N Lost recall
C11 429167 231 0.00950 E411 543850 12 0.00562
C12 362826 86 0.00720 E51 158588 25 0.00117
C13 144319 20 0.00053 E511 305286 26 0.00886
C14 302767 5 0.00067 E512 154453 9 0.00071
C15 324156 1194 0.00787 E513 492272 5 0.00218
C151 380970 183 0.00223 E61 237567 0 0.00000
C1511 610379 206 0.00888 E71 682265 19 0.00361
C152 260961 250 0.00342 ECAT 55465 8 0.00007
C16 90800 0 0.00000 G15 367118 35 0.00169
C17 250320 184 0.00436 G151 670736 11 0.00333
C171 210194 2 0.00011 G152 333628 5 0.00237
C172 494806 66 0.00575 G153 476159 9 0.00381
C173 382663 8 0.00303 G154 680960 35 0.00416
C174 591028 57 0.00971 G155 570458 7 0.00330
C18 384901 154 0.00292 G156 504715 0 0.00000
C181 433850 131 0.00302 G157 576840 10 0.00491
C182 525676 116 0.02483 G158 446814 8 0.00186
C183 233857 6 0.00081 G159 616689 0 0.00000
C21 133844 39 0.00154 GCAT 184119 300 0.00125
C22 298585 30 0.00490 GCRIM 227552 12 0.00037
C23 124533 0 0.00000 GDEF 375976 10 0.00113
C24 145360 20 0.00062 GDIP 447347 80 0.00212
C31 67402 13 0.00032 GDIS 202278 3 0.00035
C311 253540 5 0.00116 GENT 256592 8 0.00210
C312 333080 26 0.00391 GENV 204107 17 0.00272
C313 286355 6 0.00538 GFAS 110821 0 0.00000
C32 370151 35 0.01679 GHEA 381689 33 0.00547
C33 107799 8 0.00052 GJOB 166069 15 0.00087
C331 327188 3 0.00248 GMIL 610829 0 0.00000
C34 371702 33 0.00683 GOBIT 301168 0 0.00000
C41 238941 23 0.00203 GODD 395174 4 0.00143
C411 150597 2 0.00019 GPOL 388840 60 0.00105
C42 82134 2 0.00017 GPRO 403755 6 0.00109
CCAT 50240 977 0.00256 GREL 454150 3 0.00105
E11 419740 50 0.00584 GSCI 424387 15 0.00622
E12 220995 32 0.00118 GSPO 748509 97 0.00275
E121 411901 7 0.00321 GTOUR 99540 0 0.00000
E13 626243 57 0.00863 GVIO 460220 60 0.00184
E131 540265 26 0.00459 GVOTE 452968 35 0.00304
E132 742791 5 0.00532 GWEA 252469 5 0.00129
E14 473173 14 0.00643 GWELF 282692 4 0.00214
E141 410848 0 0.00000 M11 552609 652 0.01339
E142 491477 0 0.00000 M12 445390 78 0.00300
E143 656922 7 0.00580 M13 502471 167 0.00311
E21 462337 1031 0.02390 M131 524288 38 0.00135
E211 96623 0 0.00000 M132 465095 67 0.00250
E212 471928 311 0.01135 M14 445699 247 0.00289
E31 553582 11 0.00455 M141 613758 146 0.00306
E311 692244 16 0.00941 M142 372552 29 0.00239
E312 428728 0 0.00000 M143 558611 34 0.00155
E313 324970 0 0.00000 MCAT 187346 184 0.00090
E41 214108 34 0.00200

Table B.2: Topic model-based filtering results on the Reuters corpus for p = 0.05
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Appendix C

Increase return set precision results

In this Appendix, ten figures are presented. Five Gain charts and five Return set precision charts.
For both types of figures, the first four display the results of the Reuters categories and the fifth
displays the results of the client data.

Figure D.1 shows the Gain Chart for the Strategy / Plans category. The line for the SVM drawn
right underneath the line of the BSVM, which shows almost identical results. The ST-SVM performs
best in the first half of the experiment while the TSVM outperforms all other components in the
second half of the experiment. The Return set precision chart for the Strategy / Plans category
can be seen in Figure C.6. Figure C.2 depicts the Gain Chart for the Regulation / Policy where the
line for the baseline SVM is also drawn underneath the BSVM, once again showing identical results.
Figure C.7 displays the return set precision chart. For both the Strategy / Plans and the Regulation
/ Policy experiment, the GS-SVM makes up for the extra labelling needed to create the validation set.

The Gain Chart for Sports, shown in Figure C.3, displays all components almost identical as a
straight line from 0 to 0,9. Only the GS-SVM starts from 8.000 manual labour since the validation
set has to be labelled. Figure C.8 depicts the return set precision, which is near 1 almost the
entire experiment. The Gain Chart for the War / Civil War category is displayed in Figure C.4.
The Self-training SVM shows very promising results until iteration 28 (28.000 manually labelled
documents), after iteration 28 the TSVM outperforms the Self-training SVM. In the return set
precision chart (Figure C.9) it is visible that the return set precision of the TSVM is higher than
the ST-SVM.
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Figure C.1: Gain Chart: Strategy / Plans
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Figure C.2: Gain Chart: Regulation / Policy
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Figure C.3: Gain Chart: Sports

0k 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Manual labour

R
ec
al
l

SVM
ST-SVM
BSVM
TSVM

TMF-SVM
GS-SVM

Figure C.4: Gain Chart: War / Civil War
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Figure C.5: Gain Chart: Client data
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Figure C.6: Return Set Precision Chart: Strategy / Plans

49



APPENDIX C. INCREASE RETURN SET PRECISION RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
re
ci
si
on

SVM
ST-SVM
BSVM
TSVM

TMF-SVM
GS-SVM

Figure C.7: Return Set Precision Chart: Regulation / Policy
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Figure C.8: Return Set Precision Chart: Sports
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Figure C.9: Return Set Precision Chart: War / Civil War
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Figure C.10: Return Set Precision Chart: Client data
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Appendix D

Sampled Labelling Results

The three tables in this Appendix: Tables D.1, D.2 and D.3, present the Sampled Labelling experi-
ment results for three distinct sets of parameters. For each of the Reuters categories, the number
of skipped documents (skipped), the number of False Positives (FP), the gained recall (GR) and
the precision of the skipped documents (SP) are shown.

The results shown in Table D.1 are for the experiment with parameters: ts = 0.90 and td = 0.95.
In 63 out of 103 categories, Sampled Labelling caused documents to be skipped during labelling.
An average of 21,956 documents are skipped with an average precision of 94.2%.

The results for the experiment with parameters: ts = 0.95 and td = 0.97 are presented in Table
D.2. An average of 24,467 documents are skipped in the 49 categories where Sampled Labelling
had an effect. The documents are skipped with an average precision of 0.946.

Table D.3 displays the results for the experiment with the parameters: ts = 0.98 and td = 0.99.
Sampled Labelling has an effect in 43 of the Reuters categories. An average of 21,667 documents
are skipped with an average precision of 97.9%. The minimum precision of 94.4% is the highest
minimum precision of all three experiments.
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APPENDIX D. SAMPLED LABELLING RESULTS

Cat Skipped FP GR SP Cat Skipped FP GR SP
C11 — — — — E411 — — — —
C12 800 71 0.067 0.911 E51 2700 196 0.127 0.927
C13 — — — — E511 — — — —
C14 — — — — E512 1100 57 0.087 0.948
C15 114700 2734 0.756 0.976 E513 200 3 0.087 0.985
C151 61400 1412 0.750 0.977 E61 — — — —
C1511 12100 587 0.521 0.951 E71 2800 23 0.532 0.992
C152 34200 1373 0.468 0.960 ECAT 54000 2688 0.450 0.950
C16 — — — — G15 9900 663 0.479 0.933
C17 13000 835 0.308 0.936 G151 — — — —
C171 4300 282 0.235 0.934 G152 — — — —
C172 3100 270 0.270 0.913 G153 — — — —
C173 — — — — G154 3000 133 0.357 0.956
C174 3900 196 0.664 0.950 G155 — — — —
C18 15600 1042 0.295 0.933 G156 — — — —
C181 8700 561 0.201 0.936 G157 — — — —
C182 — — — — G158 — — — —
C183 400 34 0.054 0.915 G159 — — — —
C21 1000 86 0.039 0.914 GCAT 190900 5420 0.798 0.972
C22 — — — — GCRIM 9600 613 0.298 0.936
C23 — — — — GDEF 200 16 0.023 0.920
C24 900 98 0.028 0.891 GDIP 8200 601 0.217 0.927
C31 700 60 0.017 0.914 GDIS 2700 146 0.312 0.946
C311 — — — — GENT — — — —
C312 — — — — GENV 100 10 0.016 0.900
C313 — — — — GFAS — — — —
C32 — — — — GHEA 200 26 0.033 0.870
C33 1000 65 0.065 0.935 GJOB 6600 382 0.383 0.942
C331 — — — — GMIL — — — —
C34 100 10 0.021 0.900 GOBIT — — — —
C41 5300 228 0.467 0.957 GODD — — — —
C411 4700 138 0.458 0.971 GPOL 14200 895 0.250 0.937
C42 2000 138 0.168 0.931 GPRO — — — —
CCAT 305400 10502 0.801 0.966 GREL 200 7 0.070 0.965
E11 300 25 0.035 0.917 GSCI — — — —
E12 100 9 0.004 0.910 GSPO 32600 469 0.923 0.986
E121 100 1 0.046 0.990 GTOUR — — — —
E13 1800 65 0.273 0.964 GVIO 9300 565 0.285 0.939
E131 900 27 0.159 0.970 GVOTE 1700 163 0.147 0.904
E132 — — — — GWEA 300 9 0.077 0.970
E14 — — — — GWELF — — — —
E141 — — — — M11 33600 1791 0.690 0.947
E142 — — — — M12 9300 601 0.357 0.935
E143 — — — — M13 34800 1810 0.649 0.948
E21 20300 967 0.471 0.952 M131 15900 859 0.564 0.946
E211 3100 190 0.197 0.939 M132 12000 684 0.449 0.943
E212 14800 894 0.540 0.940 M14 68800 2542 0.805 0.963
E31 200 14 0.083 0.930 M141 38800 1702 0.813 0.956
E311 200 17 0.118 0.915 M142 6000 274 0.495 0.954
E312 — — — — M143 15300 746 0.697 0.951
E313 — — — — MCAT 157100 4180 0.767 0.973
E41 6000 462 0.352 0.923

Table D.1: Sampled Labelling results for ts = 0.90 and td = 0.95
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APPENDIX D. SAMPLED LABELLING RESULTS

Cat # Skipped FP GR SP Cat Skipped FP GR SP
C11 — — — — E411 — — — —
C12 — — — — E51 700 34 0.033 0.951
C13 — — — — E511 — — — —
C14 — — — — E512 500 16 0.040 0.968
C15 106100 1232 0.699 0.988 E513 100 — 0.044 1.000
C151 58000 1279 0.708 0.978 E61 — — — —
C1511 10000 277 0.431 0.972 E71 3500 124 0.664 0.965
C152 28200 932 0.386 0.967 ECAT 40600 1666 0.339 0.959
C16 — — — — G15 6700 300 0.324 0.955
C17 6500 227 0.154 0.965 G151 — — — —
C171 1900 92 0.104 0.952 G152 — — — —
C172 1500 57 0.131 0.962 G153 — — — —
C173 — — — — G154 2000 59 0.238 0.971
C174 2900 82 0.494 0.972 G155 — — — —
C18 7600 327 0.144 0.957 G156 — — — —
C181 4600 242 0.106 0.947 G157 — — — —
C182 — — — — G158 — — — —
C183 — — — — G159 — — — —
C21 — — — — GCAT 182500 3619 0.763 0.980
C22 — — — — GCRIM 5100 183 0.158 0.964
C23 — — — — GDEF — — — —
C24 100 5 0.003 0.950 GDIP 2900 110 0.077 0.962
C31 — — — — GDIS 1100 31 0.127 0.972
C311 — — — — GENT — — — —
C312 — — — — GENV — — — —
C313 — — — — GFAS — — — —
C32 — — — — GHEA — — — —
C33 — — — — GJOB 4400 175 0.255 0.960
C331 — — — — GMIL — — — —
C34 — — — — GOBIT — — — —
C41 4100 80 0.361 0.980 GODD — — — —
C411 4600 136 0.448 0.970 GPOL 10200 380 0.179 0.963
C42 500 25 0.042 0.950 GPRO — — — —
CCAT 283400 6256 0.743 0.978 GREL — — — —
E11 100 2 0.012 0.980 GSCI — — — —
E12 — — — — GSPO 31200 249 0.883 0.992
E121 — — — — GTOUR — — — —
E13 1300 35 0.197 0.973 GVIO 6100 298 0.187 0.951
E131 600 11 0.106 0.982 GVOTE 400 30 0.035 0.925
E132 — — — — GWEA — — — —
E14 — — — — GWELF — — — —
E141 — — — — M11 29400 1181 0.604 0.960
E142 — — — — M12 6300 319 0.242 0.949
E143 — — — — M13 31700 1305 0.591 0.959
E21 15700 582 0.364 0.963 M131 12500 436 0.443 0.965
E211 400 18 0.025 0.955 M132 9400 371 0.351 0.961
E212 11500 372 0.420 0.968 M14 63300 1867 0.741 0.971
E31 100 1 0.041 0.990 M141 35000 1144 0.734 0.967
E311 — — — — M142 5000 150 0.412 0.970
E312 — — — — M143 13900 503 0.633 0.964
E313 — — — — MCAT 143300 2985 0.700 0.979
E41 1400 62 0.082 0.956

Table D.2: Sampled Labelling results for ts = 0.95 and td = 0.97
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Cat # Skipped FP GR SP Cat Skipped FP GR SP
C11 — — — — E411 — — — —
C12 — — — — E51 300 11 0.014 0.963
C13 — — — — E511 — — — —
C14 — — — — E512 — — — —
C15 102000 689 0.672 0.993 E513 100 — 0.044 1.000
C151 53800 584 0.657 0.989 E61 — — — —
C1511 5500 99 0.237 0.982 E71 1400 13 0.266 0.991
C152 20300 485 0.278 0.976 ECAT 22000 553 0.183 0.975
C16 — — — — G15 2500 75 0.121 0.970
C17 2500 64 0.059 0.974 G151 — — — —
C171 400 12 0.022 0.970 G152 — — — —
C172 — — — — G153 — — — —
C173 — — — — G154 1400 29 0.167 0.979
C174 1900 40 0.324 0.979 G155 — — — —
C18 1400 46 0.027 0.967 G156 — — — —
C181 100 2 0.002 0.980 G157 — — — —
C182 — — — — G158 — — — —
C183 — — — — G159 — — — —
C21 — — — — GCAT 149200 2153 0.624 0.986
C22 — — — — GCRIM 1100 22 0.034 0.980
C23 — — — — GDEF — — — —
C24 — — — — GDIP 1000 24 0.026 0.976
C31 — — — — GDIS 300 12 0.035 0.960
C311 — — — — GENT — — — —
C312 — — — — GENV — — — —
C313 — — — — GFAS — — — —
C32 — — — — GHEA — — — —
C33 — — — — GJOB 1300 10 0.075 0.992
C331 — — — — GMIL — — — —
C34 — — — — GOBIT — — — —
C41 2700 45 0.238 0.983 GODD — — — —
C411 2700 25 0.263 0.991 GPOL 3500 51 0.062 0.985
C42 — — — — GPRO — — — —
CCAT 237700 2810 0.623 0.988 GREL — — — —
E11 — — — — GSCI — — — —
E12 — — — — GSPO 29900 237 0.847 0.992
E121 100 3 0.046 0.970 GTOUR — — — —
E13 600 3 0.091 0.995 GVIO 1300 30 0.040 0.977
E131 600 14 0.106 0.977 GVOTE 200 11 0.017 0.945
E132 — — — — GWEA — — — —
E14 — — — — GWELF — — — —
E141 — — — — M11 20200 436 0.415 0.978
E142 — — — — M12 3100 109 0.119 0.965
E143 — — — — M13 21800 454 0.406 0.979
E21 10600 227 0.246 0.979 M131 8200 145 0.291 0.982
E211 — — — — M132 3500 67 0.131 0.981
E212 10500 205 0.383 0.980 M14 54900 802 0.643 0.985
E31 — — — — M141 23300 402 0.488 0.983
E311 — — — — M142 3200 68 0.264 0.979
E312 — — — — M143 10400 194 0.474 0.981
E313 — — — — MCAT 112700 1019 0.550 0.991
E41 1500 84 0.088 0.944

Table D.3: Sampled Labelling results for ts = 0.98 and td = 0.99
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Figure D.1: Gain Chart: Strategy / Plans
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