
Universiteit Leiden

Opleiding Informatica

Solving and Constructing

Kamaji Puzzles

Name: Kelvin Kleijn

Date: 27/08/2018

1st supervisor: dr. Jeanette de Graaf
2nd supervisor: dr. Walter Kosters

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Kamaji is a type of puzzle that originated in France. It features a two-dimensional
grid filled with numbers that have to be combined in a way such that all the rules
of the puzzle are satisfied. First of all, the entries involved in a combination must
add up to a given maximum value. Here a combination is a horizontal, vertical or
diagonal contiguous series of squares. Exactly one of the entries of the puzzle board
contains this maximum value. Secondly, all board entries have to be used in order to
solve the puzzle. And finally, all entries that contain the number one can be used
any number of times, whereas all other entries can and must be used only once.
Like many other puzzles, Kamaji’s come in different sizes and have various levels of
difficulty. Every Kamaji puzzle is essentially a board of n by n entries where n is an
integer, thus all Kamaji boards are square-shaped.

Our aim with this research project is to utilize and examine different strategies to
solve Kamaji puzzles with the aid of a computer program and make a qualitative
comparison between these strategies. To that end, we ultimately have come up with
three different strategies, among others using a SAT-solver.

i

Contents

1 Introduction 1

2 Introduction to Kamaji 2

3 Solution Search Strategies 5
3.1 Brute Force Search Approach . 5
3.2 Biggerfirst Search . 7
3.3 Reduction to SAT . 10

3.3.1 Introduction to SAT . 10
3.3.2 The DIMACS/CNF Format . 11
3.3.3 Translation Procedure . 12

4 SAT-solvers and MiniSAT 16
4.1 Backtracking . 17
4.2 Unit Clause Rule . 18
4.3 Pure Literal Elimination Rule . 18
4.4 DPLL . 18
4.5 CDCL . 18
4.6 MiniSAT and its Inner Workings . 19

5 Making Puzzles 19
5.1 The Puzzle-Generator Program . 20

6 Experiments 21
6.1 Frequency of Integer Values . 21
6.2 Biggerfirst Experimentation . 22
6.3 Runtime Comparison: BruteForce vs Biggerfirst 23
6.4 Puzzle Creation Experiments . 24
6.5 Using the SAT-Solver . 24

7 Framework and Implementation 25

8 Conclusions and Future Work 25
8.1 Future Work . 26

8.1.1 Solution Search Strategies . 26
8.1.2 Puzzle Creation Strategies . 26

References 28

ii

1 Introduction

Almost a year has passed since my supervisor, dr. Jeannette de Graaf and I came to discuss
potential topics of research for my bachelor thesis. We ultimately stumbled upon a puzzle
book that was distributed by ’Denksport’. Its cover read Kamaji which is the name of the
puzzle. We scrolled through the book, solved some of the puzzles by hand and became
intrigued. We discovered that very little research had been conducted into these puzzles.
All we had found was that the puzzle has been used to enhance the problem solving ability
of children [Fre] and that it is no longer being distributed. This only strengthened our
desire to analyse them further. We noticed that the puzzles were ordered by size and
difficulty and wondered whether we could identify factors that underpin the difficulty of
a given puzzle. How can we effectively solve Kamaji puzzles? Is it possible to construct
puzzles of a given level of difficulty? We set out to develop different strategies to search
for solutions to Kamaji puzzles. This thesis is the result of our research.

Sadly, very little research has been conducted into this puzzle. There is, however, a
substantial amount of research into some puzzles that are similar to the Kamaji puzzle.
Two examples are the Japanese puzzles Sudoku and Kakuro. In [OL06] a method to reduce
Sudoku puzzles to an instance of SAT is described extensively. Another example of a
puzzle that can be reduced to SAT is the binary puzzle [Bia12]. This has inspired us to
construct an algorithm that reduces a given Kamaji puzzle to an instance of SAT, and we
have succeeded.

In this thesis we will first provide a detailed description of the game and its rules and we
will present concrete examples. After that comes a brief section dedicated to explaining the
framework and the implementation that we have used. Next, in Section 3 we will give a
thorough description of each of the three solution search strategies in separate subsections.
The solution search strategies are all implemented in a computer program that we wrote
in C++. We have also added a short note on SAT, the Boolean satisfiablity problem and
an introduction to MiniSAT, the SAT-solver that we have used to implement the third
solution search strategy. We will make a comparison between Kamaji puzzles of various
levels of difficulty. In Section 6 we discuss the experiments that we have run, comparing
the performance of the solution search strategies among others. Section 7 explains the
framework. We conclude in Section 8, also mentioning future work.

This thesis is the result of a bachelor project at Leiden Institute of Advanced Computer
Science (LIACS), Leiden University, supervised by dr. J. de Graaf and dr. W. Kosters.

1

2 Introduction to Kamaji

Kamaji puzzle boards are n by n in size. Figure 1(a) shows a sample puzzle board, where
n = 4. The board contains several yellow-coloured squares that contain integers. All the
numbers in the grid must be at least 1. Thus, all entries must be non-negative and zero is
not a valid entry. The puzzle board features a single square that stands out as it is coloured
blue instead of yellow. The blue-coloured square represents a special value that is larger
than all the other numbers on the board. From here on we will refer to this special value
as the “Maximum Value”. On most puzzle boards, the number of entries along the two
dimensions (the value of n in “n by n board”) is equal to the Maximum Value, although
this is not one of the requirements that a puzzle board must satisfy in order to qualify as
a Kamaji. The Kamaji puzzle that is featured in Figure 1 does not have this property. In
this Kamaji, the Maximum Value is 5 while the size of the board’s dimensions is equal to 4.
There are no restrictions on the position of the Maximum Value within the board. It can
be in one of the board’s outer rows or columns as well as somewhere in the middle of the
board. Now that we have discussed all of the conditions regarding the board’s dimensions
and the values that the board’s entries contain let us discuss the rules and how one can
solve a Kamaji puzzle.

(a) Puzzle Board (b) Solution

Figure 1: A 4× 4 Kamaji Puzzle And Its Solution

2

In order to solve a Kamaji, one must combine adjacent entries of the puzzle such that
for every combination, the numbers that are covered by this combination add up to
the Maximum Value. Combinations can only be made along straight lines, horizontally,
vertically or diagonally. Every entry must be used at least once and all entries that contain
numbers that are greater than 1 must be used exactly once. When one solves a Kamaji by
hand, one can cover sets of entries that add up to the Maximum Value. This is exemplified
in Figure 1(b), which shows a solution to the puzzle in Figure 1(a). Notice that this
solution is not unique as the entry in the bottom row that contains the number 4 can
also be combined with the entry in the row above it, while all other combinations remain
the same. All numbers are covered by precisely one combination except the one in the
lower-left entry of the grid. That number is covered by two combinations. This is legal,
because the lower-left entry contains the number 1.

There are some simple, yet effective strategies that one can use to solve a given Kamaji
puzzle. They are the most obvious methods to use when solving a Kamaji puzzle by hand:

1. Seeking a solution by first considering the numbers that are in the corners of the
Kamaji, that is the upper-left, upper-right, lower-left and lower-right entries of the
puzzle. If for any of these entries, there is only one possible way to combine the
number with its neighbours in a specific direction, one can draw a line covering
the entries that are included in this combination. If the afore-mentionted scenario
emerges, it is certain that the combination that was found, must be a part of every
solution to the puzzle, if any such solution exists at all. The entries in the corners of
the puzzle have fewer neighbouring entries. Thus, there are less possibilities and one
is more likely to find an entry for which only one valid combination exists in the
corners of the puzzle.

2. Seeking a solution by trying to cover the entries that contain the number that is
one less than the Maximum Value first. So, if m denotes the Maximum Value of a
given puzzle, then we first try to make combinations starting with the entries that
are equal to m − 1. The only way to form a combination with these entries is by
combining them with an adjacent entry that contains the number one. Once we have
tried to cover all these entries, it may occur that not all of them can be combined in
only one way, because some of these entries are surrounded by multiple ones. In that
case, we can proceed by trying to cover all other entries that contain m− 1. Then
we move on to the entries that contain m− 2, then to entries that contain m− 3,
and so forth, until we find a solution or discover that none exists. This approach is
the foundation for the second solution search strategy Biggerfirst.

3

The two strategies that we have described so far are both based on straightforward
observations and can be used repeatedly. The first strategy makes sense for two reasons.
First of all, the lower the number of neighbouring entries an entry can potentially be
combined with, the greater the probability that there is only one possible way to combine
this entry. The most extreme case of this principle occurs when for some entry there is only
one neighbouring entry that it can possibly be combined with, in which case it is certain
that the entry must be combined with that particular neighbour to obtain a solution to
the puzzle, if any solution exists. Secondly, the lower the number of neighbouring entries
for a given entry, the less time it generally takes to verify whether or not there is only
one possible combination that can cover this entry. The second strategy accounts for the
bigger numbers in the grid first. Bigger numbers generally make for shorter combinations,
that is, combinations involving fewer entries. The bigger a number is, the more likely it is
that the sum of the entry and its neighbour will exceed the Maximum Value. This in turn
leads to a higher probability that there is only one way to combine this entry. Thus, even
though one may still have to try to form combinations with several neighbouring entries,
this approach too has its advantages.

We now provide two definitions that we will use throughout the text:

Definition 1 : In the context of a given Kamaji puzzle, a piece is a combination of entries
of the puzzle such that there exists an ordering of the entries such that each subsequent
entry in the ordering is adjacent to its predecessor and the values contained by the entries
that the piece covers, add up to the given Maximum Value.

Definition 2 : In the context of a given Kamaji puzzle, a solution is a set of pieces such
that for each piece that is in the set, the values that are contained by the entries that the
piece covers, add up to the given Maximum Value, each of the puzzle’s entries that contains
a number greater than one is covered by exactly one of the pieces from the set of all pieces
and each of the puzzle’s entries that contains a one is covered by one or more pieces from
the set of all pieces.

4

3 Solution Search Strategies

In this section we will describe the three solution search strategies that we have imple-
mented and used to find solutions to given Kamaji puzzles. First we will describe how
straightforward Brute Force Search can be applied to solve puzzles. Then, we will describe
a strategy called Biggerfirst. This strategy seeks a solution by accounting for the largest
values on the board repeatedly. This is the second strategy that was discussed in the
previous chapter and in some cases its application has to be followed by application of the
Brute Force Search approach in order to yield a solution. Lastly, we will describe how one
can solve a given Kamaji puzzle by reducing the problem of finding its solution to solving
an instance of the Boolean satisfiability problem, also known as SAT.

3.1 Brute Force Search Approach

“Brute Force Search” is a problem-solving technique that is commonly used to search
for solution candidates in combinatorial problems [Ber81]. We apply Brute Force Search
starting with the entry in the upper-left corner of the grid. The operation of Brute Force
Search can be roughly described as follows:

Starting from the first unused entry of the grid in order from left to right and from top
to bottom, we try to form combinations of entries that have values that add up to the
Maximum Value in four different directions. The four directions we expand combinations in
are: 1) right, 2) down-right, 3) down and 4) down-left. We try these directions in the order
we have stated them here. That is, if we can not find a valid combination by expanding
in a certain direction, we try to find one by expanding in the next direction in the given
order. To keep track of the partial solution that has so far been constructed, we use an
extra two-dimensional grid. If we find a combination, we proceed recursively to the next
available entry on the grid. In this context, available means that the entry either is not
included in any combination so far or that it contains the number one. If there is no
such entry, that means we have found a solution and we save this solution. If there is an
available entry, we repeat the process all over starting from this new entry.

Note that Brute Force Search does not need to abort immediately after it has found a
solution. As will be stated also in Section 7 , the framework provides two variants of the
Brute Force Search approach. One of them applies Brute Force Search to seek a solution
and will continue until it has found all of the existing solutions, though it will first store
the solution it finds first as the original solution. Each time it finds a solution, it will print
a two-dimensional grid to represent it. After it has finished its operation, it will show the
original solution to the user again. The other variant follows the same approach, but it
will abort after it has found and stored the first found solution, if any exists. Thus, if no
solution exists to a given puzzle, both variants of the Brute Force Search approach will
carry out the same computations and will do so in the exact same order.

5

It is very important to note that the solution representations that Brute Force Search
yields for a given puzzle are not neccesarily distinct. Solution representations can be
identical and still represent different solutions. Of course, this observation is only relevant
for the variant of Brute Force Search that continues to seek for solutions after it has found
the first one. For instance while a puzzle may have two solutions, Brute Force Search
might generate the same solution representation twice, where one of the representations
represents one of the two solutions of the puzzle and the other representation represents
the other one. It must therefore be pointed out that, from a mathematical perspective,
there exists a one-to-many relation between the set of solution representations that are
produced by the Brute Force Search Approach and the complete set of solutions to a puzzle
as represented by sets of pieces. Since the second solution search strategy, Biggerfirst,
sometimes invokes Brute Force Search as a part of its operation, this strategy too may
produce solution representations that are identical and still represent different solutions.
Biggerfirst will be discussed in the next subsection, but first we will show an example of
how Brute Force Search can yield the same solution representation multiple times and
how this representation can map to distinct solutions of the puzzle.

Consider once more the puzzle displayed in Figure 1. As stated before, the solution
posed in Figure 1(b) is not the only solution. The other solution can be obtained by
combining the number 4 in entry (3, 2) (the right neighbour of the lower-left entry) with
its upper neighbour, entry (2, 1) instead of the one to its left. Brute Force Search will
find both solutions for this puzzle and it will represent both solutions by the following
two-dimensional array:

01 -2 02 -3

04 01 08 03

04 -5 05 -5

-4 06 07 07

In this representation, entries that contain the same absolute value are covered by the
same piece. When a new piece is put on the board, the entries that are covered by the piece
and contain a one in the puzzle will be assigned the negation of the number of that piece
and the entries that contain a number > 1 in the puzzle will be assigned the number itself.
For instance, the third piece that was put, covers entries (0,3) and (1,3); (0,3) contains
one and therefore gets −3, and (1,3) contains 4 and gets 3. The only exception to this rule
occurs if an entry that contains the number one has already been used and is used again
to add a new piece. If a piece denoted by the number p is put on the board, only the yet
unused entries covered by this piece will be assigned −p or p depending on whether the
corresponding puzzle board entry contains a one or a number greater than one. The only
difference between the two solutions of the puzzle concerns the placement of the sixth piece.
Entry (3,1) can form a piece with either the entry above it or the one to its left. Because
both these entries have been used already, they will not be assigned −6 upon placement of
the sixth piece in the solution representation board. Hence, there is no way to tell whether
the given solution representation represents one solution or the other. That being said,
Brute Force yields exactly one solution representation for each distinct solution.

6

3.2 Biggerfirst Search

The second solution search strategy that we have implemented is Biggerfirst. As suggested
by this strategy’s name, this algorithm starts by taking the entries that contain large values
into consideration first. As mentioned before, the entry that contains the Maximum Value
forms a combination by itself. Once the entry containing the Maximum Value has been
accounted for, the entries containing the second biggest number are those that contain
the Maximum Value minus one. Biggerfirst first considers all entries that contain the
Maximum Value minus one. If only one potential combinaton exists for any such entry,
then if any solution to the puzzle exists, it must contain this combination. Therefore,
Biggerfirst will structure an initial candidate solution that includes all these combinations.
Next, the algorithm considers all entries that contain the value that is one less and, again,
for each unused entry will form a combination if only one such combination exists. Then it
repeats this for the entries containing the next biggest value in the grid and so forth, until
all entries including those that contain 1 have been considered. This is the main process of
operation of Biggerfirst and is referred to as a “run”. Biggerfirst will repeat this process
until the end of the first run that yields no new combinations. Then the remaining unused
entries are accounted for by application of the Brute Fore Search Strategy described in
the previous section. In general, puzzles that have a unique solution can mostly be solved
entirely by application of the Biggerfirst solution search strategy, and we will prove that
if Biggerfirst can solve a given puzzle without the application of the Brute Force Search
strategy, the puzzle must have a unique minimal solution.

Note : By a “minimal” solution to a Kamaji puzzle, we mean a solution such that no strict
subset of the set of pieces that represents it also represents a solution.

Claim : If Biggerfirst can solve a given puzzle without the additional application of the
Brute Force strategy, the puzzle has a unique minimal solution: the solution found by
Biggerfirst.

Suppose we apply the Solution Search strategy Biggerfirst, as described above, to solve
a given Kamaji puzzle and suppose that by the mere application of Biggerfirst we find
a solution to the puzzle. The claim essentially states that these two suppositions imply
that the given puzzle has a unique solution. As previously stated, any solution to a given
puzzle can be represented in abstract form as a set of pieces. First of all, the solution that
Biggerfirst yields can be visualised as a set of pieces that were added to the set one at
a time, because Biggerfirst considers the entries that have not yet been covered by any
piece, one at a time. Therefore, the pieces belonging to the solution that Biggerfirst finds,
were added in a specific chronological order. Thus, one of the resulting pieces was added
first to the final set of pieces in the process of searching a solution. When the operation of
Biggerfirst begins, the set of pieces representing the partial solution is the empty set, since
no pieces have yet been laid. That means that the set containing zero combinations (e.g.,
the empty set) is a subset of every solution set.

Another relevant observation is that in the process of searching for a solution for a given
puzzle using Biggerfirst, adding a piece can only lead to a reduction of the number

7

of potential pieces that cover any of the entries that remain unused after adding the
piece. This implies that if only one piece exists that can cover a given entry when the
candidate solution is still empty, there can never exist a different piece that covers this
entry. Therefore, any set of pieces that represents a solution must contain it. With these
observations in place, we can now apply the principle of structural induction to prove the
claim that was stated before.

Proof

Step1 : Suppose Biggerfirst is applied to a given puzzle and solves it entirely. This
implies that a non-empty set of sets of pieces that represent a solution to the puzzle
exists. This can be referred to as The solution set.

Step2.1 : The empty set is a subset of every set and thus, a subset of all sets of
pieces that represent a solution to the given puzzle.

Step2.2 : In chronological order, the first piece that was added by Biggerfirst was
added to cover an entry that otherwise could not be covered by any piece, given the
empty set of pieces as the current partial solution. This implies that in any case, this
is the only piece that can cover this specific entry. Therefore, every set of pieces that
represents a solution to the puzzle must include the piece that was addeds first by
Biggerfirst

Step3 : Suppose that at some point in time during the operation of Biggerfirst, a
partial solution has been constructed. Suppose furthermore that the set of pieces that
represents this partial solution is a subset of every set of pieces that represents a
complete solution to the given puzzle. Because, every solution contains this partial
solution set and adding pieces to this set can only lead to a reduction of the number
of pieces that any yet unused entry can be covered by, if Biggerfirst lays a successive
piece, this piece contains some entry that can only be covered by this piece. Therefore,
if every solution contains the partial solution as a subset, then the union of this
subset and the piece that will be laid next by Biggerfirst is also a subset of every
solution to the puzzle.

Step4 : Thus, for any given Kamaji puzzle, a set of pieces that represents a solution
to this puzzle and was found by Biggerfirst must be a subset of every set of pieces
that represents a solution to the puzzle. Adding additional valid pieces, if any such
exist, will yield a solution that is non-minimal as these combinations can obviously
be left out. This completes the proof.

8

It is important to note that a solution that is found by Biggerfirst is said to be minimal .
Let us clarify the difference between a unique solution and a unique minimal so-
lution by means of an example. Suppose that we execute Biggerfirst with the following
puzzle as input:

Figure 2: 4× 4 puzzle

Biggerfirst will solve this puzzle in a single run. The combinations that Biggerfirst finds
during its first run are illustrated below, where the leftmost image shows the partial
solution after the number 3 has been covered, the middle image shows the partial solution
after the number 2 has been covered and the rightmost image shows the solution that is
found after all 1’s have been covered. We ignore the upper-left entry, which contains the
Maximum Value, because it is not relevant for the intended purpose of this demonstration.

Covering three’s Covering two’s Covering one’s

Figure 3: Biggerfirst in operation (from left to right)

Even though the rightmost image represents a solution to the puzzle, we can still add a
piece that covers all the one’s along the diagonal. Note that while this would contribute
nothing to the solution, since we already have one, it is not illegal to do so. Nonetheless,
it would yield a solution that is distinct from the one that was found by Biggerfirst. We
therefore say that Biggerfirst has found a unique minimal solution.

9

3.3 Reduction to SAT

The third strategy encompasses both the application of the SAT-solver MiniSAT and
the reduction of the Kamaji puzzle to an instance of SAT in DIMACS/CNF format to
enable the use of MiniSAT. In this section we will provide a detailed account of the
reduction of a Kamaji puzzle to an instance of SAT. First of all, we briefly describe the
minimal set of requirements that the result of a reduction must satisfy and how this is
reflected in the reduction procedure to assure that a solution to the generated instance
of SAT can be mapped back to a unique solution of the puzzle. We have implemented a
function that produces an instance of SAT specific to a given Kamaji. In addition, we have
implemented a function that takes a solution produced by MiniSAT as input along with
other input files and translates this to a human-readable solution of the Kamaji puzzle.
In the first subsection, we briefly introduce SAT, the Boolean satisfiability problem and
discuss the term CNF. In the second subsection we discuss the DIMACS/CNF format and
provide a simple example of an instance of SAT in DIMACS/CNF format. Then, we will
provide a detailed description of the process that we use to reduce a two-dimensional grid
representation of any Kamaji puzzle to a corresponding SAT instance in DIMACS/CNF
format.

3.3.1 Introduction to SAT

The Boolean satisfiability problem, also known as SAT, is the problem of finding a satisfying
assignment of the variables in a logic formula that is structured in conjunctive normal
form (CNF in short). The problem is well-known among computer scientists and it is the
first problem that has ever been proven to be NP complete [Coo71]. This means that all
computational problems that are in the nondeterministic polynomial time complexity class
NP can be reduced to SAT. An instance of SAT is simply a logic formula in conjunctive
normal form.

Conjunctive normal form refers to a certain way in which logic formulas can be structured.
A logic formula is in conjunctive normal form if it is a Boolean expression and is structured
as a conjunction of clauses where each clause is a disjunction of literals. An example is the
formula F shown below:

F ≡ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4 ∨ x2)

The formula displayed above will evaluate to true if and only if both clauses evaluate to
true, which is the case if each clause contains at least one literal (a variable or its negation)
that holds true. For the simple two-claused CNF formula above, there are four variables
yielding 2 to the power of 4 different assignments of which only some evaluate formula F
to True. Two such assignments are

1. x1 = true, x2 = true, x3 = true, x4 = false.
2. x1 = true, x2 = true, x3 = false, x4 = true.

In the third subsection, we will explain how to convert a Kamaji puzzle to an appropriate
CNF formula, but first we will shed some light on the structure and syntax rules of the
DIMACS/CNF format.

10

3.3.2 The DIMACS/CNF Format

The DIMACS/CNF format allows for the specification of any instance of SAT and provides
an intuitive syntax for describing a logic formula in conjunctive normal form. It does
not come with a unique file extension and we have simply saved all our DIMACS/CNF
translations in plain text files (.txt file extension). Below this text, one can find the contents
of a file containing a simple CNF formula in DIMACS/CNF format, see Figure 4.

The first two lines start with the symbol ’c’. In the DIMACS/CNF format, the symbol
’c’ indicates the start of a comment. So, the first two lines of the file are comments. As a
convention, the first line that is not a comment starts with the symbol ’p’ and is followed
with the phrase ’cnf’; here, this is followed by the numbers 3 and 2, respectively. The
term ’cnf’ serves as a hint to the SAT-solver that will read this file that what follows
should be interpreted as a formula in conjunctive normal form. The first number (in this
case 3) denotes the number of variables the formula contains and the second number (in
this case 2) denotes the number of clauses. Although it is good style to document the
correct number of variables and clauses, this is not neccessary for the correct operation of
MiniSAT. All the following lines, in this case line 4 and line 5, provide the structure of
the formula in conjunctive normal form. Each line represents a separate clause. As a rule
of syntax, each line is ended by the number zero and all the numbers on the same line that
precede it represent literals of the clause. The values 1 and −1 represent variable x1, 2 and
−2 represent x2 and 3 and −3 both represent x3, where negative numbers denote negation.
Hence, the formula represented in Figure 4 is given by: (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1)

c simple_v3_c2.cnf

c

p cnf 3 2

1 -3 0

2 3 -1 0

Figure 4: A simple formula in DIMACS/CNF format

11

3.3.3 Translation Procedure

In the previous subsection we have briefly introduced the DIMACS/CNF format and we
have seen how its syntax is quite intuitive for the purpose of describing logic formulas
in conjunctive normal form. In order to translate a given Kamaji puzzle to a file similar
to the one described in the previous subsection, we need a method to convert a puzzle
represented by a two-dimensional grid into a corresponding CNF formula. Furthermore,
we need a method to translate the satisfying assignment found by the SAT-solver back to
a set of pieces such that this set represents a solution to the puzzle.

We observe that one can solve a puzzle by virtually laying pieces onto the puzzle board
until the set of all pieces that were laid represents a solution. Also observe that for each
piece in a solution to a puzzle, each entry of the puzzle board is either covered by it
or it is not. These observations allow us to determine what the variables in our to be
constructed CNF formula will represent. First, we generate all the existing pieces for the
given puzzle board. From here on, we will use p to denote the number of pieces that were
found. A variable xijk in our translation will correspond to a specific entry and a specific
piece, where i and j specify the entry and k specifies the piece, with 1 ≤ k ≤ p (p denotes
the total number of pieces). If xijk is true for some i, j and k in a solution produced by
MiniSAT, this means that the solution contains the piece that is represented by k and
that entry (i, j) is covered by it. If xijk is false for some i, j and k that means that entry
(i, j) is not covered by piece k and piece k is not part of the solution.

Note that n · n · p, with the puzzle size being n× n, constitutes an upper bound for the
number of variables that the CNF formula will contain. A piece, however, can only cover a
strict subset of all puzzle entries. Therefore, there exist variables xijk such that piece k
cannot cover entry (i, j) and are thus false. Because those variables will always evaluate to
false, they are not relevant for the reduction. For that reason, for any entry (i, j), we will
only include variables xijk in our formula such that piece k actually covers entry (i, j).

The translation from puzzle to formula consists of three components. We will now describe
each of them in detail by using Figure 1 as example.

First Component. In order to obtain a solution to the puzzle, every entry must be
covered by at least one piece. More specifically, all entries that contain a value greater
than one must be covered by exactly one piece and all entries that contain the number one
must be covered by at least one piece. Since every variable represents a pair of entry and
a specific piece that covers this entry, we can enumerate all variables corresponding to an
entry for every entry. It is possible to determine for each entry of the puzzle board which
pieces can cover that entry. Let us take entry (1, 1) of Figure 1 as an example. There are
four distinct pieces that could cover this entry, these are pieces 1, 3, 6 and 8. We then
have variables x111, x113, x116 and x118, one for each piece that potentially covers entry
(1, 1). To enforce this logic, we will need to add the following clause:

(x111 ∨ x113 ∨ x116 ∨ x118)

12

Note that at least one of the variables has to evaluate to true in order to satisfy the clause.
This translates to: at least one piece has to cover entry (1, 1). For each entry in the puzzle,
we will include a clause that is a disjunction of all the variables that are associated with
that entry. This process constitutes the first component of the translation procedure.

Second Component. The entries that contain a number that is greater than one must
be covered by exactly one piece. This requirement must somehow be reflected in the CNF
formula and its solution. The second component of the translation methodology is designed
to address exactly this. Consider once more entry (1, 1) of Figure 1. This entry contains the
number three. Thus, it can not be covered by all of the four pieces that could potentially
be put there. In fact, if the rules of the Kamaji puzzle are to be respected, it can and must
only be covered by exactly one of the four pieces. That means, precisely one of the four
variables that make up the clause shown in the previous paragraph must be true and all
others must be false. We can make sure of this by adding one clause for each distinct pair
of variables corresponding to the given entry (1, 1) and negate the variables. We then get
the following additional clauses:

1. (¬x111 ∨ ¬x113)
2. (¬x111 ∨ ¬x116)
3. (¬x111 ∨ ¬x116)
4. (¬x113 ∨ ¬x116)
5. (¬x113 ∨ ¬x118)
6. (¬x116 ∨ ¬x118)

If any two or more of the variables corresponding to entry (1, 1) are true, one of the
clauses above will evaluate to false as both of its corresponding negative literals will be
false. Therefore, the entire CNF formula will evaluate to false, because the formula will
be true if and only if all of its clauses hold true. In other words, all of the six clauses
displayed above will only be true if one of the variables is true or none of them are. This is
equivalent to the statement that at most one of the variables is true. And since the clause
(x111 ∨ x113 ∨ x116 ∨ x118) is true only if at least one of the variables is true, we can be sure
that precisely one will be true if all of the clauses are to evaluate to true. The number
of clauses, all of which have a length of two, that this component will add for each entry
that contains a value greater than one is given by:

(`− 1) + (`− 2) + (`− 3) + . . . + 1 =
`−1∑
i=1

i =
` · (`− 1)

2

where ` denotes the number of pieces that are associated with the given entry. With all
that being said, it must be kept in mind that such a set of additional clauses must be
added to the formula only for those entries of the puzzle that contain a number that is
greater than one.

13

Third Component. The afore-described first and second component of the reduction
procedure do not suffice for the purpose of translating a Kamaji puzzle into a logic formula
in conjunctive normal form. Consider once more entry (1, 1) of Figure 1. As stated before,
this entry can be covered by one of four pieces: 1, 3, 6 or 8. The third component is based
on the observation that a set of variables that corresponds to the same piece must either
all be true or all are false. In our example piece 3 happens to cover the entries (0, 1), (1, 1)
and (2, 1). Thus, the variables that are associated with piece 3 are x013, x113 and x213. We
then get the following logic proposition:

x013 ⇐⇒ x113 ⇐⇒ x213

In order to enforce this logic, we must ascertain that for each piece, a set of clauses is
added to the resulting CNF formula such that either all variables corresponding to the
piece are true or they are all false. Thus, the following must hold:

(x013 ∧ x113 ∧ x213) ∨ (¬x013 ∧ ¬x113 ∧ ¬x213)

Let us start with the most simple case. How can we make sure that two variables are both
true or both false? Let us use the variables x111 and x113 to exemplify the method. For
these two variables we can add the following two clauses:

1. x111 ∨ ¬x113

2. x113 ∨ ¬x111

Then if x111 is true, x113 must be true from clause 2, and if x113 is true, x111 must be true
as well from clause 1 in order to satisfy both clauses. So x111 and x113 are either both
true or both are false. We can extend this idea to any number of variables by adding two
clauses for each distinct pair of variables that are associated with a given piece. For this
example, we therefore add all of the following clauses for piece 3:

1. x013 ∨ ¬x113

2. x113 ∨ ¬x013

3. x013 ∨ ¬x213

4. x213 ∨ ¬x013

5. x113 ∨ ¬x213

6. x213 ∨ ¬x113

The number of clauses that the third component will add for a given piece depends on the
number of entries that the piece covers. If l denotes the number of entries that a piece k
covers, then the number of clauses added for piece k is given by:

2 · ((`− 1) + (`− 2) + . . . + 1) = 2 ·
`−1∑
i=1

i = ` · (`− 1)

This completes the translation procedure. We now show a puzzle and its corresponding

CNF formula. Note that all clauses added in the second or third component have length 2.

14

Consider the following Kamaji puzzle:

1 2 1

2 3 2

1 2 1

For this puzzle, the translation procedure generates the following list of clauses that have
to be satisfied:

1. (x001 ∨ x002)
2. (x011 ∨ x013)
3. (¬x011 ∨ ¬x013)
4. (x023 ∨ x024)
5. (x102 ∨ x105)
6. (¬x102 ∨ ¬x105)
7. (x124 ∨ x126)
8. (¬x124 ∨ ¬x126)
9. (x205 ∨ x207)

10. (x217 ∨ x218)
11. (¬x217 ∨ ¬x218)
12. (x226 ∨ x228)
13. (x001 ∨ ¬x011)
14. (x011 ∨ ¬x001)
15. (x002 ∨ ¬x102)
16. (x102 ∨ ¬x002)
17. (x013 ∨ ¬x023)
18. (x023 ∨ ¬x013)
19. (x024 ∨ ¬x124)
20. (x124 ∨ ¬x024)
21. (x105 ∨ ¬x205)
22. (x205 ∨ ¬x105)
23. (x126 ∨ ¬x226)
24. (x226 ∨ ¬x126)
25. (x207 ∨ ¬x217)
26. (x217 ∨ ¬x207)
27. (x218 ∨ ¬x228)
28. (x228 ∨ ¬x218)

This formula is also an instance of 2-SAT. Instances of 2-SAT are instances of SAT, where
each clause of the CNF contains exactly two literals. This is the case for this example,
because each piece covers exactly two entries and each entry is covered by exactly two
pieces. Not every CNF that corresponds to a Kamaji puzzle is an instance of 2-SAT.
However, it is often the case that the majority of the clauses have length two.

15

4 SAT-solvers and MiniSAT

We have a function that takes a given Kamaji puzzle as input and converts it into a
set of clauses that correspond to a formula in conjunctive normal form. The translation
procedure that was described earlier yields a reduction of a Kamaji puzzle to an instance
of SAT such that a solution to the puzzle corresponds to a satisfying assignment for the
formula. After we have translated a Kamaji puzzle into a set of clauses, corresponding
with a logic formula in CNF, we will use a SAT-solver to find a satisfying assignment. A
SAT-solver is a program that takes an instance of SAT as input and seeks an assignment
of its variables such that the entire formula holds true. It is possible to write ones own
SAT-solver in a suitable programming language, but this is very time-consuming and not
relevant for the purposes of this research project. We have thus chosen to make use of
the open-source SAT-solver named MiniSAT [ES03]. In the sequel we give some general
background on SAT-solvers.

We will first describe the backtracking-based algorithm for solving SAT which forms
the core of all algorithms that solve instances of SAT. We will then discuss unit clause
propagation and pure literal elimination (two techniques that help to improve the efficiency
of SAT-solvers), and then we will shortly discuss two algorithms that were designed to
solve instances of SAT. We will finish this section with a brief desription of MiniSAT.

16

4.1 Backtracking

One of the most straightforward ways to find a satisfying assignment of variables in a CNF
formula is backtracking-based. It is the core of most of the state-of-the-art SAT-solvers of
today and can be described as follows:

Step 1:
Consider the variables contained by the formula in some order.

Step 2:
Assign the value true to the next variable in the given order and add this assignment
to the list of currently made assignments.

Step 3:
Remove all clauses that hold true as a result of the assignment of the variable made
last (in Step 2 or Step 7), and discard all literals corresponding to the variable that
holds false as a result of the assignment.

Step 4:
If there are no clauses left in the remaining formula, return true (a solution is found,
see the list of currently made variable assignments). Otherwise, proceed to Step 5.

Step 5:
Does the remaining formula contain any empty clauses? That is, clauses that contain
no literals. If so, proceed to the next step, else repeat the process from Step 2.

Step 6:
The current assignment of variables cannot lead to a solution. If the value true was
assigned to the last variable we considered, proceed to Step 7. Otherwise, proceed to
Step 8.

Step 7:
Assign false to the variable that was assigned last, make sure this change is reflected
in the list of currently made variable assignments and return the structure of the
formula to how it was before the value true was assigned to this variable in Step 2.
Repeat from Step 3.

Step 8:
We have tried both true and false without success. Remove the last made variable
assignment and go back to the preceding variable. Proceed to Step 6.

Various observations regarding the solvability of a formula in conjunctive normal form can
be made based on its structure. In the past sixty years, this has led to the development of
some additional rules that can be integrated into the operation of SAT-solvers to yield
better performance. SAT-solvers utilize different techniques to seek solutions as efficiently
as possible. They can be incredibly efficient, which is what makes it appealing to reduce
problems to instances of SAT to enable their use. We will now discuss the strategies that
SAT-solvers use to search for an appropriate assignment of the variables.

17

4.2 Unit Clause Rule

One well-known strategy that SAT-solvers utilize is called Unit Propagation. Unit Prop-
agation occurs if there is a clause that contains only a single literal. Because the clause
must evaluate to true in order for the entire formula to be true, the literal must hold true.
If this scenario occurs, the literal is assigned the value true and the clause can be safely
removed from the formula and so can all other clauses that contain the same literal (these
clauses must all be true, because they contain a literal that is true). Besides that, all
occurrences of the negative literal can be removed from the CNF since they are obviously
false in any satisfying assignment of the variables. For example, if a CNF contains the
single literal clause (x1), then x1 must be true and therefore all clauses containing x1 are
automatically true. Also, in that case, ¬x1 is false and thus this literal can be removed
from any clause that contains it. Unit Propagation will repeat this process until no more
unit clauses remain.

4.3 Pure Literal Elimination Rule

Pure literal elimination occurs if one of the variables in a logic formula in conjunctive
normal form is pure. A variable is said to be pure if either its corresponding negative
or positive literal occurs in the formula, but not both. Suppose for example that ¬x12

occurs in a CNF formula, but x12 does not. It is easy to find an assignment for the variable
x12 such that all clauses that contain ¬x12 are true. The SAT-solver can then make this
assignment and eliminate all the clauses that contain the literal ¬x12. Because x12 does not
occur anywhere in the formula, this will have no effect on the solvability of the remaining
set of clauses. For further reading on pure literal elimination we recommend [Joh05].

4.4 DPLL

DPLL is short for “Davis-Putnam-Logemann-Loveland” [DLL62]. This algorithm is effec-
tively an extension of the backtracking-based algorithm for seeking a satisfying assignment.
The ’extension’ encompasses the integration of both Unit Propagation and pure literal
elimination that were discussed earlier and lead to enhanced performance.

4.5 CDCL

CDCL is short for “Conflict driven clause learning” [SS96]. This algorithm for solving
instances of SAT is inspired by the DPLL algorithm. The term “conflict driven”in the
name of the algorithm reflects the fact that this algorithm involves the construction of
an implication graph during the process of assigning values to the variables. If a conflict
occurs, partial assignments leading to this conflict are cut off. A conflict in the implication
graph will occur if an assignment leads to a contradiction in the implication graph. If
this happens, the partial assignment (of the involved variables) will be cut off from the
search space. For example, suppose that the value true is assigned to variables x10 and x21,
false is assigned to variable x15 and suppose that the implication graph conveys that this
will lead to a contradiction. CDCL will then cut off the branch of the search space that

18

contains the partial assignment that led to the contradiction and will add a new clause
that contains the negation of the partial assignment that led to the conflict, in this case
(¬x10 ∨¬x21 ∨ x15). Integration of the principle of Conflict driven clause learning generally
results in a substantial improvement in the overall performance of the algorithm. For
further reading on the latest developments regarding SAT-solvers we recommend [LXL+18]

4.6 MiniSAT and its Inner Workings

MiniSAT encompasses many of the strategies for solving instances of SAT that were
described in the previous subsection. DPLL and CDCL are still prominent in modern-day
research on the Boolean satisfiability problem as they have played a central role in the
early development stages of SAT-solvers and still form the core of many state-of-the-art
SAT-solvers today. MiniSAT is no different in this regard and builds heavily on the
principle of Conflict driven clause learning.

The MiniSAT program allows for the specification of an output file. If an output file is
specified by the user, this file will contain the final result after MiniSAT has finished
its operation. The output file will either state the word ’SAT’ and list the values of the
satisfying assignment it has found or it will simply state ’UNSAT’, which indicates that
no satisfying assignment was found. MiniSAT will find a solution if there is one, but it
will never list all of the existing solutions. If one runs MiniSAT several times with the
same CNF as input, it will always find the same solution, and unlike the Brute Force
Search approach, MiniSAT invariably ends the search for a solution once it has found one.
Nevertheless, it is possible to find all solutions by repeatedly adding a clause corresponding
to the solution found by MiniSAT and running MiniSAT on the new formula.

5 Making Puzzles

There are many strategies one can think of, when it comes to making Kamaji puzzles.
One of our aspirations in the early stages of this research project was to construct a
deterministic algorithm that can generate a uniquely-solvable Kamaji puzzle for a given
board size. Unfortunately, this turned out to be more difficult than we had anticipated. The
construction of an algorithm that can create a single n by n puzzle with n > 15 in a short
period of time, has proven to be a daunting task. What seems to be even more challenging
is creating uniquely-solvable puzzles. Most puzzles that the puzzle-generator has produced
contain many pieces of length 2, where one entry contains 1 and the other contains m− 1,
where m denotes the “Maximum Value”, leading to situations with multiple solutions.
Still we have managed to write a computer program that can create Kamaji puzzles of
size up to 18. We will first describe the operation of the puzzle-generator that we have
implemented. In Figure 5, at the end of this section, we present two puzzles that were
both created with this puzzle-generator. One has multiple different solutions and the other
one is uniquely-solvable.

19

5.1 The Puzzle-Generator Program

Given an integer n ≥ 3 that is provided as input, the puzzle-generator that we have
implemented will attempt to create a valid n by n Kamaji puzzle. In our implementation,
the puzzle’s “Maximum Value” m is automatically set to the value of n. First, the puzzle-
generator randomly selects an entry of the puzzle board that will contain m. Next, we
fill the board with a number of pieces, all of which have length two and contain the
numbers 1 and m− 1. From here on, the algorithm will “randomly” place pieces onto the
board. Here, by “randomly” we mean that the puzzle-generator selects a random entry, a
random piece-length ` such that ` ≤ (2

3
× n) and a random direction (right, bottom-right,

down, bottom-left, left, top-left, above and top-right) in which the piece will be oriented,
starting from the random entry that was selected first. However, we have reduced the
probability that 1 or m− 1 are selected to prevent the board from being dominated by
these numbers. For example, entry (2, 2), piece-length 3 and direction right may be selected
by the program. This means that the next piece will cover 3 entries: (2,2), (2,3) and (2,4).
Of course, the piece will be placed only if it does not exceed the boundaries of the puzzle
board and does not have an overlapping entry that contains a number > 1 with some
other piece. It will repeat the process of placing pieces onto the board, until either all
entries of the board have been covered or it has failed to place a new piece for a given
configuration of the board. If the first scenario occurs, a valid Kamaji puzzle has been
generated and the set of pieces that have been placed form a solution to this puzzle, see
Figure 5 for two examples. If the latter scenario emerges, the algorithm will remove the
piece that was placed last and will continue from here. To avoid excessive runtimes of the
program, in case a certain number of removals has occurred, the program will abort. In
such event, the program has failed in its attempt to generate a puzzle.

2 5 1 1 1 4 3 2 1 1

8 1 4 9 4 1 9 8 9 2

8 6 2 1 1 3 1 6 4 1

7 4 6 3 7 1 3 2 1 3

3 2 3 5 8 1 4 2 1 3

2 8 2 1 1 8 1 6 1 4

3 4 6 9 4 5 4 1 7 9

5 9 1 8 5 6 2 1 7 3

8 4 9 2 9 9 9 5 4 4

5 2 2 3 1 4 10 3 6 6

10× 10 puzzle, 240 solutions.

5 2 4 6 2 1 1

3 3 6 1 5 1 1

1 4 3 2 1 5 2

6 6 2 3 1 5 3

5 5 2 3 1 4 7

6 2 6 3 2 3 1

1 1 6 4 4 6 6

7× 7, uniquely-solvable puzzle.

Figure 5: Left: 10× 10 puzzle with 240 solutions. Right: 7× 7 puzzle with 1 solution.

20

6 Experiments

We have conducted various experiments and in this section we will discuss them. First, we
will shed some light on how frequently each integer value occurs on average in a Kamaji
puzzle, given the puzzle’s size and difficulty. Then, we will discuss the performance of
Biggerfirst for puzzles of various sizes and difficulty. After that, we will compare the
execution times of Biggerfirst with that of Brute Force Search. Next, we will discuss the
performance of the puzzle-generator that we have implemented. More specifically, we will
see how often the puzzle-generator manages to create a uniquely-solvable puzzle and how
often it succeeds in creating a valid Kamaji puzzle at all. Finally, we briefly discuss usage
of the SAT-solver.

We have used a set of puzzles that was distributed by “Denksport” [Den07]. This set
consists of two 1-Star 7× 7 puzzles, four 2-Star 7× 7 puzzles, four 3-Star 7× 7 puzzles, two
1-Star 8× 8 puzzles, four 2-Star 8× 8 puzzles, four 3-Star 8× 8 puzzles, two 1-Star 9× 9
puzzles, six 2-Star 9× 9 puzzles and six 3-Star 9× 9 puzzles. For the second experiment,
in addition to puzzles from this set, we have used two 3-Star 10× 10 puzzles and three
3-Star 11× 11 puzzles. These were the largest puzzles we could find.

6.1 Frequency of Integer Values

“Denksport” utilizes a system of stars to indicate the difficulty of a given puzzle. There are
three levels of difficulty. The easiest puzzles are marked by a single star. The most difficult
puzzles are marked by three stars and moderate difficulty is indicated by two stars.

We have used puzzles of size 7× 7, 8× 8 and 9× 9, as those are the only puzzle sizes of
which, for each level of difficulty, we have at least two puzzles that have that difficulty.
Table 1 shows how often numbers occur in these puzzles (NA means not applicable).

Value
1-Star 2-Star 3-Star

7× 7 8× 8 9× 9 7× 7 8× 8 9× 9 7× 7 8× 8 9× 9
1 4.000 4.500 6.500 5.750 6.750 8.000 12.250 11.750 17.000
2 10.500 10.500 11.500 14.500 18.000 17.125 13.250 19.750 19.400
3 8.500 8.000 10.500 12.000 12.000 14.875 7.500 11.000 15.200
4 8.500 14.000 9.500 6.250 10.750 12.625 6.250 7.000 7.800
5 10.500 8.000 9.500 6.500 5.750 9.750 6.000 5.500 9.000
6 6.000 10.500 10.500 3.000 5.750 7.750 2.750 5.750 4.400
7 1.000 7.500 11.500 1.000 4.000 5.500 1.000 2.250 3.800
8 NA 1.000 10.500 NA 1.000 4.250 NA 1.000 3.400
9 NA NA 1.000 NA NA 1.000 NA NA 1.000

Table 1: Average number of occurrences per integer value in puzzles, depending on
size/difficulty.

Note that the average frequency of occurrence of the integer n for a puzzle of size n× n is
always 1. This is because the Maximum Value m is equal to n for all puzzles that we used.

21

It is important to observe that puzzles of higher difficulty contain relatively more small
than large integers. Earlier in this thesis we have stated that The larger the integer value
that is contained by an entry, the larger the probability that only one piece exists that
can cover this entry. The reverse is also true. That is, the smaller the integer contained by
an entry, The larger the probability that multiple pieces exist that cover this entry. The
results shown in Table 2, in the next subsection, confirm this. Also, if the puzzle board
contains more small integers, the pieces that make up the solution have greater average
length. All this means that it is generally harder for one to solve the puzzle, which is
exactly what you would expect for puzzles that belong to a category of “more difficult”
puzzles.

6.2 Biggerfirst Experimentation

We have tested the performance of Biggerfirst. We have used the same set of puzzles we
discussed in the previous subsection.

In this experiment we have measured, for given sets of puzzles of equal size and difficulty,
how many runs Biggerfirst requires to solve each puzzle and how many pieces it adds to
the partial solution for each of the runs.

1-Star 2-Star 3-Star
7× 7 8× 8 9× 9 7× 7 8× 8 9× 9 7× 7 8× 8 9× 9

Average Run Count 2.00 1.50 2.50 2.50 3.00 3.20 3.25 3.25 3.40
Found in 1st Run 86 96 94 80 76 72 61 54 61
Found in 2nd Run 14 4 5 13 21 19 25 30 26
Found in 3rd Run NA NA 1 7 1 8 11 15 10
Found in 4th Run NA NA NA NA 1 1 3 1 3
Found in 5th Run NA NA NA NA 1 NA NA NA NA

Table 2: Various measurements of the performance of Biggerfirst.

The row labeled “Average Run Count” shows the average number of runs needed to solve
a puzzle of a given size and difficulty. The other rows show what percentage of the sum of
the number of pieces that were found for each puzzle of a given size and difficulty, were
found in a respective run. For instance, the leftmost entry of the row labeled “Found in
1st Run”contains 86, indicating that 86% of the pieces were found in the first run.

Based on Table 2 we observe the following:

1. Biggerfirst succeeds in solving all puzzles for the given set. The application of Brute
Force is not needed.

2. It is consistently the case that, for a set of puzzles of size n × n, as the level of
difficulty increases, so too does the average number of runs that Biggerfirst requires
to solve these puzzles.

22

3. It is also consistently true that Biggerfirst will find relatively fewer pieces in the first
run of its operation, as the difficulty increases for a puzzle size n× n.

6.3 Runtime Comparison: BruteForce vs Biggerfirst

For this experiment, we have measured for the afore-mentioned set of puzzles of sizes
ranging from 7 × 7 up to and including 11 × 11, the time it takes to solve the puzzle
500,000 times. We have taken these measurements for both BruteForce and Biggerfirst.
Figure 6 displays the average runtime for puzzles of various sizes, all of which are marked
by three stars (highest level of difficulty).

Figure 6: Execution time in seconds for 500,000 runs of Biggerfirst (green
line) and 500,000 runs of BruteForce Search (purple line).

Figure 6 shows that the average runtime increases for both algorithms as the puzzle size
goes up, which obviously makes sense. The graph of Biggerfirst (represented by the blue
line) is quite resemblant of a straight line, whereas the slope of the graph of BruteForce
(represented by the red line) is much less stable. This is due to the fact that BruteForce
tries to cover the entries in a specific order, whereas Biggerfirst jumps from one location
to the next, because it considers the entries in an order that is based on their relative size.

23

6.4 Puzzle Creation Experiments

We have run experiments that involve the puzzle-generator program that was discussed in
Section 5 of this thesis. Our primary motivation for creating puzzles was the scarcity of
available Kamaji Puzzles, especially those of larger size. As mentioned earlier, it is very
challenging to create large puzzles that are uniquely-sovable. Nonetheless, we wanted to
have some measurement regarding the performance of our puzzle-generator. Hence, we
have come up with this experiment, which we will now describe.

For this experiment, we have created puzzles of sizes 4× 4, 5× 5, 6× 6 and 7× 7. For each
of these puzzle sizes, we have made 1000 attempts to create a puzzle. Here, by an attempt
we mean a single run of the program, which either succeeds (yields a solvable puzzle) or
fails (fails to construct one). The results of the experiment can be found in Table 3.

4× 4 5× 5 6× 6 7× 7
Total Attempts 1000 1000 1000 1000
Failed Attempts 55 225 320 492
Puzzles Created 945 775 680 508

Uniquely Solvable 98 83 65 76

Table 3: Performance of the puzzle-generator.

One obvious observation is that the number of failed attempts increases as the puzzle size
goes up, but for the number of uniquely-solvable ones seems to stabilize.

6.5 Using the SAT-Solver

We have used the translation procedure described in Section 3 to produce CNF formulas
corresponding to the Denksport puzzles. We have applied MiniSAT (see Section 4) to
these formulas, and all of them were solved almost instantaneously. One property of these
formulas is that most of their clauses contain only two literals, which is part of why
MiniSAT solves them so quickly.

24

7 Framework and Implementation

We have implemented the framework along with all the strategies and the ability to input
Kamaji puzzles in C++, using the integrated development environment Codeblocks. [Cod]
The resulting C++ program can read and process Kamaji puzzle boards stored in input
files in simple text format. In order to use the Kamaji that is displayed in Figure 1 as
input we simply create a text file with the following lines of characters:

4

5

2 1 4 1

2 3 5 4

2 1 3 1

1 4 2 3

The first line contains the size of the board along the two dimensions. In this case, the
board is 4 by 4 in size, thus the number on the first line of the input file is the number 4.
The second line contains the Maximum Value which is 5. The following lines represent the
structure of the board. We have chosen to specify each subsequent row on a separate line as
this yields an intuitive and programmatically convenient representation of the board. The
framework will process the input puzzle by storing it in a two-dimensional array of type
integer, uses a second two-dimensional integer type array to construct a solution to the
puzzle and a third one to store the solution. Some Kamaji puzzles have multiple solutions.
If Biggerfirst or one of the Brute Force Search variants is applied, only the solution that is
found first will be stored, but the program may display all the other solutions that it finds
and it will inform the user whether any solution exists and if so, whether the solution is
unique or not.

The Functionality of the main program The program first asks the user which file
he or she would like to provide as input. If the file does not exist or cannot be opened due
to some other issue, the program will immediately write an error message to the terminal
and abort the program altogether. The input file must represent a Kamaji puzzle and it
should be structured like the sample input file displayed in Figure 1. It is neccessary to
provide the dimension size and “Maximum Value”of the puzzle board on the first two
lines in the stated order, otherwise the program will not function properly. If all goes well,
the program will provide the user with a number of options, one for each of the solution
search strategies that were discussed in this thesis. That way, the user can select how he
or she would like the puzzle to be solved. The program will then go on to solve the puzzle
by application of the solution search strategy that was selected, except if the reduction to
SAT was chosen, in which case the program will only create a text file that contains the
puzzle’s CNF translation in DIMACS/CNF format and two other files that are required
for the back-translation of solutions produced by SAT.

8 Conclusions and Future Work

In this thesis we examined Kamaji puzzles. In these puzzles, squares of integers, we have
to find consecutive series of numbers that sum to a given value.

25

There exist many different strategies to solve Kamaji puzzles that can be easily implemented
and are quite fast. It would be interesting to implement some more of these strategies
in future work to make further comparisons. Especially, a strategy that comprises the
utilization of a neural network, because such a strategy could closely resemble the way
humans solve Kamaji puzzles. The greatest challenge however still remains the creation
of puzzles of a large size and puzzles that are uniquely solvable. Is there a deterministic
algorithm for creating puzzles uniquely solvable puzzles? These issues can be adressed in
future research into the Kamaji puzzle.

8.1 Future Work

Not much research has been conducted into Kamaji puzzles yet to our knowledge, and
Kamaji puzzles are no longer being sold. Nevertheless, the Kamaji puzzle is very susceptible
for future work, especially with regards to the making of Kamaji puzzles. We will now
discuss some potential topics for future research into Kamaji’s.

8.1.1 Solution Search Strategies

The solution search strategy Biggerfirst that we have implemented attempts to find a valid
combination for the entries that contain the largest, unused numbers. This strategy is
based on the observation that the probability that only a unique valid combination exists
for a given entry is greater for larger numbers. The same logic applies to entries that have
fewer available neighbours. Where Biggerfirst orders the entries of a puzzle by the size of
the integers that they contain, a new solution search strategy can be implemented that
orders the entries by their number of available neighbours. We have seen that Biggerfirst
yields substantially shorter execution time for puzzles with a unique solution than Brute
Force Search does. It would be worthwhile to implement this strategy in future work and
compare its efficieny to that of other solution search strategies.

Another alternative is to solve Kamaji puzzles with the aid of a neural network. In order
to effectively do so, one could, for example, feed a neural network with images of Kamaji
puzzles and their solutions represented similarly to how this is done in Figure 1. One
interesting fact about such a strategy is that it is more resembling of how a human solves
the puzzle considering the puzzle as a whole. All of the afore-discussed strategies can only
consider puzzle entries one by one. All these strategies process a puzzle in the form of a
two-dimensional array, where the array’s indices represent the puzzle’s entries. A human
being can literally see the whole picture and perhaps a computer program can do the same
if a neural network is used as described here.

8.1.2 Puzzle Creation Strategies

A very interesting area of research with regards to Kamaji puzzles concerns the creation
of Kamaji puzzles. One can think of countless strategies when it comes to the making
of puzzles. The puzzle creation strategy that we discussed in this thesis starts with an
empty board and randomly places pieces on the puzzle board. We will discuss some more
strategies that can be implemented and analysed in future work.

26

The puzzle creation strategy that we discussed in this thesis starts off with an empty board
and randomly places pieces on the puzzle board. If by doing so, the program manages
to cover each puzzle entry, a puzzle has been created successfully. As the size of a to
be constructed puzzle increases, it becomes more challenging to cover all of the entries
using this strategy. Thus, one strategy that can be implemented in future research goes
as follows. Given is an empty puzzle board that is n by n in size. Divide the board into
smaller non-overlapping square-shaped and/or rectangle-shaped boards. Write a program
that, for each of these smaller boards, applies the algorithm for creating puzzles that was
described in this thesis. If the program succeeds in filling up each of these smaller boards
with pieces such that all their entries have been covered by some piece, putting all these
smaller boards back together in the configuration of the original n by n puzzle board yields
a Kamaji puzzle.

Another alternative strategy for creating Kamaji puzzles, also a modification of the strategy
described in this thesis, fills an empty puzzle board with pieces that are empty. That
is, pieces of which only the entries that they cover are specified. Because the integers
contained by the entries of a piece are not specified immediately after the piece is placed,
it is straightforward how one can fill the values once all entries have been covered by at
least one piece. The process for doing so is more likely to yield a puzzle than the strategy
that we implemented for this thesis. However, there is one pitfall to the placement of the
pieces. If all entries of a piece are overlapping entries, that means they all contain 1 and
will add up to the number of entries the piece contains. Therefore, each piece that has a
length ` such that ` < m, where m denotes the “Maximum Value”of the puzzle, must have
at least one non-overlapping entry to assure that its entries can eventually sum up to m.

27

References

[Ber81] H. J. Berliner. An examination of brute force intelligence. In Proceedings of the
7th International Joint Conference on Artificial Intelligence, IJCAI ’81, 1981,
pages 581–587, 1981.

[Bia12] M. De Biasi. Binary puzzle is NP-complete, 2012.

[Cod] CodeBlocks. CodeBlocks IDE. http://www.codeblocks.org [Online; Accessed
15-december-2017].

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing, pages 151–158,
1971.

[Den07] Denksport. Kamaji puzzels, circa 2007.

[DLL62] M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

[ES03] N. Eén and N. Sörensson. An extensible SAT-solver. In 6th International
Conference onTheory and Applications of Satisfiability Testing, SAT 2003.
Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, pages
502–518, 2003.

[Fre] Freudenthal instituut. http://www.fi.uu.nl [Online; Accessed 05-april-2018].

[Joh05] J. Johannsen. The complexity of pure literal elimination. J. Autom. Reasoning,
35:89–95, 2005.

[LXL+18] C. Li, F. Xiao, M. Luo, F. Manyà, Z. Lü, and Y. Li. Clause vivification by unit
propagation in CDCL SAT solvers. CoRR, abs/1807.11061, 2018.

[OL06] J. Ouaknine and I. Lynce. Sudoku as a SAT problem. In International
Symposium on Artificial Intelligence and Mathematics, ISAIM 2006, 2006.

[SS96] J. P. Marques Silva and K. A. Sakallah. Conflict analysis in search algorithms
for satisfiability. In Eigth International Conference on Tools with Artificial
Intelligence, ICTAI ’96, pages 467–469, 1996.

28

