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Abstract

Child pornography is one of the key social security problems.
With the digitization of society the scale of this problem is in-
creasing. Whereas law enforcement used to find a few dozen or
hundreds of photos on the spot in a large child pornography case,
it is now terabytes of data that can be distributed worldwide.
The dark net, which is a hidden part of the world wide web,
enables so-called child exploitation networks in which users com-
municate and distribute resources in a secure and anonymous
manner. As such, it has become increasingly valuable to have the
right tools that help law enforcement prioritize whom they focus
on. We propose a social network approach to identify key players
and discover the structure of these child exploitation networks.
This approach enables law enforcement to use the relational data
of encrypted messages and messages of different languages. In
this thesis we will study two real-world data sets that were col-
lected from two different online discussion forums on the dark
net. These social networks are connected by topic-to-person re-
lationships and we will research the effect of projecting it to
a person-to-person network. This thesis presents and discusses
ways of applying and interpreting established social network al-
gorithms to both the topic-to-person and the person-to-person
network. The findings in this thesis will help law enforcement gain
more insights into the behaviour of users on these dark networks.
Firstly, we were able to reach a 79% rank-order correlation with
previous research of the Dutch National Police and discover up
to 81.25% of the admins on a network. Secondly, we detected an
anti-lurker and application policy on a child exploitation network.
Thirdly, we found that adding weight to the person-to-person net-
work during projection boosts performance. Lastly, we discuss a
method that enables us to remove up to 25% of the edges in the
person-to-person network without losing information.
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–If you can do what you do best and be happy, you’re
further along in life than most people.

Leonardo DiCaprio

1
Introduction

The Dutch National Police defined their goals to combat
child pornography in the security agenda 2015-2018 by the Min-
istry of Justice and Security [1]. The Ministry has set out two
common objectives for the Dutch National Police: 1) reduce child

pornography and child sex tourism and 2) increase the commitment to signals
of abuse, actual abuse and the relieving of victims.

Child pornography is one of the key social security problems but is also
a cross-border problem due to the nature of the internet. Child pornogra-
phy is classified as sexual violence against children on visual material. The
distribution and deliberate watching of child pornography is also seen as
sexual violence. Child pornography has serious damaging effects on the vic-
tims and the victimization never ends after the offence because images can
never be fully erased from the internet. The impact can range from physical
to long-term psychological effects such as depression, anxiety, PTSD, low
self-esteem, difficulty establishing healthy relationships and ongoing humil-
iation [2]. The Rutgers Nisso Groep survey has shown that 20% of Dutch
women and 4% of Dutch men - in their opinion - have experienced a form
of sexual harassment (excluding offensive comments) under the age of 16 [3].
With the digitization of society the scale of this problem is increasing. The
digitization has also made it easier for pedophiles to get access to child
pornography. With the creation of the dark net this access has also been
made more secure and anonymous. The dark net is a part of the world wide
web that exists on hidden networks that use the internet but require specific
software, configurations or authorization to access [4]. Dark net websites are
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Chapter 1. Introduction

accessible only through networks such as Tor and I2P. While Tor focuses
on providing anonymous access to the internet, I2P specializes on allowing
anonymous hosting of websites. Identities and locations of dark net users
stay anonymous due to the layered encryption system which makes it almost
impossible to track these users. Due to the anonymity of the dark net the
contents of these websites contain primarily illegal products and services.
Another consequence of this anonymity is the rise of many platforms where
users can openly share and talk about child pornography.

The pace at which developments such as digitization and international-
ization occur and the increasing impact they have on our society and thus
also on crime within our society, means that new challenges arise and that
existing phenomena can change in nature. For example, where before dozens
or hundreds of photos were found on the spot in a large child pornography
case, it is now about terabytes of data that can be distributed worldwide.
The Dutch National Police has set out goals to start more investigations fo-
cused on child abuse, production of child pornography and child sex tourism.
These complex cases concern proactive and regular investigations into actual
abuse and are extensive and therefore labor intensive. Due to these factors it
has become increasingly valuable to have the right tools that help the police
prioritize whom they focus on.

In order to support these challenges new automated methods are being
developed. These methods can process large amounts of data and help in
either automating certain tasks or give the detectives better insights into the
underlying data. These insights can result in a more effective and thought
out control strategy by the police. The underlying data that we will be
focusing on in this thesis is originating from online discussion forums on
the dark net. Pedophiles use these forums to communicate and distribute
resources or information. Members can post a statement or question under
the general heading of the forum, to which other members can respond. The
community-aspect and sense of belonging is much greater. Offenders get to
know each other as if it were real life and develop long lasting relationships.
These networks completely normalize child exploitation material, as their
main goal is the promotion and distribution of child pornography [5]. Such
platforms are often moderated and organized in a professional manner. The
number of users can range from a few thousand to well over one million.
Unfortunately the police does not have the resources to investigate every
visitor. Therefore it is important to target key players that are vital to the
existence of these forums. In this thesis we will explore this data and attempt
to automatically identify these key players using methods from the field of
social network analysis.
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Chapter 1. Introduction

Social Network Analysis (SNA) is strongly related to the broader field of
network science [6]. SNA focuses on analyzing and gaining insight from social
data. Social networks are classified as the sum of all professional, friendship
and family ties [6]. It consists of the connections in a society and determines
the spread of knowledge, behavior and resources. In 1991 one of the first
papers was published that explored the opportunities for the application of
network analytic techniques to the problems of criminal intelligence analysis,
paying particular attention to the identification of vulnerabilities in different
types of criminal organizations — from terrorist groups to narcotics supply
networks [7]. Two decades later a lot has changed, whereas state-of-the-art
in 1991 consisted of simple visualization charts and mainly manual work
nowadays most tasks are computerized and capable of handling millions of
users. New algorithms are developed to compute metrics about users, the
flow of information and to visualize a network. Recently the possibilities
and limitations of a data-driven approach to study criminal networks were
explored [8]. This work discussed several use cases that used SNA. One
of these cases was "operation Blackbird", which was a Dutch investigation
against a criminal group involved in organized cannabis cultivation. After
the investigation, even though three key suspects were arrested, the process
of cannabis cultivation continued. With SNA they concluded that this was
due to the fact that these suspects were connected to other well connected
criminals who could replace them. It was also concluded that further control
strategies take into account the active and important participation of women
and direct relatives in the organization of criminal activities. In another case
a police unit wanted to target synthetic drug producers that presented their
services to a large criminal network. Through SNA and the value chain a
calculated intelligence strategy was developed to identify four chemists that
were interchangeable. Three of them were efficiently targeted. This resulted
in considerable delays of the synthetic drugs production and disruption of
the network. One of the biggest limitations however is that SNA is considered
to be too slow for law enforcement. This is because data has to be gathered
over a period of time before analysis can be done and because it requires
in-depth qualitative analysis. These use cases however show opportunity of
using SNA to get insights into the bigger picture of a criminal network and
develop a suiting control strategy.

In order to construct our social network we will use the data from the
dark net forums. A forum consists of topics and allows multiple people
to respond on a certain topic. This activity results in a topic-to-person
network. Links exist only between a topic and person. Which implies that
people are linked through a topic that they comment on, because they are
interested in the same topic. A network with two different entities is in
network-terminology called a two-mode or bipartite network. Unfortunately,
a significant collection of notions and tools to analyze network structure
are based on one-mode networks. This is due to the fact that in a two-
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Chapter 1. Introduction

Figure 1.0.1: Projection from a bipartite graph (center) to its >-projection (right)
and it ⊥-projection (left).

mode network it would be the same as comparing apples to oranges and
an one-mode network has only one entity. Therefore we want to project our
network to a person-to-person network. Projection is done by linking two
people in the one-mode network if they both have a link to the same topic
in the two-mode network. See Figure 1.0.1 for an example. It is important
to realize there is much information in the two-mode network that is lost
after projection. For example, we lose how many topics two people respond
to or how big a certain topic is that connects people because in a one-mode
network these two people are simply linked. It is also important to note
the fact that different two-mode graphs can lead to the same projection [9].
The projection can also lead to properties that are a result of the projection
process rather than the underlying social structure. This is caused by large
neighbourhood overlap in one of the entity sets in the two-mode network.
Therefore a topic that is linked to many people, which we call a ’big linker’,
reduces the importance of a link in the projection. For example, if two people
are linked because they commented on a big generic ’Introduce yourself’ topic
this link is of less significance than if they commented on a specific ’How to
encrypt your connection’ topic. For these reasons we want to research the
impact of projection. We will explore different kinds of projection algorithms
and look into certain pre/post-processing filters that we can apply. One
example of a filter on the two-mode network is to remove a number of big
linkers.

We will analyze the person-to-person network by dividing the network
structure in three different levels:

1. Macro level; network topology

2. Meso level; groups within the network

3. Micro level; individual actors

It is important to first understand the network topology before we can
clarify the individual positioning and groups. These groups can be based
on topic categories or user roles. For instance multiple topics belong to the
’technical’ category. User roles originate from the structured organization of
these forums. Users share their knowledge in certain domains or get promoted
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to a moderator. The labeling of these groups is done in previous research by
the Dutch National Police which we will specify in Section 4.2. An approach
to distinguish between groups is to look at certain metrics that might indicate
a variance in the distribution of two groups.

We are interested in the following research questions. These will provide
us with more insights into the network structure of child pornography on
the dark net.

1. Which method can identify actors that play a significant role in the
network?

2. Which type of projection is best suited to replicate the underlying
social structure?

3. What is the impact of filters on the projected one-mode network?

4. Can we identify certain groups of users with only the relational data?

Thesis Overview
In Chapter 2 we formulate the notions and algorithms that are used in this
thesis. Related research is discussed in Chapter 3. In Chapter 4 the used data
sets and certain characteristics are presented. The proposed methodology is
explained in Chapter 5. Next, the experiments are evaluated in Chapter 6.
Finally, conclusions are drawn and future work is suggested in Chapter 7.
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–That there’s some good in this world, Mr. Frodo; and
it’s worth fighting for.

Samwise Gamgee

2
Preliminaries

In this chapter we will discuss the terminology used in this thesis.
We use basic notions for the topology of a two-mode and one-mode
network.

2.1 Two-mode networks
The type of network that we will work with is known as a two-mode or
bipartite network. A two-mode network is made up of two different sets
of vertices and ties exist only between nodes belonging to different sets. A
distinction is often made between the two vertex sets based on which set
is considered more responsible for tie creation (primary or top vertex set)
than the other (secondary or bottom vertex set). In this thesis we will use
the notation defined by Latapy et al. [10]. We denote a bipartite graph as
G = (>,⊥, E) where > is the set of top vertices, ⊥ is the set of bottom
vertices and E ⊆ >×⊥ is the set of edges. We will be working with a set of
forum topics and people. Since a person comments on a topic we consider
the topics to be our top vertex set. In addition we consider our edges to be
undirected because topics can not make an edge. When two people comment
on the same topic this creates a connection between these people through
this topic.

To analyze the topology of the two-mode network we will use the following
measurements: number of top and bottom nodes, number of edges, average
degree of all, top and bottom nodes, density, average clustering coefficient
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Projection and filtering Chapter 2. Preliminaries

and the average min- and max-clustering coefficient, all defined below.
First we will denote the number of top and bottom nodes with n> = |>|

and n⊥ = |⊥| respectively and the total number of nodes with n = n> + n⊥.
Second we denote the number of edges with m = |E|. We can then define
the top and bottom average degree as k> = (m/n>) and k⊥ = (m/n⊥)
respectively. This leads to a total average degree in the graph G′ = (> ∪
⊥, E) as 〈k〉 = (2m/(n> + n⊥). The bipartite density is defined by δ(G) =
(m/n>n⊥) which is the fraction of existing links related to possible ones.
Clustering coefficient does not make sense in a bipartite graph since it relies
on the enumeration of the triangles in the graph. However there are no
triangles in a bipartite graph. Therefore another notion is discussed by
Latapy et al. [10] that defines the clustering coefficient of a single node by
the average clustering coefficient with other nodes excluding nodes that share
no neighbors (see Equation 2.1.1). The clustering coefficient of a pair cc•(u, v)
can be computed in three ways. Equation 2.1.2 is the generalization of the
basic notion [11]. If u and v share no neighbor then cc•(u, v) = 0 and if
they have the same neighborhood cc•(u, v) = 1. The drawback of this notion
however is that if one of the two nodes has a higher degree than the other then
cc•(u, v) will be small. Even if one of the neighbors is completely contained
in the other. In order to capture this we define the min- and max-clustering.
Min-clustering is equal to 1 when one neighborhood is included in the other
(see Equation 2.1.3). Max-clustering is equal to 1 when both neighborhoods
are the same and decreases swiftly if the degree of one of the nodes increases
(see Equation 2.1.4). To get the average clustering coefficient of a graph we
can use ccN (G) = 1

n

∑
u∈V cc•(u).

cc•(u) =
∑
v∈N(N(u)) cc•(u, v)
|N(N(u))| (2.1.1)

cc•(u, v) = |N(u) ∩N(v)|
|N(u) ∪N(v)| (2.1.2)

cc
¯
•(u, v) = |N(u) ∩N(v)|

min (|N(u)| , |N(v)|) (2.1.3)

cc•̄(u, v) = |N(u) ∩N(v)|
max (|N(u)| , |N(v)|) (2.1.4)

2.2 Projection and filtering
A transformation from a two-mode to an one-mode network is called a pro-
jection. We notate the >-projection of graph G as G> = (>, E>). Two nodes
of > are linked if they share at least one neighbour in the two-mode net-
work E⊥ = {(u, v),∃x ∈ > : (u, x) ∈ E and (v, x) ∈ E}. The ⊥-projection is
defined analogously. In this thesis we are interested in the person-to-person
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network and are therefore only interested in the ⊥-projection. There are
different ways to do a projection. The difference between these methods is
in the weight that is assigned to each edge.

2.2.1 Projection methods

We will study the following projection methods:

1. Unweighted projection

2. Weighted projection

3. Newman collaboration model

In our first method we simply assign a weight of 1 to each edge. One of
the issues that we mentioned in Chapter 1 with regards to information loss of
a projection is the fact that the number of topics that two people commented
on is lost. With the second method we will solve this issue by using a weighted
projection where the weight of each edge is the number of common topics
that they commented on: wu,v = |N(u) ∩N(v)|. Another issue arises with
big linkers in the two-mode graph that connect many people in the one-
mode graph. We want to capture this effect by reducing the importance of
a big linker. This results in generic topics with many comments to be less
important than specific topics with a few comments. In our third method we
will assign weight using Newman’s collaboration model to simulate this [12].
The definition of this model can be found in Equation 2.2.1 where u and v
belong to the ⊥ node set and x to the > node set. The value of k(x) is the
degree of x in the two-mode network and δxu is 1 if node u is linked to node x
in the two-mode network or 0 otherwise. These types of projection could help
us cope with the information loss. It is important to note that we inverse
the weights (wu,v = 1

wu,v
) for algorithms that use distance such as average

shortest path, closeness centrality and betweenness centrality (defined in
Section 2.3 and 2.4).

wu,v =
∑
x

δxuδ
x
v

k(x)− 1

δxu =
{

1 if (u, x) ∈ E
0 otherwise

(2.2.1)

2.2.2 Filtering

In order to combat the effect that projection has on the resulting network
we can apply a filter on the nodes or edges in our two-mode network. In
this thesis we want to study the effect of such a filter on the underlying
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structure in the one-mode network. Since big linkers connect many people
in the one-mode network we are going to study the effect of removing these.
To compute the biggest linker B we simply find the node with the highest
degree in the top node set (see Equation 2.2.2). To remove i biggest linkers
we repeat this process i times.

B = arg max
v∈>

k(v) (2.2.2)

2.3 One-mode networks
After applying projection we have an one-mode social network. The network
is considered a social network since the vertices consist of people that share
and interest. Social networks have been studied extensively [6]. The key
features of a social network is that they consist of one giant component,
the degree distribution often follows a power law, they have high clustering
and modularity and a small average path between two random connected
nodes. A giant component is often called the largest connected component
and there is a path between each pair of nodes in the connected component.
If the degree distribution fits a power law function then the network is scale-
free. One of the implications of the scale-free property is that the network
robustness counts on actors with a relative high degree. If these actors are
attacked the network may fall apart into subnetworks [13]. A power law
function is defined as:

p(k) ∼ k−γ (2.3.1)

The exponent γ describes how rapid the number of nodes fades with
increasing degree. A higher γ indicates a sharper slope and accordingly less
nodes with a relative higher degree. A social network is also often referred
to as a small-world network [14]. In this thesis we will use basic graph
notations [10]. We notate such a one-mode graph as G′ = (V,E) where V
is the set of vertices and E is the set of undirected edges. The notation for
the neighbourhood of a node v is N(v) = {u ∈ V : (u, v) ∈ E}. Each node in
N(v) is a neighbour of v and k(v) = |N(v)| is the number of nodes in N(v).

In order to analyze the network topology we will look at the following
measurements: number of nodes and edges, average degree, density, average
path length, diameter, degree assortativity coefficient and average clustering
coefficient, all defined below.

We denote the number of nodes with n = |V | and edges with m = |E|.
The average degree is computed by averaging the degree over each node in
the set (see Equation 2.3.2). The shortest path between nodes u and v is the
path with the fewest number of edges. This is generally called the distance
between node u and v and is denoted as d(u, v) or commonly d. The average
path length is denoted by 〈d〉 and is the average distance between each pair

9
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in the network (see Equation 2.3.3). The diameter is denoted by dmax and
is the maximum distance between two pairs in the network. The degree
assortativity coefficient describes in a precise way how vertices of different
types are preferentially connected amongst themselves based on their degree.
The degree assortativity coefficient r is defined in Equation 2.3.4 where
ai =

∑
j eij and bj =

∑
i eij , and eij is the fraction of edges from a vertex

with degree i to a vertex with degree j. When r > 0 the network is said to
be assortative and when r < 0 it is disassortative. The average clustering
coefficient c is defined in Equation 2.3.5, where a "connected triple means a
single vertex with edges running to an unordered pair of others [15].

〈k〉 = 1
n

∑
v∈V

k(v) (2.3.2)

〈d〉 = 1
n(n− 1)

∑
u,v∈V
u6=v

d(u, v) (2.3.3)

r =
∑
i eii −

∑
i aibj

1−
∑
i aibj

(2.3.4)

c = 3× number of trianlges in the network
number of connected triples of vertices (2.3.5)

2.4 One-mode metrics
Once we have an one-mode person-to-person network we can analyze these
people on an individual level. For this analysis we will use the following mea-
surements: average neighbor degree, clustering coefficient, degree centrality,
closeness centrality, betweenness centrality, eigenvector and PageRank, all
defined below.

Average neighbor degree is the average degree of all neighbors. We
can use the eigenvector to determine the power of an actor. According to
Bonacich [16] the more well-connected the actors in your neighborhood are,
the more central you are. The less well-connected the actors in your neigh-
borhood, the more powerful you are [16], since these neighbors are dependent
on the well-connected actor to connect them to the network. The clustering
coefficient computes the fraction of cases in which node u and v are connected
with w, u and v are also connected and form a triangle. We define clustering
coefficient in Equation 2.4.1, where

∣∣∣EN(v)

∣∣∣ = E∩ (N(v)×N(v)) is the set of
links between neighbours of v. Degree centrality for a node v is the fraction
of nodes it is connected to, normalized by dividing by the maximum possible
degree (see Equation 2.4.2). Closeness centrality computes the distance of
v to each other node in the network (see Equation 2.4.3). Thus the more
central a node is, the closer it is to all other nodes. We normalize CC(v) by
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nv− 1 where nv is the size of the connected component that contains node v.
Betweenness centrality CB(v) computes the number of shortest paths that
run through v. It is defined in Equation 2.4.4 where σst is the number of
shortest paths from s to t and σst(v) is the number of shortest paths from s
to t that pass through vertex v. We normalize this by dividing by the num-
ber of pairs of vertices not including v, which is (n−1)(n−2)

2 . We normalize
betweenness and closeness centrality so we can compare it between data sets.
PageRank is an algorithm developed by Google that ranks linked elements
in a set based on their importance [17]. The computations require several
iterations to adjust PageRank value to more closely reflect the theoretical
true value. In our social network the PageRank algorithm outputs a probabil-
ity distribution used to represent the likelihood that when you take random
steps in the network you will arrive at any particual person. These metrics
give us a clear ranking of individuals and help us understand the network
structure on a micro level.

c(v) =
2
∣∣∣EN(v)

∣∣∣
k(v)(k(v)− 1) (2.4.1)

CD(v) = 1
n− 1k(v) (2.4.2)

CC(v) = 1∑
u d(u, v) (2.4.3)

CB(v) =
∑

s 6=v 6=t∈V
s6=t

σst(v)
σst

(2.4.4)
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–Perfecting oneself is as much unlearning as it is learn-
ing.

Edsger Dijkstra

3
Related Work

Criminal networks have been studied by criminologists for
decades but with the rise of the internet a new medium has erupted
for criminals. It gives individuals the opportunity to sell illegal
products and services directly to the customer from their home.

The dark net has further made this interaction completely anonymous. Van
der Bruggen & Blokland [5] did a literature study about child pornhography
on the internet. First, they argued that child exploitation networks could be
classified as criminal organizations because they firmly advertise and inspire
others into the commission of crimes. On top of that there is a strong division
of roles and these networks operate their criminal activities in an organized
manner through a management hierarchy. Second, they concluded that child
exploitation forums offer pedophiles a platform to meet like-minded people.
Due to this community aspect they advocate for a network driven approach
to investigate these communities. Third, they highlight that looking at the
field of online child exploitation from an organized crime perspective, tracking
down and focusing on the most important members of these communities
could professionalize the combat against this type of crime and boost law
enforcement efforts.

SNA has been applied to criminal networks. Duijn et al. [8] did research
on the field of detecting and disrupting criminal networks with SNA. Going
greatly in-depth into the possibilities and limitations of SNA in engaging
criminal networks. They also examined 34 papers in this field. Themes of
these papers are: organized cannabis cultivation, cocaine import, synthetic
drugs, human trafficking, money laundering, youth groups, cold cases, cor-
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Chapter 3. Related Work

ruption, illegal fireworks trafficking and vehicle theft. Since none of these
themes focus on child exploitation we consider further research of SNA on
child exploitation networks to be important.

Westlake et al. [18] studied child exploitation networks, defining a network
as a connection between websites. In their research they identified the most
important website to target for law enforcement. In order to do this they
built a custom crawler called Child Exploitation Network Extractor (CENE)
and defined a metric called network capital. Network capital is a combination
of connectivity to other websites and the severity of the content on a website.
However in this thesis we will zoom in on a website and study the connections
between people active on this website.

Latapy et al. [10] introduce a set of metrics to capture properties of
interest in two-mode networks. They provide an alternative to the projection
approach. However they emphasize that (weighted) projection approaches
also produce compelling insight and that the two approaches should be
used interdependent to thoroughly understand the properties of two-mode
networks. Therefore in this thesis we will focus on the projection approach.

Borgatti [19] proposes two algorithms to find sets of key players in a social
network. He also demonstrated why existing graph-theoretic methods along
with the naïve centrality-based heuristic fail to solve these two problems.
The following two algorithms were proposed: KKP-POS and KKP-NEG.
KKP-POS identifies key players for the purpose of optimally transmitting
something through the network by using these key players as sources. KKP-
NEG identifies key players for the purpose of disrupting or fragmenting the
network by eliminating the key players. The algorithm takes as input n and
finds the set of n players that optimally solves the problem. This seems to
be an interesting metric if resources are limited. For example, if we have a
team of five detectives that each will be assigned one person to investigate
then this algorithm could be useful to efficiently assign tasks. However in
our thesis we want to rank the entire user base and will therefor exclude this
from the scope.
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–Science is organized knowledge. Wisdom is organized
life.

Immanuel Kant

4
Data

In this thesis we will use two different data sets which we will call
data set A and data set B due to being law enforcement sensitive data.
The data originates from two distinct child exploitation forums on the
dark net.

4.1 Forums

Data set A is a forum that was crawled from the 8th of December 2010 till the
12th of September 2014 and consists of 14659 users. In order to get access to
this forum users had to provide content that had to be verified by admins. It
also had a tiered system which means that users were given access to special
boards if they presented more unique or self produced material. This allowed
them to gain prestige in the network by actively contributing. Unfortunately
the tier that a user is in was not available to us in the metadata. Data set B
is a forum that was crawled from the 1st of July 2015 till the 12th of October
2017 and consists of 21257 users. This forum had a standard approach to
user registration. Users had to fill in an username and password which then
gave them access to all boards. There were just a few protected boards for
producers and administrators. In Section 6.2 we will explore these two-mode
networks and their network metrics.
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Data set A Data set B
Managers 0.49% 3.52%
Abusers 0.59% 4.1%
Technical 0.4% 3.14%
Embedded 98.3% 89.24%

Table 4.2.1: Distribution of assigned roles in PIM analysis

4.2 Membership roles
Researchers at the Dutch National Police studied these two data sets and the
study is called the Program Identifying Main Targets (PIM) analysis. This
analysis was partially based on research by Nolker et al. [20] and combines
SNA with TF*IDF weighting to determine membership roles of communities
in a network. The researchers at the Dutch National Police added an extra
layer based on text analysis to strengthen the membership role classification.
Users were divided into four groups: Managers, Abusers, Technical and Em-
bedded. Managers are responsible for organizing the forum, recruiting and
welcoming new members and enforcing rules. Abusers are producing material
and are fanatic about their work. They share experiences and fantasies with
the community while also encouraging others to commit criminal activities.
Technical users focus on developing software and providing technical support
to other users in the network. Embedded users are those that do not fall into
any of the first three groups and are therefore considered to be not a key
player by the PIM analysis. This data allows us to label users based on their
role and study characteristics of these roles. Table 4.2.1 shows the fraction
of the total number of users that are classified as a certain role. Besides the
classification there is also a PIM ranking. This ranking was based on the
highest value of the TF*IDF and direct two-way conversations metrics. The
TF*IDF value determines the importance that a comment by a user has
in a certain topic. A direct two-way conversation means that both players
reply to each other in a topic. High value for direct two-way conversations
indicates that a user has relatively more one-on-one conversations with other
users on the forum.
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–Failure is just practice for success.
Christopher Hitchens

5
Methodology

In this chapter we will discuss our approach to answering the four
research questions. To validate our research we focus on centrality
metrics and the distribution of these metrics. Besides this we also look
at a rank-order correlation coefficient to compare different results.

5.1 Important Actors
Actors that play a significant role in a network supply human capital. Human
capital consists of services that are of importance to the survival of the net-
work [8]. For example moderating topics, recruiting new users, distributing
resources or helping people with technical questions. To identify these users
we will focus on the individual level of the largest connected component
(see Section 2.3) of the person-to-person network. We will look at the fol-
lowing centrality measurements: degree, closeness, betweenness, eigenvector
and PageRank (defined in Section 2.4). Each measurements will result in a
ranking and we consider an actor significant if he/she scores higher than 3σ
above the mean of all the users. We choose 3σ as our threshold to keep the
resulting set a reasonable size to analyze. Our final set of important actors
consists of the union of these five sets. Through this method we can gain
more insight in the applicability of these metrics and more complex models
could be trained in future work.
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5.2 Comparing projections
In order to understand which type of projection is best suited to replicate
the underlying social structure of the data we want to compare the impact
of each projection method discussed in Section 2.2.1. The type of projection
has significant influence on the metrics that we use to determine important
actors because these metrics use weight as input. If we want to compare
two graphs where the weights are computed with a different projection we
should only look at metrics that use weight as a parameter such as closeness
and betweenness centrality. Comparing other metrics such as the clustering
coefficient would not make sense since they should be identical. In addition
comparing the topology between different projections is not possible because
the definition of weight is relatively defined in the system it is computed
in. Rather we will focus on the distribution and ranking of metrics on an
individual level since these measurements are comparable. First, we will look
at the weighted degree distribution and average weighted degree connectivity.
The weighted degree of a node v is the sum of edge weights adjacent to node
v. A weighted degree distribution is a distribution of the frequency of each
weighted degree k. The average weighted degree connectivity is the average
nearest neighbor weighted degree of nodes with weighted degree k. By fitting
a distribution we can compare the parameters to determine the effect of
different weights on these distributions.

Second, we are interested in the different rankings as a result of each
projection. We compute the Spearman rank-order correlation coefficient [21]
for all users and the set of important actors defined in the previous section
to see the difference between the effect of projection on both sets.

5.3 Filters

Filters such as removing a big linker (see Section 2.2.2) can reduce the
number of edges and nodes in the unfiltered graph. One benefit of filtering
graphs is the fact that computations are faster on smaller graphs. The main
goal however is to reduce the number of edges in the graph that have no effect
on the underlying social structure. We will focus on a filter that removes
1, 2, . . . , i biggest linkers in the two-mode graph. To determine i we fit a
power law function on the degree distribution of the > node set. Big linkers
that are more than 1σ above the mean are filtered out. The threshold of 1σ
is based on empirical findings (see Section 6.5), if we raise the threshold the
number of big linkers is too small to make an analysis. After applying a filter
it is possible that nodes get disconnected from the giant component and form
a new connected component. By analyzing the size of each component we
verify that the largest connected component is the only significant component
and remove the additional components. To analyze the effect of a filter we
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need a graph as baseline. Our baseline is an unfiltered one-mode graph that
is constructed with the same method of projection. Then we can examine
the topology measurements and ranking correlation of centrality metrics
between each graph.

5.4 Groups
Another point of interest is identifying groups in the network. Thanks to
the PIM research we can label users that are identified as having a certain
role. This allows us to analyze the centrality measures between the different
roles and users without a role in the network. This information could help us
automatically classify certain roles based on their characteristics. These char-
acteristics can give us more insights into how these users position themselves
in the network and as a result be able to better detect them. We will try to
rank these users based on centrality measurements defined in Section 5.1. In
order to validate our ranking we will use the PIM ranking (see Section 4.2).
The PIM ranking serves as an indicator of a correct ranking and we study
different types of projection and filters to replicate this ranking with only
the relational data. We will compute the Spearman rank-order correlation
coefficient [21] between the PIM ranking and the ranking of each centrality
metric defined in Section 5.1.
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–No amount of experimentation can ever prove me
right; a single experiment can prove me wrong.

Albert Einstein

6
Experiments

In the first experiment we will explore the two-mode network
and study the properties of these two forums. In the second experiment
we will go over the identified important actors that play a significant role
in the network. The third experiment we examine the three different

graphs that are a result of distinct types of projection. The fourth experiment
focuses on the effect of reducing noise by removing the biggest linkers in the
bipartite network. In the final experiment we evaluate the properties of users
that have roles assigned in the PIM analysis.

6.1 Experimental setup
In order to complete our experiments we need to build a research pipeline.
This pipeline allows us to parse, filter, project and compute metrics for multi-
ple graphs in parallel (see Figure 6.1.1 for a conceptual diagram). Parallelism
is accomplished by gathering all tasks and distributing these across processes.
A task consists of a graph and the function with arguments we want to com-
pute on this graph. Each result is stored in cache to prevent loss of data when
the pipeline is interrupted during run time. This efficiency is greatly needed
because of the size of each graph and the number of parameters we want to
tune. We build a modular pipeline to allow customization of parameters. It
is possible to change how we define a relationship, which filter or projection
we apply and which metrics we compute. This can be configured by simply
changing the environment variables of the pipeline which allows it to run
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Figure 6.1.1: Pipeline diagram

on multiple machines that are linked to the same code base. A graph object
can be one of the following three types: two-mode graph, one-mode graph
and a filtered one-mode graph. We can define which metrics we want to
compute for each type and compute these parallel. To parse the input to
a graph object and project it to a one-mode network we use NetworkX [22].
Then to compute algorithms parallel we convert it to a graph object in
Graph-tool [23] which utilizes Cython to boost performance. We use the
default parameter for each algorithm as defined by Graph-tool. Implemen-
tation of all above was done in Python [24] and can be found on the public
repository: https://git.liacs.nl/s1437690/key_players.

6.2 Exploring the two-mode network
Table 6.2.1 shows basic statistics about the topology of both two-mode
networks. Most of the metrics seem quite similar but one of the interesting
discrepancies is the relatively large number of top nodes (n>) and the high
average degree for the bottom nodes (k⊥) in data set A. In order to interpret
this discrepancy we will look at the degree distribution and average degree
connectivity. Figure 6.2.1 shows the degree distribution which is the number
of nodes with the same degree k for each value of k. In order to study the
decline in number of nodes with the same degree k we will fit a power law
(see Equation 2.3.1) function on this distribution. The top nodes of data set
A have a higher value of γ than in data set B. This implies that there is
more emphasize on smaller topics in data set A. The bottom nodes show
the reverse since data set A has a lower value of γ than in data set B. This
indicates that a few users in data set A comment on almost all topics, which
explains the value of average degree k⊥ = 21.1.
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Figure 6.2.1: Degree distribution of the two forums. The first row shows the top
nodes and the second row shows the bottom nodes.
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Figure 6.2.2: Average degree connectivity of the two forums. The first row shows
the top nodes and the second row shows the bottom nodes.

Figure 6.2.2 shows the average degree connectivity, which is the average
nearest neighbor degree of nodes with degree k. This highlights the corre-
lation between degree and the degree of a node’s neighbors. The top nodes
display a negative correlation which implies that larger topics are commented
on by users whom, on average, are less active. Which could indicate that
larger topics include, based on degree, relatively fewer people that may be
of significance for the network. However the bottom nodes do not show this
clear negative correlation. It does seem that the most active users comment
on topics with relatively few comments. Another interesting matter is the
average degree connectivity of the top nodes in data set A. This shows that
topics with two comments are on average commented on by users with a
degree of almost 4000. Though when we look at the degree distribution in
Figure 6.2.1 there are only a handful of users with a higher degree than
4000. Through qualitative analysis with specialists on this case we concluded
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that this was due to the fact that new users in data set A had to make an
application to gain access. When a new user wants to join this forum he has
to provide new content. Such an application is approved by the main admin
and then closed. The main admin was later assisted by a few other admins
in this process. This causes the main admin to have a degree of over 10, 000
and the spike in the top left plot of Figure 6.2.2 at degree k = 2. When
we look at the bottom left plot we can see the same phenomenon occur at
degree k = 1 with an average degree connectivity of 2, whereas data set B
has an average degree connectivity value of 35. This implies that users who
commented once did this on a topic with only 2 comments. This could be
because most of the applicants are lurkers and their only comment is on the
application topic with their own and the admins comment.

Data set A Data set B
n 119742 46313
n> 105083 25056
n⊥ 14659 21257
m 309716 145086
δ 0.000201 0.000272
〈k〉 5.2 6.3
k> 3.0 5.8
k⊥ 21.1 6.8
ccN (G) 0.239 0.153
cc•(>) 0.271 0.158
cc•(⊥) 0.009 0.146
cc

¯
•(>) 0.608 0.465

cc
¯
•(⊥) 0.598 0.702

cc•̄(>) 0.324 0.189
cc•̄(⊥) 0.011 0.154

Table 6.2.1: Bipartite statistics about our two bipartite graphs.

6.3 Important actors
Table 6.3.1 and 6.3.2 shows the number of key players for each type of
projection and the percentage of each role within these key players for data
set A and B. It also shows the percentage of verified admins that were
discovered. In data set A we identified 43, 56 and 56 users as key players with
the unweighted, weighted and newman collaboration projection respectively
with the method specified in Section 5.1. The police provided us with a
complete list of admins on this forum that were verified after a case. A total
of 16 users were verified to have an admin status and of these 16 we found
12 (75%) with the unweighted projection and 13 (81.25%) with the weighted
& Newman collaboration projection. We did the same experiment for data
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Unweighted Weighted Newman
Total 43 56 56
Managers 48.8% 50% 51.8%
Abusers 30.3% 25% 21.3%
Technical 6.9% 9% 9%
Embedded 14% 16% 17.9%
Discovered admins 75% 81.25% 81.25%

Table 6.3.1: Identified key players in data set A

Unweighted Weighted Newman
Total 57 66 75
Managers 42.1% 42.4% 49.3%
Abusers 35.1% 30.3% 28%
Technical 12.3% 12.1% 10.7%
Embedded 10.5% 15.2% 12%
Discovered admins 43% 43% 43%

Table 6.3.2: Identified key players in data set B

set B and identified 57, 66 and 75 users as key players with the unweighted,
weighted and newman collaboration projection respectively as important
actors. In this case the police provided us with a list of known and suspected
admins so this list was incomplete. Nevertheless of these admins we found 14
(43%) admins with each form of projection. We also classified around 6-10
actors in both data sets as important even though they were not labeled by
the PIM analysis. These users could have been dropped of the list by the
PIM analysis because they did not use relevant vocabulary.

6.4 Projection
We applied three different types of projection on two data sets which results
in six different networks. Table 6.4.1 shows the network metrics of each
individual graph. The degree assortativity coefficient increases in both data
sets with weighted projection and Newman collaboration projection. An
increase in r (see Equation 2.3.4) indicates that the variance between the
weighted degree of neighbors decreases. The weighted degree of a node is now
scaled by the strength of its relationships and this could imply that using
weights better encapsulates the phenomena that people connect with people
who are also well connected.

To get a better understanding of the effect on weighted degree of a node
we plot the weighted degree distribution (see Figure 6.4.1). We can compare
these distributions by fitting a power law function (see Equation 2.3.1). In
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both data sets it shows that Newman collaboration model has the highest
value of γ. Which implies that there are relatively less nodes with a higher
weighted degree and therefore these node become relatively more important.
An interesting aspect of the Newman collaboration model is that the weighted
degree of a person is equal to the number of topics with two or more neighbors
he has commented on. Therefore it is almost similar to the degree distribution
in the bottom plots in Figure 6.2.1 and would be exactly similar if we excluded
topics with an degree of one in these plots.

However this does not show us why r is increasing. We want to examine
this by plotting the average weighted degree connectivity (see Figure 6.4.2).
The left plot of both data sets shows a negative correlation which implies
that the more people you are connected with the less well connected your
neighbors are. However when we add weights to the edges this negative
correlation seems to disappear. This explains the increasing r because it
emphasizes if you are talking to other important actors. Through discussions
with domain experts we determined that well connected actors are more
inclined to chat with other well connected actors. This would suggest that
adding weights to the edges gives a better representation of the underlying
social structure and connectivity of actors.

The last subject matter we want to observe is the rank-order of individu-
als based on centrality metrics. We will compare the rank-order of all actors,
and only the 99.8 percentile (which equals those 3σ above the mean, see
Section 5.1). Figure 6.4.3 and 6.4.4 shows all actors and we can clearly see
that Newman collaboration projection is the most disparate from unweighted
projection for each metric. Figure 6.4.5 and 6.4.6 zoom in on the 99.8 per-
centile and shows that the closeness centrality in data set B increases the
most. This implies that most of the embedded network was effected by the
change of projection. PageRank appears to be the least affected by changing
the form of projection.

6.5 Network derivation
Through removing the biggest linkers in the bipartite network we can reduce
the number of edges that are created in the projected graph and accordingly
reduce clutter. As we discussed in Section 5.3 we want to remove big linkers
that are 1σ above the mean. When we look at the top plots in Figure 6.2.1
it shows that the top four and five topics in data set A and data set B
respectively will be removed. Since we are comparing these to an unfiltered
baseline graph and also want to look at the three different types of projection
this results in 33 unique graphs. Table 6.5.1 and 6.5.2 present the resulting
network metrics of each graph. Data set A loses 427097

566834 ≈ 25% of its edges by
removing only four big linkers. While data set B drops 996224

1150375 ≈ 15% of its
edges by removing five big linkers. It is interesting to note that the average
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Data set A Data set B

Unweighted
projec-
tion

Weighted
projec-
tion

Newman
collab-
oration
projec-
tion

Unweighted
projec-
tion

Weighted
projec-
tion

Newman
collab-
oration
projec-
tion

n 14659 14659 14659 21280 21280 21280
m 566834 566834 566834 1150375 1150375 1150375
δ 0.005276 0.005276 0.005276 0.005081 0.005081 0.005081
〈k〉 77.3 143.4 19.1 108.1 132.7 6.6
〈d〉 2.3 1.5 2.0 2.5 1.6 39.4
dmax 5 3.01 567 6 4.2 570
r -0.137 -0.123 -0.038 -0.109 -0.076 -0.049
c 0.321 0.321 0.321 0.218 0.218 0.218

Table 6.4.1: Topology measurements of the projected graphs
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Figure 6.4.1: Weighted degree distribution of the three projected graphs. The first
row shows data set A and the second row shows data set B.
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Figure 6.4.2: Average weighted degree connectivity of the three projected graphs.
The first row shows data set A and the second row shows data set B.
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Figure 6.4.3: Spearman rank-order correlation of centrality metrics with different
projections in data set A.

27



Network derivation Chapter 6. Experiments

Unweighted Projection

Weighted Projection

Newman Collaboration Projection

1 0.56 0.53

1 0.82

1

Betweenness Centrality

1 0.9 0.12

1 0.31

1

Closeness Centrality

Un
we

ig
ht

ed
 P

ro
je

ct
io

n

W
ei

gh
te

d 
Pr

oj
ec

tio
n

Ne
wm

an
 C

ol
la

bo
ra

tio
n 

Pr
oj

ec
tio

n

Unweighted Projection

Weighted Projection

Newman Collaboration Projection

1 0.97 0.53

1 0.66

1

Eigenvector

Un
we

ig
ht

ed
 P

ro
je

ct
io

n

W
ei

gh
te

d 
Pr

oj
ec

tio
n

Ne
wm

an
 C

ol
la

bo
ra

tio
n 

Pr
oj

ec
tio

n

1 0.97 0.71

1 0.72

1

PageRank

0.8

0.4

0.0

0.4

0.8

Figure 6.4.4: Spearman rank-order correlation of centrality metrics with different
projections in data set B.
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Figure 6.4.5: Spearman rank-order correlation of centrality metrics of the users
in the top 99.8 percentile with different projections in data set A.
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Figure 6.4.6: Spearman rank-order correlation of centrality metrics of the users
in the top 99.8 percentile with different projections in data set B.
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Filter n m δ 〈k〉 〈d〉 dmax r c

Unweighted
projection

Baseline Graph 14659 566834 0.005276 77.3 2.3 5.00 -0.137 0.321
Filtered 1 big linker 14658 461452 0.004296 63.0 2.3 5.00 -0.128 0.211
Filtered 2 big linker 14658 450607 0.004195 61.5 2.3 5.00 -0.125 0.203
Filtered 3 big linker 14658 435776 0.004057 59.5 2.3 5.00 -0.125 0.196
Filtered 4 big linker 14658 427097 0.003976 58.3 2.3 5.00 -0.124 0.191

Weighted
projection

Baseline Graph 14659 566834 0.005276 143.4 1.5 3.01 -0.123 0.321
Filtered 1 big linker 14658 461452 0.004296 125.5 1.5 3.01 -0.127 0.211
Filtered 2 big linker 14658 450607 0.004195 122.8 1.5 3.01 -0.126 0.203
Filtered 3 big linker 14658 435776 0.004057 120.5 1.5 3.01 -0.128 0.196
Filtered 4 big linker 14658 427097 0.003976 118.8 1.5 3.01 -0.128 0.191

Newman
collabo-
ration
projection

Baseline Graph 14659 566834 0.005276 19.1 2.0 567.00 -0.038 0.321
Filtered 1 big linker 14658 461452 0.004296 19.1 1.9 91.00 -0.044 0.211
Filtered 2 big linker 14658 450607 0.004195 19.1 1.9 91.00 -0.044 0.203
Filtered 3 big linker 14658 435776 0.004057 19.1 1.9 91.00 -0.045 0.196
Filtered 4 big linker 14658 427097 0.003976 19.0 1.9 91.00 -0.046 0.191

Table 6.5.1: Topology measurements of filtered graph in data set A

shortest distance and the diameter does not change in the unweighted and
weighted projection in both data sets. This could imply that the removed
edges were irrelevant for the information flow of the network.

To further study the insignificance of these removed edges we will again
look at the rank-order coefficient across all graphs. Figure A.0.1 till A.0.6
shows rank-order coefficient between the 33 graphs for all users. Notice that
the lowest value is 0.95 which is still high. Figure A.0.7 till A.0.12 does the
same but only for the users in the 99.8 percentile. It is interesting to note that
using either weighted or Newman collaboration projected has an increase in
the coefficient to 1. Which means that removing ≈ 25% and ≈ 15% edges in
data set A and data set B respectively did not have any effect on the rank-
order of the users in the 99.8 percentile since the correlation coefficient stays
1. This results is faster computations and less clutter in the visualization by
removing the redundant edges while maintaining the same outcome.

6.6 Role and ranking analysis
The goal of the role analysis experiment is to find certain characteristics
that define a role. We will first look at the differences between groups based
on the distribution of centrality metrics in Figure 6.6.1 and 6.6.2. In these
plots we have decided to exclude outliers in the visualization because we
are interested in the general characteristics. We observe that the technical
people seem to score lower in betweenness, degree, eigenvector centrality
and PageRank in both data sets. Through discussion with domain experts
we concluded that this could be due to the fact that technical users tend
to be more individualistic on the forums. They also tend to focus more on
building applications and mainly talk within their group. Managers on the
other hand have to communicate with newbies about questions, new rules

30



Role and ranking analysis Chapter 6. Experiments

Filter n m δ 〈k〉 〈d〉 dmax r c

Unweighted
projection

Baseline Graph 21280 1150375 0.005081 108.1 2.5 6.00 -0.109 0.218
Filtered 1 big linker 21212 1109150 0.004930 104.6 2.5 6.00 -0.108 0.209
Filtered 2 big linker 21174 1076255 0.004801 101.7 2.6 6.00 -0.108 0.202
Filtered 3 big linker 21128 1047211 0.004692 99.1 2.6 6.00 -0.108 0.196
Filtered 4 big linker 20987 1020382 0.004634 97.2 2.6 6.00 -0.112 0.189
Filtered 5 big linker 20915 996224 0.004555 95.3 2.6 6.00 -0.113 0.184

Weighted
projection

Baseline Graph 21280 1150375 0.005081 132.7 1.6 4.17 -0.076 0.218
Filtered 1 big linker 21212 1109150 0.004930 128.8 1.6 4.17 -0.075 0.209
Filtered 2 big linker 21174 1076255 0.004801 125.6 1.6 4.17 -0.075 0.202
Filtered 3 big linker 21128 1047211 0.004692 122.8 1.6 4.17 -0.075 0.196
Filtered 4 big linker 20987 1020382 0.004634 121.1 1.6 4.27 -0.078 0.189
Filtered 5 big linker 20915 996224 0.004555 119.1 1.6 4.27 -0.079 0.184

Newman
collabo-
ration
projection

Baseline Graph 21280 1150375 0.005081 6.6 39.4 570.00 -0.049 0.218
Filtered 1 big linker 21212 1109150 0.004930 6.6 37.6 523.00 -0.050 0.209
Filtered 2 big linker 21174 1076255 0.004801 6.6 36.7 485.02 -0.051 0.202
Filtered 3 big linker 21128 1047211 0.004692 6.6 35.7 457.00 -0.051 0.196
Filtered 4 big linker 20987 1020382 0.004634 6.6 32.8 446.00 -0.053 0.189
Filtered 5 big linker 20915 996224 0.004555 6.7 31.4 439.00 -0.055 0.184

Table 6.5.2: Topology measurements of filtered graphs in data set B

and advertise about other forums. In data set A this is highlighted by their
higher score for eigenvector and PageRank because this means that they are
important for their neighbors. To further support this claim we looked at the
set of neighbors of nodes in a certain role. Table 6.6.1 shows the percentage
of nodes in the neighbor set relative to the total number of nodes in the
network. The neighbor set of the managers seems to be the largest while the
neighbor set of the technical group seems to be the smallest in both data
sets. Lastly, the abusers are fanatic about their work and like to share their
experience with the community. They also influence others to do the same.
This could be indicated by that they seem to have the same degree centrality
as the managers.

Another point of interest was finding a configuration that had the most
resemblance to the ranking of the PIM analysis. Figure 6.6.3 and 6.6.4
show the rank-order correlation coefficient between the PIM ranking and
the different centrality measures. In data set A when we use weighted or
Newman collaboration projection this has a positive effect on the rank-order
coefficient for the metrics: betweenness centrality, eigenvector and PageRank.
We can get up to a rank-order correlation of 0.79 when we use closeness
centrality with a weighted projection. In data set B this positive effect only
counts for weighted projection. In Section 6.5 we concluded that big linker
filters have no effect on the rank-order so this means that removing topics
1σ above the mean had no positive or negative effect on the correlation with
the PIM ranking.
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Data set A Data set B
Managers (MA) 99.3% 93%
Abusers (AB) 38.95% 87.98%
Technical (TE) 34.41% 78.79%

Table 6.6.1: Percentage of nodes in the set of neighbors of nodes in a role.
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Figure 6.6.1: Distribution of node metrics between different groups in data set A.
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Figure 6.6.2: Distribution of node metrics between different groups in data set B.
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Figure 6.6.3: Spearman rank-order correlation between PIM and node metrics
ranking of the baseline graph in data set A.

Figure 6.6.4: Spearman rank-order correlation between PIM and node metrics of
the baseline graph in data set B.

6.7 Discussion
In Section 6.2 we examined that larger topics are commented on by relatively
less active users. This could imply that larger topics include, based on degree,
relatively fewer people that are of significance for the network. Which could
be due to new users finding big topics more easily. We also noticed that
topics with few comments are commented on by relatively more active users.
Another interesting finding was that we found a forum rule in the average
degree connectivity of data set A. It shows the rule that users had to supply
content before getting accepted to the forum by one of the admins. These
three findings can help identify forum behaviour and rules with only the
relational data of messages.

Section 6.3 shows that in data set A 81.25% and in data set B 43% of the
verified admins were detected by centrality metrics. They were discovered
in the set of users discussed in Section 5.1. Admins are active users since
they communicate with new users about questions, discuss new rules and
advertise for other forums. Due to these activities they score high in our
metrics and are important to the network.

It is important that the person-to-person network still represents the
underlying social structure after the projection. Therefore in Section 6.4
and 6.5 we examined different types of projection and a filter that have an
impact on the person-to-person network. We concluded that adding weight
to the edges was beneficial because it captures the phenomena that well
connected actors communicate with other important actors. We also found
that filtering big linkers that are 1σ above the mean resulted in 25% and 15%
less edges in data set A and B respectively. Even though we removed these
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edges the rank-order correlation coefficient stayed close to 1 which implies
that we did not lose information. Removing these edges further benefits the
computational speed of algorithms and reduces the clutter of the person-to-
person network.

Lastly, we explored the three groups defined by the PIM analysis. We
discovered that managers are most connected while the technical users are
the least connected of the groups (see Table 6.6.1). This could validate the
empirical findings of the domain experts that managers focus more on in-
teracting with the community while technical users concentrate on building
applications and specific technical questions. During our experiment we also
examined which parameters result in the highest rank-order correlation coef-
ficient between the PIM ranking and centrality measurement rankings (see
Figure 6.6.3 and 6.6.4). Using weighted projection and closeness centrality
results in a 79% correlation coefficient in data set A. In data set B weighted
projection and PageRank results in a 57% correlation coefficient. There-
fore we conclude that weighted projection is best suited to represent the
underlying social structure.

It is also important to note that this approach does not need text and
can use relational data of messages and thus also messages of an unknown
language as input.
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–Use what talents you possess; the woods would be
very silent if no birds sang there except those that
sang best.

Henry van Dyke

7
Conclusion and Future Work

In this thesis we studied two online child exploitation forums and
observed certain forum rules and phenomena in the data. We identified
81.25% and 43% of the verified admins in data set A and data set B
respectively while limiting the scope of important actors to 0.2% of

the total users. Besides this we researched three types of projection that
transform our bipartite network to an one-mode network. We conclude that
a weighted projection is best suited to capture the underlying social structure.
Another point of research regarding projections was the effect of filters to
reduce the clutter. We removed four and five big linkers which removed
25% and 15% of the edges in data set A and data set B respectively. To
our surprise this had no effect on the rank-order of the top 99.8 percentile
of users based on centrality metrics. Finally we evaluated the groups that
were labelled by the PIM analysis. Technical users scored lower on centrality
metrics and are the least connected group presumably because they are
more individualistic and focus on their own group. We also noticed that
using a weighted projection resulted in the highest rank-order correlation
with the ranking that the PIM analysis provided. The advantages of using a
social network approach is that it can use the relational data of encrypted
messages and messages of different languages. This implies that we can apply
this technique to a foreign discussion forum on the dark net and gain insights
into the organization without understanding the messages.

One of the biggest criticisms of applied network science is that it is too
slow because gathering data and performing a qualitative analysis takes
time. Therefore we deem it necessary to look into ways to make the network
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analyzable through time. Which means that the network has to represent the
current underlying social structure at each time unit. This could be achieved
by making the weights of the edges dependent on time. Such a model would
determine how edges lose weight over time. It is also vital to remember that a
data-driven approach can be as good as the data presented. Unfortunately a
person can have multiple usernames which impairs the models. Finding ways
to connect two or more usernames to the same person would advance any
data-driven approach. Finally, since users are often on multiple forums we
consider research into ways to connect multiple child exploitation networks
together into one big ecosysteem interesting. For future work we suggest
studying the private messages between users in order to validate our findings
with the actual underlying social structure. We also propose to train a model
that predicts the role of a user through supervised learning with the centrality
measurements as features and PIM labels as target.
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Figure A.0.1: Spearman rank-order correlation of centrality metrics with different
filters on the unweighted projection in data set A.
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Figure A.0.2: Spearman rank-order correlation of centrality metrics with different
filters on the unweighted projection in data set B.
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Figure A.0.3: Spearman rank-order correlation of centrality metrics with different
filters on the weighted projection in data set A.
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Figure A.0.4: Spearman rank-order correlation of centrality metrics with different
filters on the weighted projection in data set B.
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Figure A.0.5: Spearman rank-order correlation of centrality metrics with different
filters on the newman collaboration projection in data set A.
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Figure A.0.6: Spearman rank-order correlation of centrality metrics with different
filters on the newman collaboration projection in data set B.
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Figure A.0.7: Spearman rank-order correlation of centrality metrics of the users
in the top 99.8 percentile with different filters on the unweighted projection in data
set A.
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Figure A.0.8: Spearman rank-order correlation of centrality metrics of the users
in the top 99.8 percentile with different filters on the unweighted projection in data
set B.
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Figure A.0.9: Spearman rank-order correlation of centrality metrics of the users
in the top 99.8 percentile with different filters on the weighted projection in data
set A.
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Figure A.0.10: Spearman rank-order correlation of centrality metrics of the users
in the top 99.8 percentile with different filters on the weighted projection in data
set B.
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Figure A.0.11: Spearman rank-order correlation of centrality metrics of the users in
the top 99.8 percentile with different filters on the newman collaboration projection
in data set A.
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Figure A.0.12: Spearman rank-order correlation of centrality metrics of the users in
the top 99.8 percentile with different filters on the newman collaboration projection
in data set B.
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