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Abstract

This thesis aims to determine to what extent future scientific impact can be predicted from past
scientific impact. H-index, i10-index and cumulative citations for both scholars and publications
were used as metrics of scientific impact. The data that was used was retrieved from Google
Scholar and the Microsoft Academic Graph. The results show that models can be developed
for the prediction of scientific impact that outperform predicting current or average value for
prediction distances of at least up to 20 years. Slow-growing metrics are more predictable
than fast growing metrics. The impact of the union of the work of several authors is more
predictable than the impact of the work of a single author, which is in turn more predictable
than the impact of the work co-authored by two authors. Using additional features constructed
from citation data improves prediction performance compared to using only past and current
values of the metric to predict as features. Predicting the relative increase of the h-index leads
to better results than predicting the absolute value for prediction distances up to ten years,
while for longer prediction distances predicting the absolute value leads to better results. A
comparison of models trained on data from Google Scholar and Microsoft Academic shows
that the obtained accuracy scores are to a certain extent dependent upon peculiarities of the
data source, such as completeness.
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Chapter 1

Introduction

Various indicators are used to give an impression of the scientific impact of a scholar or
publication. The simplest metric is to simply count how often a given author or publication is
cited. Other metrics are more sophisticated, such as the h-index, which attempts to measure
both productivity and citation impact of an author. These metrics are of interest not only to
scholars themselves, but also to universities and funding committees, because they can and do
play a role in hiring and funding decisions. However, it is not so much the current scientific
impact in itself that is interesting to hiring committees, but more the idea these metrics give
of what the scientific impact will be in the future.
This thesis aims to determine to which extent future scientific impact can be predicted from
past scientific impact. To achieve this, machine learning models are trained and tested on the
citation data of several thousand authors in computer science.

1.1 Limitations

Because the prediction of future scientific impact is too broad a topic to cover in one thesis,
the scope of this work is necessarily limited. The aim of this thesis is to determine to which
extent scientific impact can be predicted using the method, features and data sources described
below. The conclusions of this thesis should therefore not be interpreted as an answer to the
question of the predictability of scientific impact in general.

• Data source: There are many potential sources available for citation data. This thesis
uses Microsoft Academic as a source for citation data of scholars, and Google Scholar
as a source for citation data of individual publications.

• Measuring scientific impact: Among the many metrics that are used to quantify
scientific impact, this thesis uses h-index, i10-index and cumulative citations as scientific
impact metrics for scholars, and cumulative citations as metric of scientific impact for
individual publications.

• Features: One can think of many features that could be relevant to the prediction of
future scientific impact. This thesis only considers features that can be constructed from
the following data: for each author, for each publication he has authored or co-authored,
the cumulative citations by year.

• Target values: The experiments in this thesis involve only the prediction of the absolute
values of the scientific impact metrics considered.

5



• Career age: The experiments in this thesis count the year of first received citation as
year 0, not the year of starting PhD. For tests involving individual publications, the year
of publication is counted as year 0, unless noted otherwise.

• Method: The main experiments in this thesis are executed using only the regression
algorithms available in scikit-learn, without any hyperparameter tuning. Moreover, a
model is trained for each combination of career age and prediction distance, so that
the end result is a large collection of models. No attempt has been made to develop
a single model that handles all predictions, to tune the hyperparameters, to employ
regression algorithms from other sources than scikit-learn in the main experiments, to
use classification instead of regression to predict future scientific impact or to develop
an algorithm for the prediction of scientific impact from scratch.

1.2 Research questions

As this thesis aims to define the extent to which future scientific impact can be predicted from
past scientific impact, it answers the following research question:

To what extent is future scientific impact predictable from past scientific impact?

Of course, the answer to this question may differ depending on which metric of scientific
impact is used, on the career age of an author or the age of a scientific publication, or on
whether we predict the scientific impact of a group of authors, a single authors, or the intersec-
tion of the work of multiple authors. Therefore these research questions will also be answered
by this thesis:

• How do the predictability of h-index, i10-index, cumulative citations of authors and
cumulative citations of publications compare?

• How does the predictability of a single author 's research impact compare with that of
the union or intersection of two authors?

• How is the predictability of future research impact influenced by the career age of an
author or age of a publication?

Past scientific impact can be interpreted as simply meaning ”past values of the scientific impact
metric to predict” or past scientific impact in a more general sense, including any feature that
can be constructed from the citation data of the previous work of the author. Another question
to answer in this thesis is therefore:

• To what extent does the inclusion of additional features based on past citation data
improve upon the predictability of a scientific impact metric based on past values of
that metric alone?

As described above, this thesis uses Microsoft Academic as its source for citation data of
scholars. However, Microsoft Academic is not complete and not error-free. The same goes for
other online citation indices, such as Google Scholar, but the Microsoft Academic Graph API
that is used as a source of citation data often contains much less citations for an author than
Google Scholar. Because of this, a model trained on Microsoft Academic data will be tested
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on data from Google Scholar to get an idea of how dependent or independent the model is of
the source of data.

• Is a model for predicting scientific impact based on data from Microsoft Academic
applicable to data retrieved from another source?

The main experiments in this thesis all involve the prediction of the value of a certain metric
of scientific impact. A last test in this thesis is therefore a comparison between the results of
predicting the absolute scientific impact in the target year and predicting the relative increase in
scientific impact between current year and target year.1 Among the scientific impact metrics
used in this thesis, h-index was chosen for use in this test. The goal of this test can be
summarized in the question below:

• Does prediction of the value of the h-index yield better results than prediction of the
relative increase in h-index?

1.3 Web application

As part of this project, a web application has been developed, a screenshot of which is shown
in Figure 1.1. It allows the user to generate graphs of scientific impact over the years (as
measured in h-index, i10-index or cumulative citations for authors and cumulative citations for
individual publications). It is possible to create a graph of the scientific impact for multiple
authors at once. In that case, apart from the individual scientific impact, the scientific impact
of the union of their work is also shown, as well as the scientific impact of all publications
they have co-authored, if applicable. The user has the option to draw these data from either
Microsoft Academic or Google Scholar, although retrieving data from Google Scholar takes
some time. Apart from past scientific impact, the model also shows an estimation of future
scientific impact over the next five years, with a 90% prediction interval. These predictions
are based on gradient boosting regression, employing quantile regression to get a prediction
interval. The models are trained on citation data from authors in computer science, drawn
from Microsoft Academic. An exception is formed by the models used for the prediction of the
cumulative citations of publications, which are trained on data retrieved from Google Scholar.

1Relative increase meaning the value of the scientific impact metric in the target year divided by the
value of the same metric in the current year. Target year is the year for which we want to predict the
scientific impact.
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Figure 1.1: A screenshot of the web application, showing for computer science scholars
Michael Emmerich and Nicola Beume their past and estimated future h-index, with a
90% prediction interval.
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Chapter 2

Preliminaries

2.1 Machine learning

This thesis employs techniques from machine learning to estimate future scientific impact
of researchers or publications. Wikipedia defines machine learning as ”...a subset of artificial
intelligence in the field of computer science that often uses statistical techniques to give
computers the ability to ”learn” (i.e., progressively improve performance on a specific task)
with data, without being explicitly programmed.”1 Machine learning can be broadly divided
in supervised learning and unsupervised learning. In supervised learning the computer is given
combinations of input and corresponding output, and learns a function that maps input to
output. This is what is used for most experiments in this project, where the computer is
presented with the values of a certain scientific impact metric over a range of years as input, and
the corresponding value of that metric for a later year as output. Unsupervised learning differs
from supervised learning in that no correct answers are provided to the learning algorithm.
Instead, a function is learned based on the structure of the data. In this thesis, unsupervised
learning is used to cluster the examples in the data based on their similarities and dissimilarities.
A second way to divide machine learning is according to the desired output. Clustering is
already mentioned. In classification, the computer is tasked to assign one or more class labels
to the input presented. In regression, like classification a supervised task, the output does not
consist of discrete labels, but of continuous values. In this thesis various regression methods
are employed to estimate future scientific impact.
In machine learning, the learning algorithm is used to find good values for the input parameter.
Various learning algorithms also require parameters themselves, for instance to determine the
learning speed. These so-called hyperparameters are usually manually chosen by the user.
The process of hyperparameter optimization can also be automated, however. This is done in
automated machine learning, or autoML in short. There is no universal agreement upon the
exact scope of automated machine learning, but basically it is about the automation of certain
tasks in machine learning that are usually performed by people. Such tasks include exploratory
data analysis, feature transformations, algorithm selection and hyperparameter optimization.

1See Wikipedia contributors. (2018, June 20). Machine learning. In Wikipedia, The Free Encyclope-
dia. Retrieved 13:27, June 20, 2018, from https://en.wikipedia.org/w/index.php?title=Machine_

learning&oldid=846671620
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2.2 Machine learning tools

Two different tools for machine learning were used in this thesis. One is Weka, a program
that has been developed at the University of Waikato in New Zealand.[6] It contains tools and
algorithms for a wide range of machine learning tasks and comes with a graphical user interface.
Because of its ease of use, Weka was used in this research for preliminary experiments.
The second tool that was used is scikit-learn, a machine learning library for the programming
language Python.[15] Scikit-learn contains a lot of different algorithms for machine learning. In
this thesis, many of the algorithms that scikit-learn provides for regression have been applied
to the available data and the resulting models have been compared on their effectivity in
predicting future scientific impact.
For both Weka and scikit-learn extensions have been developed to enable the application of
automated machine learning. In the case of Weka, the tool for automated machine learning
is called Auto-WEKA, initially released in 2013.[21] In the case of scikit-learn, auto-sklearn is
the extension that provides the possibility of applying automated machine learning.[5] Both
Auto-WEKA and auto-sklearn have been used in this research to explore the possibility of
obtaining better models for predicting future scientific impact with the aid of automated
machine learning.

2.3 Assessing scientific impact

There are various metrics that aim to capture the scientific impact of a scientist or publication.
As is already mentioned, a very basic measure is that of cumulative citations, all the citations
that an author or publication has received over the years counted together. Because of its basic
character and widespread use, cumulative citations is one of the scientific impact metrics of
which the predictability is studied in this thesis, both for authors and scientific publications.
While cumulative citations capture the citation impact of an author, the metric does not con-
tain information about his productivity. A metric that aims to capture both citation impact
and productivity is the h-index. The h-index was suggested in 2005 by physicist Jorge Hirsch
and has since become very popular. It is defined in this way:

If an author has an h-index of h, it means that he has written at least h publications that
were each cited at least h times.

As an example, imagine an author who has written three publications. The first is cited three
times, the second three times and the third only one time. Then the author has at least one
publication that is cited one or more times (all three are), and at least two publications that
are cited two or more times (namely the first and second publication). He has, however, not
written three or more publications that are cited three or more times, and therefore his h-index
is two. If the third publication of this author, which was cited only one time, receives two
additional citations in the next year, then the author has written at least three publications
that are each cited three or more times, and so his h-index increases to three.

Over the years, many modifications of the h-index have been proposed. One of these is the
i10-index, introduced in 2011 by Google and used on Google Scholar. The i10-index is a simpler
variation on the h-index, and is defined in this way:
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The value of the i10-index represents the number of publications that an author has written
that are cited ten or more times.

In this thesis, the predictability of the i10-index is measured and compared to that of the
h-index.

2.4 Assessing prediction accuracy

In this research, various metrics are used to represent the quality of the learned prediction
models, each having their own benefits and drawbacks.

R2-value
The r2-value or coefficient of determination represents the proportion of the variance for the
target variable that is explained by the predictor variables. Its value is calculated according to
the formula

R2 = 1 - (Residual sum of squares / Total sum of squares)

This can be further defined as:

R2 = 1−

∑
i

(yi − fi)
2

∑
i

(yi − ȳ)2

where yi is the true value for a data point, and fi the corresponding predicted value. ȳ is
the average of all true values of the data to be predicted. The R2-value as used here is there-
fore an expression of how well the model performs compared to simply predicting the average
value of the target variable. The value of R2, as calculated in this way, can never exceed 1 (a
perfect predicting), but can be lower than 0, in cases where the model performs worse than
predicting the average value of the target variable.
The r2-value is a widely popular measure that is used in almost all papers related to estimating
future scientific impact,2 which is why it is also used in this thesis. However, it is sensitive to
outliers with high values, because they have a greater than average impact on the residual sum
of squares and total sum of squares. If the model predicts a few targets that have extremely
high values well, it will mean that the total sum of squares is much higher than the residual
sum of squares and the R2 for the predictions of the model will be relatively high, regardless
of how well the other data points are predicted.

Median r2-value
The median r2-value is the median value of the r2-values for each individual prediction. The
r2-value for an individual prediction calculated in this way:

R2 = 1− (yi − fi)
2

(yi − ȳ)2

So the calculation of the r2-value for a single data point is the same as the calculation for

2See for instance [1], [2], [4] and [25]
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normal r2 would be in case there was only one data point to predict. Median r2-value is used in
this thesis alongside normal r2-value because it is more robust to outliers. If a few data points
with high true values are mispredicted, it will pull the r2-value down significantly, even if most
data points are predicted quite well. Median r2-value does not have this problem. However,
the median r2-value is not itself without problems. A few outliers with extremely high values
may have a disproportionate impact on the average value of the target variable, and as the
median r2 expresses performance relative to predicting the average such outliers will cause the
median r2-value to be suspiciously high.

Average and median relative error
The relative error for the prediction of a single point is calculated in this way:

Relative error =
|fi − yi|
|yi|

The average relative error is the average of the relative errors for all predictions. Because
in the data there is a huge variation in true values for the data points, absolute error is not
really informative about the quality of the model, which is the reason why relative error was
chosen instead. In this thesis both average and median relative error are used, because the
average relative error is often much higher than the median because for relatively few data
points the target value is severely mispredicted. This most often occurs when the true value of
the target is 1, which soon leads to a high relative error because the relative error is the error
relative to the true value and the true value in such a case is very low. Of all metrics used in
this thesis, only median relative error is really immune against distortions by data points that
have a very low or high true value, and therefore it is the best metric to evaluate the overall
quality of the model.
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Chapter 3

Related work

The predictability of future scientific impact has already been addressed often in the scientific
literature, especially in more recent years, where a wealth of citation data is freely available
online. It is part of the larger field of bibliometrics, concerning the statistical analysis of numbers
of written publications and their citations. The term bibliometrics was first used in English by
Alan Pritchard in a paper published in 1969, titled Statistical Bibliography or Bibliometrics?
He defined it as ”the application of mathematics and statistical methods to books and other
media of communication”.[24] Detailed analysis of citation patterns has been made possible by
citation indices, which are bibliographic indices that store citations between publications. The
first citation index for papers published in academic journals was the Science Citation Index
(SCI), which was officially launched in 1964. Today, there are various citation indices available
online, both free (e.g. Google Scholar and Microsoft Academic) and paid (e.g. Scopus and
Web of Science).
The ease with which citation data can be obtained has made it possible to develop models that
can predict future scientific impact based on bibliometric data. Such models often concern the
cumulative citations of individual publications or the h-index of an author.

3.1 Publications on the predictability of cumulative

citations of publications

Daniel (2014) compared various articles from the period 2002-2012 about predicting future
citations based on what was known before or shortly after publication.[3] The 2002 article
proposed a method that could explain only 14% of variance a few years after publication. This
climbed during the next years, and the 2012 article explained 90% of the variance in citations
counts a few years after publication. Daniel found that this was due to the features used:
where early studies focused on content-related features, later studies found author and venue
features to be the most predictive.
A paper that makes use of both content-, author- and venue-related features is that of Yan
et al. (2011).[25] They have developed a method to predict citation count 1, 5 and 10 years
ahead, with an average coefficient of determination (R2-value) of 0.74.
Another approach was chosen by McNamara et al. (2013), who also tried to predict the future
impact of papers, but with their own definition of scientific impact, which is based on the
citation count, but with some modifications.[13] For their model they used ”features of the
paper's neighbourhood in the citation network, including measures of interdisciplinarity”. The
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predictors of high future impact that they found include high early citation counts of the paper,
high citation counts by the paper, citations of and by highly cited papers, and interdisciplinary
citations of the paper and of papers that cite it.
Wang, Song and Barabsi (2013) developed a model to predict future citations of a paper based
on data from the first five years. They focused on estimating a paper’s ”ultimate impact”, the
total number of citations a paper will ever acquire.[22]
Stegehuis, Litvak and Waltman (2015) proposed a model based on quantile regression to
predict the long-term impact of a recent publications.[18] To do this, they used the impact
factor of the journal in which a publication has appeared and the number of citations a
publication has received one year after its appearance. Both of these factors were found to be
important to the prediction of the future number of citations of a paper.
Recently, there have been attempts to estimate future impact of a publication based on non-
traditional bibliometrics, the so-called altmetrics. These altmetrics can be seen as impact
measures in and of themselves, but to a certain extent they are also usable for prediction of
traditional impact metrics. Eysenbach (2011) found that tweetations (mentions of a publication
by tweets) within the first 3 days after publication can predict future citations.[20] He found,
for instance, that 75% of highly tweeted article were highly cited, while only 7% of less-
tweeted articles were highly cited. Ringelhan, Wollersheim and Welpe (2015) tested whether
Facebook likes for unpublished manuscripts that are uploaded to the Internet can predict
traditional measures of scientific impact.[17] They concluded that Facebook likes do predict
citation count for publications in the field of psychology, but not for publications in the fields
of business or life sciences.

3.2 Publications on the predictability of the h-index

In 2005, Jorge Hirsch defined the h-index, a new metric that attempts to measure productivity
and citation impact of a scientist.[7] Two years later he established that the h-index over
the past twelve years was a good indicator for the h-index over the next twelve years.[8]
Assuming a simple linear relation, the correlation coefficient r was 0.91. Mazloumian (2012)
confirmed Hirsch's conclusion about the predictive power of the h-index, although he found
annual citation count to be an even better indicator for future scientific performance.[12]
Other researchers tried to find a better prediction model for the h-index by incorporating other
parameters than the h-index itself. Acuna et al. (2012) developed a model to predict the
h-index of neuroscientists, trying out different parameters.[1] Their data set was limited to
authors with an h-index greater than 4 and 5-12 years of experience. Their final model was
based on five parameters, namely the current h-index, the number of articles written, the years
since the author published his/her first article, the number of distinct journals the author has
published in and the number of articles in a selection of five prominent journals. The model
of Acuna et al. had an R2 of 0.92 for predicting one year ahead, 0.67 for five years ahead and
0.48 for 10 years ahead. Applying the same method to evolutionary scientists gave somewhat
worse results (R2 of 0.62 for looking five years ahead).
Penner et al. (2013) criticized linear regression models of the h-index, such as Acuna et al.
produced.[16] Their first point of criticism was that cumulative achievement models such as
the h-index contain intrinsic auto-correlation, which naturally results in a high R2 value, so
that a linear regression model of the h-index such as Acuna et al. use is not so much predicting
future impact as it is picking up on a correlation intrinsic to cumulative measures. Apart from
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that, Penner et al. also criticized that the Acuna model did not differentiate between different
age groups. They showed that the predictive value of the model varied widely for different age
groups.
Where Acuna et al. based their model on data of neuroscientists, Dong et al. (2016) used data
of computer science scholars for their model to estimate the future value of the h-index.[4] Just
as Acuna et al., they used a linear regression model based on several factors that were found to
correlate well with future h-index. They considered current h-index, average citations per paper,
number of coauthors, years since publishing first article and number of publications, and found
current h-index to be the most important factor in predicting future h-index, followed by total
number of publications and total number of coauthors. They limited the authors considered
to those with an h-index above 10. The model of Dong et al. performed significantly better on
the data they used than the Acuna et al. model did on their test data. Dong et al. got an R2

value of 0.91 for predicting the h-index five years ahead, and 0.75 for predicting the h-index
ten years ahead.
Ayaz et al. (2018) deviated from previous approaches by imposing no constraints on for example
career age or h-index.[2] They looked for the best set of parameters suitable for h-index
prediction for computer scientists from all career ages, without enforcing any constraint on
their current h-index value. They found that the future h-index of authors with higher current
h-index is more predictable than that of authors with a relatively low current h-index, and that
the h-index of beginning researchers is very hard to predict, whereas the h-index of researchers
having 20-36 years of experience is quite predictable.
Jaeger et al. (2013) wrote a paper on type extension trees (TET), a representation language for
count-of-count features such as the h-index.[10] TET-defined features can be incorporated into
existing types of predictive models, or predictive models can be built directly on TET-defined
features. A TET for the task of h-index prediction was learned and used as a distance measure
for k-NN in predicting future h-index. This was done in two ways: using the entire TET, or
just the first branch, which contained the relational features necessary to compute the h-index.
The predictive performance of these two k-NN algorithms was tested against other approaches,
namely predicting current or average value, using k-NN with a linear combination of paper
count and citation count as distance, or using a non-linear Support Vector Regressor with
paper count and citation count as input. The results were compared on Root Mean Squared
Error (RMSE). The TET-based predictors always outperformed the k-NN and SVR that were
based on plain counts, and performed better than the prediction of current or average for
longer horizons. For longer horizons, the k-NN using the entire TET performed slightly better
than the k-NN using the first branch, while for shorter horizons it performed worse.
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Chapter 4

Data

4.1 Academic citation databases

There are several online citation indices available for academic publications and literature, such
as Scopus, Web of Science, Google Scholar, Baidu Scholar and Microsoft Academic. These
indices differ in availability (free or paid), coverage and extra features, such as the availability
of an API.
Scopus was launched by Elsevier in 2004. It is a subscription-based service. The same goes
for Web of Science, a collection of citation databases currently maintained by Clarivate Ana-
lytics. Google Scholar, Baidu Scholar and Microsoft Academic, on the other hand, are freely
accessible. Google Scholar was launched in 2004. Baidu Scholar was launched by the Chinese
company Baidu in 2014, the year that Google (and also Google Scholar) began being blocked
in China. Microsoft Academic dates from 2016 and replaces Microsoft Academic Search, which
ended development in 2012.
A comparison of the completeness of Google Scholar, Microsoft Academic, Scopus and Web
of Science was conducted in 2016 by Bartosz Paszcza.[14] He compared the coverage of the
output of six authors, and found an average coverage of 76.2% by Google Scholar and 76.0%
by Microsoft Academic, versus only 66.5% coverage by Scopus and 58.8% by Web of Science.
A more comprehensive study by Mike Thelwall (2017) comparing Microsoft Academic and
Scopus found 6% more citations for Microsoft Academic compared to Scopus, and 51% more
for the current year.[19]
Most data used in this thesis is pulled from Microsoft Academic, because of its combination
of free access, the availability of an API that enables the collection of large amounts of data,
and favorable evaluations of its coverage relative to other online citation indices. The citation
data for individual papers, however, are pulled from Google Scholar, because Google Scholar
appears to be more complete than Microsoft Academic and collecting citation data for indi-
vidual papers from Google Scholar can be done within a sensible timeframe.
Data retrieved from Microsoft Academic via the API has issues when it comes to coverage and
accuracy, as will be seen in the next sections. Nevertheless, because it is a free source and data
retrieval is very easy, it is an interesting potential source for citation data. Microsoft Academic
is very recent and has according to our literature review not yet been used as a source of data
in work on the prediction of scientific impact. Part of the goal of this research is therefore to
establish how well a model trained on data from Microsoft Academic is usable on data from
another source, such as Google Scholar. A second test will determine how well the results of
models compare when a model is trained on data from Google Scholar and a model on data
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from Microsoft Academic, using the same approach. These tests will give insight in how well
Microsoft Academic can be used in research related to the prediction of scientific impact.

4.2 The reliability of the Microsoft Academic API

The Microsoft Academic Graph (MAG) was established in 2015, and is currently updated on
a weekly basis. Most of its data are derived from web pages indexed by Microsoft’s search
engine Bing. The data can be accessed either via the Microsoft Academic search engine1 or
the Academic Knowledge API.2[9]
Microsoft Academic calculates two citation counts for each article. One is the algorithmically
verified citation count, and the other the estimated citation count, adding the number of ci-
tations that are estimated to exist but not found. Sometimes verified and estimated citation
counts are almost the same. In other cases, estimated citation counts may be twice as high
as verified citation counts. This difference seems to be field-dependent.[19] Preliminary explo-
ration of Microsoft Academic and Google Scholar has shown that for the field of Computer
Science, the estimated citation count (which is shown by the Microsoft Academic search en-
gine) is usually slightly lower than the citation count given by Google Scholar. This estimated
citation count is therefore probably a good indicator of actual citation count. However, for
this research estimated citation count is not usable, because we need not only present citation
count, but also past citation count. To do that, for each publication we need the publication
year of each publication that cites it.

Exploration of the difference between verified and estimated citation count for Microsoft Aca-
demic showed that for Computer Science verified citation count is about half the estimated
citation count. For instance, the Microsoft Academic search engine gives 971 estimated cita-
tions for Michael Emmerich’s most cited paper (SMS-EMOA : Multiobjective selection based
on dominated hypervolume), while the API only returns 631 articles. Many of the missing ar-
ticles are very recent. Michael Emmerich’s total citation count up until 2017 is given as 3279
by the Microsoft Academic search engine and 3701 by Google Scholar, while an API request
for publications citing Michael Emmerich returns only 2087 results. The same goes for other
authors. The API returns 12617 publications citing Holger Hoos until the end of 2017, while
at that point Google Scholar calculates his cumulative citation count at 20,039.
With such a severe lack of data, it appears that the Microsoft Academic API cannot be
used as a source of citation data to be used in this project. However, that is not necessarily
the case. While in absolute numbers the Microsoft Academic API is unreliable, it appears
that for most years the proportion of missing articles is about the same. Therefore the rela-
tive yearly change in metrics like h-index or cumulative citations is about the same, whether
calculated based on Google Scholar data or Microsoft Academic API data. The following
three graphs are an example of this, showing the relative increase in cumulative citations by
year for three authors in Computer Science: Holger Hoos, Lars Kotthoff and Michael Em-
merich. As the graphs show, for most years the relative change is about the same. Only in
the last two years the values for Microsoft Academic are much lower, giving the impression
that new articles are added faster to Google Scholar than to the Microsoft Academic Graph.
This is mitigated by limiting our data to citations before 2016. In the first few years, there

1https://academic.microsoft.com/
2https://labs.cognitive.microsoft.com/en-us/project-academic-knowledge

17

https://academic.microsoft.com/
https://labs.cognitive.microsoft.com/en-us/project-academic-knowledge


can be quite a difference, as seen in the graphs of Michael Emmerich and Holger Hoos.
However, in the Emmerich graph the value for the second year is higher for Google Scholar
and the value for the third year is higher for Microsoft Academic, while in the Hoos graph
the value for the first year is higher for Microsoft Academic, but the second and third year
they are about the same. There appears to be no pattern, so this is probably due to the
fact that in the first years, one citation more or less makes a big difference in relative change.
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While the differences in absolute numbers between Google Scholar and the Microsoft Academic
Graph might have a negative effect on the usability of a model trained on data from the Mi-
crosoft Academic Graph when applied to data from Google Scholar, the close correspondence
in relative changes may mitigate that somewhat. The applicability of both model and approach
on Google Scholar data will be tested later in this thesis.

4.3 Collection methods

The citation data of authors was retrieved by querying the Microsoft Academic API. The
following query was used.

{” path ” : ”/ autho r /Paper IDs / paper / C i t a t i o n ID s / c i t a t i o n ” , ” autho r ” :{ ” type
” : ”Author ” , ”Name” : ” ’+ autho r+’” } , ” paper ” :{ ” type ” : ”Paper ” , ” s e l e c t ” : [
” O r i g i n a l T i t l e ” ]} , ” c i t a t i o n ” :{ ” r e t u r n ” :{ ” type ” : ”Paper ” } , ” s e l e c t ” : [
” Pub l i shDate ” , ” O r i g i n a l T i t l e ” ]}}

This query returns in JSON-format an array containing the titles of all papers of the author,
and for every paper the title and publication date of every paper that cited it.

As Google Scholar does not provide an API, citation data for a publication was collected using
the python module Beautifulsoup. Because each publication page contains a graph showing
how often it was cited each year, citation data for a publication could be collected by retrieving
the url to its Google Scholar page and parsing the page for the information in the graph.

4.4 Data sets

For this thesis, three different data sets were used. One set contains the citation data for
5810 authors in Computer Science and is used for testing the predictability of scientific impact
for authors. The second set is a subset of 1023 of these authors and is used for exploratory
testing. The third set consists of the citation data of 6700 papers. The table below provides
basic information for each data set.
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Name Subject Source # samples
Average
age of
samples

Average
value of
samples

Data set 1 authors Microsoft Academic API 5810 24.32 30.20

Data set 2 authors Microsoft Academic API 1023 27.50 42.65

Data set 3 publications Google Scholar 6700 15.50 587.50

Table 4.1: Basic information about the data sets used

4.4.1 Data set 1: 5810 authors from Microsoft Academic

The main data set used for predicting h-index, i10-index and cumulative citations of authors,
as well as the intersection and union of groups of authors, is derived from Microsoft Academic
and consists of the topmost authors in Computer Science and several subfields of Computer
Science. The Microsoft Academic search engine offers the possibility to get a list of the 100
topmost authors in a certain field, by rank, citations or h-index, over the past 5 years, 10 years
or over all time. Our approach was to select the top 100 authors over all time by rank. We
selected first the top 100 authors in Computer Science and all direct subfields of Computer
Science as listed by Microsoft Academic. This resulted in a list of 3500 authors. The second
step was to select the top 100 authors of the first 67 subfields of Machine Learning as listed
by Microsoft Academic. This resulted in another 6700 authors. Because many of these sub-
fields are quite small, this approach made sure that the data set consisted of not only top
authors, but also authors that are less often cited overall, but are in the top 100 of a certain
field simply because that field is rather small. Combining all authors together and filtering out
duplicates resulted in a list of 6782 unique authors. After requesting their citation data using
the Microsoft Academic API, for several authors no data were returned, so in the end the data
set consists of data for 5810 authors in Computer Science. Because in the last few years the
Microsoft Academic API lacks more data than in the years before that, for every author only
the citation data up until 2015 are used.
A scatter plot showing the relation between career age (actually year since first received ci-
tation) and h-index for the authors in the data set is shown in Figure 4.1. Note that the
data set contains many authors with a career age longer than 40 years. This research does not
extrapolate beyond the 40th year of someone’s career. The average h-index is calculated not
only based on the latest h-index of the authors in the data set, but also based on their h-index
of earlier years. For instance, the average h-index for year 0 is calculated by the average of
the h-indices in year 0 of every author, including those that have a career age longer than
one year. No attempt was made to filter out authors that are no longer actively writing new
publications, so the model trained on this data set is applicable to active and retired authors
alike. The model itself is provided with information that can be used to differentiate to some
extent between active and retired authors, because apart from the present scientific impact the
scientific impact in past years is also given to the model as features. On top of that, among
the additional features used is the number of publications published in the past year, which
indicates whether or not an author is still active.
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Figure 4.1: Relation between career age and h-index for the authors in data set 1

It is remarkable that there appear to be many authors that have a very low h-index even with
a long career. 109 authors had an h-index of 1 in 2015. 470 had an h-index of 5 or lower.
There were 55 authors in the data set (about 1%) with a career age longer than 20 years but
an h-index lower than 5. One of these authors is Mauro Dell’Amico from the University of
Modena and Reggia Emilia. Google Scholar lists 121 publications for this author, starting in
1987, and calculates his current h-index at 29 and his cumulative citations at 4515. Microsoft
Academic has five pages for this author.3. One page lists 81 publications and 5281 estimated
citations. Another page has 14 publications and 197 citations, a third 4 publications and 38
citations, a fourth 1 publication and 29 citations and the fifth page has 1 publication and
no citations. When a request was done for the publications citing work of Mauro Dell’Amico,
the API returned only those publications citing papers from the second profile page (with 14
publications and 197 citations), instead of from the main profile page. Another example is Kelly
Miller from Harvard University, whose first publication dates from 2013, according to Google
Scholar. The response from the Microsoft Academic API included among her publications
also a publication from Kelly B. Miller from the University of Mexico, Kelly A. Miller from
the University of Rochester and Kelly Miller from Howard University. This last publication
dates from 1977 and causes the erroneously long career age. Interestingly, in the first case
the API showed the same erroneous division of one author in multiple profiles that was seen
with the Microsoft Academic search engine, while in the second case, where the information of

3see https://academic.microsoft.com/#/detail/2136425878, https://academic.microsoft.

com/#/detail/2709446498, https://academic.microsoft.com/#/detail/2306102140, https:

//academic.microsoft.com/#/detail/2136425878 and https://academic.microsoft.com/#/

detail/2711127022
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the search engine is correct, the Microsoft Academic API put together papers that according
to the information obtained via the Microsoft Academic search engine belonged to different
authors. All of this shows us that the data obtained is messy, and may on the one hand wrongly
attribute publications to certain authors while on the other hand due to different profiles for
one author most publications of an author are not included. That notwithstanding, the average
h-index of the data set is still higher than the observation of Malesios and Psarakis (2014) that
the average h-index in Computer Science is about 20.[11] To test if examples with erroneously
low values and outliers with extremely high values would distort the quality of the model, test
results from models trained with the upper and lower ten percent excluded from inclusion in the
training data were compared with test results for models where there was no such restriction.
The model with no restrictions on the training set resulted in higher r2-values and lower error
rates on the test set. Therefore no restraints have been put on what data from data set 1 to
include for training the model.

4.4.2 Data set 2: 1023 authors from Microsoft Academic

A smaller set was used for exploratory testing. This was used to perform many tests in a small
time frame, to determine which results were promising enough to execute the test on the
larger data set 1. This smaller data set is a subset of data set 1, except for the fact that it
was retrieved at an earlier time.
The data set consists of the top 100 authors of all time in Computer Science as listed by Mi-
crosoft Academic combined with the top 100 authors of all time in several subfields of Computer
Science as listed by Microsoft Academic. These subfields are Artificial intelligence, Computer
vision, Computer hardware, Real-time computing, Computer network, Machine learning, Pat-
tern recognition, Data mining, Distributed computing, Multimedia, Knowledge management,
Embedded system, Simulation, Library science, Algorithm, Database and Computer security.
The resulting set contains 1202 unique authors. For each of these authors, a request was made
to the Microsoft Academic Graph via the API to retrieve the needed data. For 1181 authors,
the response was received and stored. For 158 of these authors, this response was empty,
leaving a set of 1023 items. A scatter plot showing the relation between career age (actually
year since first received citation) and h-index for the authors in the data set is shown in Figure
4.2. The same notes that were given for the scatter plot of data set 1 apply here as well.
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Figure 4.2: Relation between career age and h-index for the authors in data set 2

4.4.3 Data set 3: 6700 papers from Google Scholar

This data set, used for experiments involving the cumulative citations of individual scientific
publications, was collected from Google Scholar. To collect this data set, a list of urls was
compiled linking to the page of the top 150 authors with label machine learning on Google
Scholar.4 For each of these authors, our scraper visited the page of each of the top 100
articles of this author,5 provided the author had indeed written that many articles and the
article page in question was not yet visited via the page of a co-author. Each article page
contains a graph showing citations by year. This was transformed to cumulative citations,
extended either backwards to the year of publication (or forwards if the article was already
cited before official publication) and cut off at 2017, to exclude the incomplete year 2018.
This resulted in a set of 12508 articles. To keep the size of this set comparable to data set 1,
the first 6700 articles that were collected in this way were taken as the new data set. A plot
showing the relation between age of the article and cumulative citations is shown in Figure
4.3. As can be seen, the vast majority of the articles has a career age of lower than 30 years
and is cited between 10 and 1000 times. There are a few extreme outliers with cumulative

4For example https://scholar.google.nl/citations?user=nKC5jkgAAAAJ&hl=en&oe=ASCII
5For example https://scholar.google.nl/citations?user=nKC5jkgAAAAJ&hl=en&oe=ASCII#

d=gs_md_cita-d&p=&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Den%26oe%3DASCII%

26user%3DnKC5jkgAAAAJ%26citation_for_view%3DnKC5jkgAAAAJ%3AnatZJ_-F0IUC%26tzom%3D-120
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citations up to 100,000, that cause the average number of cumulative citations to be higher
than the 75th percentile.

Figure 4.3: Relation between article age and cumulative citations
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Chapter 5

Experiments

5.1 Preliminary Experiments

5.1.1 Finding the best regressor

Several experiments were conducted to find out which algorithm was the most effective in es-
timating future scientific impact. The first experiment was conducted with use of Weka. The
data set used here consisted of the top 20 articles for each of the top 20 authors in Machine
Learning as given by Google Scholar. The set was used to determine which algorithm was the
most effective in predicting the total citations of a paper one year ahead based on the last
five years. No attempt was made to differentiate between various ages of a paper. For each
paper, 2017 was treated as year 0, the year to be predicted, and 2012-2016 were year 1 to 5,
the attributes used to predict. Two methods were used to find the best performing algorithm:
AutoWEKA and simply trying all 26 algorithms1 provided by WEKA that were applicable to
the problem without feature engineering. Two-thirds of the data were used for training and
one-third as test set.
Both AutoWEKA and manual selection of algorithms returned linear regression as the best
performing algorithm for prediction of total citations of a paper one year ahead. The model
provided by AutoWEKA had a correlation coefficient of 0.9997 and a relative absolute error
of 2.2%. Weka’s standard linear regression algorithm performed even better on the test set,
with a correlation coefficient of 1 and a relative absolute error of 0.28%. Among the other
algorithms tried Simple linear regression and SMOreg (support vector machine for linear re-
gression) performed best. Outside the realm of linear regression the Multilayer Perceptron
function had the best results, with a correlation coefficient of 0.9996 and a relative absolute
error of 3.6%. As may be expected, for all algorithms year one (the year directly before the
year to be predicted) was by far the most important attribute.

The next experiment was done using data set 3, the set with data of 1023 authors drawn
form Microsoft Academic. With this data set, the h-indexes of the first ten years of one’s

1These algorithms were linear regression, simple linear regressian, Gaussian process, SMOreg, IBK,
KStar, LWL, additive regression, bagging, CVParameterSelection, MultiScheme, RandomCommittee,
RandomizableFilteredClassifier, RandomSubSpace, RegressionByDiscretization, Stacking, Vote, Weighte-
dInstancesHandlerWrapper, InputMappedClassifier, DecisionTable, M5Rules, ZeroR, DecisonStump,
M5P, RandomForest, RandomTree and REPTree. Seven of these resulted in a correlation coefficient
lower than 0 and were not used in later tests. Those were ZeroR, InputMappedClassifier, WeightedIn-
stancesHandlerWrapper, Vote, Stacking, MultiScheme and CVParameterSelection
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career (starting with the first received citation, not with the first year of the PhD) were used
to predict the h-index of year 15. As before, all applicable algorithms provided by Weka were
tried to see which algorithm performed best in predicting h-index 5 years ahead for a scholar
in the tenth year of his/her career. The next step was to test further ahead, predicting year
20 instead of year 15.
When predicting year 15, AutoWEKA selected AdditiveRegression as the best model. Predict-
ing year 20, AutoWEKA selected M5P as the best performing algorithm, with a correlation
coefficient of 0.808 on the test set. The results for the five best performing algorithms using
normal Weka are shown in respectively Table 5.1 and 5.2.

Algorithm r2 score
MultilayerPerceptron 0.970
Linear regression 0.968
SMOreg 0.963
M5Rules 0.945
M5P 0.949

Table 5.1: Predicting 5 years ahead from year 10

Algorithm r2 score
M5Rules 0.825
M5P 0.825
Bagging (REPTree) 0.819
LinearRegression 0.816
RandomTree 0.801

Table 5.2: Predicting 10 years ahead from year 10

Among the algorithms tried, linear regression is the best performing algorithm when predicting
one year ahead, occupies the second place when predicting 5 years ahead and the fourth
place when predicting 10 years ahead. Apparently linear regression is one of the most effective
algorithms in estimating future scientific impact, although its performance relative to other
algorithms decreases over time and in all these cases the difference in score between the best
performing algorithms is negligible. When predicting far ahead, M5Rules and M5P have a
slightly better performance than linear regression. Both algorithms produce multiple linear
regression models, and select one based on the value of the h-index in the last known year.

5.1.2 Using automated machine learning

The benefit of using automated machine learning to get better estimations of future scientific
impact was tested using autosklearn. The data for this experiment came from data set 2. Year
15 was chosen as the target variable, and the first ten years as the predictor variables.
The ”Best regression algorithm” model that will be described in the next section had an R2-
value of 0.880 in that situation, a median R2-value of 0.917 and a median absolute error of
2.690.
Autosklearn was tested for different learning times, ranging from 5 minutes to 2 hours. Interest-
ingly, 5 minutes was enough to find an algorithm with comparable scores. Improving the time
available to the autosklearnregressor did in this experiment not result in better performance.
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Learning time R2 median R2
median
absolute
error

base case 0.880 0.917 2.690
5 m 0.868 0.877 2.566
15 m 0.869 0.860 2.546
1 h 0.870 0.892 2.602
2 h 0.874 0.910 2.183

Table 5.3: Performance scores of autoML-developed models for predicting the h-index 5
years ahead for an author with a career age of 10

5.2 Without additional features

In this section the results are discussed of the experiments that test the predictability of future
scientific impact based on past values of said metric, for various scientific impact metrics.
All tests are performed on data set 1 and use a training set size of 80%. Three approaches
are taken to estimate future predictability and their results are compared on both R2-value
and relative error. The three approaches have in common that no single model is used for all
predictions. Instead, for each combination of career age and prediction distance an individual
algorithm was trained, with the aim of developing a set of algorithms that has specifically
adapted algorithms for each career age/prediction distance combination. Developing a specific
model for each career age is done because the relation between scientific impact in for instance
the current year and five years ahead is probably very different for a junior scientist compared
to a senior scientist. Using specific models for each prediction distance is done to enable the
use of linear algorithms without assuming linearity. Note that career age is used in the sense
of ”years since first received citation”, due to the fact that the collected data contain no
information about the start year of the PhD. Many of the graphs that are shown further in
this work show model performance for predicting up to 20 years ahead. For every prediction
distance, the model performance shown in the graph is the average taken over the models for
career ages 1 to 20.

The three different approaches mentioned are:

• Linear regression: This is a simple approach, using scikit-learn’s linear regression algo-
rithm, without hyperparameter tuning. The choice for linear regression is based on the
positive results obtained with linear regression when searching for the best regressor (see
preliminary experiments).

• Best regression algorithm: This approach is comparable to the one above, but in-
stead of only looking at linear regression, various regression algorithms were tried, and
in each circumstance the best performing one was selected (the one with the highest
R2-value on the test set. The following algorithms from scikit-learn were tried: Lin-
earRegression(), BayesianRidge(), DecisionTreeRegressor(), RandomForestRegressor(),
KNeighborsRegressor(), ElasticNet(), Lars() and OrthogonalMatchingPursuit() .

• Time series prediction: This approach is comparable to the ”Best regression algo-
rithm” approach above, but instead of taking all past values of the metric into account,
the only predictor variables are the values of the past five years. This will enable us

27



to see if the inclusion of metric values for longer than five years past is still useful for
improvement of the predictions, has no effect, or may even be harmful to the quality of
the predictions.

5.2.1 The predictability of the h-index

The graphs 5.1 and 5.2 below show the predictability of the h-index, using respectively r2-
value and relative error as measures of the quality of the prediction. They show that there is a
decreasing almost linear relationship between r2 score and how many years ahead one predicts.
The relative error also increases almost linearly, although the rate of increase decreases slightly
over the years. For the median relative error, we also see a slowing rate of increase, until it
reaches a plateau around 0.3. The median r2 is higher than normal r2, which suggests that
relatively few predictions have a very high absolute error. Median relative error is lower than
average relative error. That suggests that there are a few predictions that have a very high
relative error, pulling the average up.

Figure 5.1: r2-value for predicting the h-index
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Figure 5.2: relative error for predicting the h-index

Scatterplots
The scatterplots below show the relation between true and predicted values for the test set, for
junior scientists (5 years since first citation) and senior scientists (25 years since first citation).
For each of these, scatterplots are shown of the predictions 3 and 10 years ahead.

Figure 5.3: Scatterplot of true versus predicted value for the h-index of scientists in the
fifth year of their career, predicting 3 years ahead
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Figure 5.4: Scatterplot of true versus predicted value for the h-index of scientists in the
fifth year of their career, predicting 10 years ahead

Figure 5.5: Scatterplot of true versus predicted value for the h-index of scientists in the
25th year of their career, predicting 3 years ahead
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Figure 5.6: Scatterplot of true versus predicted value for the h-index of scientists in the
25th year of their career, predicting 10 years ahead

Cases where the model does not work well
For junior scientists (5 years since first citation), mid-career scientists (15 years since first ci-
tation) and senior scientists (25 years since first citation) the results with the greatest relative
error were analyzed for predictions 1,3,5 and 10 years ahead. Note that current h-index is used
here to refer to the h-index of the last full year that is available for the input features, so if the
model is used to predict future scientific performance it will often be the past year, because
the current year is then yet incomplete.

Career age Years ahead
Current
h-index

True h-index
in target year

Predicted h-index
in target year

5 1 1 1 1.32

5 3 1 1 2.09

5 5 1 1 2.34

5 10 1 1 6.95

15 1 3 8 3.40

15 3 1 1 1.82

15 5 1 1 2.52

15 10 1 1 5.63

25 1 1 1 1.39

25 3 1 1 2.39

25 5 1 1 3.25

25 10 1 1 5.87

Table 5.4: The predictions with the greatest relative error in predicting h-index for a few
sample circumstances

As Table 5.4 shows, in almost all circumstances the greatest relative errors were due to cases
were the h-index of an author, at least according to the information contained in our data set,
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remained 1. In such cases the value predicted by the model is much higher than the true value
for the target year. An exception is the prediction 1 year ahead for an author with a career
age of 15. In that case, the h-index changed from 3 to 8 in the span of only 1 year, while the
model predicted a much slower increase: to 3.40, which would be rounded to 3.

5.2.2 The predictability of the i10-index

The graphs below show the predictability of the i10-index, using respectively r2-value and
relative error as measures of the quality of the prediction. Here we see the same relationship
between prediction distance on the one hand and r2-value and relative error on the other hand
that was seen for the h-index. The main difference is that for prediction of the i10-index the
average error is greater and the r2-value lower compared to what was seen for the h-index,
showing that the i10-index is harder to predict than the h-index.

Figure 5.7: r2-value for predicting the i10-index
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Figure 5.8: relative error for predicting the i10-index

Scatterplots
The scatterplots below show the relation between true and predicted values for the test set, for
junior scientists (5 years since first citation) and senior scientists (25 years since first citation).
For each of these, scatterplots are shown of the predictions 3 and 10 years ahead.

Figure 5.9: Scatterplot of true versus predicted value for the i10-index of scientists in the
fifth year of their career, predicting 3 years ahead
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Figure 5.10: Scatterplot of true versus predicted value for the i10-index of scientists in the
fifth year of their career, predicting 10 years ahead

Figure 5.11: Scatterplot of true versus predicted value for the i10-index of scientists in the
25th year of their career, predicting 3 years ahead
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Figure 5.12: Scatterplot of true versus predicted value for the i10-index of scientists in the
25th year of their career, predicting 10 years ahead

Cases where the model does not work well
For junior scientists (5 years since first citation), mid-career scientists (15 years since first ci-
tation) and senior scientists (25 years since first citation), the results with the greatest relative
error were analyzed for predictions 1,3,5 and 10 years ahead.

Career age Years ahead
Current
i10-index

True i10-index
in target year

Predicted i10-index
in target year

5 1 1 5 1.42

5 3 1 1 2.80

5 5 1 1 5.19

5 10 1 1 15.67

15 1 1 1 -0.13

15 3 1 1 -0.81

15 5 1 1 -1.96

15 10 1 1 15.28

25 1 1 1 1.81

25 3 1 1 3.99

25 5 1 1 6.23

25 10 1 1 11.64

Table 5.5: The predictions with the greatest relative error in predicting i10-index for a
few sample circumstances

As was the case with the predictions of the h-index, the worst relative errors occur when the
value of the i10-index remains at 1. An exception is the prediction one year ahead for an author
with career age 5. In that case the i10-index suddenly increased from 1 to 5, while the model
estimated the i10-index in year 6 for that sample at only 1.42 (which would be rounded to 1).
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5.2.3 The predictability of cumulative citations of authors

The graphs below show the predictability of the cumulative citations of authors, using respec-
tively r2-value and relative error as measures of the quality of the prediction. Comparing Figure
5.13 and Figure 5.14 with what was seen for the h-index and i10-index, we see there is a
greater difference between median and normal r2, and especially between median and aver-
age relative error. Apparently, even more than for h-index and i10-index there are relatively
few cases with very high absolute error (decreasing the r2-score) and very high relative error
(increasing the average relative error).

Figure 5.13: r2-value for predicting the cumulative citations of authors
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Figure 5.14: relative error for predicting the cumulative citations of authors

Scatterplots
The scatterplots below show the relation between true and predicted values for the test set, for
junior scientists (5 years since first citation) and senior scientists (25 years since first citation).
For each of these, scatterplots are shown of the predictions 3 and 10 years ahead.

Figure 5.15: Scatterplot of true versus predicted value for the cumulative citations of
scientists in the fifth year of their career, predicting 3 years ahead
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Figure 5.16: Scatterplot of true versus predicted value for the cumulative citations of
scientists in the fifth year of their career, predicting 10 years ahead

Figure 5.17: Scatterplot of true versus predicted value for the cumulative citations of
scientists in the 25th year of their career, predicting 3 years ahead
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Figure 5.18: Scatterplot of true versus predicted value for the cumulative citations of
scientists in the 25th year of their career, predicting 10 years ahead

Cases where the model does not work well
For junior scientists (5 years since first citation), mid-career scientists (15 years since first ci-
tation) and senior scientists (25 years since first citation), the results with the greatest relative
error were analyzed for predictions 1,3,5 and 10 years ahead.

Career age Years ahead
Current
citations

True citations
in target year

Predicted citations
in target year

5 1 1 1 6.33

5 3 1 1 58.85

5 5 1 1 119.40

5 10 1 1 767.06

15 1 17 712 28

15 3 1 1 59

15 5 1 1 189

15 10 1 1 922

25 1 1 1 51

25 3 1 1 163

25 5 1 1 361

25 10 1 1 1068

Table 5.6: The predictions with the greatest relative error in predicting cumulative cita-
tions of authors for a few sample circumstances

Here we see the same results as with the prediction of h-index and i10-index: The model
overestimates samples where the cumulative citations remain constant at only 1. Again, there
is one exception when predicting one year ahead for a career age of 15. There the work of an
author receives a sudden and drastic increase in citations which the model does not foresee.
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5.2.4 The predictability of cumulative citations of publications

The graphs below show the predictability of cumulative citations for publications, using respec-
tively r2-value and relative error as measures of the quality of the prediction. in Figure 5.19
for the first time there is a clear difference in results between the ”Best algorithm” approach
and the linear regression and time series prediction approaches. Moreover, the median r2 is
extremely high, due to the fact that it expresses predictive performance relative to predicting
the average, and predicting the average is apparently a very bad way to predict the cumulative
citations of publications.

Figure 5.19: r2-value for predicting the cumulative citations of publications
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Figure 5.20: relative error for predicting the cumulative citations of publications

Scatterplots
The scatterplots below show the relation between true and predicted values for the test set,
for publications with an age of 5 years and publications with an age of 25 years. For each of
these, scatterplots are shown of the predictions 3 and 10 years ahead.

Figure 5.21: Scatterplot of true versus predicted value for the cumulative citations of
publications 5 years since publication, predicting 3 years ahead
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Figure 5.22: Scatterplot of true versus predicted value for the cumulative citations of
publications 5 years since publication, predicting 10 years ahead

Figure 5.23: Scatterplot of true versus predicted value for the cumulative citations of
publications 25 years since publication, predicting 3 years ahead
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Figure 5.24: Scatterplot of true versus predicted value for the cumulative citations of
publications 25 years since publication, predicting 10 years ahead

Cases where the model does not work well
For junior scientists (5 years since first citation), mid-career scientists (15 years since first ci-
tation) and senior scientists (25 years since first citation), the results with the greatest relative
error were analyzed for predictions 1,3,5 and 10 years ahead. Note that for the cumulative
citations of publications, in our model the first year is not the year of first citation, but the
year of publication.

Career age Years ahead
Current
citations

True citations
in target year

Predicted citations
in target year

5 1 0 0 11.27

5 3 0 0 57.81

5 5 0 0 -8.77

5 10 0 0 67.29

15 1 0 0 -15.82

15 3 0 0 -31.99

15 5 0 0 3.60

15 10 0 0 4.45

25 1 0 0 2.93

25 3 0 0 19.37

25 5 0 0 32.24

25 10 0 0 25.14

Table 5.7: The predictions with the greatest relative error in predicting cumulative cita-
tions of publications for a few sample circumstances

As can be seen in Table 5.7, all tested cases of greatest relative error occur when the number
of citations for a publication stays at 0.
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5.2.5 Model performance compared to baselines

The graphs above have shown the obtained r2-values and relative error for the predictions of
our model for various scientific impact metrics. However, part of the reason the model performs
so well is that the scientific impact metrics used (h-index, i10-index and cumulative citations)
are all cumulative. Therefore they always follow an upward trend and never go downwards,
which makes it easy to obtain accurate predictions when predicting only a few years ahead.
To get an idea of the real predictive power of the model, the results obtained with the ”best
regression algorithm” approach are here compared to two baselines: Always predicting the
current value, and always predicting the average value in the target year. These tests are
performed for h-index and cumulative citations for papers.

Figure 5.25: Comparison of the r2-value for the predictions of the model, predicting the
average h-index in the target years and predicting the current h-index

Because the r2-value as used in this thesis expresses the prediction performance relative to
predicting the average value, the r2-value for predicting the average itself is 0. Looking at r2-
value, for all prediction distances up until 20 our model performs better than simply predicting
the average value.
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Figure 5.26: Comparison of the relative error for the predictions of the model, predicting
the average h-index in the target years and predicting the current h-index

As Figure 5.26 shows, the relative errors for prediction of the average increase only slightly
over the years, so for all years the distribution of the target values is about the same. The
average and median relative errors for our model start almost at 0, although over the years they
gradually approach the scores on these errors for prediction of the average. For a prediction
distance of 20 years, however, our model still performs clearly better than prediction of the
average.
When predicting more than 10 years ahead, predicting the current value has a lower average
relative error than our model, although as we have seen our model still performs better when
it comes to r2-value and median relative error. The reason for this is probably that relative
error is calculated as error relative to the true value of the target. Because of the cumulative
nature of the h-index, the current value will always be between 0 and the target value, and
therefore the relative error for predicting the current value can never exceed 1. Our model, on
the other hand, can predict values that are arbitrarily higher than the true target value, and
so the relative error can exceed 1.
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Figure 5.27: Comparison of the r2-value for the predictions of the model for citations
of publications with predicting the average cumulative citations in the target years and
predicting the current cumulative citations

In Figure 5.27 it can be seen that the high median r2-values obtained when predicting cu-
mulative citations for publications are not due to the quality of the model itself, but to the
properties of the data. As the r2-value is an expression of performance relative to predicting
the average value of the target variable, it simply means that predicting the average value
of the target is a very bad predictor for cumulative citations of publications. In fact, simply
predicting the current value results in an equal performance when it comes to median r2-value,
and for predictions further than 20 years ahead even a better performance. Normal r2-scores
are better for our model, meaning that outliers with high values are better predicted by our
model than by simply predicting the current value.
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Figure 5.28: Comparison of the relative error for the predictions of the model for citations
of publications with predicting the average cumulative citations in the target years and
predicting the current cumulative citations. Note that the scale is logarithmic

As with h-index, the relative errors for prediction of the average have a more or less constant
value, which is approached by the scores of our model for higher prediction distances.

5.2.6 Comparing the predictability of various impact metrics

Below graphs are shown that compare the predictability of h-index, i10-index, cumulative
citations of authors and cumulative citations of papers. They are compared according to four
metrics: r2-value, median r2-value, average relative error and median relative error. Of these,
median relative error is the most informative metric, because out of the four metrics it is the
only one that is not unduly influenced by high values of extreme outliers.
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Figure 5.29: comparison of the median relative error for various metrics

As this graph shows, h-index appears to be the most predictable metric. That is no wonder, for
it is also the most stable metric of the four. Especially in later years much more is needed to
increase the h-index, than to increase i10-index or cumulative citations. It is interesting to note
that in the first 20 years of prediction distance, there is not really a difference between median
relative error for cumulative citations of authors and of papers. As the cumulative citations
for an author can be regarded as the cumulative citations for a group of papers, this gives the
impression that the future scientific impact of a group of papers is not more predictable than
that of a single paper.
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Figure 5.30: comparison of the r2-value for various metrics

Figure 5.31: comparison of the median r2-value for various metrics

Figure 5.30 and Figure 5.31 give the impression that cumulative citations for a single paper
are much better predictable than cumulative citations for an author or the h-index or i10-index
for an author. However, Figure 5.29 has already shown that this is not true. The high value of
the r2 for prediction of the cumulative citations of a paper is due to the way r2 is calculated.
As explained in the ”Assessing prediction accuracy” section of the chapter on Preliminaries,
the r2-value is heavily influenced by extreme outliers with high values. If those few outlying
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values are predicted well, the overall r2-value will be high, irrespective of the how well the
other target variables are predicted.

Figure 5.32: comparison of the average relative error for various metrics

In Figure 5.32 we see that the value of the average relative error appears to be related to
how high the values of the underlying metrics are. H-index has overall the lowest values, and
also the lowest average relative error. i10-index, which has slightly higher values (at least for
authors with an i10-index higher than 10) also has a slightly higher average relative error. The
same logic goes for the average relative error of predicting cumulative citations of papers and
authors, where the highest relative errors are for the cumulative citations of authors, and that
metric has indeed higher values than all the others.

5.2.7 The impact of career age on predictability

The impact of career age on predictability was tested by comparing r2-value and median relative
error for predicting the h-index of beginning scientists (a career age of 1), junior scientists (a
career age of 5), mid-career scientists (a career age of 15) and senior scientists (a career age of
25). Note that in all these cases career age actually means ”years since first received citation”.
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Figure 5.33: comparison of the r2-value for various career ages

Figure 5.34: comparison of the median relative error for various career ages

Figure 5.33 shows that future h-index is practically not predictable for authors with a career
age of only 1, based on past h-index alone. That makes sense, because in such a situation
the only parameter that can be used for prediction is the h-index in the first year. That is
clearly not enough to say anything meaningful about future h-index. By the time an author
is five years into his career, his h-index is more predictable, but only for the next few years.
The quality of the prediction rapidly declines. For mid-career and senior authors the situation
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is different. Not only can their h-index be predicted with almost perfect accuracy for the next
year, but the decline in r2 over the next years is also less steep. The probable reason for this is
that the growth of the h-index is on average much slower for authors with such a long career,
because it is probably already quite high.
Additional tests for i10-index and cumulative citations of authors show the same pattern.
Increases in career age bring an increase in predictability. The biggest gain in predictive power
is when going from a career age of 1 to 5 years. Between a career age of 15 years and a career
age of 25 there still is an increase predictive power, but only a slight increase.

5.2.8 The predictability of the union and intersection of authors

The predictability of the h-index for a single author was compared with that of the intersec-
tion of two authors and the union of five authors. In the case of intersection, a set of 5000
intersections was created by repeatedly randomly picking two authors from data set 1 and
calculating the intersection of their work, provided they had co-authored at least one paper.
A set of 5000 unions of authors was constructed by randomly selecting five authors from data
set 1, combining their publications together and removing duplicates.

Figure 5.35: comparison of the r2-value for single authors with that of a union or inter-
section of authors
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Figure 5.36: comparison of the median relative error for single authors with that of a
union or intersection of authors

Figure 5.35 and Figure 5.36 show a slight but clear improvement in results when predicting
the h-index of a group of 5 authors instead of a single author. Figure 5.35 is not clear enough
to draw conclusions about the predictability of an intersection of authors, but Figure 5.36
shows that the h-index of either a single author or a union of authors is more predictable than
that of an intersection of authors.

5.3 With additional features

The benefit of using other citation-related features to improve model performance was tested
for the prediction of the h-index. Most of these features were earlier proposed by Weihs and
Etzioni (2017). [23]

5.3.1 Clustering

The potential of improving prediction by employing clustering was tested on data set 2, and
the conclusions confirmed with a test on data set 1. In these tests, the application of clustering
led to worse results than using no clustering. To test the benefit of clustering, the arrays of
h-index values over the past years (which are what is used as feature array in the previous ex-
periments) were clustered using k-means clustering, implemented with sklearn.cluster.KMeans.
The number of clusters was set to three, to prevent the cluster size from becoming too small.
The data set was split in three according to the clusters, and for each cluster a model was
trained and tested using 10-fold cross validation. The average r2 score for these models was
compared with the r2 score obtained when clustering was not used. This test was performed on
data set 2 for authors with a career age of 10, predicting 5 and 10 years ahead. The conclusions
were confirmed by applying the same procedure to data set 1.
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data set years ahead
r2 score
(base case)

r2 score
(clustering)

2 5 0.84 0.76
2 10 0.66 0.57
1 5 0.84 0.57
1 10 0.68 0.35

Table 5.8: r2 score for tests with an without clustering

5.3.2 Testing individual additional features

Relative change in h-index over the last two years
Using 10-fold cross-validation, the best performing algorithms when the relative change in
h-index over the past two years was added as a feature, were linear regression and Bayesian
ridge, both with an r2-score of 0.869. The same values were obtained when the change in
h-index was left out as a feature.

Additional features related to the number of citations
The cumulative citations, the change in citations over the last year, and the mean number of
citations per year were all tested.

Additional features Best algorithm(s) r2 score (best algorithm(s)

none
linear regression
Bayesian ridge

0.869

cumulative citations
linear regression
Bayesian ridge

0.871

change in citations over last year
linear regression
Bayesian ridge

0.875

mean number of citations per year
linear regression
Bayesian ridge

0.871

Table 5.9: r2-score and best algorithms for prediction of the h-index with additional fea-
tures based on number of citations

Additional features related to the number of papers
The number of papers published, the number of papers published in the last one, two and three
years, the mean number of citations per paper and the relative change in the mean number
of citations per paper over the last two years were all tested.
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Additional features Best algorithm(s) r2 score (best algorithm(s)

none
linear regression
Bayesian ridge

0.869

number of papers
linear regression
Bayesian ridge

0.876

number of papers in last year Bayesian ridge 0.890

number of papers in last 2 years
linear regression
Bayesian ridge

0.886

number of papers in last 3 years
linear regression
Bayesian ridge

0.882

mean citations per paper
linear regression
Bayesian ridge

0.871

change in mean citations per paper
over the past 2 years

linear regression
Bayesian ridge

0.870

Table 5.10: r2-score and best algorithms for prediction of the h-index with additional
features based on number of papers

5.3.3 Testing additional features in combination

As a next step, the additional features were used in combination. The following features were
added:

• Change in h-index over the last two years

• Cumulative citations

• Change in citations over the last year

• Mean number of citations per year

• Number of papers published

• Number of papers published in the last two years

• Mean number of citations per paper

• Change in the mean number of citations per paper over the last two years

With these additional features, a model was trained to predict the h-index and the results were
compared with what was found earlier for models trained without using any additional features.
The results can be seen in Figure 5.37 and Figure 5.38. Using extra features results in a
clear improvement for any prediction distance, at least if performance is measured by r2-value
or median r2-value. Measured by median relative error, both models perform approximately
the same for the first five years. After that, using additional features actually increases the
median relative error. This is probably caused by the fact that the sklearn optimizes the model
for r2 score. The additional features allow for the model to obtain a higher r2 score, but as
we see this is at the cost of median relative error. However, it shows that additional features
allow the model to be more optimized, and therefore if the models would be optimized for
median relative error, the model with additional features would probably perform better when
it comes to median relative error. Measured by average relative error, both models performs
approximately the same for all prediction distances, while using additional features leads to
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better results for all prediction distances when one looks at median absolute error and average
absolute error.

Figure 5.37: r2-score for using additional features compared with base case

Figure 5.38: median relative error for using additional features compared with base case

56



5.4 Testing on data from Google Scholar

We tested to what extent a model trained on data from Microsoft Academic was usable for data
from other platforms. To this end, we first collected a data set of citations for publications from
the Microsoft Academic API. For each author in data set 1, two publications were randomly
selected for inclusion in this new data set. Some of these papers were never cited, and others
were not cited earlier than 2015 (the last year we take into account). Dropping these, a set
of 11,346 publications was left. A scatterplot showing the ages and cumulative citations of
these publications in 2015 is shown in Figure 5.39. This data set has significant differences
from the set of publications that was scraped from Google Scholar. Overall, the cumulative
citations for a publication are much lower. This is evidenced by the median, which stabilizes
between 10 and 20 for this data set, whereas for the Google Scholar data set for most years
it is around 100.

Figure 5.39: Relation between article age and cumulative citations for the data set from
Microsoft Academic

This new data set was used to train models for the prediction of cumulative citations for
publications, in the same way as was done for the Google Scholar data set. The results were
compared with what was obtained for the model trained on the Google Scholar data set. As
a next step, the models trained on the Microsoft Academic data set were used to predict
citations for the Google Scholar data set, using the entire Google Scholar data set as test set,
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with one modification. While in the original experiments on the Google Scholar data set, the
age of a paper was reckoned from the year of publication, in this case it was reckoned from
the year of first citation, as was done for the Microsoft Academic data set. The scores for
those predictions were compared with the scores these same models obtained on the Microsoft
Academic data set.
The results can be seen in Figure 5.40 and Figure 5.41. Looking at r2 scores, we see that
the results for the Microsoft Academic model on Microsoft Academic data are slightly lower
than for the Google Scholar model on Google Scholar data. This makes sense, because as we
have seen the Microsoft Academic data sets lack such high outliers as the Google Scholar
data set, which can significantly influence the overall r2 score if predicted right. Because the
Microsoft Academic model is not tuned to predict those outliers, the r2 scores it obtains on
the Google Scholar data set are lower. However, even so, the scores for predictions up to 10-15
years ahead are still quite good.

Figure 5.40: R2-scores for predicting future cumulative citations for publications using
data from Google Scholar or Microsoft Academic, and models trained on either of those
data sets

When looking at median relative error (see Figure 5.41), the results are quite strange. The
median relative error for the Microsoft Academic model on Microsoft Academic data is clearly
higher than that for the Google Scholar model on Google Scholar data. Even more strange, the
model trained on data from Microsoft Academic performs better on data from Google Scholar
than on data from Microsoft Academic, if one takes median relative error as the performance
measure. A possible explanation for this is that the Microsoft Academic data set contains quite
a lot of publications that have a very low number of citations every for older publications.
Because relative error is measured as error relative to the true value, overestimating such
examples with low true values will quickly lead to high relative errors.
For average relative error, the best results are again those for the Microsoft Academic model
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on Google Scholar data, this time followed by the Microsoft Academic model on Microsoft
Academic data, while the Google Scholar model on Google Scholar data has the worst results.
Looking at median absolute error, by far the best results are for the Microsoft Academic
model on Microsoft Academic data, which makes sense because the cumulative citations are
on average much lower for publications in this data set.

Figure 5.41: Median relative error for predicting future cumulative citations for publi-
cations using data from Google Scholar or Microsoft Academic, and models trained on
either of those data sets

5.5 Predicting incremental h-index

The same approach that was used to predict the absolute values of the h-index for a certain
distance of years ahead has also been used to predict the incremental h-index, or relative
increase in h-index. To clarify terms: A model predicts the absolute value of the h-index when
it predicts what the value of the h-index will be in the target year. A model predicts the
incremental h-index/relative increase in h-index when it predicts the value of the h-index in
the target year compared to the value of the h-index in the current year. In the first case, a
model might predict the h-index to be 16 in the target year. In the second case, a model might
predict the value of the h-index in the target year to be 1.33 times the value of the h-index in
the current year.
The scores of the evaluation metrics on the results are very different from those obtained when
predicting absolute values of the h-index, in an interesting way. As Figure 5.42 shows, the r2

scores for predicting the incremental h-index are very low. This means that the predictions of
the model for relative increase in h-index are only a limited improvement upon predicting the
average relative increase in h-index. However, it does not mean that predicting the incremental
h-index really leads to worse results than predicting the absolute values of the h-index. This
becomes clear when we look at Figure 5.43 and Figure 5.44. Figure 5.43 shows that
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simply predicting the average relative increase in h-index yields results comparable to those of
the model for small prediction distances. Predicting farther ahead, the median relative error
for predicting the average relative increase grows faster than the median relative error for
predictions of the model, and eventually predicting the average relative increase yields worse
results than predicting the average value of the h-index in the target year.
Another insight that can be learned from Figure 5.43 is that when it comes to median relative
error, there is no large difference in performance between predicting the absolute value of
the h-index in the target year or the relative increase in h-index between current year and
target year. Predicting less than 10 years ahead, predicting the relative increase yields better
results, but for longer distances the results for predicting the absolute value are better, and
the difference in performance increases with the prediction distance.
Figure 5.44 shows that when it comes to average relative error predicting the relative increase
in h-index performs consistently better than predicting the absolute value of the h-index in
the target year for all prediction distances up to 20 years. However, it also shows that simply
predicting the average relative increase yields results comparable to our model, and in some
cases even slightly better. It is therefore no wonder that the r2 scores for predicting the
incremental h-index are so low.
In conclusion, these tests show that predicting the relative increase in h-index yields results
with a lower average relative error and for predictions less than 10 years ahead a lower median
relative error as well. The tests also show that our approach is not able to improve upon simply
predicting the average relative increase in h-index when it comes to average relative error, and
when considering median relative error, it yields better results, but only for prediction distances
of more than 5 years ahead.
Lastly, simply predicting the average relative increase in h-index yields better results than the
predictions of our model for absolute h-index values when considering average relative error,
although our model is still the better choice when considering median relative error.

Figure 5.42: Comparison of r2 scores for predicting the absolute h-index and the incre-
mental h-index
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Figure 5.43: Comparison of median relative error for predicting the absolute h-index and
the incremental h-index

Figure 5.44: Comparison of average relative error for predicting the absolute h-index and
the incremental h-index
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Chapter 6

Conclusions and future work

The aim of this thesis was to find to which extent future scientific impact was predictable from
past scientific impact. The research has shown that past and current h-index, i10-index, cu-
mulative citations of authors and cumulative citations of papers are informative enough about
future values of these metrics to provide better predictions than simply predicting the average
value for at least 20 years. Because all used metrics are cumulative and contain therefore a
certain measure of autocorrelation, the results of the model were also tested against predicting
the current value. The model performs better than this baseline as well, except in cases where
the used metric was biased towards one of these baselines, as is for instance the case in using
median relative error to evaluate predicting the current value.

Comparison of impact metrics
The more stable a metric is and the lower the growth rate, the easier it is to predict. A com-
parison based on median relative error shows the lowest error rates for h-index, followed by
i10-index and cumulative citations. Predictions of cumulative citations for authors (the metric
with the highest values on average) score the worst when compared on average relative error.
When comparing on median relative error, however, predictions for cumulative citations for
authors and papers have about the same error rate for the first 20 years.

Union and intersection
A clear but slight improvement in results is seen when predicting future h-index for a set of five
authors instead of a single author. Predicting the h-index of work co-authored by two authors
proves to be less easy to predict, at least measured by median relative error.

Career age
A close relation is found between career age and predictability. Predictions for a career age of
1 score very low, but the higher the career age, the more accurate the predictions are. The
biggest gain in prediction accuracy occurs during the first few years. After that, the positive
impact of a longer career on predictability begins to decrease, although it remains detectable
even for the difference between a career age of 15 or 25 years.

Additional features
The benefit of using several additional features that are also based on citation data has been
explored for the h-index. The conclusion is that the use of these additional features can indeed
improve model performance. The most effective additional feature among the tested features
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is the number of new papers an author has published in the last year.

Dependence on the data source
The accuracy scores obtained are to a certain extent dependent on the data set. Using the same
approach on citation data for publications from Google Scholar and from Microsoft Academic,
the r2 scores obtained on the Google Scholar data set were higher and the median relative
errors lower, while the Microsoft Academic model performed better on average relative error.
When testing the model trained on Microsoft Academic data on data from Google Scholar,
the r2 score on the Google Scholar data set is lower, but the Google Scholar data set performs
significantly better when looking at relative error. However, all of these differences can be
explained by differences in the data sets, making it difficult to draw firm conclusions.

Predicting relative increase
The relative increase in h-index was predicted using the same method applied to the prediction
of the value of the h-index. The results show that prediction of the relative increase in h-index
yields better results for average relative error, and better results for median relative error for
predicting less than 10 years ahead. After that prediction of the value of the h-index yields
better results for median relative error.

Future work
In this thesis, the data that was used was limited to the first forty years since the first time an
author was cited, and the prediction distance was limited to twenty years ahead. Future work
could look into the predictability of scientific impact for longer time frames.
Another topic for future research is the use of automated machine learning. In this paper it was
concluded that automated machine learning did not improve upon the results of simple algo-
rithms in a feasible time scale. However, the experiments on autoML were limited. It would be
interesting to try a more comprehensive approach, using more data, testing for more different
situations and giving automated machine learning more time to find an appropriate model.
As seen in this thesis, most evaluation metrics were influenced by relatively few outliers. Fu-
ture work could mitigate this by normalizing the scientific impact metrics, or by predicting the
relative increase instead of absolute values. That might result in models that are less sensitive
to outlying data. The experiment in this thesis involving the prediction of incremental h-index
has already shown that under certain circumstances such an approach can indeed improve
results.
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