
1. Introduction

���
Figure 1.1:Google searches on “deep learning” from 

Januari 2004 to June 2015

Deep learning is a hot topic, as Figure 1.1 shows 
with the Google searches on this subject. Not 
surprising given the media attention and current 
developments on various problems, such as the 
classification of news stories[3] or music[1]. This 
makes it more striking that there is actually known 
surprisingly little about the learning process of 
these models[18]. 

Deep learning generally refers to the stacking of 
multiple layers in a neural network. By adding a 
layer, computational power is added and higher 
level information could be derived from a 
dataset[3]. To train a deep networks in practice, it 
requires, amongst other things, fast enough 
computers and large datasets. Since both 
requirements seem to have been fulfilled[3], the 
interest shown in Figure 1.1 could be explained.

These large datasets can be expressed by an 
arbitrarily number of dimensions, depending on the 
representation and accuracy. Dimensions can also 
be called features, this term is commonly used after 

a reduction of the number of dimensions[3]. The 
use of deep learning is also known as feature 
extraction or dimensionality reduction.

Features are useful because they have the potential 
to show us the building blocks of the data. A typical 
use for these extracted features is for example the 
classification of data[1, 2, 9, 10, 12].

Feature extraction in all these examples is 
unsupervised, meaning that the algorithm tries to 
find a good abstraction of itself in fewer 
dimensions based on similarities across the dataset. 
From this, it possible that features of which is not 
clear what they actually represent or yet unknown 
features emerge. In the classification of news 
articles[3] the researchers did not use the already 
available labels on types of articles. Yet the 
algorithm was able to determine eight classes that 
corresponded with the labels and separate the data 
in a meaningful way. This means that you cannot 
only search for a needle in a haystack, but feature 
extractors will also determine how many needles 
there are and what a needle even looks like. 
Meanwhile preserving the possibility for the 
researcher to bias the algorithm based on prior 
knowledge. For example by selecting input 
dimensions based on the presence of words in a 
carefully chosen list[3].

The need for automated feature extraction comes 
partially from the increasing amount of data, it 
simply becomes impractical to manually assign 
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features to large datasets. Additionally to the 
amount of data there is also the complexity of 
features that drive the need for automated feature 
extraction. There are cases where modern 
algorithms are able to find complex underlaying 
features, possibly not apparent to the human eye. 
Such as in the identification of Van Gogh paintings 
by extracting features on brush strokes[12]. 

In this particular case a noteworthy conclusion was 
that not only the classification was a result of their 
research, but also the insight in the complex 
features, or building blocks that are elemental to 
Van Goghs paintings. These results can help for 
example art historians to gain a better insight in the 
technique used by the painter[12] or the decisions 
made by the painter[10].

These examples show that features, that have been 
learned unsupervised, can provide new and 
important information on large datasets. However 
the neural networks used to get to these insights are 
often referred to as a ‘black box’, despite being 
built on well understood mathematical 
principles[18]. Regardless of the lack of knowledge 
about the inner workings, these networks do 
provide results that one can build upon.

Therefore it is not surprising that these networks 
are being used purely as a tool. A tool which 
produces results that are usable to researchers or a 
tool that can be integrated in commercial products. 
Only few attempts have been made to get a glimpse 
inside these ‘black boxes’, one of which is ‘deep 
dreams’ by Google research[18]. This research uses 
a method, explained in X, that produces 
visualisations of the learned information within a 
network. Such visualisations show a benefit to both 
the interpretation of results and the discovery of 
possible shortcomings and opportunities in the 
network or dataset.

This research will be an exploratory attempt to gain 
insight in what is learned in a dimensionality 
reducing neural network when applied to semi 
structured photos. The latter being photos that are 
individually unique, however show a great equality 
in visual appearance across them. This visual 
equality has the advantage that subtile differences 
across photos have a greater distinctive character 
and are presumably located in specific areas of the 
photos across the whole dataset. 

The exploratory nature of this research is noticeable 
in the small experiments that are conducted on and 
with dimensionality reduction techniques. This 

method allows to define upcoming experiments 
based on previous results. Whilst simultaneously 
aiming to view the technique from multiple angles.

This paper will start with an exploration of related 
work in section 2. The semi-structured photos 
being used in the experiments are from the project 
exactitudes, which will be explained in section 3. 
These photos will undergo, amongst other things 
pre-processing and dimensionality reduction steps. 
These steps are combined in an encoder and 
described in section 4. In section 5 the experiments 
will be described individually, following the classic 
pattern of describing the method, results and 
observation. 

2. Related work
The related works on which this study will be based 
is described in this section. It will start with an 
introduction into dimension reduction techniques 
followed by the subfield of feature extraction and 
ending in the application domain, specifically on 
semi structured photos.

2.1 Dimensionality reduction
2.1.1 Principal component analysis
A typical approach to dimensionality reduction is 
the linear form of Principal Component Analysis. 
The aim of Principal Component Analysis is to 
discover the importance of dimensions in 
describing the variance of the data. When applying 
this technique the goal is to discover a number of 
principal components (hopefully a smaller number 
than the original dimensions) that are still able to 
reproduce the original data in an acceptable 
manner. How to get to these principal components 
in described by Smith[8] and can be divided into 
four steps.

The first step is to loop though a multidimensional 
dataset and subtract the average of that dimension 
from every datapoint in the dimension. Resulting in 
a dataset where the mean of every dimension is 0. 
Secondly a covariance matrix is calculated from the 
normalised dimensions. In step three, eigenvectors 
and eigenvalues can be calculated from this 
covariance matrix. These eigenvectors are the 
principal components of the dataset and can now be 
sorted in descending order on their eigenvalue. 
Since the eigenvectors corresponding with the 
highest eigenvalues is the most significant in 
explaining the original dimensions, those are the 
principal components to keep. Discarding the 
eigenvectors with the lowest eigenvalue will result 
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in reduced dimensions having a loss as minimal as 
possible.

2.1.2 Auto encoding neural networks
Although there exist nonlinear variants of PCA, a 
more common method of nonlinear dimensionality 
reduction is the use of auto encoding neural 
network. These networks have been known for 
quite some time[4], but gained revived interest 
since the work of Hinton[3] and the research 
succeeding this paper. As Hinton shows in his 2006 
paper, the dimensionality reduction using 
Restricted Boltzmann Machines (RBM) is possible. 
These reduced dimensions represent features of the 
original data. 

RBM’s are a type of logistic feed forward neural 
networks that have a visible layer (input layer) and 
a single hidden layer (feature layer). The layers are 
fully connected, however there are no connections 
between the units in a layer, hence the 
restrictedness. Training an RBM is surprisingly 
simple, data is presented at the visible layer, the 
probability of a unit in the hidden layer becoming a 
1 is determined using an energy function and the 
weighted edges. This forms a representation of the 
original data in the hidden layer, this is called a 
high energy state. The representation in the hidden 
layer will then be reconstructed in the visible layer 
using the same edges and energy function, this is 
called a low energy state. The original data and the 
reconstruction can now be used to update the 
weights using an algorithm called contrastive 
divergence[4]. An example RBM can be seen in 
figure 1, notice the full connectivity between the 
visible and hidden layer:

���

Figure 2.1: Structure of an RBM

The dimensionality reduction achieved by Hinton 
was realised by stacking these RBM’s on top of 
each other. Where the hidden layer of the lower 
RBM provided the input for the visible layer of the 
next RBM. This deep network was trained layer by 
layer, while gradually reducing the number of units 
in the next hidden layer. 

Lee has further developed RBM’s and in 2009 he 
proposed his idea for Convolutional RBM’s [5].  

The idea of a convolutional RBM’s is to take a 
subsample of the data also referred to as a shift 
window to form a representation in a single unit in 
the hidden layer. The structure of an convolutional 
RBM can be seen in figure 2, with characteristics 
such as the restricted connectivity between the 
visible and hidden layer and the addition of a 
pooling layer.

���

Figure 2.2: Convolutional RBM 
with a shift window of 3

Convolutional RBM’s also consist of a pooling 
layer. The two most common pooling techniques 
are max-pooling and mean-pooling. Max pooling 
values the unit in the pooling layer at 1 if one of the 
connected hidden units is 1. Whereas mean pooling 
sets the pooling unit to 1 if the average of 
connected units exceeds a threshold.

The initial idea behind convolutional RBM’s (C-
RBM) is that because of the limited connectivity 
and the shrunken features in the pooling layer, it 
would make it more practical to feed high 
dimensional data into a neural network [5]. Besides 
this scalability advantage, it is also known that 
convolutional RBM’s can outperform normal 
RBM’s in some cases [1, 2, 5].

2.2 Feature extraction
Closely tied to dimensionality reduction is feature 
extraction. High dimensional data has become 
ubiquitous and in potential this should lead to more 
information with higher accuracy[11]. However, 
Kittler described an important paradox in feature 
extraction: The more features we have the more 
difficult information extraction becomes. This 
phenomena is also known as the curse of 
dimensionality. Where low dimensional data does 
not contain useful information and to high 
dimensional data makes it difficult to train for 
example a classifier. Because the more dimensions 
there are the more similar they appear[7].

This explains the close relationship of 
dimensionality reduction and feature extraction 
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because feature extraction is about making a lower 
dimensional representation of some higher 
dimensional data [11]. This means that a high 
dimensional space is transformed or mapped onto a 
lower dimensional space whilst staying 
informative.

Another approach is feature selection, whereby a 
subset is taken from the original high dimensional 
data. This procedure is without any transformation 
of the data[7, 11].

Both approached have in common that they try to 
reduce the dimensionality of data by discarding 
redundant or less important dimensions. Whilst 
making the assumption that the reduced 
dimensional space gives a reasonable 
approximation of the original space. 

2.3 Dimension reduction as a generative 
model
When an auto encoding neural network is trained in 
a sufficient way, the network stores the shared 
information of the dataset, whilst the output nodes 
only have to represent the discrepancies[17]. This 
entails that the reduced dimensions not only 
describe the input data itself, but also the input data 
in the context of the whole dataset. Whilst the auto 
encoding neural network can also be seen used as a 
tool to discover the inherent dimensions of the data. 
One way to obtain these insights is to turn the 
network upside down and let it reconstruct images.

DeMers and Cottrell did this by taking two 5 
dimensional output vectors and reconstructing from 
equally spaced points on the line joining them[4]. 
Resulting in two distinctive faces, pulling towards 
each other, while producing recognisable faces at 
every point in between. By using their network as a 
generative model, the underlaying features of the 
dataset could be visualised. In addition the network 
shows that it is capable of generalisation within the 
strict visual format of the used portraits. However, 
When an auto encoder is presented with deviating 
input, the difference between the input and 
reconstruction tells something about the novelty of 
the input[17].

A more contemporary example of image generation 
are the deep dream images from Google 
Research[18]. In an attempt to grasp what is 
learned in their image classification network, 
researchers at Google have also used their network 
in reverse to generate images. Starting with random 
noise being fed into a network that recognises for 

example dogs. Although the noise almost certainly 
contains no dog, the network is still looking for 
patterns that it associates with this animal. Probably 
with low confidence, the network will find a 
patterns and when a reconstruction is made based 
on these features, even minuscule dog patterns will 
be amplified. By repeating this process several 
times the resemblance of what the network has 
learned as a dog becomes more and more visible. 

This produces esthetical interesting images to look 
at, but it might also expose learning mistakes. 
When this procedure was applied to the doorbell 
recognition network, they always became visible 
with an arm attached to it. Indicating a lack of 
trainings data of freestanding doorbells. 

Prior to the deep dreams another study already 
came with a visual method of exposing the 
limitations of auto encoding neural networks[19]. 
This research also uses white noise as a starting 
point. However, the generation of images is not 
done within the network but separate using a 
evolutionary algorithm, whereby the classifying 
neural network serves as a fitness function to get 
for example an image that is recognised as a guitar. 
Since the termination condition for this 
evolutionary algorithm can be set at any desired 
confidence level of the neural network, images can 
be produces that are more guitar-like than a real 
guitar image according to the network. It is 
remarkable however unrecognisable shapes to 
humans can be well performing, classifiable  
images for a neural network. Again giving an 
insight in the shape and colours a neural network 
finds distinguishing. 

2.4 Auto encoding neural networks and 
semi-structured natural images
Semi-structured are a typical application domain 
for feature extraction. Both Hinton[3] and 
DeMers[4] use portraits of faces with a strict 
format and visually normalised as a test-case for 
their bottleneck shape networks. Both studies have 
the aim of reducing the amount of information 
whilst still be able to reconstruct without noticeable 
errors. The semi-structured nature of the images on 
one hand makes it easier for a network to model, 
since the deviation within the dataset is not so 
large, whilst on the other hand small and specific 
details have an enhanced distinctive character that 
need to be captured in the model.  

A well known benchmark dataset with semi-
structured images is MNST, which consist of 

Page �  of �4 40



handwritten digits in a highly normalised format. 
This dataset is widely used by scientist to train and 
compare handwriting recognition models, one of 
which is Hinton’s Restricted Boltzmann 
Machine[3]. This model performed rather well, 
with an error rate of 1.2%.

However, the pixel intensities in the MNST dataset 
do not vary that much and are binary-like. 
Therefore, making a model of natural images is not 
just a matter of scaling up the network[6], since the 
Restricted Boltzmann Machine is a binary system. 
However, there are methods suggested to model 
natural images, such as making the visible layer 
gaussian[5]. As a downside this has a negative 
effect on the training time. Also pixel intensities are 
rarely independent in natural images, they most 
likely have a relationship with their surrounding, 
something that an RBM cannot take into 
account[6].
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3. Exactitudes
The semi-structured images used in this research 
are those of the exactitudes series by Ari Versluis 
and Ellie Uytenbroek[13]. This project dates back 
to 1993 and aims to document subcultures 
omnipresent in society. A sample of every 
subculture is captured in a series which consist of 
12 portraits, all systematically taken from the same 
angle, with a neutral background and similar body 
position. Examples of series can be found in 
Figures 3.1 until 3.4.

Ellie and Ari themselves appointed in an interview: 
“It should almost be a scientific anthropological 
record of people’s attempts to distinguish 
themselves from others by assuming a group 
identity”[16].  Although these portraits where 
intentionally made as an art project, they do hold 
value for researchers. For example in the 
investigation of sensory experience and affect in 
relation to denim clothing[14]. In this research the 
author compares different ways of wearing jeans, 
using exactitudes as one of the resources.

The systematic and accurate nature by which the 
photos where taken and curated also make them a 
useful dataset for this research on semi-structured 
images. Especially since the visual similarity is not 
only present within a serie but also across series.

The project is at the time of writing (august 2015) 
still ongoing and consist of 154 series with 12 
photos each. After a manual evaluation of the 
series, five series where classified as outliers 
because the composition deviated to much from the 
majority of series. An example outlier are the 
‘Gabbers’ in Figure 3.2.  The photos in this serie 
only show the head and shoulders instead of from 
the upper legs such as in the majority of series.

The resulting dataset consists of 1788 colour photos 
(149 series, 12 photos each) of 600x600 pixels. 
This dataset will undergo pre-processing before 
being reduced in dimensions.

���  
Figure 3.1: ‘Meuf’ serie 122 from exactitudes

���
Figure 3.2: ‘Gabbers’ serie 1 from exactitudes

���  
Figure 3.3: ‘Annazaranina’ serie 143 from exactitudes

���
Figure 3.4: ‘United Americans’ serie 154 from exactitudes
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4. Encoder
To explore the semi-structured photos first the 
dimensionality will be reduces. This reduction will 
be done using an encoder described in this section.

4.1 Pre-processing
Despite that the dataset is already in a strict format, 
there must still be some pre-processing steps 
applied. This pre-processing has multiple reasons 
which will be further elucidated in the following 
sections.

4.1.1 Normalising
In the first step of pre-processing the image size 
will be reduced to 50x50 pixels and converted to 8-
bit greyscale. Although this process is irreversible, 
it allows the experiments to be executed within a 
feasible timespan. Furthermore the pixel intensities 
will be normalised between and including (0, 1) 
since the Restricted Boltzmann Machines require 
values within this range.

4.1.2 Enhancing sparsity
It is known that sparse representations have a 
number of benefits for energy based learning 
models such as Restricted Boltzmann 
Machines[15]. Due to the more abstract 
representation there is an increased likelihood of 
correct classification, perhaps even linearly 
separable when using sparse coding[15]. Sparse 
meaning that the input vector consist mainly of 
zeros, with the exception of a lower number of non-
zero input dimensions.

The normalised dataset is not sparse, as shown in 
Figure 4.1. To achieve this sparsity within the 
normalised dataset the contrast of the photos is 
enhanced using the sigmoid like contrast function 
in Formula 1. The formula forces small pixel 
intensities to approach zero and large ones to 
approach 1.

���  
(1)

Every input pixel value (x) is updated individually. 
The ‘steepness’ of the sigmoid is determined by 
constant g (gain) which is set to 40 and the c 
constant determines the cut off between large and 
small pixel intensities, which is set to 0.25. Both 
values where experimentally determined based on 

the resulting distribution of pixel intensities over 
the dataset, which can be found in Figure 4.2

The contrast enhancement creates a binary-like 
vector that can be reversed without any loss of 
information with formula 2.

���
(2)

The resulting input images however have a 
majority of non-zero (information) values due to 
the light background and darker foreground. To 
enable sparsity and prevent learning the 
background, the inverse of pixel intensities will 
serve as input for the dimensionality reduction.

���
Figure 4.1: Histogram of pixel values before contrast 

enhancement and inverse

���
Figure 4.2: Histogram of pixel values after contrast 

enhancement and inverse

contrast

�1(x) =
�ln( 1

x

� 1)

g

+ c
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4.2 Dimension reduction
What remains after pre-processing is a 2500 
dimensional sparse image space containing all 1788 
photos. In order to extract features or do 
classification the dimensionality of this space will 
be reduced by stacking RBM’s on top of each other. 
Every hidden layer will serve as the visible layer 
for the next RBM, whilst gradually decreasing the 
number of hidden units.

The full structure of the RBM starts with the 
original 2500 (50x50) dimensions and goes to a 
broader feature space of 4000, as shown in Figure 
4.3. The reason being that the binary like input 
contains values that approach 0 and 1 but are not 
exactly. These subtle deviations need to be captured 
requiring a broader binary layer in comparison to 
the input, a strategy that is previously been applied 
by Hinton[3]

���
Figure 4.3: Flow of dimensionality within the RBM stack

Furthermore the stack gradually narrows down, 
again following the same structure as Hinton[3] 
until it reaches a final funnel of 50 dimensional 
feature space. This bottleneck is determined by 
assessing the reconstruction quality when features 
in the bottleneck layer propagate back, from top to 
bottom through the RBM stack. Different size 
bottlenecks have been tried (90, 70, 50 & 30). 
However, 50 dimensions was the smallest feature 
space, still able to give a reasonable reconstruction 
when eyeballing the results.

The cascaded methods from pre-processing through 
the RBM stack will be referred to as the encoder. 
As previously indicated, the encoder can be used in 
both directions, with the exception of the reduction 
to 50x50 pixels and the conversion to grayscale.  A 
selection of these results, made by the author, based 
on visual variation and reconstruction quality can 
be seen in Figure 4.4.

There is a clear loss of information from the 
encoder and reconstructing back, as to be expected 

from a 50 dimensional funnel. However, the human 
shape is still visible as well as posture, body 
position and colour intensity of clothing. 

���

���

���

���
Figure 4.4: From left to right: Normalised photos, contrast 
enhanced photos, reconstruction from RBM with 50 feature 

funnel and the same reconstruction after the contrast is 
reversed

4.3 Decorrelating
When an original photo is put through the encoder, 
the result is a 50 dimensional feature vector. Yet, 
RBM’s do not necessarily make an ordering in 
these features and it is probable that these features 
are related to one another.

The last (optional) segment of the method is going 
from the feature space to a decorrelated feature 
space by means of principal component analysis. 
From the 50 features of every photo in the dataset, 
the 50 principal components, or decorrelated 
features are calculated. This decorrelated feature 
vector is now ordered based on the variance every 
feature explains and is used without the removal of 
the least significant ones. This allows a lossless 
transformation back to the previous state. The 
encoder with the additional decorrelation step will 
be referred to as the decorrelated encoder.

4000

2500

2000

1000

500

50

Page �  of �8 40



5. Experiments
The exploratory nature of this research will emerge 
in this section. Every experiment is described 
following the structure: method, results and 
observations. In this workflow, the results of one 
experiment may lead to an hypothesis that will be 
tested in a following experiment.

5.1 Straight path between two feature 
vectors
5.1.1 Method
Every feature vector out of the (decorrelated) 
encoder is a point within (decorrelated) feature 
space. Meaning that there is a straight path between 
two points that can be visualised, since the encoder 
is  able to reconstruct. 

In this experiment the euclidean distance between 
every possible combination of feature vector pairs 
is calculated, to retrieve the 50 most distant vectors 
pairs. A reconstruction of the straight path between 
these feature vectors is made in 10 equidistant 
steps. It is noteworthy to mention that the two most 
distant pairs in feature space do not necessarily 
have a great distance in decorrelated feature space

5.1.2 Results
From the resulting 50 pairs, a subset is chosen 
based on visual disparity and can be found in 
Figures 5.1 and 5.2. The complete set of results can 
be found in Appendix 1.

���

���

Figure 5.1: Two straight paths between two distant feature 
vector pairs in feature space

���

���
Figure 5.2: Two straight paths between two distant feature 

vectors in decorrelated feature space

5.1.3 Observations
The most left and right reconstructions in Figure 
5.1 show a clear visual difference in colour 
intensity, posture and body position. Whilst the 
outer reconstructions from the decorrelated feature 
space (Figure 5.2) have less visual differences, 
despite their relative high euclidean distance. 
Indicating that the distance in feature space is more 

related to visual differences in contrast to the 
distance in decorrelated feature space.

Regardless of the position in (decorrelated) feature 
space, every vector on the straight line reconstructs 
as an image that could be assessed as human-
shaped. An observation which is being further 
exploited in the next experiment: Random points in 
(decorrelated) feature space.

5.2 Random points in feature spaces
5.2.1 Method
From the previous experiment one might 
hypothesise that every arbitrary point in 
(decorrelated) feature space can reconstruct into an 
image with clear human shapes. In this experiment 
100 random point in both feature and decorrelated 
feature space are taken, based on the uniform 
distribution. These random points are reconstructed 
into images for further review.

5.2.2 Results
Out of the 100 reconstructions in feature space and 
100 reconstructions in decorrelated feature space, a 
random selection is presented in respectively 
Figures 5.3 and 5.4. The full two times 100 
reconstructions can be found in Appendix 2.

���
Figure 5.3:Reconstruction from random points in feature space
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���
Figure 5.4: Reconstructions from random points in 

decorrelated feature space

5.2.3 Observations
The hypothesis that every arbitrary point in 
(decorrelated) feature space can reconstruct in 
images with recognisable human shapes is 
supported by the results. This is not limited to the 
random subset shown in Figures 5.3 and 5.4, but 
across all the 200 reconstructions that can be found 
in Appendix 2.

Furthermore, it is notable that the colour intensity 
differs when comparing the reconstruction from 
feature space with those of the decorrelated feature 
space. The latter being noticeably darker in contrast 
to the reconstructions from feature space.

Visual differences can be expected, since the 
additional PCA transformation in the decorrelated 
encoder changes the feature space in a linear way. 
Nonetheless, it does indicate that the distribution of 
feature vectors across the decorrelated feature 
space has strongly changed. The transformation 
placed the darker photos throughout the space 
whilst the lighter ones are closer together. This 
observation might also explain the lack of visual 
differences in Figure 5.2.

5.3 Activation distributions in feature spaces
5.3.1 Method
The following experiments will be a more 
in-depth exploration of the individual features in 
both the feature space and the decorrelated feature 
space. This experiment will be a box plot 
visualisation of the feature activations per feature 
based on the entire dataset.

5.3.2 Results
The features in decorrelated feature space are 
ordered based on the variance each one does 
explain. Thus the first is the most important, 
subsequently decreasing until the least explanatory 

feature. Figure 5.6 shows the first and last three 
features in decorrelated feature space and their 
activations.

In the feature space there is no particular ordering 
in features, therefore a random subset of features 
and their activation distribution is shown in Figure 
5.5. The complete results can be found in Appendix 
3.

Activations are considered an outlier if the value is 
outside 1.5 times the interquartile range above the 
upper quartile or bellow the lower quartile. Outlier 
positions are marked with a small circle in both box 
plots.

���
Figure 5.5: A box plot of activations in random features in 

feature space across the whole dataset

���
Figure 5.6: A box plot of activations in the first and last three 

features in decorrelated feature space across the whole dataset

5.3.3 Observations
As to be expected, due to the order in the 
decorrelated feature space, the first features in 
Figure 5.6 show more variance in comparison to 
the last. The decreasing of explained variance is 
clearly visible in this box plot.

The activations in feature space are different 
because the order is arbitrary. Also, there are many 
differences across the features, as is visualised in 
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Figure 5.5. For example feature 30 is fairly 
outspoken at zero with a few exceptions. Whilst 
feature 34 is about similar in high and low 
activations.

A noteworthy difference between the two spaces is 
the distribution of the activations. The activations 
in the decorrelated space is mostly around the 
centre whilst the activations in the feature space are 
mostly located on the outer edges. For the latter, a 
potential explanation is the probabilistic nature of 
Restricted Boltzmann Machines[3].

5.4 Highest and lowest activating photos per 
feature
5.4.1 Method
It is known from experiment 5.3 that feature 
activations in feature space are disordered and can 
be outspoken. This is in contrast with the 
decorrelated feature space where features are 
ordered and congregate around the centre. In this 
experiment all photos are ordered on their 
activation for every feature individually. Resulting 
in the highest and lowest activating photos per 
feature for both the feature space and decorrelated 
feature space.

5.4.2 Results
A subset of the highest and lowest activating photos 
per feature can be found in Figures 5.7 and 5.8. 
This subset is based on the observations of the 
previous experiment. Moreover, the complete 
results can be found in appendix 4.

���
Figure 5.7: Four high and low activating photos on features 30 

and 34

���
Figure 5.8: Four high and low activating photos on 

decorrelated features 1 and 50

5.4.3 Observations
The previous experiment showed that over the 
complete dataset, the activation of feature 30 in 
feature space is generally situated on the outside of 
the space, a lower value in this case. Figure 5.7 
shows that these outspoken activations have a 
tendency to explain visual differences of photos. In 
this example the feature explains the colour 
intensity of the photo. In contrast, a less outspoken 
feature such as 34 is also less outspoken in the 
visual differences it explains.

The ordering in the decorrelated feature space gives 
reason to have a closer look at the first feature. 
Figure 5.8 shows the high and low activating 
photos on the first feature and expose a difference 
in both colour intensity as well as posture. Again 
the less outspoken activating photo’s, explain 
differences visually less obvious.
Arguably, the partition that is made by the feature 
activations is more evident in the feature space 
compared with the decorrelated feature space. The 
merging of visual differences in the decorrelated 
feature space, such as colour intensity and posture 
could adversely affect the subdivision. This is also 
evident in the complete results in Appendix 4.

5.5 Single feature variations in context
5.5.1 Method
In order to visualise the effect of each feature on 
the reconstruction, this experiment will set every 
feature individually to the highest and lowest 
boundary of the (decorrelated) feature space. This 
single feature will be varied in a existing photo in 
(decorrelated) feature space. The reason being that 
the existing photo can provide context in the visual 
assessment of the reconstructions.
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5.5.2 Results
The full results consist of the high and low feature 
variations, for every feature on a randomly selected 
subset of 10 photos. There are results for the 
correlated as well as the decorrelated feature space. 
A subset based on the features used in previous 
experiments are to be found in Figures 5.9 and 
5.10, starting at (decorrelated) feature 30 and 
showing low on the left and high on the right. 
Appendix 5 will provide a random selection of the 
results for this experiment

���       ���
Figure 5.9: Single feature Figure 5.10: Single feature
variations in feature space variations in decorrelated 

             feature space

5.5.3 Observations
When observing Figure 5.9 it is immediately 
apparent that it is lacking visual diversity. Although 
there is a measurable difference in pixel intensities, 
the results have hardly any advantage to evaluation 
by the human eye.

In the reconstructions from the decorrelated feature 
space there are differences visible (Figure 5.10). 
For example, when feature 30 is set to a high value, 
the clothing in the upper body becomes lighter. 
This result can be placed in addition to the results 
in Figure 5.7, where the activations on the 30th 
feature also predicts the colour intensity of the 
clothing. However, it is noteworthy that in Figure 

5.7 concerns with the feature space whereas Figure 
5.10 shows reconstructions from the decorrelated 
feature space. Furthermore, the light colour 
intensity is in Figure 5.7 is associated with a low 
activation whereas the colour intensity in Figure 
5.10 becomes lighter when feature 30 is set to a 
high value.

Notwithstanding, feature 34 shows, in lesser 
extend, a similar pattern with arm positions. In the 
34th feature of Figure 5.10, both arms are partially 
distant from the body when the feature is set to a 
high value. Figure 5.7 shows again a similar pattern 
on the low activating photos on feature 34 in 
feature space.

Although this pattern emerged at two features it is 
highly unlikely that these two are actually related 
since the linear transformation of the decorrelated 
encoder not only transforms the space but also 
reorders the features. It is therefore likely that these 
observations are based on coincidence.

5.6 All features low except a single feature
5.6.1 Method
Encouraged by the results of the previous 
experiment, the question arose if single feature 
variations could be exploited further. The  
experiment showed reconstructions with a variation 
in a single features,  while the remaining features 
where inherited from an existing photo: the context. 
This experiment differs in that reconstructions will 
be taken out of their context. All features will be set 
to zero with the exception of a single feature, that 
will be set to one. Reconstructions will be made for 
all features. In addition, the mean will be calculated 
on all reconstructions and subtracted from each 
individual reconstruction to enhance the differences 
between every reconstruction.

5.6.2 Results
A single, well performing, feature is chosen by the 
author and presented in Figure 5.11 for both the 
feature space and the decorrelated feature space. 
The complete results can be found in Appendix 6.

��� ���
Figure 5.11: Reconstructions of all zeros except feature 42 

which is set to 1. 
Left: feature space, right: decorrelated feature space
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���
Figure 5.12: High and low activations on feature 42 

in feature space and decorrelated feature space

5.6.3 Observations
The reconstructions on all features show high and 
low scoring areas on various body parts, which is 
visible in Figure 5.11. However, a single, randomly 
selected feature will be discussed. The remaining 
features can be found in appendix 6. High scoring 
areas are visible in these reconstructions as lighter 
pixel intensities and a low scoring is represented by 
dark pixel intensities. 

What stands out in left reconstruction of Figure 
5.11, is the high scoring area on the arms. Whilst 
the right reconstruction from the decorrelated 
feature space does not show a high scoring on a 
particular area, but is more spread among small 
patches. 

If these observations are compared with the high 
and low activating photos on feature 42 (Figure 
5.12), a link can be found. This Figure shows that 
the arm positions are different, an observation that 
feature 42 in feature space seems to explain. This is 
not the case with the decorrelated feature space, 
where there is, arguably and in general, a lesser 
visual relationship between the high scoring areas 
and the high and low activating photos.

5.7 Shape of the feature spaces
5.7.1 Method
Visualising the complete 50 dimensional 
(decorrelated) feature space is hardly possible in a 
meaningful way. However, the distribution of 
feature vectors over the feature space can be 
essential information when, for example, a 
classifier is trained. Although there is a loss of 
information, by making a histogram of the distance 

from the centre of the space for all 1788 photos, a 
rough impression of the space becomes visible.

5.7.2 Results
Figure 5.13 shows a histogram the euclidean 
distance of every photo from the centre of the 
feature space. Whilst the euclidean distance of 
every photo in decorrelated feature space can be 
found in Figure 5.14.

���
Figure 5.13: Distributions of euclidean distances from centre 

in feature space

���
Figure 5.14: Distributions of euclidean distances from centre 

in decorrelated feature space

5.7.3 Observations
The distribution of photos across the two spaces is 
quite different, as to be expected after applying a 
linear transformation in the decorrelated encoder. In 
addition, the observations from Experiment 5.2 is 
strengthened by these results. Which settles that the 
photos in feature space are mostly situated on the 
outer edges of space. In contrast to the decorrelated 
feature space where the photos are situated close to 
the centre.

5.8 Feature pair visualisations
5.8.1 Method
This experiment will proceed on the results of the 
previous experiment and attempt to visualise the 
(decorrelated) feature space. A pair of features is 
plotted, starting with the first two, followed by 
{3, 4}, {5, 6}, {…}. Furthermore, a distinction 
between series will be made using a unique colour.
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5.8.2 Results
The resulting plots of feature pairs in feature space 
and decorrelated feature space can be found 
respectively in Figure 5.15 and 5.16, starting in the 
top left corner, proceeding row by row whilst the 
first feature is plotted on the horizontal axis. Larger 
versions can be found in Appendix 8.

���
Figure 5.15:Feature pairs in feature space

���
Figure 5.16: Feature pairs in decorrelated feature space

���
Figure 5.17: A subset of series on the first two features in 

decorrelated feature space

���
Figure 5.18: A subset of series on the first two features in 

decorrelated feature space, presented as photos

5.8.3 Observations
Features in feature space have no particular 
ordering, but they show a conspicuous pattern 
where the features are distinctively on the edges of 
the space. Whilst the features in decorrelated 
feature space form a circular shape and clustering 
together. Also in Figure 5.16 the arrangement of 
features is clearly visible, wherein a ordering is 
made on the amount of variance explained by each 
feature. Since this visualisation is mades with 
feature pairs, a minimal oval shape is visible 
because the two features explain different 
proportions of variation.

The series are marked individually with a different 
colour. It should be pointed that there are 149 
series, which reduces the distinctive character of 
the colours for the human eye. However, when a 
subset of the first two features in decorrelated 
feature space is taken such as in Figure 5.17, the 
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distinct series become more visible. When the 
photos are laid across the plot (Figure 5.18), the 
arrangement of photos also seems meaningful 
considering the visual characteristics. This 
arrangement is able to separate series from each 
other but also works within series such as the 
‘Topshoppers’ where light and dark photos are 
places at a distance from each other.

5.9 Classification of series
5.9.1 Method
Based on separation of series in Figure 5.17, the 
question arose how well a classifier would perform 
after being trained on the (decorrelated) features in 
order to predict the series. 

The classifier used in this experiment will be 
random forest[7]. Whilst the dataset is randomly 
divided into a trainings set (n=1500) and a test set 
(n=288). The classifier is trained in three runs to get 
an idea of the repeatability of the training process. 
In each run the test and trainings set will be 
randomly repopulated. 

The percentage of correct classifications on the test 
set is reported in the results section. For 
comparison a basic principal component analysis is 
performed on the normalised photos. The first 50 
principal components will be used to train the 
classifier. Again, the three runs are divided into a 
test and trainings set similar to the previous 
procedures.

5.9.2 Results

Figure 5.19: Percentage of correct classifications in three runs. 

5.9.3 Observations
All three methods of classification have a 
reasonable success rate that clearly outperforms 
random classification ( 1/149 ≈ 0.7% ). 
Nevertheless it is noteworthy that the 
transformation and ordering of the decorated 
features seem to have a negative effect on the 
ability to classify series within the data, despite the 
visual distinctiveness that the PCA transformation 

adds in previous experiments. This makes it even 
more remarkable that the PCA alone produces the 
best classifiable data of the three. Although only a 
minor but consistent improvement compared to the 
features.

5.10 Best and worst classifiable photos
5.10.1 Method
This experiment will elaborate on the notable 
results of experiment 5.8. The relatively weak 
performance of the decorrelated features in 
classification were not in accordance with the 
expectations, therefore the best and worst 
classifiable series will be retrieved to get a better 
insight in the classification process.

5.10.2 Results
The resulting series where the same for both the 
feature space and decorrelated feature space. The 
best classifiable series are presented in Figure 5.20, 
whilst Figure 5.21 shows the least performing 
series in classification.

���
Figure 5.20: A subset of the five best classifiable series, series 

are displayed horizontally

Features Decorrelated 
features

First 50 
principal 

components

Run I 62.2% 51.7% 64.2%

Run II 61.5% 53.1% 67.7%

Run III 62.8% 53.5% 66.7%

μ 62,2% 52,8% 66,2%
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Figure 5.21: A subset of the least classifiable series, series are 

displayed horizontally

5.10.3 Observations
The fact that the results were the same in feature 
space and decorrelated feature space indicates that 
the classifier is likely to learn the same differences 
across the series. However, the nuances are still 
able to make a difference, perhaps straightened by 
the linear transformation from the decorrelated 
encoder.

Also notable is the homogeneity within the series in 
Figure 5.20. Homogeneity is a characteristic of the 
photo project, however this is to a greater or lesser 
degree present in individual series. This is in 
contrast with the least classifiable series in Figure 
5.21, which are more heterogeneous.

6. Discussion
Despite their popularity and interest from 
researchers, dimensionality reduction methods such 
as deep learning are commonly referred to as black 
boxes. This exploratory research aimed at giving an 
insight in the inner workings of these networks 
when applied to the semi-structured photos of the 
exactitudes photo project[13]. This understanding 
is obtained using an exploratory  approach, one 
might not consider typical. 

Given a dimensionality reducing network, referred 
to as the (decorrelated) encoder, a serie of small 
experiments was conducted. These experiments 
were of a manageable size, making it possible to 
develop new experiments based on previously 

obtained results and explore the (decorrelated) 
encoder from different viewpoints. 

This approach has a number of noteworthy results 
that will be reflected on. However, the encoder 
itself has also a notable aspect. Namely, the use of a 
sigmoid-shaped contrast enhancement function to 
force the input dimensions into a binary-like vector. 

Prior research did not indicate a similar approach to 
handle real valued data in Restricted Boltzmann 
Machines. In this research, the results showed that 
the network could learn the binary-like data, whilst 
still able to reverse the transformation in order to 
reconstruct the photos. Although this research only 
used photos as input, there is no reason to suspect 
that this approach is limited to this type of input.

Novel results also emerged from the experiments. 
For example experiments 5.3 and 5.4 together 
indicate that there is a relationship between the 
outspokenness of a feature and the visual 
differences that feature is able to explain. Wherein 
outspoken means that the average feature activation  
on the entire dataset is close to one or zero. This 
relationship shows that the more outspoken a 
feature is, the more visual discrepancy it is able to 
explain.

Furthermore the additional decorrelation step 
showed varying results. Experiment 5.3,  5.7 and 
5.8 clearly visualise a transformation of feature 
space, as to be expected. However, due to this 
transformation, features that were distilled in 
feature space are intwined in the decorrelated 
feature space, as experiment 5.6 indicated. In this 
experiment a division is made on both posture as 
well as colour intensity, making it more difficult to 
select photos on an individual feature.

However, decorrelation also showed an advantage,  
by visually enhancing the separation between series 
such as in Figure 5.17. Whilst simultaneously 
discriminate on visual differences as Figure 5.18 
shows. These results make it worthwhile to use 
decorrelation when eyeballing the visualisation for 
clusters or groups within the dataset.

However, a distinction should be made between the 
human eye and classification algorithms. Since the 
results of experiment 5.9 show that the 
classification of series is inferior on decorrelated 
features in comparison with the features. A result 
that is difficult to explain from a computational 
viewpoint.
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The same experiment also shows that classification 
on the first 50 principal components of the 
normalised photos, outperforms the previous 
methods.  All classifications are doing much better 
than a toss with a 149 sided die. However, it is still 
noteworthy that a relatively simple technique such 
as Principal Component Analysis can still compete 
with contemporary dimension reduction algorithms. 
Despite the enormous popularity of dimension 
reduction or deep learning, it remains worthwhile 
to make a comparison with well established 
techniques.

Furthermore, what this research has yielded in a 
broader sense it the approach itself. Because of its 
exploratory nature, the path to follow is less clear 
in comparison with a more traditional research 
question. Thus, there is an increased need for 
structure and guidance. Performing small and 
manageable experiments is, to our best knowledge, 
novel for exploratory research into deep learning. 
The method allows new insights to be fitted directly 
into new experiments. Thus adjusting the direction 
of the research based on preliminary results and 
insights. Although one must ensure in a exploratory 
research that the problem is viewed from multiple 
angles. Something we have done to our very best in 
this study.

When looking back at the exploratory goal, we 
hope this research has made a positive contribution 
to the understanding of deep neural networks. By 
means of various visualisations, a better 
understanding of what is learned it these networks 
could be obtained. This understanding could not 
only help in the selection of relevant features but 
also bring light to possible shortcomings in the 
dataset or previously unknown features that might 
be beneficial. Therefore a good understanding of 
what is learned adds considerable value in 
exploring and exploiting large datasets.
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Appendix 1
Paths in feature space
Pairs are horizontally displayed
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Paths in decorrelated feature space
Pairs are horizontally displayed  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Appendix 2
Random points in feature space
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Random points in decorrelated feature 
space
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Appendix 3
Activations in feature space

���

Activations in decorrelated feature space

���  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Appendix 4
The top two rows are high activating photos whilst 
the bottom two rows are the low activating photos

Feature 1

���
Feature 2

���
Feature 3

���
Feature 4

���
Feature 5

���

Feature 6

���
Feature 7

���
Feature 8

���
Feature 9

���
Feature 10

���
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Feature 11

���
Feature 12

���
Feature 13

���
Feature 14

���
Feature 15

���

Feature 16

���
Feature 17

���
Feature 18

���
Feature 19

���
Feature 20

���
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Feature 21

���
Feature 22

���
Feature 23

���
Feature 24

���
Feature 25

���

Feature 26

���
Feature 27

���
Feature 28

���
Feature 29

���
Feature 30

���
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Feature 31

���
Feature 32

���
Feature 33

���
Feature 34

���
Feature 35

���

Feature 36

���
Feature 37

���
Feature 38

���
Feature 39

���
Feature 40

���
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Feature 41

���
Feature 42

���
Feature 43

���
Feature 44

���
Feature 45

���

Feature 46

���
Feature 47

���
Feature 48

���
Feature 49

���
Feature 50

���
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Decorrelated feature 1

���
Decorrelated feature 2

���
Decorrelated feature 3

���
Decorrelated feature 4

���
Decorrelated feature 5

���

Decorrelated feature 6

���
Decorrelated feature 7

���
Decorrelated feature 8

���
Decorrelated feature 9

���
Decorrelated feature 10

���
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Decorrelated feature 11

���
Decorrelated feature 12

���
Decorrelated feature 13

���
Decorrelated feature 14

���
Decorrelated feature 15

���

Decorrelated feature 16

���
Decorrelated feature 17

���
Decorrelated feature 18

���
Decorrelated feature 19

���
Decorrelated feature 20

���
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Decorrelated feature 21

���
Decorrelated feature 22

���
Decorrelated feature 23

���
Decorrelated feature 24

���
Decorrelated feature 25

���

Decorrelated feature 26

���
Decorrelated feature 27

���
Decorrelated feature 28

���
Decorrelated feature 29

���
Decorrelated feature 30

���

Page �  of �31 40



Decorrelated feature 31

���
Decorrelated feature 32

���
Decorrelated feature 33

���
Decorrelated feature 34

���
Decorrelated feature 35

���

Decorrelated feature 36

���
Decorrelated feature 37

���
Decorrelated feature 38

���
Decorrelated feature 39

���
Decorrelated feature 40

���
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Decorrelated feature 41

���
Decorrelated feature 42

���
Decorrelated feature 43

���
Decorrelated feature 44

���
Decorrelated feature 45

���

Decorrelated feature 46

���
Decorrelated feature 47

���
Decorrelated feature 48

���
Decorrelated feature 49

���
Decorrelated feature 50

���
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Appendix 5
Single feature variations in feature space
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Single feature variations in decorrelated 
feature space
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Appendix 6
All features low except a single feature

All decorrelated features low except a single 
feature 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Appendix 7
Histogram of feature activations

Histogram of decorrelated feature 
activations
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Appendix 8
Feature pairs

Page �  of �38 40



Decorrelated feature pairs
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Subset of decorrelated features

Subset of decorrelated features with 
photos
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