Concurrency for Creative Coding

Arnaud Loonstra
Graduation Thesis, August 10 2015
Media Technology MSc program, Leiden University
Thesis Advisors: Maarten H. Lamers, Wan J. Fokkink (VU University, Amsterdam)
arnaud@sphaero.org

Abstract

Programming for multiple processors is a
challenging task. Approaches to program
concurrently require a thorough understanding of
the computer. Not all people who program possess
this. However, as processors are not getting faster,
everybody will need to program concurrently
eventually. Creative Coding is the practice of
programming for being expressive. In this research
we propose an easy framework for Creative Coders
to program concurrently based on a paradigm of
interacting entities. The proposed framework is
tested on a group of Creative Coders. The research
confirms that concurrent programming is very
challenging, that concurrent programs require a
different design and that users find it easier to
program using the proposed framework.

1. Introduction

Since around 2003 we are witnessing a halt in
ever increasing clock speeds of processors (Figure
1). Before 2003 we could expect a new processor
with doubled speed every two years. Processor
manufacturers have resorted to creating processors
containing ~ multiple processors (multicore
architecture) to fulfill the increasing performance
demand.

Programmers are since then forced to program
computers containing more than one processor.
However, taking advantage of every processor in a
computer is a challenging task[1]. Some computer
scientists even think programming multiple
processors (concurrent programming) is too
complicated for humans[2].

While computer science has provided many
approaches into concurrent programming they
require a thorough understanding of the computer or
they alienate from existing practices. For example a
non-concurrent programming approach requires

thinking about the sequence of operations. A
concurrent programming approach adds to that
thinking about all possible operation sequences and
determining what should not happen in order to
prevent concurrent conflicts. This requires a very

10,000,000

‘ Dual-Core Itanium 2 . /
1,000,000 { -

Intel CPU Trends .

{sources: Intel, Wikipedia, K. Olukotun} "

100,000

10,000

1,000

100

10

A s | B Transistors (000)

t 3 -t —
7~ ° @ Clock Speed (MHz)

ced A Power (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 1: CPU trends. Courtesy of Herb Sutter.
Source: gotwa.ca

different mental discipline coming from a non-
concurrent practice.

Creative Coding is the practice of programming
with the aim of being expressive rather than being
functional[3]. Creative Coding emerged around the
sixties when artists like Frieder Nake, Lillian
Schwartz and Peter Struyken started creating and
exhibiting art made with computers. The 1980's saw
a lot of interest in the 'Demoscene' in which groups
competed with each other to create the most
technical and competent audiovisual creations.
Contemporary Creative Coding can be found in
many practices ranging from art to rapid
prototyping. The scene is characterized by a strong

emphasis on making things work as opposed to
elegance.

Commonly used Creative Coding toolkits such
as 'Processing', 'OpenFrameworks' and 'PureData’
are popular among artists and tinkerers. Such
toolkits have an easy learning curve for
programming. Processing, for example, was
conceived specifically for teaching the fundamentals
of computer programming in a visual context.

While Creative Coders do not necessarily possess
the thorough understanding of the computer like
computer scientists, they run into the same processor
performance ceiling. Hence they are also required to
explore programming multiple processor eventually.
However, most Creative Coders are not up to the
challenges brought by concurrent programming as
they have no formal training in computer science.

Creative Coding projects are usually created from
scratch. Therefore they can adopt new approaches
very quickly as there is less burden from supporting
legacy code. This makes this community an
interesting target to research new paradigms brought
by concurrent programming. In this research we are
specifically looking for an approach to making all
processors available to typical Creative Coders. For
this we test a framework consisting of small
sequential (non-concurrent) entities (Actors) which
interact using a message passing model. The
remainder of the paper discusses related works and
then discusses an informal survey about the
challenge of concurrent programming. We then
propose a solution, discuss its implementation and
our approach to testing it on Creative Coders.
Finally we discuss the results and conclude with a
discussion and future directions.

2. Related Works

Sutter's[4] article “The Free Lunch is Over” is an
often cited article introducing the “fundamental turn
towards concurrency in software” triggered by
hitting the ceiling of processor clock speeds.
Although Sutter hopes concurrent programming will
become just as natural as object oriented
programming Lee[2] argues it never will. Lee argues
that programming threads — a concurrent building
block — discards the essential properties:
understandability, predictability and determinism.
Especially the nondeterministic property drives
programmers into pruning every possible outcome of
a program. He concludes his article by sending the
engineering of threads into the engine room only to
be touched by experts.

Herlihy & Shavit[S] address the issues related
with concurrent programming to the fundamental
limitations of the computational model. They deem
it essential to acquire a basic understanding of
concurrent computability. However, if the problems
of concurrent programming root in the limitations of

the computational model of programming, should
we then stick with the computational model?
Stein[6] argues that the computational model
(metaphor) has become too dominant and addresses
the need for a fundamental shift in the
computational metaphor. The computational
metaphor has enabled computer science to focus on
the logical operations without worrying about the
voltages inside the computer. By hiding physical

processes of the
computer we have
seen enormous
advances in
computer science. &
However, with the =
advent of

concurrency we are
perhaps witnessing
the limits of the
traditional
computational metaphor. Nowadays when we work
at the computer many things are happening
simultaneously. The sum of all these events are hard
to explain using a traditional computational
metaphor. Still sequential and centralized thinking
associated with the computational metaphor are the
dominant paradigm. Kolikant[7], referring to
Resnick [8][9] mentions that our use of existing
knowledge is responsible for the tendency towards
centralized solutions and hence a sequential
(computational) approach.

This is expected to change as we are surrounded
by more decentralized systems such as the Internet.
Stein argues that "some of computation’s 'central
dogma' ... blinds us to some of the truths of modern
computer science". She proposes a 'computation as
interactions' model in which entities communicate
with each other. Her iconic model of this paradigm
is depicted in figure 2. Computation does not reside
in an entity but instead it is the result of the
interactions amongst them. Stein also points out that
for the students, including many females, who are
uncomfortable with the rigid, linear and logical
thinking of programming, an approach where
partial programs are being pieced together might be
more comfortable. “Componential tinkering may be
precisely what is needed in today’s toolkit - and
library-rich programming environment”. Stein's
observation might fit typical Creative Coding
practitioners just as well.

Both Sutter and Lee also talk about higher level
programming models for concurrency. Lee proposes
to focus on general purpose coordination languages
instead of new languages. Lee refers to the Erlang
language. Erlang is a language specifically designed
for concurrency using a message passing paradigm.
Exotic languages such as Erlang have not seen
widespread adoption since they alienate from
existing practices. However, the ideas behind Erlang

Figure 2: Computation as
interactions paradigm as
illustrated by L.A. Stein

have found more adoption. Hintjens & Sustrik[10]
talk about applying the lessons from Erlang to all
programming languages. In a way they seem to
adopt what Lee already argued for: coordination
languages. The key in their argument is “to pass
information as messages rather than shared state”.

A message passing paradigm is one of the three
main concurrent paradigms described by Andrews &
Schneider[11]. Message Passing is ubiquitous in
concurrent programming and mostly used through
the de facto MPI standard[12]. It seems a very
intuitive paradigm as ‘“synchronization is
accomplished because a message can be received
only after it has been sent”[11]. Platchetka[13]
proposes a unifying framework using MPI and Petri
nets for creating parallel applications. Using a visual
environment (Kaira) users can rapidly prototype
their ideas by manipulating program elements
graphically. Platchetka's thesis discusses the Kaira
environment in detail as well as other similar tools
for visual programming. It is interesting to note that
he did not find any explanation concerning the
termination of other similar tools. Visual
programming is known to have serious problems of
visual representation, human perception and
interpretation[14]. It leads to cumbersome and
uninterpretable pictures which might be an
explanation for their failures in common
programming practices. However, within Creative
Coding practices many visual programming
environments, like PureData, have proved very
successful.

Previous research by the main author has
developed into a distributed computing
framework[15]. This framework is similar to the
Kaira environment but is an orchestration
environment rather than a visual programming
environment. This framework has been tested with
Creative Coders. Results and concepts from this
framework are used for this research and will be
introduced further on.

3. An informal survey

3.1. Method

To test whether concurrency is used within
Creative Coding practices and how it is regarded we
have conducted an informal survey during the
period of February till June 2015. The survey
consisted of 9 score questions and 1 open question
(Appendix A). The survey was announced on several
Creative Coding community sites as well as social
media. We specifically targeted Creative Coding
communities using classical ~ programming
paradigms (ie, sequential programming, text-based,
non-visual) as these approaches enable the
programming of threads.

3.2. Results

In total 77 respondents filled in the survey. Of all
respondents 49% considered themselves
“Advanced” level programmer while 32%
considered themselves “Intermediate” level.

Most Creative Coders (52%) have learned
programming autodidactically. This is illustrative of
the pragmatic approach which is associated with
Creative Coding. People need something done
which is nowadays often with the help of the
computer. Hence this is how they get acquainted
with programming.

With a few exceptions every respondent (88%)
had experience with threads and agreed that threads
are needed for their practice(87%).

The most often need for threads is to prevent a
program from blocking (41%) followed by having
the need for more performance (34%) and the need
for low latency responses (25%).

Experience level and difficulty score

23 Concurrent programming
BN Sequential programming

2 4 5

3
Difficulty score

Figure 3: sequential and concurrent programming
difficulty by experience level (color heat)

Figure 3 plots the experience level of the
respondents with how difficult they consider
sequential and concurrent programming. What can
be clearly seen is that concurrent programming is
considered much more difficult. In general this is
regardless their experience level.

Debugging when things go wrong is considered
most difficult followed by mentally understanding
what is happening and synchronizing access to data.
(figure 4)

The difficulty topics don't change much with
increased experience level. A slight tendency
towards debugging and away from the mental issues
and random crashes can be observed.

Advanced

Intermediate

wam Debugging when things go wrong
mmm Synchronizing access to data

mss Random crashes, bad memory access or segmentation faults
other

Figure 4: Most difficult concurrent topics split out
by experience levels

3.3. Discussion

The conducted survey confirms the difficulty
Creative Coders experience with concurrent
programming. It indicates the expected issues the
respondents experience but does not test whether
these are the real issues. Since most respondents
have already worked with threads we expect the
respondents to be quite experienced Creative
Coders. It is unlikely that Creative Coders will work
with threads in the beginning.

Quite a few respondents remarked the need for a
clear solution for utilizing multiple processors.

When the respondents were asked about how to
deal with threads mentally some very diverse
answers are given. It seems dealing with concurrent
situations requires a mental model depending on the
situation at hand. Often physical scenarios serve as a
metaphor to explain the phenomena encountered, ie.
parallel car highway lanes, boomerang throwing and
catching, blind people building a house together.
Some refer to computer science approaches, ie,
mutexes, locks, different processes etc. The
diverseness could illustrate the lack of a clear
mental model which helps to understand the
phenomenas encountered. This seems an important
challenge for a framework which will be utilized by
practitioners who might lack the thorough
knowledge of a computer.

4. Proposing a solution

We take 3 approaches to utilizing all processors
of a computer. The approaches share a message
passing paradigm but differ in performance and
context. All approaches relate to the 'computation as
interactions' paradigm described by Stein[6]. Stein

refers to entities in her model. In our proposal a
process or a thread is regarded as an Actor. A
network of Actors interact and together form the
program. Actors exchange data by passing
messages. An Actor sends data to a receiving Actor.
The following three approaches are proposed:

1. Operating System process Actors

2. Actors as threads

3. Work distributed Actors

The proposed solution is specifically designed to
separate the programming of a single actor from the
programming of all Actors combined. Programming
a single actor is a regular classic programming
practice. The interconnections and communications
of all Actors is programmed using a message
passing approach.

Our first approach to utilize multiple processors
in a computer is to run multiple processes. The
scheduler of the operating system will divide all
processes to all processors of a computer. This
approach enables interacting entities of different
programming languages as well as an easy
integration of existing applications. However, it is
limited to data exchange by copy as opposed to
sharing data since the operating system fences the
memory per program. For many use cases this
approach is sufficient.

In cases where one does want to share data
without copying one has to utilize multiple
processors within a single process. This is
accomplished by programming threads.
Programming threads brings all the issues of
concurrency described in the Related Works section.
The second approach is therefore equal to the first
but differs in the fact that data can be shared
directly. There is no need to copy the data. A thread
sends data to a receiving thread by a simple
handover.

The third approach is one of a producer-
consumer pattern. There might be situations where
there is some work to be done for which we can
utilize multiple workers. Following the paradigm of
interacting Actors we clone a single Actor in order
to create workers. The producer Actor sends a single
set of work to each worker.

The three approaches cater for many situations a
Creative Coder can run into. However, they are
limited to the fact that data is passed before being
operated on. This implies only one entity operates on
the data. The operation an entity performs might be
referred to as “embarrassingly parallel”, meaning
the operation requires little or no communication.
The opposite, inherently serial, is where operations
completely depend on each other making any
concurrent operation impossible. We can't expect our
proposal to be a solution to all situations. However,
we do wish to embrace any future demand.
Therefore we need to assure our proposed solution
embraces any existing and future solutions. This is

accomplished by the fact that programming an Actor
relies on regular programming practices. The
framework is merely a protocol between Actors and
does not enforce a programming language nor
paradigm when it comes to a single Actor. Thus a
single Actor can use any concurrent approach it
wants. This approach is a regular computational
concurrent programming practice. We agree with
Lee[2] that concurrent programming using a
computational approach is very difficult. Therefore
we consider this the engine room domain of our
solution.

The solution proposed covers many situations
which currently require a thorough understanding of
programming threads and inner workings of the
computer. We expect this approach to be well
suitable for interactive programs and to offer an easy
approach to utilizing multiple processors by
combining small sequential Actors. For situations
where more performance or custom logic is required
the solution provides low level access using classic
programming.

5. Implementation of the solution

To implement the proposed solution we build
upon previous research[15]. Therefore we use the
ZeroMQ library which provides us with a messaging
framework. The ZeroMQ library is a high
performance asynchronous messaging library which
scored highest in a comparative transport libraries
study by the CERN institute[16].

As the Actors in our solution need to
communicate with each other we adopt the ZRE
protocol[17] for discovery and data exchange.
Although this protocol is aimed at discovery and
exchange on a network we will enable this on inter
thread communication by changing the message
transports from TCP to Inproc'.

The Actors are programmed according to an
Actor Model[18] and running a Reactor Pattern[19]
internally. The Reactor Pattern will use a poll()
interface of the Operating System which enables us
to listen on multiple events using a single blocking
call.

Using the aforementioned building blocks we can
cover the essential topics of the proposed solution.
However, to enable dynamic, visual or live
programming Actors need to exchange their
properties and capabilities. This will be
accomplished by using a meta data exchange
protocol on top of the ZRE protocol. This meta data
exchange protocol will be based upon previous
research[15].

The implementation of the Producer-Consumer
pattern can be accomplished using native interfaces
provided by the ZeroMQ library. Since this research

1The in-process transport is a ZeroMQ transport passing
messages directly via memory

is focused on providing a framework for Creative
Coders to utilize multiple processors rather than
maximizing utilization this will be implemented and
researched in a future study.

The framework features a tool to visualize
interconnections of the Actors. We think it will be
easier to visually see how Actors are related than to
extract this from the source code of a program. As
the framework uses a communication protocol, we
can eavesdrop on this protocol to visualize the
network of Actors. Figure 5 is a screenshot of the

visualization tool showing 3 Actors. The
file Edit View Help

[MyLeadActor

g£M;Lea:\r[a

MyFirstActor MySecondint 3584

e [‘MySecondActor
‘ MyFirstint 3584

Figure 5: Screenshot of the visualization tool of
the framework
visualization tool also supports
interconnections of the Actors.

The framework prototype is implemented using
the Python programing language. Figure 6 shows
example code of a very basic Actor in Python which
increments a named variable (MyFirstInt) and emits
it every update. The Actor class follows the
application cycle of popular frameworks like
Processing and OpenFrameworks through using
setup(), update() and draw() methods.

editing the

Class MyFirstActor(Actor):

def setup(self):
self.register_int("MyFirstInt",0, "re")

def update(self):
self.emit_signal("MyFirstInt",\
self.get_value("MyFirstInt")+1)

Figure 6: Example Python source code of a basic
Actor

The Python language is very well suitable for
rapid prototyping as well as easing the path to lower
level languages such as C. However, Python is
limited by its Global Interpreter Lock to a single
processor. Therefore it is impossible to utilize
multiple processors using threads in Python. As this
research is about the framework and its adoption by
Creative Coders there is no need to utilize multiple
processors. All challenges of concurrency still apply
to Python as well. They are just limited to a single
processor. The framework will be ported to other
languages such as C once the adoption of the
framework is satisfactory and provides a solution to
the real world challenges of Creative Coders. Hence

the outcomes of this research are essential to test
these questions and steer further development of the
prototype and implementations in lower level
languages.

6. Validating the solution
6.1. Method

To validate our proposal we will test a prototype
of the solution with a group of Creative Coders. The
test subjects will be introduced in the framework and
will need to program a solution using the provided
framework for three provided scenarios.

The first test (figure 7) is an introduction to the
framework and the behavior of it. After being
instructed how to use the framework the test subjects
are asked to create multiple painters which need to
share a single canvas. Each painter is given a
section of the canvas; however, only one painter can
paint at a time. The canvas is divided in equal parts
and each painter is assigned the section besides the
previous painter. This first test is about resource
sharing and workload division.

Figure 7: Screenshot of a test application output
running 4 random painting threads (Actors) and 1
thread to display

The second test (figure 8) is based on the “Dining
Philosophers Problem”. Five philosophers sit around
a dining table. Each philosopher has a bowl of rice.
When they eat they acquire food for thought. While
they are thinking they philosophize about their
thoughts. However, there are only 5 chopsticks

file Edt View Help

chopsticks Socrates
chopstickd Socrates
Qstated EATING

HUNGRY

Aristotle '
state THINKING CJ
Q@ chopstick2 Socrates
Schopstickt Plato

Figure 8: Screenshot of the visualization tool of a
test 2 application using a waiter solution

which limits eating philosophers to 2 at the time.
The philosophers need to acquire 2 chopsticks first
before they can eat. In the second test the subjects
need to prevent dead locks and starvation.

In the third test the subjects are shown an
example application in which the image of a
webcam is displayed as well as thumbnails of
processed images of the webcam (figure 9). The
source code of the application doing one thumbnail
process is given. The test subjects are asked to
implement multiple thumbnails as done in the
shown example. The subjects will then run into the
issues of having multiple threads share a single
image. As this is a difficult subject the test is devised
mostly to let subjects understand the concept of
sharing memory.

5
5)

Figure 9: Screenshot of the example application
output shown for test 3

For these tests we are interested in whether the
test subjects understand the issues at hand, whether
they are able to come up with a solution and how
difficult they find building it using the provided
framework. To measure this we acquire results by
interviewing the test subjects and by a survey
(Appendix B) similar to the informal survey
described in section 3.

6.2. Results

Tests were done using 6 subjects all with a
background in Creative Coding or tinkering with
code. Subjects were selected for being familiar with,
text based programming, Python and the cited
frameworks. There was a maximum of 7 test
subjects due to available hardware. Unfortunately
two subjects canceled and one replacement was
found. The test subjects were each provided with a
Raspberry Pi 2 machine which had the proposed
framework and all necessary tools installed. Before
doing the tests the subjects were introduced into
concurrent programming and were given a
workshop to use the proposed framework. During
the tests the subjects could request assistance to
clarify any issues they had with the framework or
the tests. A full day was required to do the tests in
which the test subjects simultaneously worked on
the tests.

All subjects apart from subject 6 confirmed the
conclusion from the informal survey in
programming with threads being more difficult to
sequential programming. Subject 6 regarded
programming with or without threads equally
difficult.

Subject 1 was unable to solve any tests. This was
due to the fact that subject 1 was unfamiliar with
Object Oriented Programming which the framework
relies on. Therefore the test results of subject 1 are
not reflected in the remainder of this paper.

Test 1 was solved by all subjects and they
regarded the test with a difficulty index of 2 or 3.
They understood the problem well and only had
challenges in getting acquainted with the new
framework.

Difficulty scores

m— Testl
B Test2
S Test3

3 4 5

Tests Difficulty scores

Figure 10: Tests difficulty scores

2

Test 2 was solved by subject 3. All other subjects
needed more time to solve it as time was limited to
around 3 hours. Subjects did express understanding
the problem well and found designing a program for
the test most challenging. Subjects regarded test 2
more difficult than test 1.

The final test 3 was solved by none of the
subjects due to running out of time. Subjects
regarded test 3 as less difficult then test 2 but more
difficult than test 1. The concept of sharing memory
was understood by the subjects as can be interpreted
by their feedback.

Difficulty scores

:
= Sequential
EEE Concurrent
BN Framework

Lll,

Difficulty score

Figure 11: Programming difficulty scores from the
user tests

Figure 10 plots how the test subjects rated the
difficulty of the tests.

When asked to rate the difficulty of programming
using the provided framework the subjects rated it
more difficult than programming without threads
but easier than programming with threads. (figure
11)

Four subjects answered positively when asked
whether they could see themselves using the
provided framework. Two subjects weren't sure.

For the tests documentation was written which
the subjects could consult (Appendix C). This was
written as a guide as well as typical programming
API documentation. As the introductory workshop
only covered the framework as a whole some finer
details were noted in the documentation. We noticed
many subjects only skim the documentation and
move on to work on the assignment resulting in
them making mistakes which were warned about in
the documentation.

A typical example of where concurrent issues
arise is when one accesses methods or members of a
class which runs in a different thread than from
where it is accessed from. While a program might
often run without a problem it can run into very
unexpected issues. It is very hard to find the cause of
such issues. There is no way for the framework to
prevent a user from creating these issues thus a user
of the framework has to know about this. The
framework can at most provide a conceptual model
which prevents such issues. The message passing
paradigm used in the framework provides an easy to
understand conceptual model. The Actors (Threads)
in the program need to communicate by passing
messages not by directly accessing each others
members. Once this was clear to the subjects they
did not make such mistakes anymore.

The subjects requested more practical examples
than the few examples given in the documentation.
Some subjects preferred to working from an
example which they can modify to their needs as
was done in test 3.

Two subjects already had experience with the
framework from the previous research[15] which
dealt with distributed computing. These users had
less difficulty with designing a program for the
assignments as the design of the program is similar
to designing multiple programs interacting through
a network.

Every subject ran into three issues working on
the assignments. They first needed to understand
how they had to work with the framework. They
then needed to wrap their head around the
assignments. Finally they needed to design a
program for the assignment. No subject complained
about any concurrent challenges apart from the issue
mentioned before. This is also reflected in figure 11
where the subjects find programming with the
framework easier than concurrent programming.

Although the subjects don't have proven experience
with concurrent programming they rated the
difficulty similar to the difficulty ratings we found in
the informal survey (figure 3).

7. Discussion/Conclusion

This research has started from the observation
that it is very hard for Creative Coders, to utilize
multiple processors. From our research we can
confirm that concurrent programming is indeed
challenging for Creative Coders. We have then set
for an approach to simplify concurrent
programming by providing a framework
encompassing concurrent programming and an
intuitive conceptual model.

We developed a framework based on current
computer scientific models with the aim of
providing Creative Coders with an intuitive
conceptual model for concurrent programming.
From our tests we observe test subjects being able to
deal with the challenges given in the tests. They did
not all succeed in creating a solution for every
assignment, however, when asked, subjects
expressed needing more time to finish their solution.
We have found no reason to believe the subjects
were unable or found it too difficult to design a
solution.

The developed framework provided subjects with
an approach into concurrent programming. It does
not alter programming other than how to think
about designing a program. Therefore subjects can
run into all concurrent issues. However, as the
framework provides a conceptual model which the
user can follow it prevents many issues. The tests
with the framework pose questions on how to make
it more clear for the user to follow the concept of
passing messages between threads instead of sharing
variables. For example subjects easily made the
mistake of referring to members of an Actor class
from another Actor class. This could be due to the
fact that in the tests all the Actor classes are
declared in a single file. Perhaps it is less tempting
if Actor classes were separated into individual files.
It makes no difference for the program but perhaps
it makes it clearer for the user. Another approach
would be to not instantiate an Actor class but let the
LeadActor instantiate Actors by passing the class
type instead of an instantiation. This should be
looked into further.

The current prototype of the framework does not
provide any synchronization mechanisms. In test 3
users needed to do multiple operations on a webcam
image. As there was no synchronization of the
operations the operated images were slightly lagging
the main image. This was no issue for test 3 but in
real usage one would want to synchronize the
Actors. This is especially needed when the producer-

consumer approach of the proposed solution would
be implemented.

We observed our test subjects to refer to a
different approach into designing their program.
This seems to illustrate the fundamental difference
from sequential programming. To program
concurrently one needs to think differently about
elements of a program as Stein depicted in here
'computation as interactions' paradigm[6].

We also observed these changed design patterns
being similar to the design of a distributed program
(where a program consists of smaller programs
running on different computers). Test subjects with
experience in this found it easier to design a
multithreaded application wusing the provided
framework. We can expect this to also hold true for
users familiar with creating applications for Internet
as Kolikant[7] referred to. Design patterns emerging
from a message passing paradigm are then
applicable from distributed applications on the
Internet to multiple cores of a computer.

As the framework relied on previous research[15]
it uses a system of sensors and emitters which
communicate through signals. This is a slight drift
from pure message passing and causes slight extra
overhead at startup and during Actor changes. The
benefit of this approach was that users didn't need to
think about what messages were passed. Just as with
regular programming users only dealt with variables
and when they needed to be communicated with
another thread.

We believe the proposed solution is an easier
approach into concurrent programming than regular
(lower level) programming of threads using
mutexes, semaphores etc. The proposed solution is
an approach for Creative Coders to utilize multiple
processors more easily while still leaving lower level
options available to the Creative Coders. Using the
proposed solution a Creative Coder can get
acquainted with the design and behavior of a
concurrent program. If one then requires better
performance one can utilize lower level approaches.
Therefore the proposed solution provides a
sustainable path to more fundamental approaches
into concurrent programming. It does not alienate
from existing approaches and introduces its users
into the design patterns of a concurrent program.

The results from the user tests suggest we were
able to achieve our aims to provide easy concurrent
programming to Creative Coders. To conclude we
list the most important findings from this research:

e There is a problem for Creative Coders to
utilize multiple processors without
thorough knowledge of the computers

* Our proposed solution provides an easy and
sustainable approach to utilizing multiple
processors and designing concurrent
programs

* The framework developed during this
research, although not feature complete,
supports a conceptual model which helps
users to design concurrent programs

7.1. Future work

Besides implementing the missing
functionalities, optimizations and found insights in
the framework this research also has brought new
questions. In this final section we discuss some
possible future directions to continue this research.

A part of the developed framework consisted of
an Actor Editor supporting the user in editing the
interconnections and visualizing them. It is similar
to common visual programming environments like
PureData; however, it is solely meant to orchestrate
and visualize the program. While visual
programming is not uncommon in Creative Coding
practices it is quite uncommon in more classical
programming practices. We have noticed the Actor
Editor being a very welcome tool to support
understanding of inner program dependencies and
even enabling live editing of the program.

The test subjects expressed wanting to be able to
create Actors from the Actor Editor providing them
a template Actor which they could then fill in
through text based programming. It is therefore
interesting to research this tool further as a tool
which positions itself between classical text based
programming and visual programming.

The visualization of the program also supports
debugging efforts. Many Creative Coders do their
debugging by using print statements. However, in a
concurrent program this is not reliable as you cannot
determine the order of the output from the print
statements.

If a program would consist of many actors
visualizing them becomes difficult. What approaches
make visualization large interconnected Actors
practical? Actors could be grouped together, filtering
actors to focus only on the interesting parts. We
could foresee visualizing a concurrent program
becoming an important part of debugging the
program.

As Actors communicate with each other we can
talk about the topologies of how Actors are
interconnected. We would like to research the
lessons learned from networking infrastructures as
they could apply to program topologies as well.
Especially since the networking field is adopting
software defined networking concepts.

Actors are aware of each other as they exchange
meta data about each other. This is used to visualize
the actors as well as edit them live in the Actor
Editor. Through this approach Actors could also
connect to each other autonomously. The meta data
exchange protocol could be extended with logic so
Actors could exchange without the developer

expressing this before hand. Such an approach
brings to mind scenarios applicable to Cellular
Automata.

Programming concurrently using our proposed
solution asks Creative Coders to think differently
about the design of the program. What design
patterns are required and how could such patterns be
supported in the framework? Distributed Algorithms
is another computer scientific field from which we
can apply its lessons learned.

However, most important of all is to research
adoption by Creative Coders and others. We have
tested the proposal on a small group of Creative
Coders. We have only touched the surface of the
possibilities. Therefore development of this
framework should need to keep a direct link with
practical use cases. In previous research we have
kept a tight link with practical use cases by letting
developers, researchers and artists work
together[20]. This assures the adoption by users is
very visible and very verbose. This approach can be
applied to any descendant research.

8. Acknowledgement

Many thanks to the participants of the user test
who were willing to sacrifice a full day to this
research. Also thanks to all the participants of the
online survey. We are also very grateful to the
MAPLAB of the Utrecht School of Arts and the
z25.org Foundation for providing facilities for this
research.

9. References

[1] P. Hijma, “Programming Many-Cores on
Multiple Levels of Abstraction”, VU
University, Amsterdam, 2015.

[2] E. A. Lee, “The problem with threads”,
Computer, vol. 39, no. 5, pp. 33-42, May
2006.

[3] J. Maeda, “Creative Code. New York: Thames
& Hudson, 2004.

[4] H. Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in
Software”, Dr. Dobb’s Journal, vol. 30(3),

Mar. 2005.
[5] M. Herlihy and N. Shavit, “The Art of
Multiprocessor Programming. Morgan

Kaufmann, 2012.

[6] L. A. Stein, “Challenging the Computational
Metaphor: Implications for How We Think”,
Cybernetics and Systems, vol. 30, no. 6, pp.
473-507, Aug. 1999.

[71 Y. B.-D. Kolikant, “Gardeners and Cinema
Tickets: High School Students’ Preconceptions
of Concurrency”, Computer Science

[10]

[12]

[16]

Education, vol. 11, no. 3, pp. 221-245, Sep.
2001.

M. Resnick, “Turtles, Termites, and Traffic
Jams: Explorations in Massively Parallel
Microworlds”, Cambridge, MA, USA: MIT
Press, 1994,

M. Resnick, “Beyond the Centralized
Mindset: Explorations in Massively-parallel
Microworlds”, Massachusetts Institute of

Technology, Cambridge, MA, USA, 1992.

P. Hintjens and M. Sustrik, “Multithreading
Magic”, 01-Sep-2010. [Online]. Available:
http://zeromq.org/blog:multithreading-magic.
[Accessed: 06-Apr-2015].

G. R. Andrews and F. B. Schneider, “Concepts
and Notations for Concurrent Programming”,
ACM Comput. Surv., vol. 15, no. 1, pp. 343,
Mar. 1983.

D. W. Walker, “The design of a standard
message passing interface for distributed
memory concurrent computers”, Parallel
Computing, vol. 20, no. 4, pp. 657-673, Apr.
1994,

T. Plachetka, “Unifying Framework for
Message Passing”, in SOFSEM 2006: Theory
and Practice of Computer Science, J.
Wiedermann, G. Tel, J. Pokorny, M.
Bielikova, and J. Stuller, Eds. Springer Berlin
Heidelberg, 2006, pp. 451-460.

V. Averbukh and M. Bakhterev, “The analysis
of visual parallel programming languages”
ACSIJ, vol. 2, no. 3, pp. 126-131, Jul. 2013.
A. Loonstra, “Orchestrating computer
systems, a research into a new protocol”,
FOSDEM 2015 conference, Brussels, 01-Feb-
2015. [Online]. Available:
https://fosdem.org/2015/schedule/event/deviot
02/. [Accessed: 08-Apr-2015].

A. Dworak, M. Sobczak, F. Ehm, W.
Sliwinski, and P. Charrue, ‘“Middleware
Trends And Market Leaders 20117, 01-Oct-
2011. [Online]. Available:
http://cds.cern.ch/record/1391410. [Accessed:
25-Apr-2015].

P. Hintjens, “ZeroMQ Realtime Exchange
Protocol.” [Online]. Available:
http://rfc.zeromq.org/spec:36.

M. Odersky and M. Odersky, “Scala actors:
Unifying thread-based and event-based
programming”, Theor. Comput. Sci, 2009.

D. C. Schmidt, M. Stal, H. Rohnert, and F.
Buschmann, Pattern-Oriented Software
Architecture, Patterns for Concurrent and
Networked Objects, vol. 2. Wiley, 2000.

10

[20]

A. Loonstra, “Freaklabs: Joint Artists and

Developers Technology Design and
Evaluation,” Stichting z25.org. [Online].
Available:

http://www.z25.org/static/ rd /freaklab plab/i
ndex.html. [Accessed: 31-Jul-2015].

10. Appendices

10.1 Appendix A: Informal Survey

To test whether concurrency is used within Creative Coding practices and how it is regarded we
have conducted an informal survey during the period of February till June 2015. The survey consisted
of 9 score questions and 1 open question. The survey was announced on several Creative Coding
community sites as well as social media. We specifically targeted Creative Coding communities using
classical programming paradigms (ie, sequential programming, non-visual) as these paradigms enable
the programming of threads.

aloonstra@gmail.com_w

77 responses

View all responses Publish analytics

Summary

1: What level would you consider yourself as a programmer

Novice 3 3.9%
Intermediate 25 32.5%
Advanced 38 49.4%
Expert 11 14.3%

2: How did you learn how to program

| studied computer science 18 23.4%

| was taught in school 7 9.1%

| followed a course and took it from there 9 M.7%
Autodidact, | taught myself 40 51.9%

Other 3 3.9%

3: Have you ever used threads in programming

Y

No, | haven't 9 M11.7%
Yes, |have 68 88.3%
| have no idea 0 0%

4: Are threads needed for your practice?

As | don't know what they are | can't say really 2 26%
No, | haven't needed them 3 3.9%
Yes 67 87%

I'm not sure 5 6.5%

5: Programming threads

Why have you needed threads?

My program...
My program...
My program...
Just because...

Other

0 10 20 30 40 50

My program would otherwise block or my program had to wait for an answer 54 2%
My program was too slow and | needed better performance 45 60%

My program needed to response with as little delay as possible 34 45.3%
Just because | could 12 16%
Other 6 8%

6: On a scale from 1 to 5 how difficult do you consider programming
without threads?

25
20
15

10

Veryeasy:1 20 26.7%

2 22 29.3%

3 25 33.3%

4 5 6.7%

Very difficult: 5 3 4%

7: On a scale from 1 to 5 how difficult do you consider programming
with threads?

40
30
20

10

Very easy: 1 1 1.3%

2 4 5.3%

3 15 20%

4 40 53.3%

Very difficult: 5 15 20%

8: What do you find most difficult about programming with threads?

Random crashes, bad memory access or segmentation faults 15 20%
Debugging when things gowrong 21 28%

Synchronizing access todata 21 28%

Mentally understanding what is happening 15 20%

Other 6 8%

9: What do you find second most difficult about programming with
threads?

Random crashes, bad memory access or segmentation faults 15 20.5%
Debugging when things gowrong 29 39.7%

Synchronizing access to data 16 21.9%

Mentally understanding what is happening 11 15.1%

Other 2 2.7%

If possible, can you give a short insight of how you deal with threads
mentally?

Send dirreferent tasks to different threads??

different processes running in parrallel that sometimes need to wait for eachother to
share resources or do something with the main thread (like creating open gl textures)

As little as possible. | do not use them often and when | do it's mostly for getting some
data from the internet without blocking the Ul thread. | (heavily) rely on examples |
find on the internet and hope that works :P

depends on the workload, sometimes it is simple enough to use openMP and

parallelize a loop, other times there are separate tasks that can be run in parallel or in
a parallel pipelined approach with producer and consumer threads.

When possible | try to structure of a stack of (independent) jobs that need to be
executed (hopefully on independent sets of data). The description of different
processes running simultaneously matches up best with the way | try to use threads.
i.e.: make stack of tasks ' jobs[]' while(waiting for next serial task to complete):
foreach (thread in threads[]): if (not thread.working()) then thread.do(jobs[].pop())

Most of my threading requires synchronizing access to data, so | tend to think in
terms of what resources need to be made available when and how.

If loops are objects moving circularly, then threads are the ones moving faster or
slower, sometimes you adjust their speed to match the others.

| see it as another application "linked" to the main one, with a dedicated memory-
management. It could be used to divide the charge of computation used in the
rendering application, to be rendered as smooth as possible.

Concurrent processes that are not necessarily synchronized. Multiple processes
working with common data.

| try to picture what if more than 1 Thread gets to access some variable at the same
time. Is gonna be any serious consequence in that case and | gotta make sure
everything happens atomically. Or it doesn't matter in that case and | let it be, since a
slightly delay in getting the values updated won't cause any chaos.

different processes running simultaneously

| don't like when software blocks so | use worker threads. By using multiple threads i
can run many tasks at once and utilize all the cpus. | keep the threads seperate and
don't let them share memory (so | don't get confused) except for progress varables.
For code that needs to run fast | use of. In areas where speed is important i expect it
to be multithreaded if possible. | want to work on my idea not implementation and
definitely spend as little time as possible oon optimization.

| always try to find ways to create lock free producer - consumer solution for my
threads to get max performance.

| scribble together a graphic representation of what is going on.

| think about different process independent from the main

| think there great, just put things into arrays to take them from thread to thread.

I've found the consumer/producer pattern to be most useful in dealing with threading
Multiple processes accessing data concurrently, with atomic actions

For me it's mainly about splitting interface related logic from backend related logic,
e.g. the handling of gestures from the user are handled on the main thread but
making api call and parsing data is dispatched over different threads.

In many cases | like to have the best performance possible, so | often want a
seperate process for handling the visual, the logic and the specific routine. The visual
part can be any drawing, 3d or otherwise graphical routine. The logic being the way
the program or game works. And the specific could be something like Al or another

resource intensive routine.

Mentally | see threads as 'multiple people performing baskets of tasks at the same
time' instead of the non-threaded 'one person doing all the work sequentially’. As a
mental construct this is quite an easy way to understand it, however in practice things
can become quite complicated because these tasks (and their input/output)
sometimes rely on each other.

| visualize them as stand-alone "functions” or "programs” that can take control of the
CPU at any time, no matter how inconvenient, and may require access to data
simultaneously with other threads. This ultimately means that data is never safe from
harm. The more you learn about concurrency, the more you realize how non-trivial
this is. | usually rely on concurrent FIFO buffers to pass data between threads. I've
also worked with a task based approach, where 'work’ is given to 'jobs'. | really liked
this approach, as long as there is enough work to be done to keep the CPU cores
busy.

| think about in the term of a highway with parallel lanes. A car can switch lanes, but
cannot be at two lanes at the same time. Furthermore a car can only switch form
lanes if there is enough "space" between the other cars.

approaching it as different processes running simultaneously
different processes

Processor or memory heavy stuff in a different thread. | mainly use it for performance

reasons.

| guess | imagine that I'm forking off a new process/processes that run with a time
independent of the main process.

For most of the work | have done | use simple lock_guards to block shared memory
access in simple models. Usually just one extra thread to churn and produce new
results. | usually just think of a thread as being a while loop that shouldn't touch any
memory it doesn't explicitly own without a mutex lock. Lately I've been wrapping my
head around the Windows idea of waitable objects and trying to have one thread
signal the other to get moving again.

As different processes. | would think of it as something running
simultaneously/parallel - but on a different core

swapping contexts

| do not use thread pools but | want to look into it. | use GLSL a lot even for GPGPU,
e.g. encoding float data as colours and similar to retrieve computed data from a

texture.

| generally err on the side of caution and protect everything, and then work
backwards, removing unnecessary locks and whatnot

synchronising the data was mostly the hard part

| think of them as boomerangs you throw away at different speeds, Some thing you
dont think about but you have to remember to catch when they(eventally) return.

" approaching it as different processes running simultaneously" is pretty much how |

think about it

For me it's about doing multiple processes simultaneously (even though in reality they
might not be simultaneous). Or simply doing one main "thing", and something else on
the background.

Two blind dudes building a house at the same time, nailing eachother in the foot by
accident .

| imagine threads a small programs or processes sharing data and control. See see
them in my near vicinity and up in the air connected in some way, running free and
requesting access. It is a bit abstract. Metaphors can be dangerous, but | am
interested in learning about a solid metaphor. Also different ones, each explaining a

different ways concurrency.

threads = processing pipeline for specific input-output. ie - kinect input & processing
happens in a thread and the result (blobs, person contours, etc) are then double
buffered for acces in the main thread - main thread is opengl output thread; anything
visual goes here So generally speaking | try to use as much threads as possible for
input/output just so the main thread does not hang.

| think of threads as a separate space where things can happen. You pass them
information you want them to operate on, and then later retrieve completed work. The
interface to the threaded operations should be strictly controlled and tiny to prevent
issues. | avoid working directly with threads, and instead use abstractions on top of
them like futures (c++ std::future). | like how they provide a model of work to be done
and a way to get the result of that work when it is finished.

In my practice where I'm mainly coding for systems that playback (generative) moving
images on (large) screens, synchronising playback with the playback medium
(screens/projection/LEDscreens) is of most importance. Every hiccup in the
Imagestream will result in stutters or skipped frames in the screen output. Having a
simple method to reserve resources strictly for the purpose of providing as smooth as
can be playback (and at the same time controlling/checking the generation in a
feedback loop, so you can know when things go wrong) would be a big, big help.
Most CC /visual programming environments are more or less 'fire and forget' based:
we just try to generate as many frames as we can and throw them at the screen, in
daily practise, this leads to unwanted stutters and hiccups, even in large-venue
systems that are used for big concerts and trade shows. On a side note: I'm not really
sure if these issues can be solved on CPU level, it seems to me that the way we
output image data out of our systems (mostly over HDMI) is interfering with smooth
playback in a great deal too..

| think a lot about it but | don't come to an answer, sorry :(

| usually think in states. When running a piece of code that either uses or changes a
state it is important that some other process cannot change that same state. It will
have to wait it's turn until one piece of code is done so that each piece of code can
handle all of it's logic, without changing states during. Also | sometimes like to think
about is as 'event' which need to be handled, nut not at the same time.

| think of threads as separate processes running simultaneously. But | also keep in
mind that memory can be shared among those two processes, so it is important to
protect from deadlocks and race conditions. That is where things get hard to handle
mentally.

If you have any suggestions or remarks regarding this survey please
leave them below

| would love to see specific solutions outlined for common problems like: - computer
vision on a separate thread to animation - preloading content in secondary thread,
with a solution to generating open gl textures on the main thread

My main issue with threading is that there aren't very many good resources on how to
implement threading patterns or good case studies. Most threading tutorials I've used
are very basic and don't really extrapolate to real world cases very well, so I've
learned most of the threading patterns that | use by reading other people's code and
relying on standard reference to fill in the gaps.

Great initiative! Looking forward to hearing more about the research.

You should not need to use threads directly unless you are building a library for
concurrent tasks (ex. an async dispatch system). In practice, you should be using a
well tested toolkit that provides higher level async functionality with a well defined
way to stay thread safe (ex. completion callbacks).

| would suggest to ask people for their profession, because | think it says a lot about
the answers. Also was it hard for me to recognize this email was form you Arnoud,
maybe you can improve that cause | almost ignored this survey.. - Robert-Hein (oud
DVTG)

Questions 6 and 7 are a bit hard to answer if you don't provide any context.
Programming an application that only shows an empty window is easy. Programming
a single-threaded application that can load hundreds of images and still remains
responsive is hard. Programming a multi-threaded image loader is easy.
Programming the core classes for task based concurrency is hard. Good luck! Veel
succes met je onderzoek!

| would add a textArea to precise the answers concerning the question 6 and 7
Great acknowledgement of a big problem in the creative coding community. Threads
are still black magic to a lot of us because many don't have a traditional background.
Deja vu

share your results on the OF forum please)

For me, it would be useful to have some examples of how to multithread useful
alorithms, (i.e. feature detection in OpenCV) and possibly easy hooks to do these
operations. Like with running different operations on an image, | believe there are
different approaches. You can have a thread pool where each thread takes a whole

image to process and buffer the results. Or with some operations you can split a
single image into parts and reconstruct the output of each of these threads. | would

like to see examples of both. *not sure I'm totally correct about that, but it's what |
think | know :)

| used threads for flocking calculations to boost performance. | found implementing
threads in processing/java easier than | had thought beforehand. And the goal of
boosting performance was reached. However, the main problem | encountered was
that other parts of the program were not as easy to adapt for concurrent threads and
thus became new bottlenecks. | also looked into other parallel processing solutions
such as OpenCL, but | found that much, much harder to implement and that it had
many more restrictions than threads. I'm currently working in OpenFrameworks/C++,
but | haven't tried threads in this yet. As stated before, | think a big part is not so
much the difficulty of threads per se, but rather finding and implementing ways to use
them practically, in particular because many resources (algorithms, code examples,
etc.) are based on sequential solutions. A concrete examples being implementing
PARALLEL k-D tree construction & range searches. Also see two of my Twitter
conversations that are relevant here:
https://twitter.com/AmnonOwed/status/425729650401099776
https://twitter.com/AmnonOwed/status/42572990269688627 2

see above)

Number of daily responses

20

15

10 H
0\-\ AA AA

10.2 Appendix B: User Test Survey

For the user tests we are interested in whether the test subjects understand the issues at hand,
whether they are able to come up with a solution and how difficult they find building it using the
provided framework. To measure this we acquire results by interviewing the test subjects and by a
survey similar to the informal survey described in section 3.

aloonstra@gmail.com_w

7 responses

View all responses Publish analytics

Summary

1: What is your age
35
43
24
30
31

2: How many years have you been programming
3

5

8

17

15

12

3: What level would you consider yourself as a programmer

Novice 0 0%
Intermediate 5 71.4%
Advanced 2 28.6%
Expert 0 0%

4: Have you ever used threads in programming

No, | haven't 2 286%
Yes,lhave 5 71.4%
|l have noidea 0 0%

5: What level would you consider yourself as a Python programmer

Novice 0 0%
Intermediate 5 71.4%
Advanced 1 14.3%
Expert 1 14.3%

6: On a scale from 1 to 5 how difficult do you consider programming
without threads?

4
3
2
1
0
1 2 3 4

Veryeasy:1 1 14.3%
2 4 571%

3 2 286%
4 0 0%
Very difficult: 5 0 0%

7: On a scale from 1 to 5 how difficult do you consider programming
with threads?

1 2 3 4 5
Veryeasy:1 0 0%
2 0 0%
3 2 286%
4 4 571%
Very difficult: 5 1 14.3%
User tests

8: Were you able to solve test 1 (Painters Spree)?

Yes 6 857%
No 1 14.3%
If | had more time 0 0%

9: On a scale from 1 to 5 how difficult do you consider programming test
1 (Painters Spree)?

3.0

2.5
2.0
1.5
1.0
0.5
0.0
1 2 3 4 5
Veryeasy:1 0 0%
2 3 429%
3 3 429%
4 0 0%
Very difficult: 5 1 14.3%

10: If you solved test 1 please explain what you did. If not please explain
what problem you encountered?

concept van classes

Made 3 painterActors each on a different part of the width(800) canvas (1st @ 1-250,
2nd @ 250-550, 3rd @ 550-800) Drew each on a different img and drew img3 first,
img2 second and img1 last so they would lay on top of eachother in a correct (visible
order)

Door goed de documentatie te lezen en te luisteren naar de uitleg van het feit dat er 1
canvas actor is en een aantal actors die plaatjes moeten heen en weer sturen kon ik
naar wat puzzelen wel het gewenste resultaat krijgen. Dit wil niet zeggen dat ik alles
meteen snapte ik bleef wat lastigheid hebben met wat je wanneer tekent en wat je
wanneer doorstuurt naar de andere thread.

The API for the emitter/listener-pattern was not straight-forward. Other than that the
painter test was not very difficult.

using mutex locks

First | setup 3 different actors to that calculate a Red green and blue value, these
where painted using the canvas painter on the screen in bars, the length of the bar
was the difference between the previous color value transmitted. Next | moved on to
expand the the actors to draw a 100x100 object and transmit this to the canvas. The

idea was to use the the delay to place them on the main screen.

First | created a CanvasActor and one PainterActor and got that to work. | then added
a second one and changed some code to accomodate for the second painter. (I did
create seperate variables for the painter_image, one for painter1 (VanGogh) and one
for painter2 (Rembrandt) in the CanvasActor)

11: Were you able to solve test 2 (Dining Philosophers)?

Yes 2 28.6%
No 1 14.3%
Ifl had moretime 4 57.1%

12: On a scale from 1 to 5 how difficult do you consider programming test
2 (Dining Philosophers)?

3.0
2.5
2.0
1.5
1.0
0.5
0.0
1 2 3 4 5
Veryeasy:1 0 0%
2 0 0%
3 1 143%
4 3 429%
Very difficult: 5 3 42.9%

13: If you solved test 2 please explain what you did. If not please explain
what problem you encountered?

Again using mutex locks or a semaphore
concept van classes

| was on my way to implementing a round-robin esque chopstick passer of 3 of the
five chopsticks where each philo would pass 1 chopstick after eating and the waiter
would pass the remaining 2 chopsticks to the most two hungry philosophers

The first step was to get my head around using events (signals) to communicate
between the Waiter (LeadActor) and the Philosophers. | quickly realized | needed to

use the same approach | used for Test1; set up communications between the waiter
and *one* philospher and then add more philosophers. Once | got the event-based
communications working it was quite easy.

In this test | only got around to setup the philosopher actors and the waiter. However
when | started to think about implementing the "hand over the copsitcks" routine the
time was up.

Het probleem was vooral om het gesteld probleem om te zetten in programmeer
logica en blokken. Wat voor structuur heb ik nodig en als die er zijn hoe moeten ze
dan met elkaar communiceren? Wat luistert naar wat en wat zijn dan de
voorwaarden? Dat vond ik erg lastig. Waarom kunnen ze niet allemaal aan het
denken zijn of allemaal aan het eten zijn. Hoe bepaal ik wie de chopsticks krijgt en
wanneer geef ik ze terug ?

14: Were you able to solve test 3?

Yes 1 14.3%
No 5 71.4%
If | had more time 1 14.3%

15: On a scale from 1 to 5 how difficult do you consider programming test
3?

3.0
2.5
20
1.5
1.0
0.5
0.0

Veryeasy:1 0 0%
2 0 0%
3 2 286%

4 2 286%
Very difficult: 5 3 42.9%

16: Can you explain what happens in the program of test3 and what can
cause problems?

concept van classes

Met alles wat we tot dan toe geleerd hadden en de uitleg van Arnaud was de
structuur met een hoofd acteur en een aantal kind acteurs duidelijk zeker ook omdat
er al een voorbeeld bij zat door op dit voorbeeld door te bouwen krijg je snel in de
gate wat wel en wat niet werkt en waar het mis gaat. De volgende stap is de waarom
en die duurde iets langer, maar was wel logisch gebruik makende van de kennis over
concurend programmeren die ik tot dan toe had geleerd. Hier had ik zeker nog wel
even mijn tanden in willen zetten

Time was running out and | did not wrap my head around the popping problem yet.
no idea

Each thread tries to pop data from the shared namespace, thus breaking the
program.

The problem is when different threads use the same memory space, and these
individual threads are managing and changing the information located there. It's like
different cooks standing around a couldren adding, removing, emptying,sampling
serving the contents without being aware of each other, but also an (maybe)
algoritms in the OS or implementation of python assuming only one cook and one
couldren.

I'm not at all familiar with openCV so | needed a lot of time to understand what was
happening in the first place (which function did what, etc). By the time some of the

other participants had already tried one or two solutions | barely understood the code
P

Framework

17: On a scale from 1 to 5 how difficult do you find programming using
the provided framework and tools?

18: Could you see yourself using this framework?

Yes 5 71.4%
No O 0%
I'mnotsure 2 286%

19: Was the provided documentation clear enough?

clear separation of concerns

Ja op zich wel soms het is duidelijk en overzichtelijk. Het vraagt naar meer. Qua
classes en functionaliteit is het zeker voldoende qua overal structuur en
functionaliteiten van het framework van wat je wel of wat je niet kan en wat je er
waarom mee kan zou nog wel wat meer mogen zijn.

Yes. Especially the combination of a (working) example and the docs for the functions
was useful. | did have some headstart because | am (somewhat) familiar with zocp
yes, but | would like to have a little more different examples

Ik miste concrete voorbeeld code.

| had severe trouble understanding the communication between threads, especially
the pattern for labelling the threads.

Honestly i did not read the documentation very thouroghly, but only glanced it. Also
working with a new IDE proved some bit of a hassle because the indentation of the
documentation was different from the settings in the IDE and i did not know the auto
indentation shortcuts.

20: What do you like best about the framework?

It basically handles the events for you, you just need to think about *what* you want
to communicate and *when* you need to do that.

The ease of use and similarity with ZOCP (that | knew beforehand)
It's python, and it all seemed to just work.

Ik vind het tof dat het door bouwt op ZOCP wat ik al ken. Het is tof dat je een visueel
overzicht hebt van de actors en wat ze doen. Het is handig dat je lijntjes kan tekenen.
Met relatief weinig code kan je al wat maken. Het is overzichtelijk gestructureerd.

De node editor

| like that it allows me to build a performance-critical application on a cheap device
like raspberry pi. | also like that you get threaded 1/O for free. | look forward to
exploring the new types of creative coding applications this technology facilitates.

21: What do you like least about the framework?

Waar is het framework voor? Is het om iets te maken of is het om iets te testen ? Als
het is om te testen zou ik meer testen willen met een opbouw en referentie om
hypotheses te staven of concepten/paradigma’s te oefenen. Als het is om iets te
maken wat kan ik er dan mee maken? Visueel grafisch is het nog een beetje beperkt
en ik merk door de voorbeelden dat ik dan even niet zo snel inspiratie heb wat ik er
nog meer mee kan maken. Ik zou wel vanuit de actor editor rechtstreeks een actor
willen kunnen maken die dan ene template met file genereert waarop ik kan door

bouwen.

| did not delve deep in the framework itself so i can not comment very much. However
it looks like the framework, and the examples, assume that there are actors are
always running and doing stuff, however in reality when i use threads its to calculate
something that i do not need to be done on the main thread and end when ready
not being able to send/signal any object

| have no idea how | would need to communicate between threads without the
provided framework

1.The API needs work. 2.1 would prefer this framework over Processing or
OpenFrameworks if it were more complete in terms of drawing and image
manipulation.

It seems to be quite heavy under a light load, but sometimes that's just you not

updating frequent enough (but if you do it to frequently you kill the Pi)

Abstractie niveau van Documentatie, behoefte aan in ieder geval kleine stukjes
concrete syntaxis

22: How would you describe the programming using the provided
framework in the usertest?

Challenging but not unfathomable

| guess it's fairly easy but it helps if you have some understanding of programming
stuff that needs to communicate over a network which is similar to communicating

between threads.. | think
In mijn geval kan ik daar niets zinnigs over zeggen

Challenging, in a good way. Parallel processing is generally interesting and this
framework creates a practical application | am familiar with.

The main problem was that i found it very slow to start new program'’s, in the
philosophers example it took several second for all of the philosophers to load and
connect. Also it was hard for mee to keep track of the names of the object, method of
the different actors and conductors i created.

programming small sequential entities while leaving their dependency and
communication to the framework

Ik zou zeggen het voelt als logisch puzzelen. Een soort DenkSport puzzelboeken
maar dan voor programmeren. Als ik gewoon wat wil puzzelen en programmeren dan
zou ik dit framework pakken. Dus dat leidt tot de vraag wat is de scope van het
framework? Mag duidelijker gesteld worden wat mij betreft. Wat wil je ermee? Wat
kan je ermee? Waar wil je ermee naar toe? Waarom zou ik als programmeur het
willen gebruiken/ermee spelen ?

Thank you

If you have any suggestions or remarks please leave them below

Ik vond het super leuk om mee te doen. Ik ben altijd bereid om er over door te kletsen
met een biertje erbij en ben erg nieuwsgierig naar de rest van het onderzoek.
Vandaag was helder duidelijk en goed gestructureerd. Het is echt ene framework met

alles erop en eraan. Niet gek om dat zo even uit de grond te stampen...
Meer voorbeelden in documentatie.
keep me posted!

None, thank you for the lunch

Number of daily responses

6.0
4.5
3.0
1.5

0.0

10.3 Appendix C: User Test Documentation

For the user test the following documentation was written which the subjects could consult. This
was written as a guide as well as typical programming API documentation. As the introductory
workshop only covered the framework as a whole some finer details were noted in the documentation.

Creative Concurrency Documentation
Release 0.1

Arnaud Loonstra

June 27, 2015

Contents

1.1 Operating System installation
1.2 Required Pythonmodules

2.1 Introduction
2.2 Starting ACtOrSo e e e e e e e
2.3 Visualizing and editing Actors

3.1 PainterActor and CanvasActorClass

7.1 Actorclasses e
7.2 Canvas Actorclassesttt
7.3 Philosopher Actorclasses
74 ZOCPclasses & methods

1 Installation

2 Guide

3 Test 1: Painters Spree

4 Test 2: Dining Philosophers

5 Test 3: It works... most of the time
6 Survey

7 sphof module reference

8 Indices and tables

Python Module Index

[SSIRON]

~N O\ L

o

................... 10

11

15

19

21

................... 21
................... 23
................... 27
................... 29

37

39

Creative Concurrency Documentation, Release 0.1

This is the documentation of a simple toolkit provided to research concurrent programming for Creative Coders. The
toolkit is build upon the ZOCP framework.

You can find the API documentation as well as simple examples of the toolkit’s usage.

Contents 1

Creative Concurrency Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

Note: You’re machine should come preinstalled with the sphof module.

1.1 Operating System installation

You should install the latest Python version on your machine

For the Pillow module you’ll need to make sure you have the Tcl/Tk libraries and includes installed

S sudo apt-get install tcl-dev tcl tk tk-dev python3-tk

1.2 Required Python modules

The sphof module requires the following modules:

* Pillow

* Pyre
* pyZOCP

You can install these using ‘pip’:

&
S
&
S
.?
&
S

pip
pip
pip
pip

install Pillow
install pyzmqg
install https://github.com/zeromg/pyre/archive/master.zip
install https://github.com/z25/pyZ0OCP/archive/master.zip

Note: On some operating systems ‘pip’ is named ‘pip3’ or ‘pip-3.2’

Creative Concurrency Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Guide

In this test we will create programs which enable the use of multiple processors of a computer. You will be provided
with a framework and some tools to create programs for the assignments.

This website provides the descriptions of the assignments as well as a reference for the framework and tools.

2.1 Introduction

In the framework we call a small program an ‘Actor’. The sphof framework provides different ‘Actor’ classes. These
classes have a setup(), update() and draw() method similar to OpenFrameworks and Processing.

Additionally to these methods there are methods to enable communication between the Actors. This communication
is done using signals which you are going to use during the assignments.

In the Actor classes you can register named variables to be used for communication with other Actors. L.e. to register
an integer:

class MyFirstActor (Actor):

def setup(self):
self.register_int ("MyFirstInt", 0, "re")

def update (self):
self.emit_signal ("MyFirstInt", self.get_value ("MyFirstInt")+1)

It’s important to understand that once an Actor has a variable registered every other Actor can access this value.
However before acquiring the value of a variable the Actor interested in the variable first needs to subscribe to it. This
can be accomplished by using the signal_subscribe method. L.e:

class MySecondActor (Actor) :

def on_peer_enter(self, peer, name, headers, =xargs, +*=*kwargs):
self.signal_subscribe (self.uuid(), None, peer, "MyFirstInt")

def on_peer_signaled(self, peer_id, name, signal):
print (name, signal)

By subscribing to the MyFirstInt variable of the MyFirstActor the MyFirstActor will send the value of the variable
through a signal. Of course you first need to be aware of the MyFirstActor, hence the usage of the on_peer_enter
method. Remember as we are running Actors on multiple processors you will never know if your program started first
or if the other was first. Therefore the on_peer_enter method will tell you.

Creative Concurrency Documentation, Release 0.1

It might also be easier to directly link variables of Actors. You can do this by registering a variable and then subscribing
this variable to another Actor’s variable. In the MySecondActor example we can do this as follows:

class MySecondActor (Actor) :

def setup(self):
self.register_int ("MySecondInt", 0, "rs")

def on_enter_peer(self, peer, name, headers, =xargs, =*=*kwargs):
self.signal_subscribe (self.uuid(), "MySecondInt", peer, "MyFirstInt")

def update (self):
print (self.get_value ('MySecondInt'"))

Note: Notice the difference in the last parameter of the register_int method of both classes. In the MyFirstActor class
it is ‘re’ and in the MySecondActor it is ‘rs’. ‘r” Means the variable is readable. ‘s’ Means the variable is a ‘signal

sensor’. This implies it can receive signals. ‘e’ Means the variable is a ‘signal emitter’. It means the variable can send
signals. Read more about this in the ZOCP reference.

2.2 Starting Actors

We now know how to program Actors and let them communicate with each other. However, we still need to start
them. It’s important to know that any regular program always has one ‘main’ thread. Only from the ‘main’ thread
you can start other threads in order to utilize multiple processors. For the ‘main’ thread we use the LeadActor class
which provides us methods for starting more Act or instances. Remember you can only have one LeadActor in your
program!

For example a simple LeadActor looks like this:
from sphof import LeadActor

class MyLeadActor (Actor) :

def setup(self):
self.register_int ("MyLeadInt", 0, "rs")

def update (self):
print (self.get_value ("MyLeadInt"))

app = MyLeadActor ('MyLeadActor")
app.run{()

Save this text as ‘myapp.py’. You can then run this program as follows:
S python3 myapp.py

It will print repeating lines of ‘0’. You can stop the program by sending a KeyboardInterrupt. Just press the CTRL-C
keyboard combination.

Note: You can also directly execute from Geany however it is important to understand this is exactly the same as
running from a terminal.

Also notice line 9 where we instantiate the MyLeadActor class and providing “MyLeadActor” as an argument. Every
Actor needs a name. You can provide the name as a first argument when you instantiate the Actor instance. If you
don’t provide a name a random name will be made up!

6 Chapter 2. Guide

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Creative Concurrency Documentation, Release 0.1

Now if we would want to run the MyFirstActor and MySecondActor we can use the MyLeadActor class as follows:

from sphof import =«
class MyFirstActor (Actor):

def setup(self):
self.register_int ("MyFirstInt", 0, "re")

def update (self):
self.emit_signal ("MyFirstInt", self.get_value ("MyFirstInt")+1)

class MySecondActor (Actor) :

def setup(self):
self.register_int ("MySecondInt", 0, "rs")

def on_peer_enter(self, peer, peer_name, *args, **kwargs):
if peer_name == "MyFirstActor":
self.signal_subscribe (self.uuid(), "MySecondInt", peer, "MyFirstInt")

def update (self):
print (self.get_value ('MySecondInt'))

class MyLeadActor (LeadActor) :

def setup(self):
self.add_actor (MyFirstActor ('MyFirstActor'))
self.add_actor (MySecondActor ('MySecondActor'))
self.register_int ("MyLeadInt", 0, "rs")

def update (self):
return
print (self.get_value ("MyLeadInt"))

app = MyLeadActor ('MyLeadActor")
app.run()

Note: Line 18 is different from the original MySecondActor. This is because we now run 3 Actors and we only want
to subscribe the MyFirstActor to the MySecondActor. Therefore we need to test which Actor we are dealing with in

the on_peer_enter method.

2.3 Visualizing and editing Actors

Ok, we now know how to program Actors and how to run them. Now imagine a whole lot of them. To be able to
oversee how all Actors relate to each other we have a visualization tool. On your system you can find the ActorEditor.

2.3. Visualizing and editing Actors 7

Creative Concurrency Documentation, Release 0.1

File Edit View Help
MyLeadActor
MyLeadint 0
MyFirstActor MySecondActor]
MyFirstint 3584 MySecondink 3584

Just start the ActorEditor and it will display any Actors you have running. You can make subscriptions between
Actors bij dragging a line between Actor’s emitters and sensors. Emitters are always on the right side of an Actor
representation. Sensors are on the left.

Now make sure you run the LeadActor example we just discussed. The ActorEditor will display them like in the
screenshot. Try to subscribe the MyFirstActor’s MyFirstInt to the LeadActor’s LeadInt. You do this by dragging a line
from the emitter to the sensor. This manual action is equal to the code:

self.signal_subscribe (<LeadActor>.uuid(), "MyLeadInt", <MyFirstActor>.uuid(), "MyFirstInt")

Note: Of course you need to replace <LeadActor> and <MyFirstActor> with the right names in your code

8 Chapter 2. Guide

CHAPTER 3

Test 1: Painters Spree

Imagine you have created a simple application that draws something on the screen. Your processor is not fast enough
to draw 60 frames per second.

In this first test we will create a program which handles multiple painters. This is often a problem in concurrent
programs as OpenGL and most graphic libraries can only run in the main thread. Therefore it is impossible to let
multiple Actors draw on the display. We will need to workaround this limitation.

You need to use the Canvas Actor classes for these have simple methods for drawing. First start by creating a simple
painter using the sphof . LoneActor class:

from sphof import LonePainterActor
from random import randint

class SinglePainter (LonePainterActor) :

def setup(self):
self.set_width (800)
self.set_height (600)

def draw(self):

start = (
randint (0, self.get_width()), # x coordinate
randint (0, self.get_height()) # y coordinate
)

end = (
randint (0, self.get_width()), # x coordinate
randint (0, self.get_height()) # y coordinate
)

color = (
randint (70,110), # red color
randint (160,210), # green color
randint (70, 210) # blue color

)

self.line([start, end], color, 20)

painter = SinglePainter ("SinglePainter™)
painter.run ()

This runs on a single processor. Now if we would want to have multiple painters using multiple processors we need
to create an Actor for displaying and other Actors for creating the drawings. As you read in the guide you can use a
LeadActor to start other Actors. You can now understand that this LeadActor also needs to display the drawings
as it will be the only Actor with access to the display of the computer!

Creative Concurrency Documentation, Release 0.1

3.1 PainterActor and CanvasActor Class

The PainterActor class provides a send_img method for signalling a new image. The PainterActor class
also automatically registers the ‘imgID’ variable which is a reference to the image. Therefore you can simply call
send_img to send the image. However there is one rule of thumb: Once you send the image you do not own it
anymore!

The CanvasActor class provides a get_img_from_id method. You can pass the imgID value and it will return
the image. You can then use draw_img to display the image.

Why these methods? You have to understand that you cannot just pass images around like that. An image occupies a
large amount of memory and copying them takes a large amount of time. Therefore the sending happens by passing
a reference instead of the full image. In languages like C or C++ you’d call this a pointer. This is a bit difficult in a
language like Python because if we would send the image it will be garbage collected after being send. Anyway, these
are just convenience methods to prevent you from running into trouble and keeping your machine performant.

10 Chapter 3. Test 1: Painters Spree

CHAPTER 4

Test 2: Dining Philosophers

In the second test we will search for a solution of a typical computer science problem. Five philosophers sit at a round
table with bowls of rice. Chopsticks are placed between each pair of adjacent philosophers.

11

Creative Concurrency Documentation, Release 0.1

Each philosopher must alternately think and eat. However, a philosopher can only eat rice when he has both left and
right chopstick. Each chopstick can be held by only one philosopher and so a philosopher can use the chopstick only
if it is not being used by another philosopher. After he finishes eating, he needs to put down both chopsticks so they
become available to others. A philosopher can take the chopstick on his right or the one on his left as they become
available, but cannot start eating before getting both of them.

There is an infinite amount of rice in the bowls.

You need to design a program which makes sure all philosophers can think and eat. There are many solutions to this
problem but you are adviced to use a waiter which serves the table.

12 Chapter 4. Test 2: Dining Philosophers

Creative Concurrency Documentation, Release 0.1

In the framework a PhilosopherActor class is provided. This actor has the methods think and eat. If a
philosopher is in the thinking state the think method needs to be called. If the philosopher is in the eating state the
eat method needs to be called. A single philosopher implementation is given below:

import time
from sphof import LonePhilosopherActor

class SinglePhilosopher (LonePhilosopherActor) :

def setup(self):
self.state_hungry = True

self.switch_at = time.time() + 5 # switch state every 5s
self.enlightenment = None
self.topics = [] # food for thought

def update (self):

if time.time() > self.switch_at or not(len(self.topics)):
it's time to switch state
self.switch_at = time.time() + 5 # set next state switch timestamp

self.state_hungry = not(self.state_hungry)
if self.state_hungry:

print ("Jay food! Eating....", len(self.topics))
else:

print ("Hmmmmm... let me think...", len(self.topics))

if not self.state_hungry:
enlightenment = self.think()
if enlightenment:
print ("Eureka:", enlightenment, len(self.topics))
else:
self.eat ()

if _ name_ == '__ _main__ ':
test = SinglePhilosopher ("Descartes")

test.run()

You can use this implementation for your multiple philosophers implementation.

13

Creative Concurrency Documentation, Release 0.1

14 Chapter 4. Test 2: Dining Philosophers

CHAPTER 5

Test 3: It works... most of the time

In the third test the source of classes is given. You are asked to create a program similar to the given screenshot below:

&~ on

-

.

As you can see the application captures from a camera, displays this in a window and also displays three thumbnails
of the same video in the corner.

Sample classes are given in the example below:

import sphof

from sphof import LeadActor, Actor
import cv2

import numpy as np

15

Creative Concurrency Documentation, Release 0.1

class OpenCVActor (Actor) :

def

def

def

def

def

def

def

def

setup (self) :
self.register_int ("img_in", O,
self.register_int ("img_out", O,

Hrsn)
"re")

send_img (self,

mn

img, ID):

Sends the image as a signal to any subscribers using the

emitter. The canvas 1s reset after the

mmrn

imgID = id(img)

assert (imgID not in sphof.shared_ns)
sphof.shared_ns[imgID] = img
self.emit_signal (ID, imgID)

get_img_from_id(self,

mon

imgID) :

Get the image from the given imgID

mnn

return sphof.shared_ns.pop (imgID)

resize (self,
return cv2.resize (img,

img, width, height):

(width, height))

invert (self, img):
return 255-img

to_hsv(self, img):
return cv2.cvtColor (img,

blur(self, img):
kernel = np.ones((5,5),np.float32)/25
return cv2.filter2D (img,-1,kernel)

on_peer_signaled(self,

peer, name,

imgID = self.get_value("img_in")
img = self.get_img_from_ id(imgID)
img_s = self.resize(img, 120, 90)

self.send_img(img_s, "img_out")

class CVCapLeadActor (LeadActor) :

def

setup (self) :
self.add_actor (OpenCVActor ("CVActor"))
self.video_capture =

"imgID'
image is sent!

cv2.COLOR_BGR2HSV)

data) :

cv2.VideoCapture (0)

#self.video_capture.set (cv2.CAP_PROP_FRAMFE_WIDTH, 320)
#self.video_capture.set (cv2.CAP_PROP_FRAME_HEIGHT, 240)

#self.video_capture.set (cv2.CAP_PROP_FPS,

self.frame = None

self.thumb = None
self.register_int ("imgID_out", 0, "re")
self.register_int ("thumb_in", 0, "rs")

cv2.startWindowThread ()
cv2.namedWindow ('Video")
self.cap_success = False

15)

16

Chapter 5. Test 3: It works... most of the time

Creative Concurrency Documentation, Release 0.1

def update (self):
self.cap_success, self.frame = self.video_capture.read()
if self.cap_success:
self.send_img(self.frame, "imgID_out")

def draw(self):
if self.thumb != None:
self.frame[0:90, 0:120] = self.thumb
cv2.imshow ('Video', self.frame)

def send_img(self, img, ID):
Sends the image as a signal to any subscribers using the 'imgID'
emitter. The canvas 1s reset after the image is sent!
imgID = id(img)
sphof.shared_ns[imgID] = img
self.emit_signal (ID, imgID)

def on_peer_enter(self, peer, name, headers):
if name == "CVActor":
self.signal_subscribe (self.uuid (), "thumb_in", peer, "img_out")
self.signal_subscribe (peer, "img_in", self.uuid(), "imgID_out™)

def on_peer_signaled(self, peer, name, date):
if name == "CVActor":
self.thumb = sphof.shared_ns.pop(self.get_value('thumb_in'"))

def stop(self):
self.video_capture.release()
cv2.destroyAllWindows ()
super (CVCapLeadActor, self) .stop()

if _ name_ == "_ _main__
lead_actor = CVCapLeadActor ("CVCaptureActor")
lead_actor.run()

",

Now try to create more thumbnails of the video.

Note: What is the difficulty in this program? What are best approaches? It is normal to end up in discussion in this

assignment.

17

Creative Concurrency Documentation, Release 0.1

18 Chapter 5. Test 3: It works... most of the time

CHAPTER 6

Survey

Once you are done with all three assignments please fill in the survey:

Survey at Google Docs

19

https://docs.google.com/forms/d/1dfroDCaHlq5m4MlwwhBJ--vOLJr-VYJPqq_mHlqGnik/viewform?usp=send_form

Creative Concurrency Documentation, Release 0.1

20 Chapter 6. Survey

CHAPTER 7

sphof module reference

7.1 Actor classes

7.1.1 Frequently used methods

sphof .Actor(*args, **kwargs) An Actor class runs inside its own thread.
sphof.Actor.setup() Called a startup.
sphof.Actor.update() Called every loop
sphof.Actor.draw() Called after update
sphof.LeadActor.add_actor(actor) Add an Actor and run its threaded loop
sphof.LeadActor.run() Run the actor’s application loop
sphof.LeadActor.stop() Stop this LeadActor.

7.1.2 Actor class
class Actor (*args, **kwargs)
An Actor class runs inside its own thread. It’s usually started by a LeadActor!
Parameters name (sfr) — Name of the node, if not given a random name will be created

By default the Actor loop runs at 60 iterations per second. This means your update and draw method is called
every 1/60th second.

*Use the Actor.setup () method to setup the class
*Use the Actor.update () method to update anything you have setup

eUse the Actor.draw () method to visualize

Warning: It is important to understand that an actor runs in a thread. Usually a thread is started by a ‘main’
thread. A sphof.LeadActor provides methods for starting and stopping Actors as the LeadActor runs
in the main thread. An Actor has limitations. For example you cannot visualize directly from an Actor. To
visualize what an actor draws you’ll need to handover the image to a LeadActor.

setup ()
Called a startup.

Add variables you want to use througout the actor here. Le.:

self.count = 0

21

Creative Concurrency Documentation, Release 0.1

and in the update() method:

self.count += 1

update ()
Called every loop

draw ()
Called after update

7.1.3 LeadActor class

class LeadActor (*args, **kwargs)

Bases: sphof.actors.Actor

A LeadActor class runs in the main thread. It inherits all methods from the Actor class but has some additional
methods to start Actors

Parameters name (s¢r) — Name of the node, if not given a random name will be created

By default the LeadActor loop runs at 60 iterations per second. This means your update and draw method is
called every 1/60th second.

*Use the Actor. setup () method to setup the class
*Use Actor.update () method to update anything you have setup
eUse Actor.draw () method to visualise

stop ()
Stop this LeadActor. Before stopping all Actors started from this Lead Actor are stopped first

add_actor (actor)
Add an Actor and run its threaded loop

Parameters actor (Actor) — An Actor to start in its own thread

draw ()
Called after update

remove_actor (actor)
Remove and stop an Actor

Parameters actor (Acfor) — An Actor to remove and stop

run ()
Run the actor’s application loop

setup ()
Called a startup.

Add variables you want to use througout the actor here. Le.:

self.count = 0

and in the update() method:

self.count += 1

update ()

Called every loop

22

Chapter 7. sphof module reference

Creative Concurrency Documentation, Release 0.1

7.1.4 LoneActor class
class LoneActor (name, *args, **kwargs)
The LoneActor class runs an application loop.
Parameters name (str) — Name of the node, if not given a random name will be created

By default the LoneActor loop runs at 60 iterations per second. This means your update and draw method is
called every 1/60th second.

*Use the LoneActor.setup () method to setup the class
*Use LoneActor.update () method to update anything you have setup
eUse LoneActor.draw () method to visualise

setup ()
Called a startup.

Add variables you want to use througout the actor here. Le.:

self.count = 0

and in the update() method:

self.count += 1

update ()
Called every loop

draw ()
Called after update

7.2 Canvas Actor classes

The Canvas Actor classes provide classes to create drawings/images and to display them.

7.2.1 PainterActor class
class PainterActor (*args, **kwargs)
Bases: sphof.canvas_actors.Painter, sphof.actors.Actor

The PainterActor class is an Actor with all the Painter class’s methods and providing methods to handover
the image to a LeadActor.

example:

from sphof import PainterActor
from random import randint

class MyPainter (PainterActor):

def setup(self):
self.count = 0 # initialize counter

def update (self):

self.count += 1 # increment counter
if self.count == self.get_width{():
self.count = 0 # reset counter

7.2. Canvas Actor classes 23

Creative Concurrency Documentation, Release 0.1

HH=

self.send_img () emit the imgID so a
LeadActor could

display it

S

def draw(self):

start = (self.count, 0) # start position
end = (self.count,

self.get_height()) # end position
color = (

randint (7,210), # red

randint (16, 210), # green

randint (70, 210) # blue

)

self.line((start, end), color, 2)# draw line

To display the PainterActor’s drawing you need to send the image to CanvasActor which can display the
image on screen. In order to send an image use the send_img () method.

The send_img () method emits a ‘imgID’ signal containing a pointer to the image of this Actor. It calls reset()
so the actor can paint on a new canvas.

This class has many methods inherited from the sphof .Painter class, ie:
eline ()
srectangle ()
ecllipse()
earc ()
Each class’s extra methods are documented below.

send_img ()
Sends the image as a signal to any subscribers using the ‘imgID’ emitter. The canvas is reset after the
image is sent!

7.2.2 CanvasActor class

class CanvasActor (*args, **kwargs)

Bases: sphof.canvas_actors.Painter, sphof.actors.LeadActor
The CanvasActor class implements methods for drawing on a canvas (screen) similar to the PainterActor

To display drawings of PainterActors you need to receive the image of a PainterActor by subscribing to the
‘imgID’ signal emitter of the PainterActor.

example:

from sphof import CanvasActor
class MyCanvas (CanvasActor) :
def setup(self):
self.painter_img = None
self.register_int ("PaintingID", 0, "rs") # create a sensor for image ids

... setup the painter here

def on_peer_enter(self, peer, name, headers):

if name == "PainterName": # PainterName is the name of your PainterActor

self.signal_subscribe (self.uuid(), "PaintingID", peer, "imgID")

24

Chapter 7. sphof module reference

Creative Concurrency Documentation, Release 0.1

def on_peer_signaled(self, peer, name, data):
if name == "PainterName":
self.painter_img = self.get_img_from_ id(self.get_value("PaintingID"))

def draw(self):
if self.painter_img:
self.draw_img(self.painter_img)
la = MyCanvas ()
la.run ()

get_img from_id (imglD)
Get the image from the given imgID

draw_img (img, x=0, y=0)
Draw the image at position x,y

7.2.3 LonePainterActor class

class LonePainterActor (*args, **kwargs)
Bases: sphof.canvas_actors.Painter, sphof.actors.LoneActor

7.2.4 Painter class
class Painter (*args, **kwargs)
The Painter class provides simple methods for drawing, ie:
eline ()
erectangle ()
scllipse()
earc ()
The default width and height are 200 by 600 pixels.
Each class’s method is documented below

reset ()
Clears the image to the background color

get_width ()
Returns the width of the canvas

set_width (width)
Set the width of the canvas, it will reset your image! :param width: Width of the canvas in pixels

get_height ()
Returns the height of the canvas

set_height (height)
Set the height of the canvas, it will reset your image! :param width: Width of the canvas in pixels

arc (*args, **kwargs)
Draws an arc (a portion of a circle outline) between the start and end angles, inside the given bounding
box.

Parameters

7.2. Canvas Actor classes 25

Creative Concurrency Documentation, Release 0.1

 xy — Four points to define the bounding box. Sequence of [(x0, y0), (x1, y1)]
or [x0, y0, x1, y1].

* start — Starting angle, in degrees. Angles are measured from 3 o’clock, increasing clock-
wise.

* end — Ending angle, in degrees.
* fill — Color to use for the arc.

bitmap (*args, **kwargs)

Draws a bitmap (mask) at the given position, using the current fill color for the non-zero portions. The

bitmap should be a valid transparency mask (mode “1”’) or matte (mode “L” or “RGBA”).
This is equivalent to doing image .paste (xy, color, bitmap).
To paste pixel data into an image, use the paste () method on the image itself.

chord (*args, **kwargs)
Same as arc (), but connects the end points with a straight line.

Parameters

* xy — Four points to define the bounding box. Sequence of [(x0, y0), (x1, yl)]
or [x0, yv0, x1, vy1].

¢ outline — Color to use for the outline.
¢ fill — Color to use for the fill.

ellipse (*args, **kwargs)
Draws an ellipse inside the given bounding box.

Parameters

* xy — Four points to define the bounding box. Sequence of either [(x0, y0), (x1,
yl)Jlor [x0, y0, x1, vy1].

¢ outline — Color to use for the outline.
e fill — Color to use for the fill.

line (*args, **kwargs)
Draws a line between the coordinates in the xy list.

Parameters
* xy — Sequence of either 2-tuples like [(x, v), (x, y), ...] ornumeric values
like [x, v, X, y, ...].

« fill — Color to use for the line.

e width — The line width, in pixels. Note that line joins are not handled well, so wide
polylines will not look good.

pieslice (*args, **kwargs)
Same as arc, but also draws straight lines between the end points and the center of the bounding box.

Parameters

 xy — Four points to define the bounding box. Sequence of [(x0, y0), (x1, y1)]
or [x0, y0, x1, y1].

* start — Starting angle, in degrees. Angles are measured from 3 o’clock, increasing clock-
wise.

* end — Ending angle, in degrees.

26 Chapter 7. sphof module reference

Creative Concurrency Documentation, Release 0.1

e fill — Color to use for the fill.
¢ outline — Color to use for the outline.

point (*args, **kwargs)
Draws points (individual pixels) at the given coordinates.

Parameters
* xy — Sequence of either 2-tuples like [(x, y), (x, y), ...] ornumeric values
like [x, v, %, v, ...].

« fill — Color to use for the point.

polygon (*args, **kwargs)
Draws a polygon.

The polygon outline consists of straight lines between the given coordinates, plus a straight line between
the last and the first coordinate.

Parameters
* xy — Sequence of either 2-tuples like [(x, y), (x, y), ...] ornumeric values
like [x, v, %, v, ...].

¢ outline — Color to use for the outline.
e fill — Color to use for the fill.
rectangle (*args, **kwargs)

Draws a rectangle.

Parameters

* xy — Four points to define the bounding box. Sequence of either [(x0, y0), (x1,
yl)]or [x0, y0, x1, y1l].The second point is just outside the drawn rectangle.

* outline — Color to use for the outline.
* fill — Color to use for the fill.
text (xy, text, fill)
Draws the string at the given position.
Parameters
» xy — Top left corner of the text.
* text — Text to be drawn.
« fill — Color to use for the text.

textsize (text)
Return the size of the given string, in pixels.

Parameters text — Text to be measured.

7.3 Philosopher Actor classes

The Philosopher Actor classes provide classes with methods for the Dining Philosophers Problem from test 2.

7.3. Philosopher Actor classes 27

Creative Concurrency Documentation, Release 0.1

7.3.1 PhilosopherActor class
class PhilosopherActor (*args, **kwargs)
Bases: sphof.philosopher_actors.Philosopher, sphof.actors.Actor

draw ()
Called after update

eat ()
The eat method makes the philosopher eat. This fills its list of topics for thinking (food for thought)

emit_signal (emitter, value)
Update the value of the emitter and signal all subscribed receivers

Parameters
* emitter (str) — name of the emitting variable
¢ value — the new value

on_peer_enter (peer, name, *args, **kwargs)
This method is called when a new peer is discovered

Parameters
e peer (uuid) — the id of the new peer
* name (str) — the name of the new peer

register_string (name, value, access='r’)
Register a string variable

Parameters
¢ name (str) — the name of the variable as how nodes can refer to it
* value (str) — the variable value

* access (str) — set the access state of the variable. ‘r’=readable, ‘w’=writeable, ‘e’=signal
emitter, ‘s’=signal sensor

setup ()
Called a startup.

Add variables you want to use througout the actor here. Le.:

self.count = 0

and in the update() method:

self.count += 1

signal_subscribe (recv_peer, receiver, emit_peer, emitter)
Subscribe a receiver to an emitter

Parameters
* recv_peer (uuid) — the id of the receiving peer

* receiver (str) —the name of the receiving variable. If None, no capability on the receiving
peer is updated, but a on_peer_signal event is still fired.

e emit_peer (uuid) — the id of the emitting peer

* emitter (str) — the name the emitter. If None, all capabilities will emit to the receiver

28 Chapter 7. sphof module reference

Creative Concurrency Documentation, Release 0.1

Note: A third node can instruct two nodes to subscribe to one another by specifying the ids of the peers.
The subscription request is then sent to the emitter node which in turn forwards the subscribtion request to

the receiver node.

think ()
The think methods makes the philospher actor think about something and determine the quality of it. If
the quality is good it will return the thought. Otherwise it returns None

If the philospher is out of topics it will say so. He then needs to eat.

update ()
Called every loop

7.3.2 LonePhilosopherActor class
class LonePhilosopherActor (*args, **kwargs)
Bases: sphof.philosopher_actors.Philosopher, sphof.actors.LoneActor

draw ()
Called after update

eat ()
The eat method makes the philosopher eat. This fills its list of topics for thinking (food for thought)

setup ()
Called a startup.

Add variables you want to use througout the actor here. Le.:

self.count = 0

and in the update() method:

self.count += 1

think ()
The think methods makes the philospher actor think about something and determine the quality of it. If
the quality is good it will return the thought. Otherwise it returns None

If the philospher is out of topics it will say so. He then needs to eat.

update ()
Called every loop

7.4 ZOCP classes & methods

7.4.1 Frequently used methods

zocp.ZOCP.register_int(name, valuel, ...]) Register an integer variable
zocp.Z0CP.register_float(name, value[, ...]) Register a float variable

zocp.ZOCP.register_string(name, value[, access]) Register a string variable

zocp.ZOCP.get_value(name) Retrieve the current value of a named parameter in the capability tree
zocp.ZOCP.signal_subscribe(recv_peer, ...) Subscribe a receiver to an emitter
zocp.Z0CP.emit_signal(emitter, value) Update the value of the emitter and signal all subscribed receivers

\ Continued on next page

7.4. ZOCP classes & methods 29

Creative Concurrency Documentation, Release 0.1

Table 7.2 — continued from previous page

zocp.ZOCP.on_peer_enter(peer, name, *args, ...) This method is called when a new peer is discovered
zocp.ZOCP.on_peer_subscribed(peer, name, ...) Called when a peer subscribes to an emitter on this node.
zocp.ZOCP.on_peer_signaled(peer, name, data,...) Called when a peer signals that some of its data is modified.

7.4.2 ZOCP class

class ZOCP (*args, **kwargs)
The ZOCP class provides all methods for ZOCP nodes

Parameters name (str) — Name of the node, if not given a random name will be created

set_capability (cap)
Set node’s capability, overwites previous :param dict cap: The dictionary replacing the previous capabili-
ties

get_capability ()
Return node’s capabilities :return: The capability dictionary

set_node_location (location=[0, 0, 0])
Set node’s location, overwites previous

set_node_orientation (orientation=[0, 0, 0])
Set node’s name, overwites previous

set_node_scale (scale=[0, 0, 0])
Set node’s name, overwites previous

set_node_matrix (matrix=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
Set node’s matrix, overwites previous

set_object (name=None, type="Unknown’)
Create a new object on this nodes capability

register_ int (name, value, access='r’, min=None, max=None, step=None)
Register an integer variable

Parameters
* name (str) — the name of the variable as how nodes can refer to it
* value (int) — the variable value

3

e access (str) — the access state of the variable.
emitter, ‘s’=signal sensor

r’=readable, ‘w’=writeable, ‘e’=signal

¢ min (int) — minimal value
¢ max (int) — maximal value
* step (int) — step value for increments and decrements

register_float (name, value, access="r’, min=None, max=None, step=None)
Register a float variable

Parameters
¢ name (str) — the name of the variable as how nodes can refer to it
¢ value (float) — the variable value

3

e access (str) — the access state of the variable.
emitter, ‘s’=signal sensor

r’=readable, ‘w’=writeable, ‘e’=signal

30 Chapter 7. sphof module reference

Creative Concurrency Documentation, Release 0.1

* min (float) — minimal value
* max (float) — maximal value
* step (float) — step value for increments and decrements

register_ percent (name, value, access="r’, min=None, max=None, step=None)
Register a percentage variable

Parameters
* name (str) — the name of the variable as how nodes can refer to it
* value (floar) — the variable value

3

e access (str) — the access state of the variable.
emitter, ‘s’=signal sensor

r’=readable, ‘w’=writeable, ‘e’=signal

¢ min (float) — minimal value
* max (float) — maximal value
* step (float) — step value for increments and decrements

register_bool (name, value, access="r’)
Register an integer variable

Arguments are: :param str name: the name of the variable as how nodes can refer to it :param bool

[P

value: the variable value :param str access: the access state of the variable. ‘r’=readable, ‘w’=writeable,
‘e’=signal emitter, ‘s’=signal sensor

register_string (name, value, access='r’)
Register a string variable

Parameters
¢ name (str) — the name of the variable as how nodes can refer to it
* value (str) — the variable value

* access (str) — set the access state of the variable. ‘r’=readable, ‘w’=writeable, ‘e’=signal
emitter, ‘s’=signal sensor

register_vec2f (name, value, access="r’, min=None, max=None, step=None)
Register a 2 dimensional vector variable

Parameters
¢ name (str) — the name of the variable as how nodes can refer to it
* value (fuple) — the variable value

3

e access (str) — the access state of the variable.
emitter, ‘s’=signal sensor

r’=readable, ‘w’=writeable, ‘e’=signal

* min (fuple) — minimal value
* max (fuple) — maximal value
* step (fuple) — step value for increments and decrements

register_vec3f (name, value, access="r’, min=None, max=None, step=None)
Register a three dimensional vector variable

Parameters

¢ name (str) — the name of the variable as how nodes can refer to it

7.4.

ZOCP classes & methods 31

Creative Concurrency Documentation, Release 0.1

* value (tuple) — the variable value

* access (str) — the access state of the variable. ‘r’=readable, ‘w’=writeable, ‘e’=signal
emitter, ‘s’=signal sensor

e min (fuple) — minimal value
* max (fuple) — maximal value
* step (tuple) — step value for increments and decrements

register_ vec4f (name, value, access='r’, min=None, max=None, step=None)
Register a four dimensional vector variable

Parameters
¢ name (str) — the name of the variable as how nodes can refer to it
* value (tuple) — the variable value

3

* access (str) — the access state of the variable. ‘r’=readable, ‘w’=writeable, ‘e’=signal

emitter, ‘s’=signal sensor
* min (fuple) — minimal value
* max (fuple) — maximal value
* step (fuple) — step value for increments and decrements

get_value (name)
Retrieve the current value of a named parameter in the capability tree

Parameters name (str) — the name of the variable as how nodes refer to it
Returns the value of the named variable

peer_get_capability (peer)
Get the capabilities of peer

Convenience method since it’s the same a calling GET on a peer with no data

peer_get (peer, keys)
Get items from peer

peer_set (peer, data)
Set items on peer

peer_call (peer, method, *args)
Call method on peer

signal_subscribe (recv_peer, receiver, emit_peer, emitter)
Subscribe a receiver to an emitter

Parameters
* recv_peer (uuid) — the id of the receiving peer

* receiver (str) — the name of the receiving variable. If None, no capability on the receiving
peer is updated, but a on_peer_signal event is still fired.

* emit_peer (uuid) — the id of the emitting peer

 emitter (s7r) — the name the emitter. If None, all capabilities will emit to the receiver

Note: A third node can instruct two nodes to subscribe to one another by specifying the ids of the peers.
The subscription request is then sent to the emitter node which in turn forwards the subscribtion request to

the receiver node.

32 Chapter 7. sphof module reference

Creative Concurrency Documentation, Release 0.1

signal_unsubscribe (recv_peer, receiver, emit_peer, emitter)
Unsubscribe a receiver from an emitter

Parameters
* recv_peer (uuid) — the id of the receiving peer

* receiver (str) — the name of the receiving variable, or None if no receiver was specified
when subscribing.

* emit_peer (uuid) — the id of the emitting peer

* emitter (str) — the name the emitter, or None if no emitter was specified during subscrip-
tion

Note: A third node can instruct two nodes to unsubscribe from one another by specifying the ids of the
peers. The subscription request is then sent to the emitter node which in turn forwards the subscribtion

request to the receiver node.

emit_signal (emitter, value)
Update the value of the emitter and signal all subscribed receivers

Parameters
* emitter (s7r) — name of the emitting variable
¢ value — the new value

on_peer_enter (peer, name, *args, **kwargs)
This method is called when a new peer is discovered

Parameters
* peer (uuid) — the id of the new peer
* name (str) — the name of the new peer

on_peer_exit (peer, name, *args, **kwargs)
This method is called when a peer is exiting

Parameters
* peer (uuid) — the id of the exiting peer
* name (str) — the name of the exiting peer

on_peer_join (peer, name, grp, *args, **kwargs)
This method is called when a peer is joining a group

Parameters
e peer (uuid) — the id of the joining peer
* name (str) — the name of the joining peer
* grp (str) — the name of the group the peer is joining

on_peer_leave (peer, name, grp, *args, **kwargs)
This method is called when a peer is leaving a group

Parameters
¢ peer (uuid) — the id of the leaving peer

* name (str) — the name of the leaving peer

7.4.

ZOCP classes & methods 33

Creative Concurrency Documentation, Release 0.1

* grp (str) — the name of the group the peer is leaving

on_peer_whisper (peer, name, data, *args, **kwargs)
This method is called when a peer is whispering

Parameters
e peer (uuid) — the id of the whispering peer
* name (str) — the name of the whispering peer
 data — the data the peer is whispering

on_peer_shout (peer, name, grp, data, *args, **kwargs)
This method is called when a peer is shouting

Parameters
* peer (uuid) — the id of the shouting peer
* name (str) — the name of the shouting peer
* grp (str) — the name of the group the peer is shouting in
* data — the data the peer is shouting

on_peer_modified (peer, name, data, *args, **kwargs)
Called when a peer signals that its capability tree is modified.

Parameters
* peer (uuid) — the id of the shouting peer
* name (str) — the name of the shouting peer

* data (dict) — changed data, formatted as a partial capability dictionary, containing only the
changed part(s) of the capability tree of the node

on_peer_subscribed (peer, name, data, *args, **kwargs)
Called when a peer subscribes to an emitter on this node.

Parameters
* peer (uuid) — the id of the shouting peer
* name (str) — the name of the shouting peer

* data (/ist) — changed data, formatted as [emitter, receiver] emitter: name of the emitter on
this node receiver: name of the receiver on the subscriber

on_peer_unsubscribed (peer, name, data, *args, **kwargs)
Called when a peer unsubscribes from an emitter on this node.

Parameters
* peer (uuid) — the id of the shouting peer
* name (str) — the name of the shouting peer

* data (/ist) — changed data, formatted as [emitter, receiver] emitter: name of the emitter on
this node receiver: name of the receiver on the subscriber

on_peer_signaled (peer, name, data, *args, **kwargs)
Called when a peer signals that some of its data is modified.

Parameters

¢ peer (uuid) — the id of the shouting peer

34 Chapter 7. sphof module reference

Creative Concurrency Documentation, Release 0.1

* name (str) — the name of the shouting peer

 data (list) — changed data, formatted as [emitter, value, [sensorsl, ...]] emitter: name of
the emitter on the subscribee value: value of the emitter [sensorl,...]: list of names of

sensors on the subscriber receiving the signal

on_modified (peer, name, data, *args, **kwargs)
Called when some data is modified on this node.

Parameters
e peer (uuid) — the id of the shouting peer
* name (str) — the name of the shouting peer

* data (dict) — changed data, formatted as a partial capability dictionary, containing only the
changed part(s) of the capability tree of the node

run_once (timeout=None)
Run one iteration of getting ZOCP events

If timeout is None it will block until an event has been received. If O it will return instantly
The timeout is in milliseconds

run (timeout=None)
Run the ZOCP loop indefinitely

7.4. ZOCP classes & methods

35

Creative Concurrency Documentation, Release 0.1

36 Chapter 7. sphof module reference

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

37

Creative Concurrency Documentation, Release 0.1

38 Chapter 8. Indices and tables

Python Module Index

S
sphof, 21

39

Creative Concurrency Documentation, Release 0.1

40 Python Module Index

Index

A

Actor (class in sphof), 21
add_actor() (LeadActor method), 22
arc() (Painter method), 25

B

bitmap() (Painter method), 26

C

CanvasActor (class in sphof), 24
chord() (Painter method), 26

D

draw() (Actor method), 22

draw() (LeadActor method), 22

draw() (LoneActor method), 23

draw() (LonePhilosopherActor method), 29
draw() (PhilosopherActor method), 28
draw_img() (CanvasActor method), 25

E

eat() (LonePhilosopherActor method), 29
eat() (PhilosopherActor method), 28
ellipse() (Painter method), 26

emit_signal() (PhilosopherActor method), 28
emit_signal() (ZOCP method), 33

G

get_capability() (ZOCP method), 30
get_height() (Painter method), 25
get_img_from_id() (CanvasActor method), 25
get_value() (ZOCP method), 32

get_width() (Painter method), 25

L

LeadActor (class in sphof), 22

line() (Painter method), 26

LoneActor (class in sphof), 23
LonePainterActor (class in sphof), 25
LonePhilosopherActor (class in sphof), 29

O

on_modified() (ZOCP method), 35
on_peer_enter() (PhilosopherActor method), 28
on_peer_enter() (ZOCP method), 33
on_peer_exit() (ZOCP method), 33
on_peer_join() (ZOCP method), 33
on_peer_leave() (ZOCP method), 33
on_peer_modified() (ZOCP method), 34
on_peer_shout() (ZOCP method), 34
on_peer_signaled() (ZOCP method), 34
on_peer_subscribed() (ZOCP method), 34
on_peer_unsubscribed() (ZOCP method), 34
on_peer_whisper() (ZOCP method), 34

P

Painter (class in sphof), 25

PainterActor (class in sphof), 23
peer_call() (ZOCP method), 32
peer_get() (ZOCP method), 32
peer_get_capability() (ZOCP method), 32
peer_set() (ZOCP method), 32
PhilosopherActor (class in sphof), 28
pieslice() (Painter method), 26

point() (Painter method), 27

polygon() (Painter method), 27

R

rectangle() (Painter method), 27
register_bool() (ZOCP method), 31
register_float() (ZOCP method), 30
register_int() (ZOCP method), 30
register_percent() (ZOCP method), 31
register_string() (PhilosopherActor method), 28
register_string() (ZOCP method), 31
register_vec2f() (ZOCP method), 31
register_vec3f() (ZOCP method), 31
register_vec4f() (ZOCP method), 32
remove_actor() (LeadActor method), 22
reset() (Painter method), 25

run() (LeadActor method), 22

41

Creative Concurrency Documentation, Release 0.1

run() (ZOCP method), 35
run_once() (ZOCP method), 35

S

send_img() (PainterActor method), 24
set_capability() (ZOCP method), 30
set_height() (Painter method), 25
set_node_location() (ZOCP method), 30
set_node_matrix() (ZOCP method), 30
set_node_orientation() (ZOCP method), 30
set_node_scale() (ZOCP method), 30
set_object() (ZOCP method), 30
set_width() (Painter method), 25

setup() (Actor method), 21

setup() (LeadActor method), 22

setup() (LoneActor method), 23

setup() (LonePhilosopherActor method), 29
setup() (PhilosopherActor method), 28
signal_subscribe() (PhilosopherActor method), 28
signal_subscribe() (ZOCP method), 32
signal_unsubscribe() (ZOCP method), 33
sphof (module), 21

stop() (LeadActor method), 22

T

text() (Painter method), 27

textsize() (Painter method), 27

think() (LonePhilosopherActor method), 29
think() (PhilosopherActor method), 29

U

update() (Actor method), 22

update() (LeadActor method), 22

update() (LoneActor method), 23

update() (LonePhilosopherActor method), 29
update() (PhilosopherActor method), 29

Z

ZOCP (class in zocp), 30

42

Index

	1. Introduction
	2. Related Works
	3. An informal survey
	3.1. Method
	3.2. Results
	3.3. Discussion

	4. Proposing a solution
	5. Implementation of the solution
	6. Validating the solution
	6.1. Method
	6.2. Results

	7. Discussion/Conclusion
	7.1. Future work

	8. Acknowledgement
	9. References
	10. Appendices
	10.1 Appendix A: Informal Survey

	10.2 Appendix B: User Test Survey
	10.3 Appendix C: User Test Documentation
	Installation
	Operating System installation
	Required Python modules

	Guide
	Introduction
	Starting Actors
	Visualizing and editing Actors

	Test 1: Painters Spree
	PainterActor and CanvasActor Class

	Test 2: Dining Philosophers
	Test 3: It works... most of the time
	Survey
	sphof module reference
	Actor classes
	Canvas Actor classes
	Philosopher Actor classes
	ZOCP classes & methods

	Indices and tables
	Python Module Index

