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Abstract

State-of-the-art Electron Microscopes, such as large Transmission Electron Micro-
scopes like the Titan Krios, can automatically process multiple samples in sequence
without human intervention between different samples. Because of this, more image
series can be produced in a shorter timespan. Therefore, it is deemed necessary to
also be able to complete the further processing of the images that result from the
microscope in shorter time. A possible means of reducing the processing time is by
parallelising the software used for the further processing of image series. Within this
project, we have investigated the parallelisation of Electron Tomography software, in
particular IMOD, on the Leiden Life Sciences Cluster (LLSC) available at LIACS. It
was investigated how a configuration for parallel execution of the software could be
optimized to realize minimal execution times for each processed image set. We have
observed modest speed-ups and have gained understanding in how this goal could be
further accomplished.
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1 Introduction

The Netherlands Center for Electron Nanoscopy or, in short NeCen, is a research
facility which applies electron tomography on tiny samples such as cells, viruses,
and bacteria. This process enables researchers to make 3D configurations of
these tiny living organisms, which can be used to understand them better which
is necessary for future studies. To achieve this they have a state of the art
electron microscope which produces images of the samples. These images can
then be formed to a 3D configuration. The electron microscope used is called

the Titan Krios[1], which has a width of about 1 meter and a height of about
3 meters (see figure 1). It is connected to a computer, so images taken can be
immediately stored on a hard disk and be processed right afterwards.
The scope of the project is to enable software facilitating this process, called

Fig. 1: Titan Krios

Source: http://www.oist.jp/news-center/photos/titan-krios

IMOD to run on a computing cluster, called the Liacs Life Sciences Cluster,
which is situated at the Leiden Institute of Advanced Computer Science. In the
case this is confirmed to work and confirmed to produce valid output, research
will focus on the optimization of the process on the LLSC, by utilizing the
availability of parallelism in both the software and the LLSC. This leads to the
research question: How to implement IMOD on the LLSC, and how to improve
it when it works?
First in Section 2, information is provided on certain terms mentioned and
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general background on the project. In Section 3 the possible solutions and the
work on them is made clear. Then results are given in Section 4 and finally the
paper is concluded with Section 5, in which recommendations are given about
the best configuration and the development of the used software.
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2 Background

This section contains the background of the project. First we will give a general
image of electron microscopy and electron tomography. Then we will explain
the terms IMOD, LLSC, and Torque. Lastly, we will grant insight in the current
situation, and thus why this project as started.

2.1 Electron Microscopy

Electron microscopy enables visualizing objects on sub-cellular scale, which are
not visualizable by devices relying on the capturing of rays of light in the visible
spectrum: Wavelengths for light in this spectrum vary from 400 to 700nm, which
is from violet to red, and therefore can only be used to capture up to a resolution

of 200nm[2]. Objects on sub-cellular scale however are much smaller, and usually
vary in the tenths of nanometers. Electron microscopes can capture these tiny
samples, and with a specialized electron microscope even capturing objects of

around 50pm is reported[3], which is managed by sending electrons through the
sample instead of regular light. As electrons collide with the sample, they either
go through or bounce off. The amount of electrons that go through the sample
and with that the amount of electrons that arrive at the bottom determine
the densities of different parts of the sample, which therefore can be used to
visualize the sample. As at the bottom either a capturing device or electron-
sensitive layer, such as phosphor, is placed which captures the electrons which
went through the sample, this visualizes the sample. Invented roughly eighty

years ago[4], these microscopes have been improved a lot, as the earliest were
relatively small and could for example not store their output on a computer.
The main setup of an electron microscope is as follows: At the top, an electron
cannon will shoot electrons in a beam through the microscope, which is best
imagined as a giant tube. Roughly halfway a sample will be placed, along with
3 sets of lenses. The first set, the condensor lenses, focus the electrons slightly
to keep them in a beam, as they tend to scatter when shot at high velocity. The
second set, the objective lenses, either converge the beam further to ensure as
many electrons as possible hit the sample or only let the electrons pass which
are bound to hit the sample. This differs along with different types of electron
microscopy. The third set, the projector lenses, diverge the beam again to allow
the electrons to scatter over the phosphor screen or CCD camera at the bottom.
A CCD camera, or Charge-Coupled Device camera, can detect photons, or in
this case electrons, and converse these to electrical charges, which are then used
to produce an image. In modern times, the CCD camera is more popular as
images taken with a camera can be directly stored on a computer. See Figures

3 and 4[5] for methods of attaching a CCD camera to an electron microscope.

2.2 Electron Tomography

Electron tomography is the process in which multiple tilted images (such as
in figure 5) of the same sample are combined into a 3D-model visualizing the
sample, enabling a better study of it than what could be done with a 2D-model.
This is done by taking the multiple images acquired in tilted fashion and look-
ing for corresponding points on which they can be aligned. The best way to
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Fig. 2: Standard layout of a transmission electron microscope

Source:

"http://commons.wikimedia.org/wiki/File:Scheme_TEM_en.png"

ensure these points can be found easily is by adding goldbeads to the sample
before acquiring images of it. The beads will have to be small as they must not
block the view on the sample, but still be large enough to be measured as beads
and not as noise. A diameter of roughly 1% of the size of the sample will do
fine. These beads will then be tracked through the different images by hand or
through software, and after tracking them through the images an aligned model
will be formed.
Another way to align the images is by using patch tracking. This is particu-

larly useful when there were no goldbeads in the sample when acquiring images,
when there are not enough beads to align the picture on those, or any other
reason due to which aligning on the beads does not work. Patch tracking divides
each image in patches and matches them to the other pictures and their patches
to find out which patch of the other images corresponds most to the selected
patch of the current image. This will be repeated for several different patches in
several different images, but in the end the images will be aligned corresponding
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Fig. 3: Example of a CCD camera (1)[5]

Fig. 4: Example of a CCD camera (2)[5]

to the different tracked patches. An advantage of this second method is that,
assuming the goldbeads were left out on purpose, a 3D-model will be made of
the sample without any beads blocking the view. The goldbeads, when used,
can also be removed through different software which fills the space of a bead
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Fig. 5: Tilted image from the Etomo tutorial[6]

up with an average of it’s surroundings, but without adding them in the first
place there will be actual sample in that place to view. A disadvantage however
is that this method is generally less precise, even with fine-tuned parameters.
The alignment of images also depends on the type of containment the sample is
put in when an image is acquired with an electron microscope. In general, there
are two types of containment used at NeCEN, plastic and ice. The main differ-
ences between containing the sample in either ice or plastic are the cost and the
quality. A plastic embodiment is cheaper as it costs less labour than an embed-
ding of ice, but it can drastically lower the quality, as plastic is more susceptible
to the heat generated in the process. This may seem counter-intuitive, as ice
would generally melt from heat and plastic would in general keep in shape, but
on the small scale of electron microscopy even a small change can change the
protein configuration and therefore alter the sample. When the plastic embod-
iment is subject of any heat source, whether external or even just the electrons
sent through it, it may slightly deform. Ice does not have this problem, as in
general the heat it is subject to is not enough to make it melt, while it will
also not deform. A sample does however take more effort to be prepared in ice
than in plastic, and is therefore more expensive than embedding the sample in
plastic. Due to this plastic is a lot more used as a sample embedding in research.
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2.3 IMOD

The process of electron tomography requires specific software to perform. There
is a lot of software which can be used for this purpose, but as NeCEN and other
affiliated instances were already using a certain software package and we could

get their help to understand how this software works, IMOD[7][8] was chosen.
Developed in the early 1990s, the software utilizes partly other, older, software
in its own software structure which also offers a graphical user interface called
Etomo. Since the initial release numerous changes have been made, such as
an improved user interface and multithreading. Since release 4.7.3, released
around 3/31/14, a script called batchruntomo was introduced, which automates
the process of building a tomogram with a set of options given at start.

2.4 LLSC

LLSC is an abbreviation for the LIACS Life Sciences Cluster. It consists of
a number of server machines, or nodes, obtained by LIACS which have been
configured as a cluster-computer. The total number of active nodes in the
cluster is 24. The clock frequency is 2.66 GHz, and there are 9 nodes with 8
processors per node and 15 nodes with 4 processors per node, plus 5 nodes which
are used for specific functions such as user space, development and management.
Each node has 16 GB RAM and approximately 655 GB total hard disk size,
distributed over 6 disks: 3 disks of 146 GB and 3 disks of 73 GB. Aside from
that, there is also a file server which can be used by all nodes as storage.

2.5 Torque

Torque[9] is the resource manager with built-in scheduler which runs on the
LLSC and enables the users to submit jobs to the cluster: A job is a program or
a collection of programs to run in select order with possible given options on how
the cluster should accommodate these programs. For example the amount of
nodes and their type needed, the amount of time the job can at most use, and the
priority the job should have over other submitted jobs. Other options include
the dependencies between different jobs, or interactivity between multiple jobs
in a job-array. The scheduler then tries to fit submitted jobs as well as possible
with the amount of available nodes and jobs already running at that moment:
Jobs submitted with a higher priority than the ones already running will not
interrupt those, but will be run earlier than other already queued jobs with
lower priority. This first of all enables a user to submit multiple of these jobs
at the same time, without having to check every so much time if a new job can
be submitted as the previous one finished. Secondly it enables multiple users
to independently of each other submit jobs on the cluster, which according to
their priority and/or position in the queue will execute in a certain order, and
which will not interfere with each other for they do not use the same nodes,
space and/or processors. Lastly, a scheduler takes away the pain of distributing
the resources over the available jobs by hand.
The built-in job-scheduler of Torque has shown to be suboptimal in previous

work[10] and Maui[11] has shown to be a suitable replacement scheduler. The
Maui scheduler comes with its own utilities, however with some altering of
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the configuration PBS/Torque utilities can also be utilized. This enabled the
continued use of already developed scripts.

2.6 Old implementation

NeCEN currently has a cluster dedicated to processing tomography with IMOD.
It consists of about eight relatively old server nodes configured as a small cluster,
but as the LLSC consists of many more nodes it should be possible to signif-
icantly reduce computation times compared to the NeCEN computer-cluster.
With the switch to the LLSC, for convenience and minimizing possible delays
due to needed input, the goal is to fully automate this process on the LLSC.
This is instead of the current manual usage of IMOD on the old cluster. An-
other point is that the process of putting in parameters in the different screens
of Etomo was mostly redundant. Quite a lot of the parameters were the same
for all data sets, and most of the parameters could be known at the start of a
process. Images in the stack to leave out, for example, could be determined by
just looking at the image stack before the process, and does not require to first
run some programs on the stack to for example remove X-rays. Still, in Etomo
these parameters needed to be filled in every single time an image stack was
put in, even for sets already processed once, and for most of the parameters one
needs to sit through all the previous steps before having a chance to put them
in. Figure 6 shows the different tools used in the different categories of Etomo’s
GUI, which is shown in figure 7.
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Fig. 6: Flowchart Etomo
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Fig. 7: Etomo Main Window (GUI)
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3 Implementation

In this section the implementation of the project is discussed. At first, the initial
solution is given. Secondly, we will talk about the re-evaluation of the develop-
ment plan, then about the outcome of that which is called batchruntomo. Lastly,
we will talk about the experimental setup which is used to run experiments.

3.1 Initial solution

3.1.1 The idea behind the initial solution

The initial solution to automate Etomo was to take the original software and
wrap it up in a script to ensure the tools which had to be used were used in the
correct order and with the correct parameters. This way a tomogram would be
generated exactly the same way it could be generated when processed manually
using the GUI, however now the tasks would be automated. The parameters
to be used by the script should be easy to fill in and easy to change afterwards
for different data sets to be processed. This can for example mean having the
parameters all in one file which is read by the script, or having tiny scripts
for each of the used tools and hardcode the parameters in each. One could of
course give all the parameters as arguments when calling the script, but given
the amount of needed parameters for the process this is not feasible.
Next to the script there should be measures to ensure the script runs correctly
each time and preferably in a consistent way. At least in the developing stage
of the script this would surely help, but also with the actual data sets and the
parameters, as for one it would be quite a hindrance if the script would not be
consistent in succeeding on certain data sets, and for two as many data sets
need to be run in order without having to worry about any needed user-guided
actions to occur in the meantime.
The script itself would consist of multiple smaller scripts, each as a wrapper
around one of the tools used in a normal processing of a data set with the GUI,
with in each small script the parameters hardcoded, mainly because this was
the easiest way and secondly as the only test set present at the time was the
tutorial test set, which needed the same set of parameters on each run. Each
small script would then be called by a larger script, wrapping around all the
smaller scripts, to ensure the scripts are called in the correct order.

3.1.2 Implementing the initial solution

Part of the process of making these scripts and the overlapping script is to anal-
yse the order in which the small scripts need to be called, and on a second notion
to investigate which scripts could possibly be executed in parallel when they are
independent of each other. In hindsight the latter was not possible, because the
tools had to be run in sequential order as shown in Figure 6. Another thing to
take notice of was multiple uses of a tool on different moments in the process.
For example newstack, which recreates the data set to ensure changes made to
different subsets of the data set are applied to the alignment set, so other tools
using the alignment set would use the changed set instead of the original. It was
probably made a separate tool to enhance modularity, as it is used on different
places in -almost- the same way each time, whereas differences apply to having
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multiple alignment stacks, in some cases, probably to enhance the quality of the
overall process.
A third thing was the presence of performance improvement tools already present
or the ability to improve tools to enhance performance. For example using the
.com-files which were used by Etomo to communicate parameters to the tools,
but which we did not use as writing the parameters down in the code was easier.
Within the GUI, these are used as carriers of parameters, but it was expected
these files also held parameters which were not given in advance by the user,
such as values determined by the output of a tool. The parameters for the tuto-
rial data set could be easily deduced from the GUI, which was used to process it
already a few times, and the parameters required to call the tools were the same
as asked for by the GUI: The names corresponded and therefore they could be
determined to be corresponding easily. An error occurred however after imple-
menting a few tools: The .preali file could not be found, and instead only a .ali
file seemed to be made where ali is an abbreviation for alignment. With this
particular example about the .preali file, it was the tool newstack which had
more functionality, as it can produce either a .ali and a .xf file, or a .preali and
a .prexg file, and a parameter could enable the second two parameters while
the first two extensions were the default behaviour. Other problems include
the seeming need of the automating of a tool called 3dmod which could not be
automated as it required user input, and whether transferfid would be needed
or not in the eventual implementation.
Due to errors and uncertainties like these the development of the script and
subscripts went slower than expected. Example of this is the 3dmod problem
mentioned earlier, as the user input only seemed to be clicking certain buttons
which could not be automated, and therefore was too big of a hindrance to
keep. Instead requiring user input was also considered, but rejected for the ex-
tra logic to program. The implementation of the script wrapping patchcrawl3d
presented a bigger problem, as no clear parameters were given there and neither
to be found anywhere, whereas the GUI seemed to have found a way around.
So to say: the GUI seemed to use it without any parameters and still succeeded,
but using it that way as an user outside the GUI and hoping it will have default
parameters for itself does not work. A seeming solution to that problem was the
usage of the solvematch.com .com-file, which seemed to handle quite some tools
including but not limited to patchcrawl3d and solvematch. The automatic pro-
cessing of this file, in which also no clear parameters were given for patchcrawl3d
but which seemed to work for the GUI, would be done with subm or submfg,
where fg means foreground, so whether the tools called in the .com-file processed
with subm(fg) should be run on either the foreground or the background. How-
ever, it still did not work, for one because patchcrawl3d still gave errors about
missing parameters, and for two because solvematch just refused to give clear
way with the correct parameters and kept insisting the residual error was too
high.

3.2 Re-evaluation of development plan

As the problems occurring, mentioned in the previous section, were not easily
and quickly solved, the choice was made to contact the original developer and
spokesperson of IMOD; David Mastronarde, and ask him a few questions re-
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garding our problems. The questions asked can be found in Figure 8, and their
respective answers in Figure 9. Note that the numbers before the answers refer
to the first, second, and third question asked.

Fig. 8: The e-mail with questions to David Mastronarde.

The first question was about 3dmod, specifically about how to automate it
to fix the residuals and move the bead-traces by this residual. This means that
when the tool used to point out the beads, at that time Raptor, gives estima-
tions of were the beads are positioned, 3dmod will track these beads through
the stack and based on the performance of these estimations in comparison with
other estimations in the stack a conclusion is drawn whether a bead could be
at its estimation, and a new estimation is given. In most cases the new estima-
tions are better than the first ones, and as the process can be repeated over and
over it would be nice if it could be automated in some way. In the first answer
autofidseed was mentioned, of which we had no knowledge at that point in time
and is discussed later in this paper.
The second question was about implementing parallelism in the script, as some
tools were able to make use of multiple processors and nodes which was imple-
mented in the ‘parallel manager’. Being able to, in a way, copy this process and
use it in the script could speed up the process a lot, but as it had little impor-
tance at that time a positive answer would probably not on itself have made a
change. Main problem with implementing this in Python was that the original
code is in Java and very complex, due to which it was not readable at all. The
answer on this question mainly meant he saw no gain in re-implementing the
parallel manager and apparently did write the manager in C++, which on its
turn means the Java code was probably only a front-end.
The third question was about the tool subm, which is mentioned earlier, and
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Fig. 9: The e-mail with answers from David Mastronarde, on the questions as
in the e-mail in Figure 8.

the usage of it, as the seeming lack of options did hinder the usage in our script.
However, as was asked about the usage of it without any undocumented needed
pre-processing or undocumented parameters, the answer was quite unsettling
as it did not seem to work under normal circumstances. In hindsight this was
probably due to errors earlier in the process which were missed, and in some
way corrupted .com-files. After this e-mail conversation decision was made to
focus on the usage of batchruntomo on the cluster and perform a performance
analysis instead of focusing on the development of a script able to automate the
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process of tomography.

3.3 Batchruntomo

In later versions of IMOD such a script is already shipped: batchruntomo. This
software is technically the same as the proposed method, as it is a wrapper
around the different tools which should be used in the process. Furthermore,
this script already includes features such as checks in the code for already ex-
isting folders and data, and the possibility to send an e-mail when the process
is finished. The developers also had found solutions for the many problems
we encountered when trying to implement our script: For example the 3dmod
problem, where it was not possible to automate 3dmod as it required buttons
to be clicked, and there was no standard function to instead evade this clicking.
In batchruntomo, this is solved by not using 3dmod at all, while also not being
dependant on Raptor due to that, as the developers implemented autofidseed
which works about as good as when using 3dmod and therefore much better
than Raptor, at least in our case.
As there was no tutorial available at that moment describing the usage of
batchruntomo, step one consisted of for one discovering the functionalities, and
for two the correct way to use these functionalities and the script as a whole.
The version which brought batchruntomo had, as apparently is common with

the tools in the IMOD package, a man page[12] included about the tool de-
scribing the options and the manner to call it in a terminal. However, as found
out quickly enough, that was really only about the terminal usage, and there
was more work needed before a data set could be run with it (by now this has
changed and the man page shows information on the templates, directives, and
their usage). Initial problems experienced with the tool were for one that the
choice of options was not complete as defining where the output should be put
did not have a default, and for two as there were certain dependencies missing.
These dependencies were required files to be filled by the user and consist of
three general templates and one data set specific directive, which all contain
parameters to run batchruntomo.
The template files hold parameters which do not need to be dedicated to a
specific data set, while the dedicated directive file can hold almost all, but is
mainly used for parameters such as those dedicated to the name of the data set
and whether one or two axis should be used. The parameters are of the form
<parameter>=<value>. All possible parameters, their type and whether they

can be placed in a template file are listed online[13]. There are three template
files, in the hierarchy of scope, system and user. Parameters appearing in later
files overrule the corresponding parameters given in previous. The scope tem-
plate is meant to be dedicated to the used electron microscope. Here one can
state a default set of directives for the microscope it is dedicated to, such as
the voltage of the microscope which in general will not be overruled in later
templates. The system template, a step higher in the hierarchy, is meant for a
specific computer system. For example, when multiple data sets from one mi-
croscope are processed on multiple computers, some may be slower than others
and therefore less heavy -on the computer- parameters may be used such as
having beadtrack running less iterations. And finally, there is the user template,
which is dedicated for a certain user on a system: a user can have certain de-
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faults which another user does not, such as having patch tracking enabled. In
our case, as there was only one microscope, one system and one user, one of the
template files was filled in while the others were left empty (it does not matter
which template is filled in and which is empty for this situation). The template
files do not need to be stored in certain directories, as their locations are to
be given in the directive file, however there are default locations to store them:
The system and scope template are by default stored in respectively the folders
SystemTemplate and ScopeTemplate within the ✩IMOD CALIB directory. The
user template is by default stored in the .etomotemplate folder in the ✩HOME
directory.
Having successfully determined how batchruntomo is operated and can be con-
figured, it was time to test how the program would behave with a data set. At
first, tries were made with the tutorial set for Etomo on a stand-alone com-
puter to be able to determine basic errors such as problems with arguments
in a familiar environment. After seemingly successfully running batchruntomo
on this stand-alone computer with the tutorial set, it was tried on the cluster.
As the data set will be moved to the destination given each test, there is a
need to copy the data set each time from a backup-directory to the place one
does want batchruntomo to get the data set from. To achieve this, the initial
script for automating testing did some unnecessary work: It copied a test set
from a fileserver determined to the storage of the datasets called Rosalind to
a special Input folder on the main fileserver, after which batchruntomo moved
it to a folder called Result and there ran its tools on this dataset. As this
progressed each round for possibly hundreds of rounds the time needed for a
complete experiment became enormous. To reduce this time batchruntomo was
slightly rewritten to batchruntomo.no-move, which does not move the dataset
but instead only copies it. In batchruntomo.no-move the line os.rename(source,
dest) was replaced by shutil.copy(source, dest) in the functions deliverAncillary
and deliverStack.

3.4 Experimental setup

Measurements were done on a representative dataset. After running the dataset
a few times with these parameters on the cluster the results were validated and
found to be correct. The parameters for this set can be found in the appendix,
Section A. With these batch and template files the dataset was run several
hundreds of times with different architectural configurations as parameters to
determine the optimal architectural configuration to run the tool on the cluster.
An architectural configuration is meant as a combination of nodes and processors
per node as available resources for a job. The script with which the jobs initially
were submitted is shown in Figure 10.

The script lets each architectural configuration run 10 times, using between
1 and 9 nodes per job and using between 1, 2, 4 and 8 processors per node,
giving a total of 360 runs. Singular characters in the script are variables which
just mean to represent a number in either string or integer format, to make sure
all the jobs are getting the right parameters and no job is launched with the
same number: This is used to differentiate between jobs more easily.
Job options are written to a ’jobfile’, which mainly means they are written to
an external file which qsub, the queue submission tool for Torque, can find and
use instead of relying on the stdin. Options for qsub are denoted as #PBS ...,
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#!/ bin /python

import sys , os , s h u t i l
from subproces s import c a l l

g r e a t e r I t e r a t i o n s = 10 #to ensure some spread data
i t e r a t i o n s = 10

i f len ( sys . argv ) > 1 :
i t e r a t i o n s = int ( sys . argv [ 1 ] )

r e s u l tD i r = ”/home/tomography/ResultatenSimon”

#remove prev ious r e s u l t s
i f os . path . i s d i r ( r e s u l tD i r ) :
s h u t i l . rmtree ( r e s u l tD i r )

os . mkdir ( r e s u l tD i r )

qbeta = r e s u l tD i r + ”/Qbeta”
q = 1
for n in [ 1 , 2 , 4 , 8 ] : #amount o f cores
o = str (n)
p = q ✯ 100
q += 1
#amount o f i t e r a t i o n s per node/ core con f i g
for i in range (0 , g r e a t e r I t e r a t i o n s ) :
j = i ✯10
for k in range (1 , 10 ) : #amount o f nodes
l = str ( k )
m = str ( j + k + p)
os . mkdir ( qbeta + m)
jobname = ”qbatch” + m + ” . job ”
with open( jobname , ”w” ) as j o b f i l e :

j o b f i l e . wr i t e ( ”#!/bin / sh\n\n
#PBS − l nodes=” + l + ” : tomography : ppn=” + o +

” , cput =5:00 :00 , wal l t ime =5:00:00\n\ncd
✩PBS O WORKDIR\n\npython nodef i leToAdoc
✩PBS NODEFILE ” + o + ”\n\nsh runqbatch . sh ”
+ m + ” ” + l + ” ” + o )

c a l l ( [ ”qsub” , jobname ] )

Fig. 10: Script with which jobs are submitted. Small changes were made be-
tween different experiments, to for example also account for the amount
of threads or to increase the cpu- and walltime.

which in the script in Figure 10 only applies to the -l option, describing the
amount and type of resources needed for the job. In this script, the amounts of
nodes (nodes=) and processors (ppn=, or processors per node) are determined



22 3 Implementation

by values given by for-loops, with as static string tomography denoting that only
nodes with the classification string tomography may be used for the job, and
walltime and cput which are respectively denoting the maximum amount of real
time a job may run and the amount of CPU time a job may run. Both are set to
high values to prevent any job being stopped before it is finished. cd ✩PBS O -
WORKDIR ensures the job is being run in the right directory. nodefileToAdoc
is a python script which made sure the nodes with their corresponding amount
of available resources was written to a cpu.adoc file, of which we at that time
were unaware batchruntomo would not look at. At last, the command is given
to run the shellscript runqbatch.sh, which is shown in figure 11.

#!/ bin / bash

i=✩1
nodes=✩2
procs=✩3

startTime=✩ ( date +%s )

Batchruntomo . no−move −ro 140502 Qbeta tomo2 0 −cur r ent /
home/ user /tomo/Qbeta −d e l i v e r /home/tomography/
ResultatenSimon/Qbeta✩{ i } /home/ user /tomo/
batchQbetatest . adoc

endTime=✩ ( date +%s )
elapsedTime=✩ ( ( ✩endTime − ✩startTime ) )
echo ”Qbatch ✩{ i } with ✩nodes nodes and ✩procs p r o c e s s o r s

needed ✩elapsedTime”

Fig. 11: Script with which batchruntomo was executed when a submitted job
was executed.

This shellscript takes as arguments the number which will be in the jobname,
the amount of nodes and the amount of processors per node available. It will
also log the system time before and after the execution of batchruntomo so that
the runtime of batchruntomo can be computed. In the end, these values are put
out in the output file of the job, where all output processed within the scope of
the job will be put. batchruntomo has the following command line arguments:

• The name of the dataset with parameter option -ro.

• The directory the dataset is currently in with parameter option -current.

• The directory the dataset will go to with parameter option -deliver.

• The batch file with the options for the current dataset, which can be
preceded by the parameter option -directive although the last element is
considered to be the batch file.

The used batch file is shown in the appendix, Section A, and as stated there
the template files which also will be used are linked in the batch file.
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qsub −n − l nodes=1: tomography : ppn=8, cput =5:00 :00 , wal l t ime
=5:00:00 runqbatch . sh

Fig. 12: The command with which qsub is called directly from the command
line. To achieve multiple values of nodes and processors per node for-
loops can be added in Bash.

qsub −n − l host=core −014 , nodes=core −014:ppn=8, cput
=5:00 :00 , wal l t ime =5:00:00 runqbatch . sh

Fig. 13: The command with which qsub is called directly from the command
line. Notice that ccore-014 is now both the host and all the nodes qsub
will allocate for the shell script.

Later on the usage of Python scripts to execute qsub was discontinued and
instead of generating a jobfile the command with which qsub was called was
directly executed in the command line as seen in Figure 12. Note that there are
no variables denoting the amount of nodes or processors per node: This could
easily be done by adding for-loops, however at the time we switched there was
no need to do so as the commands were run on a single node. When using this
option, the command becomes as in Figure 13. Here host= means the shell
script will be run from the specified node, instead of from the location from
which the command is issued which in this case is the fileserver. Therefore it
will also look for the resources which are possibly requested by the shell script
on that specific node, such as the template files when running batchruntomo.



24 3 Implementation



25

4 Results

In this section the results given by the experiments will be presented, and the
story of why certain experiments were performed. At first we will talk about
the initial experiments, then we will continue discussing the effects of network
I/O. Then we will look at the performance of a single node setup, followed
by discussing the fluctuations in the results, and lastly we will look at the
performance of a multiple node setup.

4.1 Initial experiments

Experiments have been performed with all possible configurations described in
Section 3.4. The results are shown in Figure 14. Each bar shown in this figure
is the average time resulted from the architectural configuration consisting of
the amount of nodes on the x-axis and amount of cores per node corresponding
to the color of the bar. The average is taken of a varying amount of samples: of
some configurations there are ten successful samples, of others there were only
two, or even zero as has the 9 nodes 1 core per node. The reason of this lack of
samples is that a lot of the spawned processes had aborted. The exact reason is
unknown to us as the error messages were ambiguously only stating the fact that
it aborted and where. The only pattern to be found within these error messages
was the fact that it was always processchunks which failed and not always at
the same spot. processchunks is the tool of IMOD which manages the spawning
and regulating of parallel processes. An abort with this tool indicates there is
an error in either the spawning of the parallel processes or the communication
between them. As the spawning of parallel processes seemed to work fine as it
almost always passed the first few tools used, of which newstack which is run
in parallel, it is very well possible the error came forth due to communication
errors between the parallel processes.
A possible explanation for this communication error has to do with the amount
of instances of batchruntomo running at the same time and the I/O generated
by each of these instances which had to be processed by the filesystem. As this
communication was not only between nodes, but also with the fileserver, and
with every communication the dataset or part of it had to be transmitted to
either a node or to the fileserver there are a lot of GB (waiting to be) transferred
every second. As the queue of outstanding I/O requests grows larger and larger
some processes might give a time-out on the transmission and abort. This would
also explain the timing of each abort in the instances of batchruntomo: As it is
completely dependant on the current load of the fileserver the abort can happen
anywhere in the process.

These I/O problems could also explain the time differences between different
architectural configurations, as the overhead on the transmission of all the in-
stances differs between different points in time, some configurations might take
a longer time than other, which also is seen in Figure 14.

4.2 Effects of Network I/O

To test the effects of the I/O overhead, at first neglecting the time needed
to transfer the dataset on and over to the nodes and back to the fileserver,
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Fig. 14: Average runtimes of the first experiment. The absence of the ‘1 core’
bar at ‘9 nodes’ on the x-axis is because all of these runs aborted. The
high fluctuations were at this point less an issue than the high times.

batchruntomo was run again with the same dataset and parameters but now
only for the configurations with 8 cores. Constraining the experiment to only
include the configurations with 8 cores was as these configurations had the
lowest times in the first experiment and were therefore most probable to also
be recommended in the end conclusion. This experiment consisted of spawning
one instance of batchruntomo at a time, with every next instance spawning two
hours after the previous spawned. As each instance would take less than 40
minutes, which was the highest time it took in the previous experiment, this
would give enough time for each instance to finish on its own without having to
wait for the I/O of the other instances.
The results of this second experiment are plotted in Figure 15 and show no
improvement over the instances which, by our hypothesis, were severely affected
by I/O performed by other instances and therefore allowed for a speed-up in
that regard. Therefore was concluded the main reason of the high differences
between the times of each configuration is the I/O of each individual instance,
still depending on the state of the cluster, but not as much depending on the
I/O of the other instances as expected, at least for configurations with 8 cores.

4.3 Single Node Performance

To determine the effect of the interaction with the fileserver, experiments were
performed with a single instance on a single node with a single core and a multi-
ple amounts of threads. Performing the experiment on a single node is achieved
by copying the dataset to a node’s local storage, and then issue batchruntomo
to take the dataset from and deliver it to this node. To completely eliminate
the fileserver from the experiment, the directives and templates also had to be
stored locally, and the PATH variable had to be changed to point to the new
IMOD CALIB DIR folder. Tests were run in the way used earlier, using Torque
with the Maui scheduler to schedule the processes as jobs on this single node,
just because that way the process would not shut down if the connection was
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Fig. 15: Average runtimes of the 8 cores experiment with the fileserver. Each
run was done two hours after the start of the previous, making sure the
runs did not interfere with each other.

broken. To specify the number of threads used to batchruntomo, ∼/.bashrc was
altered by adding the line export OMP NUM THREADS=1, where 1 could be
changed by the amount of threads we wanted to use, and sourced afterwards.
This knowledge was shared with us by the developer of batchruntomo, as can be
read in Figure 4.3. In the script, we did this by adding the code in Figure 16.

sed − i ’5 s / .✯/ export OMPNUMTHREADS=✩{ j }/ ’ ˜/ . bashrc
source ˜/ . bashrc

Fig. 16: Bash code to specify the number of threads used by batchruntomo.

Ensuring the use of only 1 core on this node was done by not using ‘chunk-
ing’, as chunking allows batchruntomo to be run with multiple cores. To enable
this option the parameter -cpus, followed by a number corresponding with the
number of cores one wants to allow batchruntomo to use, has to be added to
the execution command of batchruntomo. However, when not adding this pa-
rameter to the call of batchruntomo it will use only 1 core.

The results were surprising. Not only was it faster without the fileserver, it
was a factor 6 faster than the quickest runtime observed up till now: 1919

320.2 ≈ 6.
The durations of the tools of which batchruntomo consists are plotted in Figures
19, 20 and 21. The legend is shown in Figure 18.
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Fig. 17: Mail about cpu.adoc from David Mastronarde

Fig. 18: The legend of the experiments ‘without fileserver’.
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Fig. 19: First experiment without fileserver, utilizing a single node, a single core,
and a single thread.

Fig. 20: First experiment without fileserver, utilizing a single node, a single core,
and 4 threads.
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Fig. 21: First experiment without fileserver, utilizing a single node, a single core,
and 8 threads.



4.3 Single Node Performance 31

As can be observed some lines are a bit variable, but there is a more heavy
fluctuating first bar in comparison to the others in Figures 19 and 20. To test
whether the fluctuations were consistent a second experiment was performed
which was the same as the previous experiment but had more runs: each bar
in Figures 22, 23, 24 and 25 is the average of 10 instances instead of a single
instance. This shows the fluctuations are persistent, on which we will continue
in the next Section.

Fig. 22: Second experiment without fileserver, utilizing a single node, a single
core, and a single thread. Each bar is the average of 10 instances.

Fig. 23: Second experiment without fileserver, utilizing a single node, a single
core, and 2 threads. Each bar is the average of 10 instances.
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Fig. 24: Second experiment without fileserver, utilizing a single node, a single
core, and 4 threads. Each bar is the average of 10 instances.

Fig. 25: Second experiment without fileserver, utilizing a single node, a single
core, and 8 threads. Each bar is the average of 10 instances.

After that, chunking was enabled to see how much faster that would make
batchruntomo on a single node. Enabling chunking was, as said before, done by
adding the -cpus parameter to the command, altering the command to as seen
in Figure 26.

Batchruntomo . no−move −cpus ✩{amountOfCores} −ro 140502
Qbeta tomo2 0 −cur r ent /home/ user /tomo/Qbeta −d e l i v e r
/home/tomography/Resu l taten /Qbeta✩{number} /home/ user

/tomo/batchQbetatest . adoc

Fig. 26: Command with which batchruntomo can be called while using chunking.
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We therefore ran an experiment with 1, 2, 4 and 8 cores and 1, 2, 4 and 8
threads. The experiment with 1 core and 1 thread already are seen in a previous
graph, but are also added in this graph as reference material. The results of this
experiment are in Figure 27. In this graph the amount of cores used is shown
in ascending order on the x-axis, the time used in seconds on the y-axis, with
the different colored bars representing the amount of threads used, in ascending
order. Each bar is an average of 5 batches in the experiment with the same
architectural configuration.

Fig. 27: Experiment on a single node which makes use of multiple amounts of
threads and multiple amounts of cores (so it is both using and not using
chunking), without making use of the fileserver.

4.4 Fluctuations

The fluctuations found in the results are caused by trimvol, as the other tools of
batchruntomo at most differ about a second in time between different batches
while trimvol may differ up to about 20 seconds. trimvol is “a command-line

interface to the programs findcontrast and newstack”[14], of which newstack is
used earlier in the process and already is known to be close to constant in time.
findcontrast therefore was thought to be the source of the fluctuations, as it
functions to find “the absolute minimum and maximum pixel values within the

selected volume”[15] of an image. However, the code of findcontrast did not use
random-function or anthing alike, and therefore was neither the source of the
fluctuations.
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Ensured it is not a random-function causing the fluctuations, the probable cause
of the fluctuations becomes I/O. First thought is the influence of I/O operations,
both scheduled but not yet performed and performed but not yet written to
memory (only stored in buffer). The I/O operations which are scheduled but
not yet performed can be checked using the shell command

cat / sys / block /sdb/ s t a t

and then looking at the ninth column which contains the number of these oper-
ations at that moment. As this number was always zero, this could neither be
the case. The amount of dirty pages is returned in kB with the command

cat /proc /meminfo | grep ”Dirty ”

A dirty page is a page, or a piece of information, which is stored in a buffer
but not written to the memory: the time required to write these pages to the
memory can take multiple seconds, depending on the size. If this would happen
sometimes during the execution of trimvol and otherwise not, this could explain
the fluctuation. Therefore a new experiment was performed, in which the dirty
pages were synced with system call sync right after trimvol. To implement this
in batchruntomo the following code was used:

import ctypes
l i b c = ctypes .CDLL( ” l i b c . so . 6 ” )
sync = l i b c . sync ( )

as it uses Python2.
As shown in Figure 28 and more specifically the times of trimvol in Figure 29,
this seems to lessen the fluctuation, but does not lessen it to the extent where
it can be concluded that dirty pages are the prime cause of the fluctuations.
Even more, the amount of dirty pages does not seem to even correlate with the
fluctuations: Another experiment, seen in Figures 30 and 31 shows respectively
the times and the amount of dirty pages (and the pending I/O operations, which
was always 0), shows the lack of this.
As a next step to explain the fluctuatons, we turned to the buffer cache. The
buffer cache would be filled with the data of the process in the first batch. If
the buffer cache is not cleared, or the files of the first batch are not removed
(whereas removing the files also accomplishes the buffer cache to be cleared),
then the buffer cache is available for subsequent runs. This could lead to dif-
ferent run times for subsequent runs, depending on how the page/buffer cache
algorithm is tuned. To get an idea whether these effects can be measured, an-
other experiment was done where the results are deleted right after running a
batch. The results of this experiment are shown in Figures 32 and 33. As can
be seen, the fluctuations lessen drastically when the cache is cleared in this way,
to the extent where we can conclude the fluctuations are caused by the cache
usage of the latter batches when the cache is not cleared.
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Fig. 28: First experiment with sync, using a single thread, a single core, and a
single node. In this experiment sync is added right after the execution
of trimvol, and added to the time which is measured for trimvol.
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Fig. 29: First experiment with sync, using a single thread, a single core, and a
single node. In this graph only the times of trimvol, including the sync,
are shown.

Fig. 30: Second experiment with sync, using a single thread, a single core, and
a single node. This experiment is run to see if there is any correlation
between the time and the amount of dirty pages and outstanding I/O
processes, which are seen in Figure 31.
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Fig. 31: Second experiment with sync, using a single thread, a single core, and
a single node. This experiment is run to see if there is any correlation
between the amount of dirty pages and outstanding I/O processes and
the time, which is seen in Figure 30. Note that the orange bar is showing
the amount of dirty pages in kb, and the non-present blue bar would
show the amount of outstanding I/O processes.

Fig. 32: This graph shows an experiment in which the results are immediately
removed after a run of batchruntomo, to clear the buffer cache. That
way, subsequent runs cannot use the cache to predetermine their results.



38 4 Results

Fig. 33: This graph shows the same experiment as in Figure 32, however with
only the times made by trimvol.
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4.5 Multiple Node Performance

Having determined the cause of the fluctuations, the next step was to determine
the effect of running batchruntomo on multiple nodes without the use of the
fileserver. As chunking did result in a great improvement in speed and therefore
a great reduction of time the different runs took, the use of multiple nodes
could also have a comparable effect. Running batchruntomo on multiple nodes
is done by having one node as a host, the same way as when running on a single
node, and then making clear to batchruntomo which nodes it can use with which
amount of cores by means of the -cpus parameter. This means the data is at
the beginning stored at the host node, and will be processed on the host node
as well. The code of a script which runs an experiment with batchruntomo
on multiple nodes can be found in Figure 35. Notice how the nodes to be
used with their respective amount of cores to be used are a string of format
<node>#<amount of cores>, and then multiple of these behind each other
with comma’s in between. The results of this experiment are seen in Figures
34, 36, and 37.

Fig. 34: Third experiment without fileserver, in which 2 nodes are used in com-
bination with either 1, 2, 4, or 8 cores and 1, 2, 4, or 8 threads to show
the effect on the time of an execution when using multiple nodes.
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#!/ bin / bash

declare −a t o t a lCpu l i s t=(” core−015” ” core−016” ” core−017”
” core−018” ” core−020” ” core−021” ” core−012” ” core−013

” ) #a l l nodes on the c l u s t e r wi th 8 cores

for l in 2 4 8 #amount o f nodes
do

for k in 1 2 4 8 #amount o f cores
do

c p u l i s t=” core−014#✩{k}” #the hos t node , which i s
t h e r e f o r e p r e f e r r ed to be used each run

n=✩ ( ( l −2) )
for m in ✩ ( seq 0 ✩{n})
do

c p u l i s t=” ✩ cpu l i s t , ✩{ t o t a lCpu l i s t [m]}#✩{k}”
done

for j in 1 2 4 8 #threads
do

sed − i ’5 s / .✯/ export OMPNUMTHREADS=✩{ j }/ ’ ˜/ .
bashrc

source ˜/ . bashrc
for i in {1 . . 5}
do

rm −r f / s c ra t ch / sk l av e r / r e s u l t a t e n /QbetaSync✩
{ i }✩{ j }

mkdir −p / sc ra t ch / sk l av e r / r e s u l t a t e n /
QbetaSync✩{ i }✩{ j }

startTime=✩ ( date +%s )
batchruntomo . no−move . sync −cpus ✩{ c p u l i s t } −

ro 140502 Qbeta tomo2 0 −cur r ent / s c ra t ch /
sk l av e r / t e s t s e t −de / s c ra t ch / sk l av e r /
r e s u l t a t e n /QbetaSync✩{ i }✩{ j } / s c ra t ch /
sk l av e r / batchQbetatest . adoc

endTime=✩ ( date +%s )
elapsedTime=✩ ( ( ✩endTime − ✩startTime ) )
echo ”Qbatch ✩{ i } with ✩{k} cpus , ✩{ l } nodes

and ✩{ j } threads needed ✩elapsedTime”
done

done

done

done

Fig. 35: Bash script in which batchruntomo is executed multiple times, 5 times
for each combination of an amount of threads, an amount of cores, and
an amount of nodes.
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Fig. 36: Third experiment without fileserver, in which 4 nodes are used in com-
bination with either 1, 2, 4, or 8 cores and 1, 2, 4, or 8 threads to show
the effect on the time of an execution when using multiple nodes.

Fig. 37: Third experiment without fileserver, in which 8 nodes are used in com-
bination with either 1, 2, 4, or 8 cores and 1, 2, 4, or 8 threads to show
the effect on the time of an execution when using multiple nodes.
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5 Conclusion & Discussion

In this section we will conclude the project. First we will give a recommended
configuration, drawn from our conclusions when looking at the results. Then
we will discuss the possible improvements for batchruntomo.

5.1 Recommended configuration

Comparing the results of the experiments, first to notice is the large difference
in performance when batchruntomo has to use the fileserver as seen in Figure
14, compared to having the data stored locally such as in the experiment of
Figure 22. Further investigation is necessary to find out how the fileserver is to
be effectively utilized. Then, in the results of Experiment 1 and Experiment 2
without chunking, the results are fluctuating in total time, which was explained
in Section 4.4, but above all there was no way to conclude the optimal amount
of threads to be used without chunking, as there was no configuration with an
amount of threads which clearly made batchruntomo faster compared to the
other configurations. However, when using chunking, a speedup was present,
as for example shown in Figure 27. Therefore we already recommend using
chunking when using batchruntomo, of which the speed-up however stagnates
between 4 and 8 cores. Multiple threads also stagnate in speed-up between 4
and 8 threads, giving a first conclusion that the use of multiple cores and threads
above 4 is not useful.
When Figures 34, 36 and 37 are compared with Figure 27 we can see the lowest
times for the different amounts of nodes:

1 node: about 250 seconds with 4 cores and 4 threads.

2 nodes: about 270 seconds with 4 cores and 4 threads.

4 nodes: about 290 seconds, with 4 cores and 4 threads.

8 nodes: about 290 seconds, with 8 cores and 4 threads.

Slight fluctuations might be the case, as mentioned before, but the results
show a general trend, even more as the bars were each averages of five batches in
the experiments. Therefore we can see that the addition of multiple nodes does
not decrease the time used with multiple cores and threads available. Important
to note is that the experiments were concluded with a dataset of about 2.6GB,
meaning that with larger datasets the configurations could perform differently.
Aside from possibly minor improvements in speed when using multiple nodes,
or up to 8 cores, with larger datasets we do not believe they will vary much
from our results.
The conclusion therefore is that the optimal configuration for the used dataset,
regarding usage of at least as possible nodes, cores, threads, and therefore power,
while minimizing the time needed for batchruntomo is the configuration which
consists of 1 node, 4 cores and 4 threads, as higher amounts of resources did
not show improved runtimes.
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5.2 Possible improvements for batchruntomo

While batchruntomo works correctly when given the right parameters for a cer-
tain dataset, the user guide on it is incomplete and therefore too confusing. The
man page does show some hints on how to fill in the templates and directives,
but does not contain much information on the possible parameters themselves.
Because of this the options to put in the directives and templates could be de-
scribed more to inform the user of its effects and the proper value to give to the
parameter in certain conditions. As of now, only with Etomo next to it and a
few years of experience in using the software help one suffice in understanding
the directives and the proper parameters to be filled in for certain data sets,
and then it still may fail on the first few tries.
Another possible improvement, also in regard to the first one, is a graphical
interface for batchruntomo, in which one can give in the different parameters
for the different directives in an overlookable way, whereas the filling in of the
parameters in a text file, which is the proper way to do it as of now, can be
frustrating and confusing. The interface can than also hold fields for the pa-
rameters to give in in the terminal, including a simple file browser to look up
a file and automatically let it be recognized by the program, as many of the
probable users of this software will not know too much of the system they are
working on and how the program behaves on it as the researchers who are doing
tomography generally do not have too much knowledge of computer systems.
As of IMOD beta-version 4.8.22 there is a graphical interface for batchruntomo,
but as it does not seem to work correctly yet and is more an indication of what
it will become, there is no attention given to it by us.
A third improvement can be the error handling of batchruntomo, or IMOD in
general: As the errors differ between errors regarding the images to errors re-
garding the system, quite some errors are not understood by people working
with it. Of course, excessive testing at the spot where the error occurs or sim-
ply asking it to a developer may help, but if the errors given would not just
describe the error but also a possible solution this could help greatly. Or, more
distant but still satisfying, a complete list of possible errors, for example sorted
on the different tools and programs which give them, with an explanation of
what went wrong and how to solve it in most cases. As the data sets are usually
quite large and the directive files hold a lot of directives and corresponding pa-
rameters, it might be confusing which parameter is actually faulty, while testing
if one has corrected it properly may also take quite some time, as not everyone
has a large cluster available.
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Appendix

A Parameters Batchruntomo Experiment

Directive Adoc

1 #Created by Roman Koning 18 j u l y 2014 f o r t e s t i n g Qbeta
da t a s e t

2 #Arguments t ha t are ONLY presen t in batch . adoc are
denoted here , f o r a l l ( i n c l u d i n g t h e s e ) see the user .
adoc f i l e

3
4 #Arguments to copytomocoms
5
6 s e tup s e t . copyarg . name=140502 Qbeta tomo2 0
7
8 #Other se tup parameters
9
10 s e tup s e t . scopeTemplate=
11 /home/ user / ImodCalib/ScopeTemplate/ scopeKr ios1 . adoc
12 s e tup s e t . systemTemplate=
13 /home/ user / ImodCalib/SystemTemplate/systemCryo . adoc
14 s e tup s e t . userTemplate=
15 /home/ user / . etomotemplate /userRoman . adoc
16 s e tup s e t . scanHeader=1
17 s e tup s e t . da ta s e tD i r e c to ry=
18 /home/ user /tomo/Qbetatest
19
20 #Preprocess ing
21
22 runtime . Preproce s s ing .any . removeXrays=1
23 runtime . Preproce s s ing .any . a r ch i v eOr i g i na l=1
24
25 #Beadtracking
26
27 runtime . BeadTracking .any . numberOfRuns=5
28
29 #Auto seed f i n d i n g
30
31 comparam . au to f i d s e ed . au to f i d s e ed .MinGuessNumBeads=5
32
33 #Aligned s t a c k cho i c e s
34
35 runtime . Al ignedStack .any . correctCTF=0
36 runtime . Al ignedStack .any . eraseGold=0
37 runtime . Al ignedStack .any . f i l t e r S t a c k=1
38
39 #Aligned Stack Parameters
40
41 runtime . GoldErasing .any . extraDiameter=2
42
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43 #Recons truc t ion
44
45 runtime . Reconst ruct ion .any . ext raThickness=100
46 runtime . Reconst ruct ion .any . doBackprojAlso=1
47
48 #Pos tproces s ing
49
50 runtime . Trimvol .any . r e o r i e n t=1

Scope Template Adoc

1 #Made by Roman Koning , 16 j u l y 2014 ,
2 #for Titan Krios 1 us ing GIF at 300 keV
3
4 #Arguments to copytomocoms
5
6 s e tup s e t . copyarg . vo l t age=300
7 s e tup s e t . copyarg . Cs=2.7
8
9 #We have not ye t recorded no i se f i l e s f o r the Titan Krios

1
10 s e tup s e t . copyarg . c t f n o i s e=
11 /home/ user / No i s eF i l e s / ImodCalib/CTFNoise/F20/

F20 b in1 l inux . c f g
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System Template Adoc

1 #Made by Roman Koning , 18 j u l y 2014 ,
2 #for Titan Krios 1 us ing GIF at 300 keV
3 #This f i l e on ly con ta ins arguments t ha t are in both
4 #batch and temp la te f i l e s and t h e r e f o r e i s ( or at
5 #l e a s t shou ld be ) f u l l y complementary ( wi thou t
6 #doub le or miss ing e n t r i e s ) to the batch . adoc
7
8 #Arguments to copytomocoms
9
10 s e tup s e t . copyarg . dual=0
11 s e tup s e t . copyarg . montage=0
12 s e tup s e t . copyarg . p i x e l =0.72
13 s e tup s e t . copyarg . go ld=10
14 s e tup s e t . copyarg . u s e rawt l t=1
15 s e tup s e t . copyarg . ex t r a c t=1
16 s e tup s e t . copyarg . b inning=1
17 s e tup s e t . copyarg . twodir=0
18 s e tup s e t . copyarg . b inning=1
19 s e tup s e t . copyarg . de focus=−5000
20
21 #Preprocess ing
22
23 comparam . e r a s e r . c cde r a s e r . PeakCr i te r ion=10
24 comparam . e r a s e r . c cde r a s e r . D i f fC r i t e r i o n=8
25 comparam . e r a s e r . c cde r a s e r .MaximumRadius=2.1
26
27 #Coarse a l ignment
28
29 comparam . xcor r . t i l t x c o r r . F i l t e rRad iu s2 =0.25
30 comparam . xcor r . t i l t x c o r r . F i l t e rS igma2 =0.05
31 runtime . F i du c i a l s .any . f i d u c i a l l e s s=0
32 comparam . prenewst . newstack .ModeToOutput=
33
34 #Tracking cho i c e s
35
36 runtime . F i du c i a l s .any . trackingMethod=0
37 runtime . F i du c i a l s .any . seedingMethod=1
38
39 #Beadtracking
40
41 comparam . t rack . beadtrack . LightBeads=0
42 comparam . t rack . beadtrack . LocalAreaTracking=0
43 comparam . t rack . beadtrack . Sobe lF i l t e rCen t e r i ng=1
44 comparam . t rack . beadtrack . KernelSigmaForSobel=1.5
45 comparam . t rack . beadtrack . RoundsOfTracking=5
46
47 #Auto seed f i n d i n g
48
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49 comparam . au to f i d s e ed . au to f i d s e ed . TwoSurfaces=1
50 comparam . au to f i d s e ed . au to f i d s e ed . TargetNumberOfBeads=50
51 comparam . au to f i d s e ed . au to f i d s e ed . TargetDensityOfBeads=50
52 comparam . au to f i d s e ed . au to f i d s e ed . Exc ludeIns ideAreas=0
53 comparam . au to f i d s e ed . au to f i d s e ed . Adjus tS i ze s=1
54
55 #Alignment
56
57 comparam . a l i g n . t i l t a l i g n . SurfacesToAnalyze=1
58 comparam . a l i g n . t i l t a l i g n . LocalAl ignments=0
59 comparam . a l i g n . t i l t a l i g n . MagOption=3
60 comparam . a l i g n . t i l t a l i g n . Ti l tOpt ion=0
61 comparam . a l i g n . t i l t a l i g n . RotOption=−1
62 comparam . a l i g n . t i l t a l i g n . BeamTiltOption=0
63 comparam . a l i g n . t i l t a l i g n . Res idua lRepor tCr i t e r i on=3
64
65 #Tomogram Pos i t i on ing
66
67 runtime . Po s i t i on i ng .any . wholeTomogram=1
68 runtime . Po s i t i on i ng .any . binByFactor=1
69 runtime . Po s i t i on i ng .any . t h i c kne s s=800
70
71 #Aligned Stack Parameters
72
73 runtime . Al ignedStack .any . l i n e a r I n t e r p o l a t i o n=1
74 runtime . Al ignedStack .any . binByFactor=1
75 comparam . c t f p l o t t e r . c t f p l o t t e r . I nve r tT i l tAng l e s=0
76 comparam . c t f c o r r e c t i o n . c t f p h a s e f l i p . I nve r tT i l tAng l e s=1
77 comparam . m t f f i l t e r . m t f f i l t e r . LowPassRadiusSigma=0.35 0 .05
78 runtime . GoldErasing .any . b inning=1
79 comparam . go l d e r a s e r . c cde r a s e r . ExpandCi r c l e I t e ra t i on s=2
80
81 #Recons truc t ion
82
83 comparam . t i l t . t i l t .THICKNESS=400
84 comparam . t i l t . t i l t .RADIAL=0.35 0 .05
85 runtime . Reconst ruct ion .any . u s e S i r t=0
86
87 #SIRT parameters
88
89 comparam . s i r t s e t u p . s i r t s e t u p . Leave I t e r a t i on s=2 4 6
90 comparam . s i r t s e t u p . s i r t s e t u p . Sca l eToInteger=−32000 32000
91 comparam . s i r t s e t u p . s i r t s e t u p . RadiusAndSigma=0.4 0 .05
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B Protocol to processing a dataset with batchruntomo on a
cluster

1. Think of the amount of nodes, cores, and threads which have to be used
for the dataset. If it is around 2.6GB in size; 1 node, 4 cores and 4 threads
will do fine. Also configure ∼/.bashrc or equivalent to set the amount of
threads to be used.

2. Fill in the template files and batch file accordingly to how batchruntomo
should process the dataset.

3. Copy the dataset to a node on which it will be processed. Make sure the
node has enough cores to use, so at least the amount of cores determined
in step 1. Also check this for all nodes to be used: When a node has not
a sufficient amount of cores, use the maximum amount of cores available
instead.

4. Determine the locations on the host node to be used. That is: Make sure
the folder in which the result has to be deposited exists and is not already
filled with a result of the same dataset. Also make sure the templates are
in the right directories as configured in the batch file. Lastly make sure
there is enough space left on the node to complete the process.

5. Run batchruntomo with the right parameters: Specify the nodes and their
amounts of cores correctly, the location from which to take and where to
move (or copy) the dataset, and the directive file. Possibly also define
to which e-mail address a notification should be sent when the process
finishes.

6. Check the results. If they are insufficient, revert to step 2. If the process
took too long at that, revert to step 1.


