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Abstract

In this paper we will investigate a 3D version of the game of Hex. In this variant the
gameboard is in the shape of a cube and each field is also in the shape of a cube. First
we will try to solve the game to know which of the players will win the game when they
play in an optimal way. We have solved the game of 2 × 2 × 2 3D Hex. The outcome
of this game, given optimal play, is a draw. Solving games with larger playfields takes a
long time.

So for playboards larger than 2 × 2 × 2 we will use Monte-Carlo Tree Search to
examine the game. We use outcome weights to decide which of the possible moves will
yield the best result. These outcome weights are based on the nature of the players.
There are three different natures that we will study in this paper: competitive – selfish,
misère and cooperative. For cooperation there are three levels: level 1, level 2 and level
3 cooperative.

We run the experiments on different types of gameboards: a 3× 3× 3 gameboard,
a 4× 4× 4 gameboard and a 3× 3× 3 gameboard with the center field excluded. We
use the outcome weights belonging to the different types of natures to investigate how
the game ends if the players play in that way.
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1 Introduction

Hex is a two-player board game played on a hexagonal grid in the shape of a rhombus. In
this game there are two players. Both have their own pieces, marked with their color and have
their own sides of the rhombus marked with their color. Two opposite sides belong to one
player, the other two sides to the other. The two players place in turn pieces of their color,
usually black and white (or red and blue), on empty cells of the hexagonal grid. Each player
tries to build a chain of pieces of their own color, from one of their sides to the other. The
playboards can vary in size, but usually the game is played on a 11x11 rhombus, see [18]. A
11x11 playboard is shown in Figure 1, Figure 2 shows a playboard in which blue wins.

Figure 1: A Hex gameboard with sides of size 11. From: MrLsMath.com, uploaded by Bill
Lombard.

Figure 2: A Hex gameboard with sides of size 11. With this configuration blue wins. From:
wikipedia, uploaded by Jean-Luc W.
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In this paper we will study Multiplayer 3D Hex played with three players. First we will try
brute-force solving and then we will use Monte-Carlo Tree Search to study the game. The
Monte-Carlo Tree Search algorithm that we used, uses outcome weights to evaluate a possible
move. For every configuration of the playboard, when Monte-Carlo Tree Search is called, four
outcome weights are needed. The points that are assigned to the value of a possible move
when a random playout is played from a certain configuration are based on these four weights.
For example, take a look at the following outcome weights: 1 2 3 4. When evaluating a pos-
sible move from a certain configuration these values are needed. The first value denotes the
number of points that will be assigned to the value of a move if player 1 wins the random
playout. The second value denotes the number of points that will be assigned to the value
of a move if player 2 wins the playout. The third for player 3 and the fourth value for if
the game ends in a draw. From now on we will use that order for the outcome weights and
we will denote player 1 with ’P1’, player 2 with ’P2’, player 3 with ’P3’, and a draw with ’draw’.

We use Monte-Carlo Tree Search with outcome weights, for which there are several values
possible. For example if all of the players want P1 to win, then the outcome weights for all of
the players will be 3 0 0 1. Now all the possible moves from the present configuration are one
by one checked. First one of the possible moves is done and then the game will be played out
randomly. If the game is won from a certain configuration by P1, then the value of the move
that was checked will be increased by 3 points. The value of the move will be increased by 0
points if one of the other players won and with 1 if the game ends in a draw. The outcome
weights that will be used in this paper can be found in Table 1.

Nature of the player Outcome weights Meaning
Competitive – selfish P1: 3 0 0 1 Every player wants to win himself.

P2: 0 3 0 1
P3: 0 0 3 1

Cooperative level 1 P1: 3 1 0 1 Every player wants most to win himself,
P2: 1 3 0 1 but now there exist ’teams’. So a player
P3: 0 0 3 1 that is in a team also kind of wants his

teammate to win.
Cooperative level 2 P1: 3 2 0 1 Every player wants most to win himself,

P2: 2 3 0 1 but now there exist ’teams’. So a player
P3: 0 0 3 1 that is in a team also kind of wants his

teammate to win.
Cooperative level 3 P1: 3 3 0 1 Every player wants most to win himself,

P2: 3 3 0 1 but now there exist ’teams’. A player
P3: 0 0 3 1 that is in a team is equally satisfied if

his teammate wins.
Misère P1: 0 3 3 1 Every player does not want to win

P2: 3 0 3 1 himself.
P3: 3 3 0 1

Table 1: The outcome weights for the different natures of the players.
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In this paper Section 2 introduces the rules of Multiplayer 3D Hex and contains some back-
ground information on 2D Hex. In Section 3 we will give a brute-force solution for 2 × 2 × 2
Multiplayer 3D Hex and proof that, given optimal play, the game ends in a draw. In Section 4
we will apply Monte-Carlo Tree Search using outcome weights to study the game in Section 5.
Furthermore we will study the three first most done moves in Section 5. Section 6 contains
the conclusion of this study and future work.

This research bachelor thesis is written under supervision of Walter Kosters and Jeannette de
Graaf in pursuit of a Bachelor of Science degree in Computer Science at Leiden University.

2 Related work and rules

Hex was introduced in 1942 by Piet Hein at Niels Bohr’s Institute for Theoretical Physics,
see [15, p. 73–83]. In 1947 it was also invented independently by the mathematician John
Nash at Princeton University, see [18]. More on Hex can be found at [8].

2.1 Rules of 2D Hex

The game starts with an empty playboard. Board sizes vary, but usually the game is played on
a board with sides of size 11. Two players in turn place pieces of their color on a hexagonal
grid in the shape of a rhombus, the player with black pieces makes the first move. They can
only place pieces on the grid where there is no other piece. One player plays black and the
other plays white pieces, see [2].
A player wins the game if he/she manages to create a chain of pieces of his/her own color
from one of his/her sides to the other. The other player tries to stop player 1 from creating
such a chain.
When there are no empty places left on the board then one of the players has won the game,
because it was proven that the game never ends in a draw. This can easily be seen, see [14]
and [16].
Furthermore, given perfect play in Hex the first player has a theoretical win in any size because
of the strategy-stealing argument, see [17]. This argument proves that the second player can-
not have a winning strategy, so the first player always wins the game. This is because if there
was a winning strategy for the second player, then the first player could steal this strategy and
be one turn ahead, see [16]. The strategy-stealing argument works as follows: the first player
does a random move on the playboard. Now the other player does a move. The first player
now can pretend to be the second player, by ignoring the first move he made. He steals the
winning strategy from the second player by pretending to be the second player. He plays the
winning strategy that belonged to the second player and when for this strategy he has to put
a piece on the place where he already had put a piece in the first turn, he just does another
random move instead. This argument can only be used for games where the players have the
same set of possible moves with the same results. Because then an extra piece of yours on the
playboard cannot be disadvantageous.
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For this reason in the game of Hex the pie rule is more often than not used. The pie rule is a
rule that gives the second player the opportunity to take over the move of the first player or
to make his own move. So the second player has the possibility to become the first player or
to stay the second. So if the first player does a move that leads to winning, then the second
player can take over the move.

2.2 Variants of Hex

The game of Hex has many variants that were proposed in the years after its invention. Some
of the variants of Hex are Blockbusters, the game of Y, Mind Ninja, Chameleon, the Shannon
switching game, Gale, Pex, Hecks, Nex and Havannah. These games are strategy board games
played on a hexagonal grid of any shape and any size. Monte-Carlo Tree Search was applied to
many variants of the game of Hex, see [12], [4] and [9], more on Monte-Carlo Tree Search can
be found at [10] and [5]. Also other algorithms are used to solve Hex, see [1], [7], [3] and [6].

2.3 Multiplayer 3D Hex

One version of 3D Hex was studied before, see [8]. In that version the gameboard was folded
so that you could play on a 3D-shaped gameboard. But you could only place pieces on the
surface of the shape and there were only two players. A new variant of 3D Hex that we will
study was to the best of our knowledge never studied before. In this variant the game is played
on a cube, but here not only the surface of the cube is used to play on and in this variant we
have three players. The most interesting part about playing Hex on a 3D board is that the
fields now are cubes that also adjoin six other fields like the 2D version, but in a different way.

Figure 3: 3D Hex is played on a cube.
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2.4 Rules of Multiplayer 3D Hex

The game of Hex is played on a rhombus, where we have four sides. Each field is at most
connected to six adjacent fields. 3D Hex is played in a cube with six sides consisting of fields
in the form of a cube. Each of these fields now is also at most connected to six adjacent fields,
see Figure 3.
There are two more sides to the playboard in 3D Hex, therefore we have decided to add another
player to the game. Thus 3D Hex is played with three players. One player needs to connect
the top and bottom of the cube with pieces of his color. The second player needs to connect
the left and the right and the goal of the third player is to connect the front and the back.
In turn all three players place a piece of their color on one of the fields in the cube. One of
the players wins if he/she manages to connect his two sides of the playboard. The game ends
in a draw if all fields in the cube contain a piece belonging to one of the players and no one
managed to make an unbroken chain from one of his/her sides to the other. This game may
end in a draw, because there are now two players who can block the third. So if one player is
blocked, there is not necessarily a winner, in contrast to 2D Hex. To keep up with the different
chains made by the players, we will use Union Find, more on Union Find can be found in [13].
It was proven that three-player games are hard, see [11] and [19].

3 Brute-force solutions

By solving the game of 3D Hex, we can for sure say who will win the game given perfect play.
The problem statement of this section is therefore:

“How can we solve 3D Hex, to find out who will win the game given perfect play?”

Figure 4: A 3D Hex playboard with sides of size 2, the real representation and the repre-
sentation that is going to be used in this paper.
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3.1 Sides of size 2

When we look at 3D Hex with sides of size 2, we get a playboard like shown in Figure 4. In this
figure also the 2D representation of a configuration is shown. Here the first field represents the
front and the second field represents the back of the cube. This representation will be used in
the following proof that shows that 2×2×2 3D Hex, if all players play optimal, always ends in
a draw. Also with a simple brute-force program it was confirmed that the game ends in a draw.

We looked at the gametree that can be drawn to check how this game will end. We can
calculate the number of states by knowing that in each field there are four possible values: the
field can be in possession of P1, P2, P3 or can be empty. For a 2× 2× 2 gameboard there are
eight fields. The maximum amount of states is therefore: 48 = 65536. Some of these states
will never be reached, because for example you cannot have only ’1’s on the whole gameboard.

About the size of the gametree we can say that in the first turn P1 can do eight different
moves. In the next turn there are only seven moves left to choose from for P2 and so on. So
the size of the gametree is 8! = 40320 configurations. A number of these configurations is
reachable and the rest can already be won in a previous stage. This tree, with at most 40320
nodes, is really big and hard to draw. For larger gameboards the tree is even larger, see Table
2. So we need another way to examine the game.

Size of the gameboard Maximum number of configurations
2 × 2 × 2 8! = 40320
3 × 3 × 3 27! = 1.0888869 × 1028

4 × 4 × 4 64! = 1.2688693 × 1089

Table 2: The upperbound for the size of the game tree.

3.1.1 Proof: 2 × 2 × 2 3D Hex always ends in a draw

Let us take a look at Figure 5. We see the 2D representation of the 3D gameboard. The
first square is the front side and the second square is the back side. On the right of the 2D
representation of the gameboard the direction in which the players play is displayed. In the
figure the only possible first move is done by P1 — because of symmetry all possible first
moves are the same, they all cover one corner of the cube. This player needs to connect the
top and the bottom of the cube. So the only possible move for the first player to win by the
next turn is to do the move marked with a gray ’1’.

Figure 5: A 2D representation of the only possible first move for P1.

So when a player places a piece on the gameboard, he only has one possible next move to win
the game here indicated with the gray ’1’. P2 now has two options:
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1. Block P1.
2. Do another move and hope to win himself.

Let us first look at the first option. He can block P1 by placing his piece on the gray ’1’.
This situation is displayed in Figure 6. The only possible move for P2 to win in the next turn
is shown with a gray ’2’.

Figure 6: P2 blocks P1.

Now P1 has no chance of winning the game in the next turn, but P2 does. But because there
always is one effective counter move, the next player (P3) can block this chance of winning.

Let us take a look at the other option P2 had to not block P1, but do another move displayed
in Figure 7.

Figure 7: P2 does another move.

Now P1 and P2 both have a chance of winning in their next turn. It is now P3’s turn. He can
choose between the following options:

1. Block P1.
2. Block P2.
3. Don’t block and play another move.

The next player after P3 is P1. So if P3 does not block him, he will win in the next turn. So
P3 cannot do other than choose for the first option.

We can now say that in games where there is always one effective counter move the game
always ends in a draw, because each player can always block the next player if he is winning
or do another move if he is not winning at that moment. So the argument here is in fact: if
a player is about to win, he can always be blocked by the previous player, therefore Hex 3D
2 × 2 × 2 always ends in a draw.
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3.2 Sides of size 3

When we play 3D Hex on a playboard with sides of size 3, then there is not always one effective
counter move, so we cannot use the argument from the previous subsection that the game
always ends in a draw.

To use the computer to compute the result of a game given perfect play, we need to know
how long this will take. Table 3 gives us an idea on how long it will take to run our program
from a certain depth in the gametree. In the first column the depths are given. This means
that to that depth the game was played random and from there solved exactly. So if you want
to solve the game from depth 21, then you need to do 21 random moves and then brute-force
solve it for the remaining six moves and this will take 0.001 seconds according to the table.

From depth Runtime Size: maximum number of configurations
21 0.001s 6! = 720
20 0.007s 7! = 5040
19 0.048s 8! = 40320
18 0.384s 9! = 362880
17 4.065s 10! = 3628800
16 8m 52.849s 11! = 39916800
15 6m 35.951s 12! = 479001600
14 9u 8m 30.837s 13! = 6227020800

Table 3: The runtime to brute-force solve 3 × 3 × 3 3D Hex from a certain depth.

From this table we can see that it takes a long time to solve 3 × 3 × 3 Hex. To still get an
idea of the outcome of the game, Monte-Carlo Tree Search is used in the next chapter.

These experiments were run on the terminal, with version 2.5.3 (343.7) and gcc version 4.2.1,
of a MacBook Pro with a 2.6 GHz Intel Core i5 processor and with OS X Yosemite version
10.10.4.
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4 Applying Monte-Carlo Tree Search

Solving the game of 3×3×3 3D Hex takes a long time, but to get an idea of a good strategy
for the game Monte-Carlo Tree Search is going to be used. First several experiments will be
done and then a good strategy for the players will be derived by looking at the most played
moves. The problem statement of this section is therefore:

“How can we apply Monte-Carlo Tree Search to the game of 3 × 3 × 3 3D Hex,
to find a good strategy for the players?”

4.1 Method

Our implementation of 3D Hex is used to produce the results from the next section. C++ is
used to implement Hex 3D. The cube that represents the playboard is a three-dimensional
array where all fields are initially set to a character that represents an empty field. If one of
the players plays a turn, the empty field is set to his corresponding number.

To check if the game is won Union-Find is used. For all chains on the gameboard made by
the same player there exists a set. For every new move a set is produced containing only the
field where this move was done. Then the program checks if this set is adjacent to one of
the elements in another already existing set containing fields that are occupied by the same
player. If so this set with the newly occupied field is merged with the already existing set,
because it also belongs to that chain if it is occupied by the same player as the elements in
the already existing set and if it is adjacent to one of the elements in the set. For each set it
is kept up if there is an element in the set that touches one side of the playboard and if there
is an elements that touches the other side. This way it can be checked if someone has won,
because if he/she managed to connect both sides and all the elements in the set are adjacent
fields from the player, then the game is won.

Monte-Carlo Tree Search selects a next move by checking all possible moves from the present
configuration and for each of these moves a number of random playouts will be played. It
checks how many of these random playouts the player whose turn it is wins and how many
times any of the other players wins or the game ends in a draw. The outcomes are each given
a value: the outcome weight, later on we will discuss how these values will be chosen. The
outcome weight belonging to a certain outcome of a random playout is added to the value of
the move. So the value of the move is in fact the sum of all outcome weights corresponding
to the outcomes of the random playouts. The function eventually selects the move that is
assigned the most points, so the move that seems to be the best at that point. This move
is played. To do the random playouts with Monte-Carlo Tree Search we need a function that
plays the game randomly. This function checks how many fields are empty and generates a
random number to select one of these fields.

4.2 Union find

The union find or disjoint-set data structure is a data structure that keeps track of a number
of non-overlapping sets of elements, see [13]. Each of these sets is represented by the root,
which is called the representative of the set. This data structure uses three operations:
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Make(X) Creates a new set with one single element X.

Find(X) Checks in which subset an element X is contained and returns the representative
of that subset.

Union(X,Y) Joins two subsets X and Y into a single subset containing all elements of X
and Y exactly once.

4.3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a strategy used to build a program that plays games
very well. It constructs a search tree by evaluating possible moves. It has successfully been
used to optimize game playing programs, see [12]. Monte-Carlo Tree Search checks for every
possible move the outcome of the game by doing random playouts on a playboard from that
move and further. From the results of these random playouts a search tree is built. When all
possible moves are given a value based on the outcomes of the random playouts and the search
tree is built, the best move is selected and played by the player whose turn it is, see [10]. An
illustration of MCTS is shown in Figure 8.

Figure 8: A search tree for the strategy of Monte-Carlo Tree Search. From: [5].

These are several variants of MCTS. For example there is an Upper Confidence Bounds (UCB)

formula that is used to choose the node that will be expanded: vi +C×
√

lnN
ni

. In this formula

vi stands for the estimated value of the node, ni is the number of times this node has been
visited during the game and N is the number of times that its parent has been visited during
the game. C is a parameter that can be changed. There is also a variant of MCTS using Upper
Confidence Bounds for Trees (UCT). In this paper we will use the basic Monte-Carlo Tree
Search algorithm, without UCB or UCT.

4.4 Evaluation of Monte-Carlo moves

When our program searches for the best move by using the algorithm of Monte-Carlo Tree
Search, for every possible move from that configuration a number of playouts are done to
see which move yields on average the best result. To assign points to these moves by random
playouts, four outcome weights are needed. The first outcome weight denotes the points added
to the value of that move if in the random playout P1 wins, the second weight denotes the
points added to the value of that move if P2 wins and the third weight denotes the points
added to the value of that move if P3 wins. If the game ends in a draw, then the fourth weight
is added to the value of that move.
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So when it is P1’s turn, the function that plays the Monte-Carlo Tree Search strategy might
be called with outcome weights 3, 0, 0, 1 respectively. With Monte-Carlo Tree Search it is
checked who wins the random playout game by playing random moves. If P1 himself wins,
then the value of that move is increased by 3 points. If P2 or P3 wins the game, nothing
happens. And if the game ends in a draw, 1 point is added to the value of that move. If all
moves are checked and assigned a value, the move with the highest value will be played. This
way P1 is more likely to win with this move.

4.5 Nature of the players

Table 1 in the introduction summed up all the natures of players we will use in this paper.
There are five natures that will be studied in the next section.

Competitive – selfish: Every player wants to win himself, there is no cooperation whatsoever.
If the player himself wins the random playout, the value of the move is increased by 3 points.
If any of the other players wins the value stays the same and if the game ends in a draw the
value of the move is increased by 1 point. See Table 4 for the outcome weights.

Player Outcome Weights

P1 3 0 0 1
P2 0 3 0 1
P3 0 0 3 1

Table 4: Competitive – selfish.

Cooperative level 1: Every player wants most to win himself, but now there exist ’teams’.
So a player that is in a team also kind of wants his teammate to win. If the player himself wins
the random playout, the value of the move is increased by 3 points. If his teammate wins or if
the game ends in a draw the value of the move is increased by 1 point. If another player wins
the value stays the same. See Table 5 for the outcome weights.

Player Outcome Weights

Team: P1, P2 Team: P1, P3 Team: P2, P3
P1 3 1 0 1 3 0 1 1 3 0 0 1
P2 1 3 0 1 0 3 0 1 0 3 1 1
P3 0 0 3 1 1 0 3 1 0 1 3 1

Table 5: Cooperative level 1.
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Cooperative level 2: Every player wants most to win himself, but now there exist ’teams’.
So a player that is in a team also kind of wants his teammate to win. If the player himself wins
the random playout, the value of the move is increased by 3 points. If his teammate wins the
value of the move is increased by 2 points, if the game ends in a draw the value is increased
by 1 point and if another player wins the value stays the same. See Table 6 for the outcome
weights.

Player Outcome Weights

Team: P1, P2 Team: P1, P3 Team: P2, P3
P1 3 2 0 1 3 0 2 1 3 0 0 1
P2 2 3 0 1 0 3 0 1 0 3 2 1
P3 0 0 3 1 2 0 3 1 0 2 3 1

Table 6: Cooperative level 2.

Cooperative level 3: Every player wants most to win himself, but now there exist ’teams’. A
player that is in a team is equally satisfied if his teammate wins as he would be if he himself
won. If the player himself wins the random playout or his teammate wins, the value of the
move is increased by 3 points. If the game ends in a draw the value is increased by 1 point
and if another player wins the value stays the same. See Table 7 for the outcome weights.

Player Outcome Weights

Team: P1, P2 Team: P1, P3 Team: P2, P3
P1 3 3 0 1 3 0 3 1 3 0 0 1
P2 3 3 0 1 0 3 0 1 0 3 3 1
P3 0 0 3 1 3 0 3 1 0 3 3 1

Table 7: Cooperative level 3.

Misère: Every player wants to lose himself. If the player himself wins the random playout, the
value of the move stays the same. If any of the other players wins the value of the move is
increased by 3 points and if the game ends in a draw the value of the move is increased by 1
point. See Table 8 for the outcome weights.

Player Outcome Weights

P1 0 3 3 1
P2 3 0 3 1
P3 3 3 0 1

Table 8: Misère.
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5 Experiments

These experiments were run on the terminal, with version 2.5.3 (343.7) and gcc version 4.2.1,
of a MacBook Pro with a 2.6 GHz Intel Core i5 processor and with OS X Yosemite version
10.10.4. The experiments are explorative, so not exhaustive.

5.1 Number of games

For the experiments in the next section it is chosen to play 10000 games and check how many
times the players win. As a first indication of statistical stability, the same experiment with
1000 playouts was run with different numbers of games. The results are shown in Table 9.
The outcome weights that are used here are from misère, also used in one of the experiments
in the experiments section.

Number of games P1 wins P2 wins P3 wins Draw

100 19 8 28 45
500 64 57 102 277
1000 137 107 216 540
1500 217 160 309 814
5000 736 564 1034 2666
9000 1342 1038 1808 4812
10000 1475 1149 2029 5347
11000 1600 1260 2287 5853

Table 9: Misère play and 1000 playouts per move with different numbers of games as a
first indication of statistical stability.

We can see that the percentages are as follows:

Number of experiments P1 wins P2 wins P3 wins Draw

100 19.0% 8.0% 28.0% 45.0%
500 12.8% 11.4% 20.4% 55.4%
1000 13.7% 10.7% 21.6% 54.0%
1500 14.5% 10.7% 20.6% 54.3%
5000 14.7% 11.3% 20.7% 53.3%
9000 14.9% 11.5% 20.1% 53.5%
10000 14.8% 11.5% 20.3% 53.5%
11000 14.5% 11.5% 20.8% 53.2%

Table 10: Percentages derived from Table 9.

The difference between the run with 100 games and the run with 11000 games is at most 8.2
percentage points and on average 5.9 percentage points. This is a big difference, so we cannot
say that 100 games are sufficient.
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We see that in the next rows the values are getting more and more stable. The difference
between the run with 9000 games and the run with 10000 games is at most 0.2 percentage
points and on average 0.08 percentage points. The difference between the run with 10000
games and the run with 11000 games is at most 0.5 percentage points and on average 0.22
percentage points. This is negligible in comparison with the differences between the values of
P1, P2, P3 and draw. So 10000 games seems to be enough to get reliable results.

5.2 Number of playouts

For the experiments it is chosen to do 1500 random playouts for each move to chose the
best move with Monte-Carlo Tree Search. As a first indication of statistical stability, the same
experiment with 10000 games was run with different numbers of playouts. The results of these
experiments are shown in Table 11. The outcome weights that are used here are from misère,
also used in one of the experiments in the experiments section.

Number of playouts P1 wins P2 wins P3 wins Draw

500 1378 1375 2148 5099
900 1052 952 2421 5575
1000 1467 1154 2039 5340
1100 1344 1354 1887 5415
1250 1413 874 1862 5851
1500 1425 944 1893 5738
1600 1410 953 1986 5651

Table 11: Misère play and 10000 games per move with different numbers of playouts as a
first indication of statistical stability.

We can see that the percentages are as follows:

Number of playouts P1 wins P2 wins P3 wins Draw

500 13.8% 13.8% 21.5% 60.0%
900 10.5% 9.5% 24.2% 55.8%
1000 14.7% 11.5% 20.4% 53.4%
1100 13.4% 13.5% 18.9% 54.2%
1250 14.1% 8.7% 18.6% 58.5%
1500 14.3% 9.4% 18.9% 57.4%
1600 14.1% 9.5% 19.9% 56.5%

Table 12: Percentages derived from Table 11.
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The difference between the run with 500 playouts and the run with 1600 playouts is at most
4.3 percentage points and on average 2.43 percentage points. This is a big difference, so we
cannot say that 500 playouts are sufficient.

We see that in the next rows the values are getting more and more stable. The difference
between the run with 1250 playouts and the run with 1500 playouts is at most 1.1 percentage
points and on average 0.58 percentage points. The difference between the run with 1500
playouts and the run with 1600 playouts is at most 1.0 percentage points and on average 0.55
percentage points. This is almost negligible in comparison with the differences between the
values of P1, P2, P3 and draw. Furthermore, if we would increase the number of playouts, the
runtime would also increase. With this in mind, 1500 playouts seemed to be enough to get
reliable results.

5.3 Results

The number of games chosen is 10000, which seems to be sufficient. The number of random
playouts that is going to be used is 1500. These numbers are an estimation, it is not statistically
significant, the previous subsection contains the justification for using these numbers. In this
section we will first study the whole game and then we will check the first three of the moves
that are done the most from the start-position.

5.3.1 Study of a whole game: sides of size 3

In Table 13 the nature of the players is shown in the first column, the second column indicates
the teams and the following columns show how many times the game was won by each of the
players or ended in a draw. The last column shows the runtime. The experiments were run on
a 3 × 3 × 3 board.

Nature of the players Team P1 wins P2 wins P3 wins Draw Runtime
Competitive – selfish nA 17 0 0 9983
Cooperative level 1 P1, P2 561 100 0 9339 268m12.201s

P2, P3 0 358 591 9051 255m19.007s
P1, P3 4 8 139 9849

Cooperative level 2 P1, P2 8723 289 7 981
P2, P3 0 9670 90 240 255m19.007s
P1, P3 19 0 8066 1915

Cooperative level 3 P1, P2 9267 249 0 484
P2, P3 0 9578 159 263
P1, P3 31 0 9236 733

Misère nA 1425 944 1893 5738

Table 13: Experiments on a 3 × 3 × 3 board using Monte-Carlo Tree Search with 1500
playouts per move and 10000 games. The average runtime for each experiment was 4–5
hours.
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5.3.2 Study of a whole game: sides of size 4

In Table 14 the nature of the players is shown in the first column, the second column indicates
the teams and the following columns show how many times the game was won by each of the
players or ended in a draw. The last column shows the runtime. The experiments were run
on a 4 × 4 × 4 board. We now do 1000 experiments instead of 10000, because otherwise the
experiments will take a long time running.

Nature of the players Team P1 wins P2 wins P3 wins Draw Runtime
Competitive – selfish nA 17 3 0 980 418m1.136s
Cooperative level 1 P1, P2 30 0 6 964 404m4.388s

P2, P3 0 53 1 946 405m43.984s
P1, P3 42 1 15 942 406m30.125s

Cooperative level 2 P1, P2 922 5 0 73 340m22.886s
P2, P3 0 963 2 35 326m16.588s
P1, P3 8 0 953 39 216m11.133s

Cooperative level 3 P1, P2 997 0 0 3 300m31.391s
P2, P3 1 996 0 3 308m1.623s
P1, P3 0 0 994 6 328m12.285s

Misère nA 0 0 0 1000 551m7.533s

Table 14: Experiments on a 4 × 4 × 4 board using Monte-Carlo Tree Search with 1500
playouts per move and 1000 games. The average runtime for each experiment was 6–7
hours.

5.3.3 Study of a whole game: exclude fields

In Table 15 the nature of the players is shown in the first column, the second column indicates
the teams and the following columns show how many times the game was won by each of the
players or ended in a draw. The last column shows the runtime. The experiments were run on
a 3 × 3 × 3 board, with the central field excluded.

5.3.4 Study of the best moves: sides of size 3

For the start position of the game on a 3 × 3 × 3 playboard, it was checked how many times
each move is selected by the algorithm of Monte-Carlo Tree Search and thus done by P1. The
move that was chosen the most, will be studied further. Below in Figure 9 there is displayed
how many times the moves are chosen by P1. The number of playouts is 10000 so that we
get more reliable results and the number of games 1000. The outcome weights for the players
that were used are shown in Table 16 below.

In Figure 9, 10 and 11 the 3D playboard is displayed in 2D. The first square is the front side, the
second is the median plane, and the third is the back side. On the right of the 2D representation
of the gameboard the direction in which the players play is displayed. Now we mark the first
move chosen 1000 times out of 1000 by P1 and check what will be the distribution in the next
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move by P2, see Figure 10. Both these moves are equivalent by symmetry so we proceed with
one of the two. In Figure 11 we can see the distribution of the moves chosen by Monte-Carlo
Tree Search for P3.

Nature of the players Team P1 wins P2 wins P3 wins Draw Runtime
Competitive – selfish nA 0 0 32 9968 241m5.989s
Cooperative level 1 P1, P2 914 179 0 8907 241m6.484s

P2, P3 55 1141 740 8064 239m19.577s
P1, P3 16 60 156 9768 238m57.750s

Cooperative level 2 P1, P2 6547 763 15 2675 230m39.497s
P2, P3 29 8153 1344 474 224m48.447s
P1, P3 267 0 5643 4090 231m26.519s

Cooperative level 3 P1, P2 7246 545 57 2152 224m17.066s
P2, P3 1 9457 386 156 209m32.423s
P1, P3 150 0 5920 3930 234m9.605s

Misère nA 32 754 1123 8091 263m34.720s

Table 15: Experiments on a 3 × 3 × 3 board with the central field excluded using Monte-
Carlo Tree Search with 1500 playouts per move and 10000 games. The average runtime
for each experiment was 4 hours.

Player Outcome Weights

P1 3 0 0 1
P2 0 3 0 1
P3 0 0 3 1

Table 16: Competitive – selfish.

Figure 9: The first move played by P1 (remaining squares have ∅).

Figure 10: The second move played by P2 (remaining squares have ∅).
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Figure 11: The third move played by P3 (remaining squares have ∅).

5.3.5 Study of the best moves: sides of size 4

For the start position of the game on a 4 × 4 × 4 playboard, it was checked how many times
each move is selected by the algorithm of Monte-Carlo Tree Search and thus done by P1. The
move that was chosen the most, will be studied further. Below in Figure 12 there is displayed
how many times the moves are chosen by P1. The number of playouts is 10000 so that we
get more reliable results and the number of games 1000. The outcome weights for the players
that were used are shown in Table 17 below.

In Figure 12, 13 and 14 the 3D playboard is displayed in 2D. The first square is the front
side, the second and third are the following median planes and the fourth is the back side. On
the right of the 2D representation of the gameboard the direction in which the players play is
displayed. Now we mark the first move chosen 489 times out of 1000 by P1 and check what
will be the distribution in the next move by P2, see Figure 13. We proceed with the most done
move that was chosen 895 times out of 1000. In Figure 14 we can see the distribution of the
moves chosen by Monte-Carlo Tree Search for P3.

Player Outcome Weights

P1 3 0 0 1
P2 0 3 0 1
P3 0 0 3 1

Table 17: Competitive – selfish.

Figure 12: The first move played by P1 (remaining squares have ∅).

Figure 13: The second move played by P2 (remaining squares have ∅).
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Figure 14: The third move played by P3 (remaining squares have ∅).

5.3.6 Study of the best moves: exclude fields

For the start position of the game on a 3 × 3 × 3 playboard with the middle field excluded,
it was checked how many times each move is selected by the algorithm of Monte-Carlo Tree
Search and thus done by P1. The move that was chosen the most, will be studied further. Be-
low in Figure 15 there is displayed how many times the moves are chosen by P1. The number
of playouts is 10000 so that we get more reliable results and the number of games 1000. The
outcome weights for the players that were used are shown in Table 18 below.

In Figure 15, 16 and 17 the 3D playboard is displayed in 2D. The first square is the front
side, the second is the median planes and the third is the back side. On the right of the 2D
representation of the gameboard the direction in which the players play is displayed. Now we
mark the first move chosen 477 times out of 1000, that is equivalent by symmetry to the move
chosen 470 times out of 1000 by P1, and check what will be the distribution in the next move
by P2, see Figure 16. We proceed with the most done move that was chosen 1000 times out
of 1000. In Figure 17 we can see the distribution of the moves chosen by Monte-Carlo Tree
Search for P3.

Player Outcome Weights

P1 3 0 0 1
P2 0 3 0 1
P3 0 0 3 1

Table 18: Competitive – selfish.

Figure 15: The first move played by P1 (remaining squares have ∅).

Figure 16: The second move played by P2 (remaining squares have ∅).

22



Figure 17: The third move played by P3 (remaining squares have ∅).

5.4 Discussion

From the results in the previous section we can derive some graphs. We will study them and
we will also discuss and try to explain what we conclude from them.

5.4.1 Competitive – selfish.

Figure 18: A graph with the results from the experiments with competitive – selfish
outcome weights.

In the graph displayed in Figure 18 we can see that most of the games, on average 99.17%,
ended in a draw if the players played competitive – selfish. We can also see that on a 3×3×3
playboard none of the games was won by P2 of P3 and only 0.17% was won by P1. On a
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4× 4× 4 playboard none of the games was won by P3, 0.30% was won by P2 and 1.70% was
won by P1. We see that P1 has some kind of advantage over P2 and P3 by being able to do
the first move. When we do the same experiment on a 3 × 3 × 3 playboard where we exclude
the center field, we see that none of the games is now won by P1 or P2, but now 0.32% is
won by P3. This can be explained by the previous section where we studied the best moves.
The best move, and most done move, by P1 from start-position is the center field. So when
we exclude this field, P1 has to do another move that maybe will result in a draw or loss.

5.4.2 Misère.

Figure 19: A graph with the results from the experiments with misère outcome weights.

In the graph displayed in Figure 19 we can see that most of the games, on average 79.43%,
ended in a draw if the players played misère. We can also see that on a 3 × 3 × 3 playboard
P1 en P3 have the biggest advantage, P3 wins 18.93% of the games and P1 wins 14.25%. P2
wins 9.44% of the games. On a 4× 4× 4 playboard none of the games was won by any of the
players, all games ended in a draw. When we do the same experiment on a 3×3×3 playboard
where we exclude the center field, we see that 0.32% of the games is won by P1, 7.54% by
P2 and 11.23% by P3. The low percentage for P1 in comparison with the gameboard that has
the center field, can be explained by the previous section where we studied the best moves.
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The best move, and most done move, by P1 from start-position is the center field. So when
we exclude this field, P1 has to do another move that maybe will result in a draw or loss.

5.4.3 Cooperative.

In the next graphs displayed in Figures 20, 21, 22 and 23 the gameboard and level of cooper-
ation are given on the x-axis. The gameboard is noted as 3 × 3 × 3 or 4 × 4 × 4. A 3 × 3 × 3
playboard with the middle field excluded is named ’3× 3× 3 e’. ’C L1’ stands for cooperative
level 1 and ’C L2’ for cooperative level 2. ’C L3’ stands for cooperative level 3.

Figure 20: A graph with the results from the experiments with cooperative outcome
weights that shows the wins of P1.

The first thing that stands out in the graph displayed in Figure 20 are the black bars, they
denote the percentage of wins of P1 if he plays in a team with P2. We can take a closer look
at these percentages to see which factors yield advantage. Let us first look at the different
playboards and derive on which playboard P1 probably has the best chance of winning. The
average percentage of wins on a 3 × 3 × 3 playboard is 51.84%, on a 4 × 4 × 4 playboard
64.97% and on a 3×3×3 playboard with the middle field excluded 49.02%. So on a 4×4×4
playboard P1 has the best chance of winning if he plays in a team with P2. He has the least
chance on a 3 × 3 × 3 playboard with the middle field excluded, this can be explained by the
fact that this first center move gives P1 some kind of advantage over the rest if the players.
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Moreover, the more P1 cooperates with P2, the more wins for P1. This can be explained by
the fact that now also P2 wants P1 to win, so he will in most cases not block the winning
moves for P1 anymore. If P1 teams up with P3, he has a really small chance of winning, but
if he is not in a team at all the chances are even smaller.

Figure 21: A graph with the results from the experiments with cooperative outcome
weights that shows the wins of P2.

The first thing that stands out in the graph displayed in Figure 21 are the dark gray bars.
These bars denote the percentage of wins of P2 if he plays in a team with P3. We can take
a closer look at these percentages to see which factors yield advantage. Let us first look at
the different playboards and derive on which playboard P2 probably has the best chance of
winning. The average percentage of wins on a 3 × 3 × 3 playboard is 65.35%, on a 4 × 4 × 4
playboard it is 67.07% and on a 3×3×3 playboard with the middle field excluded it is 62.50%.
So on a 4 × 4 × 4 playboard P2 has the best chance of winning if he plays in a team with P3
and the least chance on a 3× 3× 3 playboard with the middle field excluded. We now see for
the second time that playing on a 4 × 4 × 4 playboard is an advantage for the players, this
can be explained by the fact that the more cooperation there is on a 4 × 4 × 4 playboard,
the less games end in a draw and thus the more games are won by one of the players. In
Figure 23 we see that the number of draws decrease faster when played on a board with size
4 in comparison with when they play on any other board. We can also see that the more P2
cooperates with P3, the more wins for P2 there are. This can be explained by the fact that
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now also P3 wants P2 to win, so he will in most cases not block the winning moves for P2
anymore. When they play on a 3 × 3 × 3 playboard we see that the wins stay about equal
when the level of cooperation goes from level 2 to level 3, but the percentage of wins for P2
is then very high, that can be the reason why it did not increase. The last thing we will derive
is that if P2 teams up with P1, he has a really small chance of winning, but if he is not in a
team at all the chances are even smaller.

Figure 22: A graph with the results from the experiments with cooperative outcome
weights that shows the wins of P3.

The first thing that stands out in the graph displayed in Figure 22 are the black bars. These
bars denote the percentage of wins of P3 if he plays in a team with P1. We can take a closer
look at these percentages to see which factors yield advantage. Let us first look at the different
playboards and derive on which playboard P3 probably has the best chance of winning. The
average percentage of wins on a 3 × 3 × 3 playboard is 58.14%, on a 4 × 4 × 4 playboard it
is 65.40% and on a 3 × 3 × 3 playboard with the middle field excluded it is 39.06%. So on a
4 × 4 × 4 playboard P3 has the best chance of winning if he plays in a team with P1 and the
least chance on a 3× 3× 3 playboard with the middle field excluded. We just saw that P1 en
P2 have both the best chance of winning if they play on a 4 × 4 × 4 playboard, and now we
see that also P3 has the best chance of winning on that board. Also they all have the least
chance of winning on a 3 × 3 × 3 playboard with the middle field excluded. When we look at
Figure 23, we can see that the number of draws on a 3 × 3 × 3 playboard with the middle
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field excluded is the highest, so here there will be less players winning. We can also see that
the more P3 cooperates with P1, the more wins for P3. This can be explained by the fact that
now also P1 wants P3 to win, so he will in most cases not block the winning moves for P3
anymore. The last thing we will derive is that if P3 teams up with P2, he has a really small
chance of winning, but if he is not in a team at all the chances are even smaller.

Figure 23: A graph with the results from the experiments with cooperative outcome
weights that shows the number of times the game ended in a draw.

The first thing that stands out in the graph displayed in Figure 23 are the larger bars when
the cooperation is low. We see that the less the cooperation is, the more the game ends in a
draw. This can be explained as following: the more cooperation there is, the more chance that
one of the players wins the game and so the less games ending in a draw. Let us now take a
look at the different playboards and derive on which playboard the most games end in a draw.
We see that for cooperation level 2 or higher on a 3 × 3 × 3 playboard with the middle field
excluded the number of draws are approximately the highest and for cooperation level 2 or
higher on a 4 × 4 × 4 playboard approximately the lowest. This is in accordance with Figure
20, 21 and 22, we saw that P1, P2 and P3 have the best chance of winning when playing on a
4× 4× 4 playboard, so the games that end in a draw should be low. We can also see that the
average percentage of draws when P1 en P2 are in a team is 38.82%, the average percentage
of draws when P2 en P3 are in a team is 31.21% and the average percentage of draws when
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P1 en P3 are in a team is 44.55%. So P1 and P3 as a team yields in the most games ending
in a draw, P2 and P3 together in a team yields in the least games ending in a draw.

5.4.4 The best moves

We can derive from the best first moves given in the previous section that the most reached
configurations on a 3 × 3 × 3 playboard after the third turn are the three displayed in Figures
24, 25 and 26.

Figure 24: First most reached configuration: 455 out of 1000 times, so 45.5%.

Figure 25: Second most reached configuration: 324 out of 1000 times, so 32.4%.

Figure 26: Third most reached configuration: 220 out of 1000 times, so 22.0%.

The percentage of games with this configurations as third configuration can now be calculated.
As we could see in the previous section in 1000 out of 1000 cases the first move of P1 was
the center move on a 3× 3× 3 gameboard. The second move was 514 out of 1000 times one
move that blocks P1 from winning and in 486 times out of 1000 it was the other move on
the other side that also blocks P1 from winning. These turns are equivalent by symmetry. So
1000 out of 1000 times P2 blocks P1 from winning. So the first and second move played by
P1 and P2 are probably almost always the same. The different options of the third move by
P3 are given in Figure 24, Figure 25 and Figure 26. Here also the percentage of games that
have a third configuration like this is given.

Figure 27: Most reached configuration after third move: 411 out of 1000 times, so 41.1%.
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For a 4×4×4 playboard we can derive from the best first moves given in the previous section
that the most reached configuration after the third is the one displayed in Figure 27.

The percentage of games with this configuration as third configuration can now be calculated.
As we could see in the previous section in 489 out of 1000 cases the first move of P1 was the
move marked with ’1’ on a 4×4×4 gameboard. The second move was 895 out of 1000 times
one move that blocks P1 from winning. And the third move was 940 times out of 1000 the
move marked with ’3’. So the percentage of games that have a third configuration like this,
as given in Figure 27, is 0.489 × 0.895 × 0.940 = 0.4114 this is 41.1%.

We can derive from the best first moves given in the previous section for a 3×3×3 gameboard
with the middle field excluded that the most reached configurations after the third turn are
the ones given in Figure 28, 29, 30 and 31.

Figure 28: First most reached configuration: 289 out of 1000 times, so 28.9%.

Figure 29: Second most reached configuration: 242 out of 1000 times, so 24.2%.

Figure 30: Third most reached configuration: 257 out of 1000 times, so 25.7%.

Figure 31: Fourth most reached configuration: 152 out of 1000 times, so 15.2%.

The percentage of games with this configurations as third configuration can now be calculated.
As we could see in the previous section in 477 + 470 = 947 out of 1000 cases the first move
of P1 was the move on the left of the center move on a 3× 3× 3 gameboard with the middle
field excluded. The second move was 1000 out of 1000 times one move that blocks P1 from
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winning. So the first and second move played by P1 and P2 are probably almost always the
same. The different options of the third move by P3 are given in Figure 28, Figure 29, Figure
30 and Figure 31. Also the percentage of games that have a third configuration like these are
given, calculated as follows:

0.947 × 1.000 × 0.305 = 0.2888 this is 28.9%.
0.947 × 1.000 × 0.256 = 0.2424 this is 24.2%.
0.947 × 1.000 × 0.271 = 0.2566 this is 25.7%.
0.947 × 1.000 × 0.160 = 0.1515 this is 15.2%.

5.4.5 Runtime

What we can derive from the runtimes given in the previous section is that: the more games
ending in a draw, the more the runtime will be. This can be explained by the fact that if
the game ends in a draw, then all moves are done and so the algorithm of Monte-Carlo Tree
Search has to run for 27 moves (on a 3 × 3 × 3 gameboard). When the game does not end
in a draw, then Monte-Carlo Tree Search has to run for less than 27 moves (on a 3 × 3 × 3
gameboard). This can be an explanation of the variation in runtime.

6 Conclusion and future work

We have solved the game of 2× 2× 2 3D Hex. The outcome of this game, given optimal play,
is a draw. Solving games with larger playfields takes a long time, so the rest of the conclusions
are based on experiments with Monte-Carlo Tree Search.

Player Best cooperation partner Best gameboard Worst gameboard
P1 P2 4 × 4 × 4 3 × 3 × 3 e
P2 P3 4 × 4 × 4 3 × 3 × 3 e
P3 P1 4 × 4 × 4 3 × 3 × 3 e

Table 19: The best cooperation partner for the players and also the best gameboard on
which this cooperation yields in the best results and the worst gameboard on which this
cooperation yields in the worst results.

When all of the players play competitive – selfish we see that nearly all of the games end in a
draw. This makes us think that if would solve 3D Hex on a 3×3×3 gameboard or a 4×4×4
gameboard the result could possibly be a draw. This is left for future work to examine. We
also saw that P1 has some kind of advantage by being able to do the first center field move,
because when the game was played on a 3 × 3 × 3 gameboard with the center field excluded,
the wins of P1 decreased.

When all of the players play misère we see that now also most of the games end in a draw. We
also saw that P1 has some kind of advantage by being able to do the first center field move,
because when the game was played on a 3 × 3 × 3 gameboard with the center field excluded,
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the wins of P1 decreased a lot. We can see that on a 4 × 4 × 4 gameboard the percentage of
games that ended in a draw is 100%, so on larger gameboards it seems to be easier to cause
the game to end in a draw.

From the experiments where the players cooperate we can conclude who the player is with
whom the players need to cooperate to get the highest percentage of wins. Table 19 shows
for each player his best cooperation partner. We can see that the best cooperation partner
is the player who’s turn is after yours. So when two players play together, the player playing
right before the other has the best chance of winning. Also in Table 19 can be found the best
gameboard on which this cooperation yields in the best results and the worst gameboard on
which this cooperation yields in the worst results.
We can see that P1, P3 and P3 have the best chance of winning if they cooperate with the
player playing after them on a 4 × 4 × 4 gameboard and if they cooperate with the player
playing after them on a 3 × 3 × 3 gameboard with the middle field excluded they do not get
the best out of the cooperation. We can also see in Figure 23 that the number of draws on a
4×4×4 gameboard is the lowest, this is a consequence of the better profit for P1, P2 and P3.

The reason why if P1, P2 and P3 cooperate with the player playing after them on a 3× 3× 3
gameboard with the middle field excluded they do not get the best out of the cooperation,
can be that this middle field plays an important role in the game, as stated in the study of
the best moves in the previous section.

For a cooperation level of 2 or higher on a 4 × 4 × 4 gameboard the number of draws is
approximately the lowest and on a 3 × 3 × 3 gameboard with the middle field excluded the
number of draws is approximately the highest. So the winning chances on a larger playboard
are bigger. If P1 and P3 play together in a team it yields in the most games ending in a draw,
if P2 and P3 play together in a team it yields in the least games ending in a draw.

Furthermore we saw that the more cooperation there is and the higher its level, the less games
ending in a draw. This gives the players a better opportunity to win the game. This is because
the player playing after you is no longer blocking all of your moves. And the higher the coop-
eration, the less win chances of yours he will be blocking, so the more chance you get to win
the game.

The last thing we can derive from the results of cooperation is that if you do not play in a
team, you have the least chance of winning if the other players are in a team. So playing in a
team is always better.

With regard to the best moves: the best first move for P1 seems to be the center move. This
is why P1 has less wins on a 3×3×3 gameboard with the middle field excluded in comparison
with a normal 3 × 3 × 3 gameboard. So we can say that it might be an idea to introduce the
pie rule in this game, so P2 or P3 can take over the move done by P1. The best move for
P2 is the move that blocks this first move of P1. So one of the two moves that blocks this
first move of P1 is the best move for P2, and these moves are equivalent by symmetry. Then
there are three options for the third move played by P3, and these three options are all moves
wherein P3 blocks the other players from winning. For a 4 × 4 × 4 gameboard the best first
moves for P1 are the moves in the middle of the cube. Then P2 blocks P1 and P3 blocks P2.
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For a 3 × 3 × 3 gameboard the best first moves for P1 is the move on the right of the center
move. Then P2 blocks P1 and P3 blocks P2, P1 or tries making his own chain.

About the runtime we can say that the more games ending in a draw, the longer the runtime
will be. We presume that if 3× 3× 3 or 4× 4× 4 3D Hex will be solved then the game would
end in a draw. By presuming that, we also know that the runtime of this experiment will take
a long time, because a run that ends in a draw takes a long time running. This should be
taken into account in future work.

The most interesting thing that we did not manage to do is solving 3D Hex for larger game-
boards, this can be done in future work. Also the results of the experiments with Monte-Carlo
Tree Search are an estimation and are not statistically significant, so in future work these
experiments can be repeated to be statistically significant or they can be repeated with more
random playouts per move or more games.
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