
Universiteit Leiden

Opleiding Informatica

Analysis and Visualisation

of Data of an Outdoor

Sports Mobile Application

Name: Mark Post

Date: 23/06/2015

1st supervisor: Dr. Michael Emmerich
2nd supervisor: Dr. Wojtek Kowalczyk

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Almost everyone has a smartphone these days. All these phones have a GPS and that can be
used to record a track you walk, run or bicycle. There are many application that for all mobile
platforms that do that, but the ones we reviewed did not do any trend analysis. In this thesis
we used the data recorded by an external application, imported it into our application, analyse
it and try doing trend analysis.
The project has three parts. We need to store the data somewhere first before using it. So the
first part is designing a database. The resulting database is a compact database that can run on a
smartphone. After storing the data, we can use it. In the second part we analyse the data. This is
called time series analysis. Time series analysis is done by linear regression, Gaussian processes
(kriging) and a combination of both. The final part of the thesis is about visualising the created
regression model and other statistics generated from the imported data.

i

ii

Contents
Abstract i

1 Introduction 1
1.1 Research Questions . 1

1.2 Thesis Overview . 1

2 Activity Tracking Applications 2
2.1 Analysis of Applications . 2

2.2 Miles Calls . 3

2.3 Related Work . 3

3 Database Design 4
3.1 Definitions . 4

3.2 Requirements Database . 4

3.3 ER Diagram in Databases . 5

3.4 Final Design . 6

3.5 Discussion . 7

4 Function Approximation 8
4.1 Linear Regression . 8

4.2 Ordinary Kriging . 9

4.3 Estimation of θ . 11

4.3.1 Estimating θ by Hand . 11

4.3.2 Estimating θ by Maximum Likelihood Estimation 12

4.3.3 Estimating θ by Cross-Validation . 13

4.4 Combining Ordinary Kriging and Linear Regression 14

4.5 Discussion . 15

5 Visualising in a Mobile Application 16
5.1 Overview of Application . 16

5.2 Overall Trends . 17

5.3 Track Overview . 18

5.4 Discussion . 18

6 Conclusion 20

7 Outlook 21

A Datasets Used in Experiment 22

References 22

iii

iv

Chapter 1

Introduction
These days most people have a smartphone, a small computer with a lot of functionality. For
example the GPS is a wonderful part. It can track all your movement. We can use the phone to
track our movements through space. During this we store that location data on the phone. And
then? What can we do with that data?

There are many sport and activity tracking mobile applications available. The application stores
of all mobile operating systems are filled with them. For this project we will review six popular
ones. Those are Endomondo [11], MapMyRun [8], Nike+ [9],RunKeeper [7], Runtastic [6] and
Miles Calls [3]. All applications can track your moving activities, such as running or bicycling,
and most of them can do some simple analysis with the collected data. One of the reviewed
applications can only collect the data and do not do any detailed analysis. That is the application
Miles Calls. This project is done in external collaboration with Dostware, the developer of Miles
Calls. We will use the data that is collected by using the Miles Calls application and analyse it.
None of the reviewed applications analyses trends in the gathered data. We will do that when
analysing it.

1.1 Research Questions
The Miles Calls application collects valuable information and it does not analyse it. In this project
we will use that collected data and do something useful with it: we will analyse it and try to find
trends. Before we analyse it, we need to structure and store the data in a database. Then we can
analyse it in some way. And at the end, we need a way to show the results. For this project we
will develop a mobile application that imports the data from the Miles Calls application, stores
the data, analyses and finally visualises it. So this project has three main parts. We can formulate
the following main research questions:

• How can we organize the collected data in an SQLite database, taking into account restric-
tions of mobile applications?

• What meaningful information can we compute from location and time data from a walked,
ran or bicycled tracks?

• How can we present this in an Android application to the user?

1.2 Thesis Overview
In this thesis we will start by introducing the six activity tracking applications including the
Miles Calls application, the problem and research questions. Three following chapters contain
the three parts of this research. We will start by introducing the used database design, then
we will describe the time series analysis methods used to analyse the data and finish with the
visualisation of the found results. This thesis ends with the conclusion and outlook.

1

Chapter 2

Activity Tracking Applications
In the world of tracking your activity there are many mobile applications available. In this
project we will first review five popular ones: Endomondo, MapMyRun, Nike+, RunKeeper and
Runtastic. After that we will review Miles Calls. We only took a look to the free version of the
applications and looked into the functionality they provided without using wearables. Almost
all can track more variables when used with wearables.

2.1 Analysis of Applications

Figure 2.1: Statistics of a
track in the Runtastic sport
tracking application.

All analysed applications have similar functionality with a slightly
different user interfaces. They all record a track by using the phones
GPS and store that data. Most of them also provide the user with a
few live statistics, which means the application shows statistics that
are updated in real time with the incoming data. After finishing the
track all applications calculate a variety of statistics.

The statistics the other applications provide are similar to those in
figure 2.1. It is mostly visualised in a table. The statistics they pro-
vide are the maximum and average speed and pace of a track, the
maximum, minimum and average elevation, gained and lost elevation
during the track and some provide the user with the burned calories
during doing the activity.

We tested only the free versions of the applications. So we were lim-
ited by what the applications provided in the free version. All appli-
cations provided the user with more statistics in the paid version of
the applications: for example they only allow the user to use the ap-
plication with wearables when the paid version is bought. Also some
of the statistics that are provided in the free version of application A
are only available in the paid version of application B.

All five applications use graphs to visualise one or more statistics over the course of a track.
The graphs look slightly different in each application depending on the used user interface. The
applications usually use the speed or pace over the course of the track as data for the graph.
Some of the applications also show the elevation over the course of a track in a graph.

Besides showing the statistics of a track in tables or graphs all applications also show it on a
map. All except one of the analysed applications show the track in one colour on the map, as
seen in figure 2.2, left handside. One of the applications, Runtastic, changes the colour of the
track on the map based on the speed/pace of the user at that point of the track. This is shown
in figure 2.2, right handside.

2

2.2. Miles Calls 3

Figure 2.2: Screenshots of a track in Runtastic. The left one shows the track in one color, the right one
shows the track in a color based on the speed at that point of the track.

2.2 Miles Calls

Figure 2.3: Screenshot of
the Miles Calls Application.

In this project we will work with the application Miles Calls. The
application is developed by Dostware in Dortmund in Germany. The
application has less functionality compared to the applications de-
scribed in the section above. It can only collect the data from the track
that is walked, ran or bicycled and it does not provide functionality
to do post-tracking analysis. The application cleans the data as much
as possible before exporting it. It can only show a map of the track.
Figure 2.3 is a screenshot of the home screen of the application.

2.3 Related Work
Computer science is more and more used in sport and acitivity track-
ing. These areas are called sport informatics. Sport informatics is an
emerging area in computer science. The recent publication by Link
and Lames [10] describes this field.

Other research looks into using computer science for training plans,
sport gear and even the biological themes. Also a book about com-
puter science in sport is written. It is called ”Computer Science in
Sport Research and Practice” and it is written by Arnold Baca [1].

Chapter 3

Database Design
3.1 Definitions
Before we start with the database design, some explanation of the used vocabulary is required.
A track is in this project a series of points along a path. These points are gathered while the user
is in motion. The set of points gathered is a record where you have been. This information can
later be used to determine your path and speed. A track is recorded in one session.

A trip in this project is a set of tracks. It contains one or more tracks. These tracks can be
recorded during a part of a day as well as a longer period. For example when you go on a
biking holiday you may bicycle for multiple days. With a trip you can organize your tracks and
keep the ones from that holiday together.

In running the word pace is used often. Pace is defined as the duration in minutes to run one
kilometre or mile (in this project kilometre). So with an eight minute pace the runner runs one
kilometre or mile in eight minutes. [5]

3.2 Requirements Database
The database has a wide variety of requirements. There are technical requirements such as
what software it should run on and functional requirements such as what data is stored in the
database. The most important question here is: ”What is the purpose of the database?”. This
database will be used to store the data that is parsed from the imported files from the Miles Calls
application. After importing a file, the application will calculate some statistics such as maxima,
minima, medians and averages of speed, pace and elevation. It will calculate these for each trip
and track. These statistics should also be stored in the database.

The application will be built for Android and for databases in Android is usually SQLite used.
So the database design should be converted to SQLite. The database will run on a mobile device,
so it should also be lightweight.

The input data of the database are files that are generated by the Miles Calls application. It
uses the GPX file format. This is a format that is based on XML and it is a data format to store
and interchange GPS data. Each data file contains one track and it contains a special tag that
specifies the activity type of the track is. A track contains one or more segments. If the user uses
the pause option in the Miles Calls application, then a new segment is created. A track segment
contains a sequence of locations called track points. An example of a track point is shown in
listing 3.1. Each track point contains location data as longitude and latitude values, a timestamp
and the elevation at the measurement point. In the database we want to make the distinction
between three main components: locations, tracks and trips. Trips are used to organize tracks.

1 <trkpt lat="52.1775215" lon="4.5797361">

2 <time >2014 0 1 0 2 T 1 7 :56:13+01:00 </ time >

3 <ele >68.83830758305048 </ ele >

4 </trkpt >

Listing 3.1: A track point in the GPX file format

4

3.3. ER Diagram in Databases 5

A location is a measurement point or track point as described in the last paragraph. Each location
is part of a track. So each location object contains information of which track it is part. Two or
more locations make a track. A track contains information such as the data that it was walked,
ran of bicycled. Each track is part of a trip. So each track contains information of which trip it
is part. A trip contains one or more tracks. Each trip should have tracks from only one kind of
activity type. It has also a start date (date earliest track) and an end date (date latest track).

When the application is finished with importing and storing the data of a file, it will calculate
some statistics. It will calculate statistics similar to the ones that other activity tracking applica-
tions provide, for example maxima, minima, medians and averages of elevation, speed and pace.
These statistics will be generated for the newly imported track as well as updating the global or
overall statistics of the parent trip with the statistics of the new track.

A wide variety of queries should be able to be executed on this database. Firstly, it should
store the new imported track with its locations and its statistics. Secondly, it should update the
database entry of an existing trip or store a new entry when a it is created. Next, it should be
able to delete a single or multiple locations, tracks and trips. It should also be possible to empty
the whole database at once. So deleting all locations, tracks and trips at once. Last, it should
be possible to retrieve data from the database. For this there are three cases. Case one is that
the application needs to visualise some statistics from trip or track data. This is mainly just a
single entry from the database table. The other case is when the application either needs a list of
trips or tracks or when it needs data from all tracks to analyse that data. In that case the query
will retrieve many entries. The last requirement for the database is that each location and each
track should have the option to turn that location respectively track on or off. This is in case of
measurement error or when the user want to exclude a track from analysing it.

3.3 ER Diagram in Databases
The ER diagram is in database design a model to describe the structure of a database. It uses
entities, attributes and relationships to do this. An entity is an object from the real world like a
car, person or area. A set of similar entities is called a entity set. Every entity is described by
a set of attributes. Each entity of an entity set have the same attributes. For example the entity
student has the attributes student number, name and year. So each entity in the entity set of
student has these attributes. Each attribute has a domain of possible values. For example the
student number is an unique five digit number, a number between 00000 and 99999. A key is a
minimal set of attributes that can be used to uniquely identify an identity in a set. We set one
key as primary key. In the student example is the student number a good primary key.

The association between two or more entities is called a relationship. The entity set of students
could be related to the entity set of classes. Figure 3.1 illustrates this. Here each student attends
classes. This is an example of a many-to-many relationship: each student attends many classes
and each class has many students. The other two types are one-to-one, where each entity is
related to one other entity, and one-to-many, where one enitiy is related to many entities.

Figure 3.1: Example of a relationship between two entities. The primary key of Student is Student nr. and
of Classes it is Class Code

6 Chapter 3. Database Design

We can also use a ISA (read: is a) hierarchy. Figure 3.2 shows an example of this. Each vehicle
is either a car, train or bus. The entity Vehicle is a set of all vehicles and it has the attirbutes that
all vehicles have. The entitites Car, Train and Bus have the attirbutes that only cars, trains and
busses have [13].

Figure 3.2: Example of a ISA class hierarchie

3.4 Final Design
Based on the requirements earlier in this chapter we have created the database design shown
in figure 3.3. The ER diagram has three main entities: Trip, Track and Location. The Trip and
Track entities have both an entity with their statistics information. In the diagram Max, Min,
Ave, Med, Loc and Nr refer to respectivily maximum, minimum, average, median, Location and
number.

The Trip entity has four attributes: Trip ID, Name, Start Date and End Date. The Trip ID is the
primary key and will be used to identify a trip and used to relate a track to the trip. The Trip
entity has a one-to-one relation with the Trip Information entity. This entity contains the statistics
of a trip. Its attributes are Trip ID, Speed Max, Speed Ave, Speed Med, Elevation Max, Elevation
Min, Elevation Ave, Elevation Med, Distance and Duration. In the database will only be the
speed stored in meters per second and not the pace, because the pace can easily be calculated
from speed.

The Track entity has three attributes: Track ID, Date, and File Name. The Track ID is the
primary key for this entity. In File Name is the file name of the imported file stored. This is used
to prevent importing a file twice. The Track entity has a one-to-one relationship with the Track
Information entity. This entity has almost the same attributes as the Trip Information Entity.
However, it has the attribute Track ID instead of Trip ID and it has the Turn On attribute. The
Turn On attribute will be used to turn on and off tracks to include or exclude then from the
application analysing them.

Between the Trip and Track entity is an ISA activity has relationship. The relationship is a one-
to-many; one trip has (one or) many tracks. The ISA structure is used to make sure that each
Trip entity has only Track entities from one of the three activity types.

The Location entity has seven attributes: Location ID, Longitude, Latitude, Segment Nr, Ele-
vation, Time-stamp and Ignore Loc. The Location ID is the primary key for this entity. The
Longitude, Latitude and Elevation attributes are used to store the geographical location of this
location. The Time-stamp is used to store the time of the track point. The Segment Nr stores
the segment of which segment of the track this location of part. Lastly, Ignore Loc gives the
possibility to turn on and off a location in case of a measurement error. The Location entity has
a one-to-many; one track has many locations relationship. Duplicates of a location are allowed,
but they are very unlikely to occur. Duplicate locations are in this case two or more different
location objects with exactly the same longtitude, latitude and elevation.

3.5. Discussion 7

Figure 3.3: ER diagram of final design of the database

3.5 Discussion
When we converted this final database design from the ER diagram to tables in SQLite, we
combined the Trip and Trip Information and Track and Track Information entity to each one
table. We did this to make the actual database more compact. However, we kept the ER diagram
like this to keep it more organized.

In the actual database we converted the ISA structure and relationship between the Trip and
Track entity to a field activity type in both the Trip and Track table. The requirement that
each trip contains only tracks from one specific activity type is checked in the software of the
application. The application will check which trips are allowed to store a track.

Chapter 4

Function Approximation
We can analyse the data that is stored in the database. When we use the average or median
speed of each track from a specific activity type from the database, then we get a sequence of
measurement points over time. This is called a time series. In this chapter we want to get useful
information from this data. So we will analyse this data. This is called time series analysis. [20]
Function approximation is one type of time series analysis. There are many methods to do
function approximation. We started by using linear regression. This was mainly to get into
regression and get things working in the mobile application.

4.1 Linear Regression
Assume we have dataset A containing the average speeds of all or just by the user selected
tracks. This dataset contains m pairs of data points (xi, yi), where x is time and y is speed. Each
datapoint is the time (days since earliest track) and average speed of a track. So A = {(xi, yi) :
i = 1, . . . , m}. The goal of linear regression is to find a line 4.1 that fits the dataset best. Linear
regression uses least squares fitting. This means that the overall solution has the smallest sum
of the square of errors. It minimizes the overall sum of errors. Errors meaning here the distance
between the line and the actual points of the dataset.

y = a + bx (4.1)

The regression coefficients b [19] and a are calculated by the respectivily the equations 4.2 and
4.3.

b =
ssxy

ssxx
(4.2)

a = ȳ− bx̄ (4.3)

where

ssxy =
m

∑
i=1

(xi − x̄)(yi − ȳ) (4.4)

ssxx =
m

∑
i=1

(xi − x̄)2 (4.5)

In some of the formulas above are x̄ and ȳ used. They are the average of all x’s respectively all
y’s. So to obtain x̄ them we need to add up all x-values and divide that by the number of values.
That is done in the following equation 4.6. [15]

x̄ ≡ 1
n

m

∑
i=1

xi (4.6)

8

4.2. Ordinary Kriging 9

ŷi = a + bxi (4.7)

By using these equations the best fitting line 4.1 can be found. The ŷi is the vertical coordinate for
each x-coordinate xi with 4.7. [17] This is easy to implement and use in the application. However,
a best fitting line gave not the best result for the used data. A better analysing approach was
needed.

4.2 Ordinary Kriging
There are many methods that can be used to interpolate time series data. Ordinary kriging is
one of them. Machine learning methods, like neural networks, could possibly also be used.
However, for this data we want an uncertainty predictionary estimation. Ordinary kriging offers
this.

So, the second approach we used is ordinary kriging. Kriging is ”optimal interpolation based
on regression against observed z values of surrounding data points, weighted according to spa-
tial covariance values”. [2] Interpolation is estimating unknown values by using a set of known
values. The estimated values for a kriging model with exponential kernel are within the range
of the known values. [16] However, we also want to show a trend for the future. So we also used
the model to calculate values greater than the greatest known value.

Figure 4.1: This is an example of one-dimensional kriging with an exponential kernel. On the y-axis is the
speed in kilometers per hour and on the x-axis is the time in days. The red crosses the known values and
the blue line are the estimated values obtained by interpolation. The top and bottom dashed lines is the
likelihood of the estimated values.

Figure 4.1 illustrates an example of kriging in one dimension. The estimated values of the blue
line are determined by interpolation of the known values, red crosses. The area between the
blue line and the top and bottom dashed line is the confidence or likelihood of the prediction.
When a point is further away from a known point, then the confidence decreases; the confidence
range increases. On the other hand when a point is closer to a known value, then the confidence
increases and the confidence range decreases.

There are a few types of kriging depending on the trend type. We choose ordinary kriging for
this project. In ordinary kriging is a constant trend assumed. The base formula is shown in
equation 4.8. In this formula is β the global constant trend and is rx the local deviation.

µx = E(Fx|A) = β + rx (4.8)

where

10 Chapter 4. Function Approximation

rx = E(Rx|A, β) =
m

∑
i=1

λ(i) · cθ(x, xi) (4.9)

with

cθ(v, w) = exp(−θ · |v− w|) (4.10)

and

[λ(1), ..., λ(m)] = (y− 1β̂) ·C−1 (4.11)

The local deviation is a summation for all m data points. In the summation λ(i) is multiplied
by exponential factor cθ(x, xi). This is shown in equation 4.9. Here is cθ(x, xi) the correlation
between Fx and Fx,i. The type of correlation is given as an assumption. A frequent choice is
the exponential kernel exp(−θ · |v− w|). [λ(1), ..., λ(m)] from 4.11 are the weights for each data
point i. The matrix C contains the isotropic Gaussian correlation of each combination of pairs of
x-values. This is shown in 4.12.

C =

 cθ(x1, x1) . . . cθ(x1, xm)
...

. . .
...

cθ(xm, x1) . . . cθ(xm, xm)

 (4.12)

1 =

1
...
1

 (4.13)

In equation 4.8 β is used. Instead of using β we will use β̂ instead. β̂ is an estimation of β and
can be determined by the following equation:

β̂ =
1T · C−1 · y
1T · C−1 · 1 (4.14)

The equations above are all the ones that are required to interpolate the values in between known
values. However, the parameter θ is not explained here. That parameter will be explained in the
next section. With the equations the blue line from figure 4.1 can be determined. To obtain the
maximum and minimum likelihoofd values of the interpolated values are a few more equations
needed.

tx = µx + ŝ(x) (4.15a)
bx = µx − ŝ(x) (4.15b)

Equations 4.15a and 4.15b are the base equations to obtain the y-values of the dashed lines in
the figure 4.1. tx is the top and bx the bottom line. The equation 4.16 is used to calculate the
likelihood at point x.

4.3. Estimation of θ 11

ŝ(x) = ŝ ·
[

1− c(x)T · C−1 · c(x) + (1− 1T · C−1 · c(x))2

11 · C · 1

]
(4.16)

with

c(x) =
[
cθ(x, x1), ..., cθ(x, xm)

]
(4.17)

and

ŝ =
(y− 1 · β̂)T · C−1 · (y− 1 · β̂)

m
(4.18)

Prediction of values with ordinary kriging is done in three phases. The first phase is the calibra-
tion phase. The parameters θ, β and ŝ are in this phase calibrated and estimated. Their values
are invariant with respect to F . The calibration phase is the most time consuming phase of the
whole process. The second phase is the training phase. In this phase are the weights for the
linear predictor 4.8 with summation 4.9. The last phase is the prediction phase. In this phase are
µx and ŝ(x) calculated. [4, 14]

In matrix C are the values on the diagonal usually zero. However by adding a small value to
those zero values on the diagonal, we can make the model work better. This is shown in equation
4.19. Here v is a very small positive value and δ (Kronecker symbol) is 1 if and only if i = j.
Otherwise δi,j is 0. [12]

cθ(v, w) = exp(−θ · |v− w|) + vδi,j (4.19)

4.3 Estimation of θ
In the process of implementing ordinary kriging turned estimation the value of parameter θ out
to be hardest and most time consuming part of the project. We ended up trying three different
approaches. We started by setting a rough θ by hand. Then we tried to estimate the value by
using maximum likelihood estimation. And we ended up by using cross-validation to estimate
the value of θ.

4.3.1 Estimating θ by Hand
The first approach was to set a hardcoded θ by hand. The idea behind this approach was to
experiment what the influence of the parameter on the model is and get a feeling what roughly
an optimal value for θ is.

Figure 4.2: This illustrates the influence of parameter θ on the prediction. On the y-axis is the speed in
kilometers per hour and on the x-axis is the time in days. Left to right: θ = 0.1, θ = 0.4 and θ = 1.0. A
smaller θ results in a smoother graph. With a bigger θ the predicted line goes faster to the global average.

12 Chapter 4. Function Approximation

Figure 4.2 shows three graphs. The parameter θ has a big impact how the graph looks. It controls
how fast the interpolated line return to the global average β̂. When the θ is small, then the model
returns slower to the global average. This results in a smoother graph. When the θ is bigger, then
the line returns quicker to the global average. The predicted line is in that case like a straight
line with peaks where the known data points are.

However, estimating θ by hand and setting it hardcoded in the application is not an attractive
option. Firstly, this is because finding the optimal theta by hand would cost a lot of time.
Additionally, what is a optimal value for parameter θ. And lastly, the optimal value of θ varies
per dataset.

4.3.2 Estimating θ by Maximum Likelihood Estimation
The second approach of estimating an optimal value for θ and the first approach to automate it
was by using maximum likelihood estimation (MLE). It is a procedure of finding the value of a
parameter by finding the maximum of a known likelihood distribution. [18]

lθ = m log ŝ(θ) + log det C(θ) (4.20)

To estimate the value of θ with the maximum likelihood, we need to minimize the expression
4.20. To find the minimum we could use linear search, but that can take a long time. The search
time depends on the step size of increasing the potential θ and the size of the search domain,
the biggest θ that needs to be checked.

Another search algorithm is binary search. However, the normal binary search algorithm is not
usable for us. Binary search requires the searched domain to be sorted. That is not here the case.
But we can make binary search work for our minimization by modifying it. Listing 4.1 shows
the modified binary search algorithm.

1 left = SMALLEST_POSITIV_VALUE;

2 right = 10; // Bound search range

3 depth = 0;

4 maxDepth = 100; // Maximum depth recursion

5

6 while (depth < maxDepth) {

7 // Calculate center and position closely left and right of center

8 center = (left + right) / 2;

9 smallStep = (right - left) / 100;

10 leftOfCenter = center - smallStep;

11 rightOfCenter = center + smallStep;

12

13 // Calculate value for theta

14 valueForThetaCenter = calculateValueForTheta(center);

15 valueForThetaLeftOfCenter = calculateValueForTheta(leftOfCenter);

16 valueForThetaRightOfCenter = calculateValueForTheta(rightOfCenter);

17

18 if (valueForThetaLeftOfCenter < valueForThetaCenter) {

19 // Minimum is left of current center

20 right = leftOfCenter;

21 depth ++;

22 } else if (valueForThetaRightOfCenter < valueForThetaCenter) {

23 // Minuimum is right of current center

24 left = rightOfCenter;

25 depth ++;

26 } else {

27 // Minimum is found. Further search is not needed

28 return center;

29 }

30 }

31 return center;

Listing 4.1: Pseudo code of modified binary search algorithm to find minimum

4.3. Estimation of θ 13

In the algorithm returns the function calculateValueForTheta(mTheta) the result of equation
4.20 with mTheta as θ. We want to find the minimum of the search domain with the algorithm.
That is in this case SMALLEST_POSITIV_VALUE to 10. The domain is not sorted. When deciding on
a center position, we do not know whether the minimum is left or right of it. To determine that,
we need to do two extra calculations. We do a small step to the left and right of the middle and
calculate the value for those θ’s. When the value left of the center smaller is, then the minimum
must be left of the center and we continue searching there. If the value right is smaller, then we
continue there. In every iteration the binary search halves the range of the parameter. It assumes
that the likelihood function 4.20 has only a single optimum.

Figure 4.3: This is the interpolation of two different datasets by using maximum likelihood estimation to
determine the optimal θ. The top graph is the model generated with ordinary kriging. On the y-axis is
speed in kilometer per hour and x-axis the time in days. The bottom graph is the smallest median error rate
plotted. On the y-axis is smallest median error rate and on the x-axis the used θ. Left, the minimization
has a minimum on the search domain. Right, the minimization does not have a minimum.

The search algorithm and the estimation by maximum likelihood estimation work well as long
as the minimization has only a single minimum. However, in about half of the cases when we
tested it, the dataset did not have a minimum in the searched domain. An example of this is
shown on the right of figure 4.3. The dataset of the left figure generates a nice minimum, but the
dataset on the right not. So for this type of data, is maximum likelihood estimation not usable
to estimate a reasonable θ.

4.3.3 Estimating θ by Cross-Validation
The third and last approach to estimate the optimal θ for a dataset, was by using leave-one-out
cross-validation. The basic principle in this method is that we leave one data point out of your
data set and then predict the data point with the model that is generated with the remaining
data points. With a dataset of size m we need to repeat this m (number of datapoints) times so
that every data point is left out exactly once. After we try to estimate the left out data point
by interpolation, we can calculate the error rate. That is the difference or distance between the
predicted value and the actual value of the data point. At the end we can determine the median
error rate of the m individual error rates.

In this project we use this method to estimate the optimal θ for a given dataset. We repeat the
describe procedure for each θ we want to check. In the application we checked all values from
0.01 to 2.00 with a 0.01 step size. So we did the procedure a 200 times. At the end we choose the
θ with the smallest median error rate, because it is the most rebust method. Choosing average
or mean are not attracftive, because uutliers could influence them.

14 Chapter 4. Function Approximation

During the implementation we did some experimenting with calculating the error rate. We tried
to combine the distance between the predicted point and the actual point and maximum and
minimum likelihood at that point. Listing 4.2 shows this.

1 y = calculateFx(actualXValue);

2 max_likelihood = Math.abs(calculateLikelihood(actualXValue , max));

3 min_likelihood = Math.abs(calculateLikelihood(actualXValue , min));

4 distance_y = calculateDistance(trainingData.get(i). yDataValue , y);

5 errorRate = WEIGHT_DISTANCE * distance_y

6 + WEIGHT_LIKELIHOOD * (max_likelihood + min_likelihood);

Listing 4.2: Pseudocode of calculation likelihood

We did a small experiment to find out what the behavior of different weights in calculating the
error rate is. We tested weights going from 0 to 1 with steps of 0.1. The combined weights
were always 1. We did the experiment with two different datasets. Dataset 1 contains only
hiking tracks and dataset 2 only bicycling datasets. (Datasets can be found in the appendix A)
We tested θ’s from 0.01 to 2.00. The results are shown in table 4.1. The results show that the

Weight dist. Weight likel. Sm. med. err. (1) Found θ (1) Sm. med. err. (2) Found θ (2)
1 0 1.30192 2.00 0.50034 0.65

0.9 0.1 1.28306 2.00 0.75947 2.00

0.8 0.2 1.26419 2.00 0.99793 2.00

0.7 0.3 1.24533 2.00 1.23640 2.00

0.6 0.4 1.24792 2.00 1.47487 2.00

0.5 0.5 1.31288 0.78 1.62074 2.00

0.4 0.6 1.37377 0.13 1.85200 2.00

0.3 0.7 1.39998 0.11 2.13549 2.00

0.2 0.8 1.40673 0.09 2.36378 1.08

0.1 0.9 1.41668 0.08 2.57683 0.78

0 1 1.41697 0.07 2.77951 0.65

Table 4.1: Table of results experiment illustrating varying weights in calculation error rate.

behavior of different weights is different on each dataset. If the found θ is 2.00, then there is no
smallest value on the chosen domain. A θ of 2.00 generates a graph as seen on the right figure
in figure 4.3. That means that also with the cross validation the optimal θ overfits the dataset.

For most datasets cross-validation gives a ’good’ optimal θ. Good meaning a θ that does not
overfit the input data. We need here a balance between a statistically optimal and a solution
that appears to be plausible to the user. The experimenting during the different approaches has
shown that a user-friendly optimal θ should not be bigger than 0.6 or 0.7. With a bigger value
the model starts to overfit. We need a solution in case there is not a smallest median error rate
for the given error rate. We first limit the search domain to 0.01 to 1.00. Then we wrote an
algorithm that chooses the θ with a median error rate approximately 0.1 higher than the one at
θ = 1.00. This algorithm is only used in case there is not a smallest value on the search domain
found.

4.4 Combining Ordinary Kriging and Linear Regression
To better show the user the trend in his data we decided to create our own regression model
by combining ordinary kriging with linear regression. With this model the user can better see
and understand what his progress is. We note that this method is reminiscent of the so-called
universal kriging with the difference that the linear trend model in our method in an given as a
priori.

4.5. Discussion 15

In this regression model we first calculate linear regression as explained in section 4.1. Then
from all the y-values of the dataset is the corresponding y-value of linear regression subtracted.
So the modified dataset is B = {(xi, y′i) : i = 1, . . . , m ∧ y′i = yi − ŷi} where yi is the y-value of
the dataset and ŷi is the value calculated by equation 4.7. Then the ordinary kriging model from
section 4.2 and the θ estimation from section 4.3.3 are applied. At the end instead of equation
4.8, equation 4.21 is used. Here we take β(x) as prior from linear regression, 4.22.

Fxi = β(x) +Rxi (4.21)

β(x) = b + ax (4.22)

Figure 4.4 shows the result of combining ordinary kriging with linear regression. The light blue
dashed line in the graph is the line generated by linear regression. The lines of the ordinary
kriging are generated as described above.

Figure 4.4: Graph showing result of combining ordinary kriging with linear regression.

4.5 Discussion
Finding a good working approach to estimate the parameter θ in ordinary kriging took the
most effort. The datasets seemed too small and not suitable for the tried standard approaches.
Maximum likelihood estimation worked for about half of the tested datasets. It relies too much
on model assumption that the data is from a Gaussion process. Cross-validation later worked a
lot better, but still could not find a good optimal θ sometimes. Although it worked better, cross
validation is requires more computation power when datasets get bigger. The method can be
slow on smartphones with a slower CPU. The number of times that the ordinary kriging model
is generated is the number of θ’s to be checked, 100 to 200 in our case multiplied by the size of
the dataset, m. So with a dataset of size m = 30 and 100 θ’s to be checked, the ordinary kriging
model is generated for 3000 times.

Chapter 5

Visualising in a Mobile Application
The third part of the project is to visualise the imported data and the model generated. In this
chapter we show the built application and explain our design choices. The application is build
for the Android mobile platform. We choose Android, because it is one of the big three (Google
Android, Apple iOS and Microsoft Windows Phone), it is easy to build an application for and
the Miles Calls application is only available for Android.

5.1 Overview of Application

Figure 5.1: Screenshot of
start screen of the applicar-
tion showing a map and
statistics of the last imported
track and overall statistics.

When the application is started, it shows the screen with the last im-
ported track. A screenshot of this can be seen in figure 5.1. It shows
a map and some statistics such as distance and duration of the track.
Below the statistics is a button to view more details of the track. This
brings the user to the Track Overview screen, which is later in this
chapter described. The Last Track screen also shows some overall
statistics of all the imported tracks. We choose the shows the last
track to the user first, because it most likely the he wants statistics of
and analyse that track when starting the application.

From every screen the user can navigate to the import track screen.
Here we can navigate with a file browser to the GPX file to import
it. We do not know in advance where the user stores his GPX files,
so we give him the option to browse through the file system. A
screenshot of this is shown in figure 5.2 left. The application first
checks whether the file is a GPX file, then it parses it. If the file does
not contain the activity type, then it asks the user to select the activity
type as seen in figure 5.2 right. This to support GPX files from older
Miles Calls versions. The next step is to select an existing trip to add
the track to or create a new trip. So the user can organize his tracks.
Then the track is stored in the database and the statistics described
in the database design chapter are generated.

The All Trips screen is rather simple. It contains some statistics of all tracks of all trips and a list
of all trips. The user can navigate here to a specific trip. The purpose of this screen is to let the
user browse to the wanted trip. This screen is shown in figure 5.3 left image.

The Trip Overview has a similar design as the Trip Overview screen. It also has some statistics
from all tracks of this trip, and a list of tracks of this trip. Each list entry shows its date, distance
and duration. The purpose of this screen is to let the user browse to the wanted track. This
screen is shown in figure 5.3 right image.

16

5.2. Overall Trends 17

Figure 5.2: Screenshots of importing screen. The figure on the left shows the file browser and the one right
shows selecting an acitivity type when the acitivity type is missing.

Figure 5.3: The left screenshot is from the All Trips screen and the right is a screenshot of the Trip Overview
screen.

5.2 Overall Trends
The overall trends screen is where the results of the kriging are visualised. The main feature of
here is the graph. In this graph is the model that is generated as described in the last chapter
4 plotted. This is shown in figure 5.4. We can see that equation 4.8 is plotted as the blue line.
This is the interpolation and prediction. The likelihood of this prediction is plotted as a grey
dashed line. The linear regression is the light blue dashed line. By default the y-axis is speed
in kilometres per hour. We can switch to pace, minutes per kilometre, by pushing the button
below the graph. Pushing the other button shows a screen to change the used dataset for the
model. Also some statistics are shown below the graph.The graph is the most important part
here. So the graph uses a big part of the screen. The buttons to switch between acitivities are at
the bottom so the user can reach them easily.

18 Chapter 5. Visualising in a Mobile Application

Figure 5.4: Screenshot of the Overall Trends screen.

5.3 Track Overview
The Track Overview is one of the most important parts of the application. It shows all informa-
tion available of a track. The main parts here are the map and the graph. The map shows the
track in either just a red line or a line colour that depends on the speed at that point. Yellow is
the colour used for the average speed. A redder colour means that the speed at that point was
slower than average and a greener colour means that the speed was faster than average. How-
ever the colours used can make the track has to see on the map, because roads can have similar
colours. So we decided to add the option to turn the track to dark red. This makes viewing the
track easier.

The graph has four options. It can show the speed and pace over the course of the track and it
shows either a simplified, smoother graph or a graph with all measurement points that gives the
graph more peaks. The graph also plots the average speed of the track as a grey dashed line. The
option to have both pace and speed is to gve user the option to choose. The more determined
users or more professional may prefer using pace. The ordinary user maybe prefer speed. We
give them both options. The option to choose for a smooth and rough graph is to have a less
cluttered and less spikey graph.

By using the ”Show Graph” button we can switch between graph view and table view. The table
shows statistics such as distance, duration and average and maximum speed and pace. This is
to give the users the option to view statistics in a table instead of a graph.

5.4 Discussion
This part of the project took a few itterations. With each iteration the design got optimized and
new elements were added. It was sometimes hard to fit all content in. Our goal was to make the
design clean and clear and still show a lot of information. At some moments the design got to
cluttered and we had to redesign the screen. These were the moments where buttons to switch
between graphs and tables were implemented.

Also in the progress of development the elevation data appeared to be unusable. The data
contained too much unrealistic data. Elevation differences of hunderds of metres is not realistic.
It is well known that the accuracy of the GPS data varies with the phone model. So we decided
not to use this data although it is stored in the database.

5.4. Discussion 19

Figure 5.5: Three screenshots of the Track Overview screen. First one shows the track colored based on the
speed at the part, second one shows the same track colored in one color and the last one shows statistics
instead of the graph below the map.

Chapter 6

Conclusion
In this project we use the data recorded by the Miles Calls application and we wanted to get
usefull information from it. First we started by designing a database to store the imported data.
Then we developed a kriging model to interpolate. At the end we built a mobile application
to visualise the data and results from the kriging. These parts of the project are related to the
following research questions:

• How can we organize the data in an SQLite database, taking into account restrictions of
mobile applications?

• What meaningful information can we compute from location and time data from a walked,
ran or bicycled tracks?

• How can we present this in an Android application to the user?

We started by designing the database to store the data that is imported. The database is needed
to analyse it and visualise it in a mobile application. Before designing the database we composed
a list of requirements what the database must comply to. We designed the database shown in
figure 3.3. This database design meets the set requirements. The design is compact and also
future proof for the application. It can be used to store the tracks, organize them and store the
corresponding statistics. So we can store and organize the imported data in a database designed
and built in SQLite running on a mobile application.

With the database we can get data from all stored tracks and analyse it. We first used this data in
a linear regression model. The linear regression was fast and easy to implement. However, linear
regression on its own is not suitable for this kind of data. It gives a not precise enough trend.
Next we used ordinary kriging. It is a method that uses interpolation to estimate values based
on known data points. Ordinary kriging was mostly easy to implement. However, estimating
the parameter θ was the hardest and most time consuming step. We compared three approaches
to do this. First we set θ by hand. This worked somewhat, but it is a not usable approach. The
value θ differs for with each data set. With the second and third approach we tried to automate
estimating the value. The second approach was setting the θ by using maximum likelihood
estimation. However, this worked for only half of the data sets. So we did a third approach. We
estimated θ by using cross-validation. Cross-validation worked a lot better, but in some cases it
still could not estimate a optimal value. We designed a small heuristic algorithm to make sure
that there is always a best possible estimated value for θ. To improve the model we created our
own regression model by combining ordinary kriging with linear regression. So we can generate
a trend model based on past performance with this regression model.

In the mobile application developed in this project we visualise the generated model and some
futher statistics. The application has a clean and clear interface which is easy to use. It uses
maps, tables and graphs to visualise all information. We give the user the option to watch a
track coloured based on speed and just in one colour. Graphs can switch between showing
speed and pace over the track. So the application visualise all the information and data clean
and clear.

20

Chapter 7

Outlook
The application and the kriging model are now usable, but much can be improved. The regres-
sion model is currently too slow when the dataset get bigger. In the future the cross validation
could be improved. Doing so the cross validation only with a subset of the dataset. Estimating
the optimal θ should be quicker. Also the method used to find the estimated θ on a given do-
main could be improved. Currently exhaustive search is used. Possibly a variant of the modified
binary search that was used in maximum likelihood estimation could be used.

There are also many opportunities for the android mobile application. Currently a lot of basic
management options are missing. We can add the options to turn off and delete locations and
delete tracks. It would also be nice to name a track and to have the option to rename tracks and
trips. Also tracks should be able to be moved to another trip.

The data that is recorded is as good as possible cleaned in Miles Calls. However, occasionally
the data has incorrect measurements. They cause speeds to go to impossible values. Some kind
of outlier detection of the imported data would be a nice feature to have. This feature would
require some additionally research. A (very) fast part of the track could be a measurement error,
but also just a fast runner or bicyclist.

21

Chapter A

Datasets Used in Experiment
These are the datasets used in the experiment described in chapter 4.3.3.

Time (days) Speed (km/h)
0 3.4819

14 5.3617

28 4.3504

35 5.4348

Table A.1: Table of dataset 1. Activity type is hiking

Time (days) Speed (km/h)
0 17.8892

9 17.8341

11 16.6291

32 17.3176

46 16.9222

50 20.1004

53 17.6403

Table A.2: Table of dataset 2. Activity type is bicycling

22

Bibliography
[1] Arnold Baca. Computer Science in Sport: Research and Practice. Routledge, 2014.

[2] Geoff Bohling. Kriging. Lecture Notes page 2. Kansas Geological Survey, University of
Kansas, October 2005.

[3] Dostware. Miles calls by dostware. https://play.google.com/store/apps/details?id=

com.dostware.milescalls, February 2015.

[4] Michael T. M. Emmerich. Single- and Multi-objective Evolutionary Design Optimization Assisted
by Gaussian Random Field Metamodels. PhD thesis, Universität Dortmund, Germany, 2005.

[5] Emily Faherty. The ultimate guide to running lingo. http://greatist.com/fitness/

ultimate-guide-running-lingo, April 2014.

[6] Runtastic GmbH. Runtastic. https://www.runtastic.com, February 2015.

[7] FitnessKeeper Inc. Runkeeper. http://runkeeper.com, February 2015.

[8] MapMyFitness Inc. Map my run. http://www.mapmyrun.com, February 2015.

[9] Nike Inc. Nike+. https://secure-nikeplus.nike.com/plus/, February 2015.

[10] Daniel Link and Martin Lames. Sport informatics-historical roots, interdisciplinarity and
future developments. International Journal of Computer Science in Sport, 8(2):68–87, 2009.

[11] Endomondo LLC. Endomondo. https://www.endomondo.com, February 2015.

[12] Andrey Pepelyshev. The role of the nugget term in the gaussian process method. In mODa
9–Advances in Model-Oriented Design and Analysis, pages 149–156. Springer, 2010.

[13] Raghu Ramakrishnan and Johannes Gehrke. Database management systems.
Osborne/McGraw-Hill, 2000.

[14] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[15] Eric W. Weisstein. ”bar.” from mathworld–a wolfram web resource. http://mathworld.

wolfram.com/Bar.html, May 2015.

[16] Eric W. Weisstein. ”interpolation.” from mathworld–a wolfram web resource. http://

mathworld.wolfram.com/Interpolation.html, May 2015.

[17] Eric W. Weisstein. ”least squares fitting.” from mathworld–a wolfram web resource. http:
//mathworld.wolfram.com/LeastSquaresFitting.html, May 2015.

[18] Eric W. Weisstein. ”maximum likelihood.” from mathworld–a wolfram web resource. http:
//mathworld.wolfram.com/MaximumLikelihood.html, May 2015.

[19] Eric W. Weisstein. ”regression coefficient.” from mathworld–a wolfram web resource. http:
//mathworld.wolfram.com/RegressionCoefficient.html, May 2015.

23

24 BIBLIOGRAPHY

[20] Eric W. Weisstein. ”time series analysis.” from mathworld–a wolfram web resource. http:
//mathworld.wolfram.com/TimeSeriesAnalysis.html, May 2015.

