Universiteit Leiden

Opleiding Informatica

Deploying Phenotype Analysis On LLSC

Name: David van Es
Date: 26/02/2015

st supervisor: Fons Verbeek
2nd supervisor: Kristian Rietveld

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract. The study of living cells is an important area of research in
bioinformatics. The results of these studies can reveal new insights which
can be applied to a great range of applications. One such experiment uti-
lizes high throughput/high content screening to generate a large amount
of data in the form of time lapse images of living cells. At LIACS, two
image processing algorithms were devised to extract phenotypical mea-
surements from these images. For this study we adapt these algorithms
for use on a computing cluster, and explore the effect of parallel com-
puting on their performance.

1 Introduction

In bioinformatics, the study of living cells is an important area of research. One
way to study these cells is by using time-lapse microscopy. Time-lapse microscopy
involves using a microscope to acquire a consecutive set of cell images by tak-
ing pictures at a certain temporal interval. The interval is of arbitrary length
and usually dependant on the specific study and based on previous empirical
observations. The resulting images can be studied individually, to observe cell
characteristics such as morphology, or played back as a movie, to observe cell
migration and motility for example.

At Leiden University, experiments of this nature are being performed using a
method called High Throughput/High Content Screening (HT/HC). High Con-
tent screening has been defined as “the application of automated microscopy
and image analysis to both drug discovery and cell biology”[1]. Furthermore,
the experiments being performed are classified as high throughput due to the
large range of experimental settings and large amount of images taken. The
experiment setup has the following stages:

— Experiment Design

— Experiment Preparation
— Image Acquisition

— Image Analysis

— Data Analysis

Though the purpose of the experiments is largely the same, namely to obtain
phenotypic measurements from cells, the cell features to be captured and the
method of capturing may vary per experiment. To this end the experiment de-
sign takes place. Here is decided what information the cell phenotype contains
is essential to the research question, and how to go about capturing this infor-
mation. One experiment that was conducted was concerned with measuring cell
migration when cancer cells were exposed to different growth factors. For this
experiment, the experiment design phase included deciding upon the growth fac-
tors to use, the temporal interval and the culture plate layouts. The images and
results of this study are used as one of the main test sets and control sets for
the experiments in this study.

During experiment preparation the cells are treated if necessary and loaded onto
the well culture plates. Then, for the Image Acquisition phase the automated
microscope will take an image of each well on the plate sequentially, wait for
the duration of the sample interval and repeat the process. The result of this
phase is a set of images. The images are saved as 8 bit greyscale TIFF files. Each
individual well plate has its own set of images, which are grouped together and
saved as one file in a TIFF container. This can be opened with image processing
software like Fiji[3] and played back like a movie.

These first three stages produce a large volume of data. To all intents and pur-
poses it is physically impossible for a human examiner to go through every image
and attempt to extract the required phenotypic measurements. Therefore, the
image analysis stage is performed by a computer using image analysis techniques.
In his thesis[4], K. Yan describes two robust algorithms for image analysis tai-
lored for HT/HC screening studies. These algorithms were implemented using
the Fiji software. This software is designed for the biologist and intended for a
single user on a single machine, interfacing through a GUI. For small tasks this
is a proven setup, but it can prove impractical for high throughput experiments,
with the large data sets often leading to long wait times and delays. A full anal-
ysis of one well plate can take two to three hours. Any possibility to speed up
computation and decrease wait times is therefore highly desirable.

At LTACS we have built the LLSC: the LIACS Life Sciences Cluster. This cluster
consists of a fileserver, one user node and 24 worker nodes. This opens up pos-
sibilities to use parallel computing for the final two stages: Image Analysis and
Data Analysis. In this project, we explore how the existing algorithms and soft-
ware can be adapted to run on the LLSC and the performance of the resulting
parallelized algorithms is evaluated.

2 Background

The experiments in this study utilize two Image Analysis algorithms, Watershed
Masked Clustering and Kernel Density Estimation, which are image segmenta-
tion and object tracking methods, respectively.

2.1 Image Segmentation

The images obtained from the image acquisition phase are digital images, and as
such they can be processed using digital image processing techniques. The pur-
pose of the experiments is to measure phenotypic properties. Since phenotype is
defined as the observable characteristics of some object, having some way to de-
termine the boundaries of that object is critical. The success of both algorithms
is highly dependent upon this. One digital image processing technique designed
for this purpose is image segmentation.

Segmentation is the process of separating an image into its constituent parts or
objects. Usually this means separating the background from the foreground. In
our image samples this is also the case. Each pixel belonging to a cell in the
image is considered part of the foreground, and all other pixels are background.
Segmentation is considered one of the most difficult image processing tasks|[2],
and also one of the most important since a lot of subsequent processing tech-
niques are dependent on the output of the segmentation phase. Separation of
foreground and background is key to further decomposing the foreground into
an accurate collection of object masks that represent individual cells.

It is important to note that the segmentation phase does not have to take the
raw images directly from image acquisition. Segmentation is usually preceded by
an Image enhancement phase. In this phase imperfections in the image such as
too much noise or low contrast can be adjusted to make the image look ‘better’.
Our algorithm makes use of enhancement techniques such as subtracting the
background, gaussian blur, noise suppression and contrast enhancement.

There are numerous popular segmentation techniques, and each comes with their
own strengths and weaknesses. The choice of which technique to use largely
depends on the composition of the target image. The next section introduces the
WDMC technique, the algorithm developed at Leiden University which has proven
robust and effective on the image sets produced by the HT/HC experiments.

2.2 Segmenting with Watershed Masked Clustering

Segmentation methods generally operate on one of two basic properties of in-
tensity values: discontinuity and similarity. The former uses abrupt changes in
an image to partition the image. The latter attempts to find regions of the im-
age that are similar (in pixel value) to each other. Abrupt changes are usually
edges of objects. For similar regions, the notion similar must first be defined. Put
simply, for our input images obtained by fluorescence microscopy, similar pixels
have close intensity values to neighbouring pixels above a certain threshold.

WMC is a hybrid algorithm made up of four main steps:

1. Image Enhancement

2. Coarse Region Selection
3. Fuzzy C-Means Clustering
4. Mask Merging

First the raw image is enhanced. To make the distinction between foreground
and background clearer a contrast enhancer is applied to the image. Then the
background is subtracted using a rolling ball algorithm. A gaussian filter is then
applied. This produces an image that produces more accurate masks in the fol-
lowing stages.

Coarse region selection partitions the image into adjacent ‘coarse’ regions. The
regions are named coarse because they are only an approximation of a cell object,

as opposed to the ‘refined’ objects which closely follow the actual cell contours
procured through the next steps. The regions are selected through the (similar-
ity based) maxima-seeded watershed algorithm. In this algorithm, local maxima
are found. A local maximum has the highest pixel intensity in comparison to its
neighbours. From here, regions are ‘grown’ by viewing the maxima of the image
as water sinks. Each pixel will flow toward a water sink i.e. a local maximum
and will be added to the region.

From these regions the more refined object mask must be extracted. This is ac-
complished using fuzzy c-means clustering. One defining attribute of the WMC
approach is that each coarse region can be processed independently. For each
region, a thresholding method is used. Thresholding is another widely used sim-
ilarity based segmentation technique. Thresholding methods assume two classes
of pixels in an image. Each pixel is mapped to one of these classes by the thresh-
olding function. The threshold is the value that partitions the image. For exam-
ple, a greyscale image can be thresholded by simply choosing a value ¢. Each
pixel with intensity ¢ and ¢ < ¢ is mapped to class 1, and each pixel with ¢ > ¢
is mapped to class 2, or vice versa. The two classes in each coarse region cor-
respond to background and foreground (cell) pixels. To calculate the threshold
the weighted fuzzy ¢ means clustering algorithm is used. The region can then be
thresholded to obtain refined object masks of each cell.

Fig. 1. A thresholded apple.

It is possible that the coarse regions split an object into multiple parts. This is
referred to as overcut. Overcut objects can be identified by a shared watershed
boundary. Sometimes these objects have mistakenly been seperated and are ac-
tually one single object. The merging stage attempts to identify these mistakenly
split objects and merge them if they fit the criteria. The two criteria are object
intensity and orientation. Thus, only if there is enough similarity in intensity,
and the difference in orientation is below a certain point the objects are merged.

The end result is a binary image. Each pixel was assigned intensity value 255 if
it belongs to a cell, and 0 otherwise. The resulting image is referred to as the
mask.

Fig. 2. Segmentation process, from left to right: original image, contrast enhancement,
gaussian blur, background subtract, watershed segmented (coarse), final segmented
(refined) image.

2.3 Tracking with Kernel Density Estimation

The segmentation step is followed by object tracking. Object tracking algorithms
find links between objects. This information can be used to study the movement
of these objects over a period of time. In our case, a link must be found between
two objects that appear in consecutive images. A successful link found between
two objects a and b in images A and B with a € A,b € B implies a = b, albeit
at a different time.

There are several methods and models used to find these linked objects. Methods
include particle filter tracking, blob tracking, energy driven linear model tracking
and kernel density estimation mean shift tracking. Kernel Density Estimation
has been found to work well with our HT /HC experiments, giving a true positive
rate of 94.43% and a true negative rate of 92.04%[?, yan| For this reason we use
KDE in our tracking algorithm.

Tracking results in a collection of trajectories describing the movement of a
particular cell. These trajectories, in conjunction with a description of the ob-
jects obtained by segmentation, are then used in the Data Analysis step of the
experiment.

3 Material and Methods

3.1 LLSC

The LIACS Life Sciences Cluster (LLSC) is a computing cluster recently built at
Leiden University. Its intended use is for research related to bioinformatics or the

other life sciences. Initial experiments already conducted include single particle
analysis using EMANT[5], and [6]. All experiments conducted in this study have
been performed on this cluster.

The cluster is comprised of:

— A single user node, or head node, running the TORQUE scheduler

— 24 worker nodes with varying configurations:
e 13 nodes with two dual-core Xeon 5150 CPUs and 16 GB main memory
e 9 nodes with two quad-core Xeon E5430 CPUs and 16 GB main memory
e 2 nodes with two dual-core Xeon 5150 CPUs and 8 GB main memory
e All nodes have 400 GB of local storage in a hardware RAID-0 configu-

ration

e All nodes are interconnected with 100 MBit/s network interfaces

— 2 file servers with 7.5 TB of storage in hardware RAID-5 configuration, 32

GB main memory and connected to the network with a speed of 1 GBit/s

The user node runs the TORQUE Resource Manager. All experiments are
run through TORQUE as jobs. TORQUE is responsible for managing resources,
the most important of which are the allocation of nodes and scheduling of jobs.
TORQUE allows features such as requesting resources, tagging nodes, advanced
job logging and statistics, job arrays and easy integration with third party par-
allel computing solutions such as MPI.

3.2 Imagel

Both the segmentation and tracking algorithms have been implemented as plu-
gins around the ImageJ framework. ImageJ is an open source image processing
program written in Java. It is designed to be used as a standalone application,
and is therefore not an image processing library per se, but can be used as such.
It natively contains most of the basic image processing algorithms such as con-
trast enhancement, fourier transforms, applying filters, and more. It recognizes a
variety of image formats and includes functionality to save, edit and convert files.

A key feature is the extensibility it provides in the form of plugins. There are
hundreds of user made plugins available on the internet. Anyone who wishes to
implement an algorithm can do so by implementing the pluginFilter or extend-
edPluginFilter interface in Java. By implementing these interfaces and including
an ImageJ jar file in a Java project access is granted to essentially all ImagelJ
features that the standalone version provides.

ImageJ recognizes java class and jar files and automatically installs these as plu-
gins if they contain an underscore in their name and are located in the plugins
folder. There is also an option to compile files containing java source code while
running the program. Both the segmentation and tracking algorithms were in-
stalled as a jar file.

Existing ImageJ Workflow In order to segment an image, the standalone
ImageJ application must be run. The user is presented with a menu bar listing
all the functions available. The image file must be opened and the option ‘WMC
Segment’ must be chosen from the plugins menu. The currently selected image
stack will be processed. Each slice is processed individually and the on screen
image is updated slice by slice. The resulting binary masked image can then be
saved and the process repeats itself for any subsequent image stacks.

Tracking can be accomplished in a similar way. After the segmented images have
been created, these images and the original images are used as input for tracking.
The tracking algorithm can be selected from the ImageJ menu. Tracking differs
from segmentation in that it does not produce an image as output but raw data.
The results of tracking are descriptions of paths and descriptions of the objects
in these paths. From both the objects and these paths measurements can be
done to measure motility, morphology and other cell phenotype features. This
data can be saved as a CSV file and the cell trajectories can either be saved or
displayed visually as an image.

Even though ImageJ was designed for one user some automation is possible.
Macros can be used to speed up the process for multiple image stacks. ImagelJ
features its own macro language. A macro can be passed to ImageJ on startup,
or selected from the menu. The macro language is interpreted by ImageJ at
runtime.

Terminology For clarity we present an overview of the most frequent termi-
nology:

Image Stack A collection of images. These are ordered by the time they were
taken. An image stack corresponds to the collection of images belonging to
one well plate.

Image Slice A single image taken from a place in the stack.

Partition A subset of slices of a stack, with the stack order preserved. Each
nth slice is the direct successor to the n-1th slice. i.e. there are no ’jumps’ in
a partition.

Overlap Two identical slices in different stacks, where one is the last slice of
the first stack and the other is the first slice of the second stack.

Object An object represents a cell in the original image. It contains all the
coordinates of the cell, and also meta information such as the slice number
it belongs to, median intensity values, and object orientation

Path A path represents a possible trajectory belonging to a cell, across all
stacks.

Subpath A subpath is a path across one partition.

3.3 Segmentation

Listing 1.1 gives a high level overview of the procedures involved during the
segmentation phase.

0O Ui Wi

= e e e
DD UL W N = O ©

SegmenterPlugin (InputStack image):
for ImageProcessor slice in image do
segment (slice)
save (image)

segment (ImageProcessor slice):

enhanceContrast (slice)
gaussianBlur (slice)
subtractBackground (slice)
watershedSlice := watershedSegmentation(slice)
regions := label(watershedSlice)
for region in regions do

objects := KMeansClustering(region)
for object in objects do

for x,y in object.mask do

pixel (image, slicenr ,x,y) := 255 (WHITE)

Listing 1. Pseudocode for the segmentation algorithm

From this structure we immediately see two possibilities to utilize concurrency on
multiple nodes or processors. Each image stack is processed independently of one
another. Furthermore, each slice within a stack is also processed independently.
Intuitively this provides two methods to implement concurrency:

1. Stack level concurrency — processing multiple image stacks on different nodes.
2. Slice level concurrency — processing multiple image slices on different cores.

This type of parallelism where multiple processes run concurrently with minimal
or no inter-process communication is called embarrassingly parallel. Such prob-
lems are easy to parallelize and require little to no load balancing. According to
Amdahls law, if the slices and stacks are truly independent the speedup should
be very close to the number of concurrent processes — i.e. cores¥nodes. This is
our hypothesis.

It is also possible to combine the two and use both stack and slice level concur-
rency. Consider 2 nodes with 4 cores per node and an input set of 8 stacks of 32
slices. Each node can process one stack, and each core can process 8 slices.

In our experiments we test both these methods and examine if the hypothesis is
correct.

3.4 Tracking

Object tracking is the more intensive of the two procedures. As we will see, it
is also more difficult to parallelize due to dependencies between processes. The
pseudocode is presented in listing 1.2.

0O Ui Wi

DO = = = s e e e e e
O © 00 IO UL W= O©

21

TrackerPlugin (InputStack image, InputStack maskedImage)
allObjects := getObjects (image, maskedImage)
for n := lastSliceNr to 0 do:
foreach object in slice(n) do:
if object.visited is true

continue
else if object.visited is false

duplicateCount := 0

object . visited := true

path := object

m= n—1

while (m >= 0 and linkObjects(object, getSlice(m)) is found) do:
if matchedobject.visited = true

duplicateCount := duplicateCount + 1

matchedobject . visited := true
M—
path += matchedobject
object := matchedobject

if (path >= min_size and duplicateCount/pathlength < 0.5):
finalPaths := finalPaths + path

save (paths)
Listing 2. Pseudocode for the tracking algorithm

The tracker takes as input the original input image stack and the segmented
(masked) image stack. Each cell is extracted and stored in allObjects. Each ob-
ject has information including a slice identifier, object identifier, co-ordinates of
the object in the image and measurements such as mean intensity values and
orientation. The pair {slicel D,objectID} uniquely identifies an object in an
image stack, providing the stack has been labeled using the same algorithm.

Recall that the goal of tracking is to find object trajectories. This algorithm
works backwards, evaluating the slices from the last to the first slice. A slice is
evaluated by looping through all objects belonging to that slice. If the object
has never been visited during a previous iteration it is added as the first ob-
ject in a new path. A variable for each object is kept that records when it has
been visited. Once the first object has been added an attempt is made to find
a link/match in a previous slice using the kernel density estimation mean shift
method. This continues until either no match can be found or the first slice has
been reached.

When a match can no longer be found the path is evaluated and either accepted
as a valid path or discarded. A path with a length less than the minimum length
is discarded. The minimum length in all experiments was set to 3. A path with
50% or more of its objects contained in another path is also discarded. All other
paths are accepted and added to the final collection of paths.

10

A property of this algorithm is that there are no two paths with the same initial
object and if an object is in a path it is either the initial object or there is no path
where that object is the initial object. This is because an initial object is only
added if it has not been visited before i.e. does not belong to another path. This
also prevents finding paths that are a subset of another path. Consider a path
{0,0,2,3,2} from slice 4 to 0. The elements of the path correspond to the object
identifier given by the labeler. For object 0 of slice 4, a match is found: object 0
of slice 3. This means that object 0 of slice 3 is visited and is not added as initial
object when slice 3 is evaluated. If it was to be added as initial object the path
{0,2,3,2} would be found. This information would be redundant. A common
behaviour of cells is to multiply. When this occurs, two paths are created with
a shared ancestor. This is an example of two paths with a large shared subpath
that would be excluded from the final collection.

As with segmentation, stack level concurrency can be implemented fairly eas-
ily since stacks are again independent. However, it is not immediately apparent
how to utilize slice level concurrency for object tracking. Objects in a slice are
visited in order, and changing this order can change the output. Slices are not
completely independent since at least two slices are needed to link two objects.
In the experiments two methods are tested: partitioned concurrent tracking and
partitioned object level tracking. The former divides a stack into multiple par-
titions which are sent to different processors, the latter partitions a stack and
further divides each partition into sets of objects which are sent to different
Processors.

4 Implementation

4.1 Framework

Each experiment is run using one of two methods:

Method 1 The input stacks are stored on one of the fileservers, either in the
repository or in a home directory. There are three main components involved.
Two scripts written in Python named PA.py and PA-Seg.py, to setup the track-
ing and segmentation experiments respectively. Two TORQUE/PBS jobscripts
using Bash called parallel-tracking.jobscript and parallel-segmentation.jobscript.
Finally, a jar file named PA.jar containing the modified ImageJ source and Java
implementations for segmentation and tracking. The ImageJ source is modified
so that GUI components of certain plugins are no longer instantiated. The call
hierarchy is PA.py — jobscript — PA.jar. PA stands for Phenotype Analysis.

PA.py takes a text file as its argument. This text file itself contains arguments
for the rest of the process. PA.py creates a global output directory for the job.
Each node has read/write privileges for this directory. It copies a file containing
the locations of all input stacks to this directory. It also copies the jobscript, de-
pending on whether it is a tracking or segmentation job. The script also passes

11

along any relevant arguments to the jobscript. The last statement in both Python
scripts executes gsub, which is a TORQUE command and instructs TORQUE
to schedule the jobscript.

The jobscript submitted to the cluster contains a header. In this header the out-
put directory can be specified for all job output and logfiles. In our case this is
the global output directory. These logfiles can later be used to gather job statis-
tics. Job resources can also be requested. It is possible to request only nodes of
a certain type or with a certain amount of memory. The main feature we are
interested in is the amount of nodes, and the processors per node. Using these
two attributes we can control the total number of resources available per job and
measure how total job execution time reacts to different combinations of nodes
and processors per node.

The jobscript controls a selected number of nodes and is responsible for calling
PA jar on each node with the correct parameters. For segmentation, each node
is given an equal number of stacks to process. If there is a remainder it is again
split over the nodes. Once the node ‘knows’ which stacks it must segment it can
run concurrently with no synchronization until it is finished. For tracking, the
jobscript first calculates the input arguments which it writes to a file on each
node. Again, each node can process its stacks concurrently. When all nodes are
finished the joining operation is started.

PA jar takes different arguments for segmentation and tracking. For segmenta-
tion it takes the input stack, the number of cores to use and the location of the
output directory. Tracking takes the input stack, the masked input stack, the
output directory, the number of cores, and the id’s of the slices it must process.
An overview of the data flow on the cluster using this method is given in figure
3.

Method 2 The second method is similar to the first but whereas method 1
calls PA . jar using Java method 2 calls Fiji using headless mode and a macro.
Enabling headless mode ensures that Fiji does not instantiate GUI objects. It
is implemented by using bytecode manipulations at runtime. Since the worker
nodes have no GUI any attempt to instantiate GUI objects causes a software
crash. Our implementation, in conjunction with this mode and the use of macros
caused a bug which would delay Fiji from exiting by approximately 64 seconds.
Using this method 2 calls to Fiji are made per job, essentially adding 128 seconds
of overhead. This method was only used for out initial segmentation experiments.

4.2 Partitioned Concurrent Tracking

The solution proposed for parallel segmentation falls under the category ’em-
barrassingly’ parallel since the component parts are largely independent of one
another. For tracking a different approach is needed. Each object must be linked

12

PA.py

Segmentation
Results
Stacks

Tracking
Results

WORKER
(MASTER)

Partition
Results

Fig. 3. LLSC data flow overview

to an object in a previous slice and therefore at least two slices must be processed
per core. Since the minimum length of a path is 3, a minimum of 3 slices per
core is used in the experiments. The principle of partitioned concurrent track-
ing is to partition each stack into two or more partitions. Each partition has
an overlapping slice with the previous and next partition. Then, the algorithm
could be run across multiple processors or nodes with different data. This type
of parallelism is called data parallelism.

First attempts to implement the partitioned algorithm were implemented using
this three step method:

1. Partition an input stack into n partitions py1,p2..., pn-
Each partition has stacksize/partitions + 1 slices, except for possibly the
last partition which also processes the remainder.
For each partition 7 in partitions p; ..., pn,_1, the last slice of p; is the first
slice of p; 41
2. Process each partition according to the pseudocode above.
3. Join the results by
(a) Finding and adding paths u; ..., u, and vy ...,v, such that u, = v;.
The resulting path is uy ..., Uy, v2 ..., v,. Two elements are equal if they
have the same object identifier and slice identifier.
(b) Adding all other paths found to the final results.

13

Though this approach succeeds in finding paths, there is a major difference
with the sequential algorithm. The final paths found using the first version of
partitioned tracking were very different from a sequential run. The difference
depends on the specific input stack. The lowest similarity measure was 62%.
This is due to two reasons:

1. The path properties no longer hold.
2. The objects are being visited in a different order compared to the sequential
algorithm.

The two properties were that the path must be longer or equal to the minimum
length, and the percentage of already visited objects must be less than 50%.
Consider two partitions A, B each containing 4 slices with slice 4 being the over-
lap. Using the partitioned algorithm, two paths that will be accepted in partition
Aareuy =1,3,5,7,v4 = 2,4,6,7. Path u will be accepted first, since it starts
with a lower object id. Path v, will then be accepted, since it contains only
25% visited objects. However, if there is a path wg = 7,8,9, 10 then the joining
algorithm will accept both join(ua,wp) and join(va,wp) while the sequential
algorithm would not accept join(va,wp). Therefore the percentage of visited
objects in the final paths is not always less than 50%. Even though all paths
found by partitioned tracking were > 3, not all paths were found. Consider a
path in {4,5} in A and {5,6} in B. The sequential algorithm would find {4, 5,6}
while the partitioned algorithm would reject both candidate paths.

Since the found paths are different there are three options:

Option 1 A path is in sequential paths and in partitioned paths
Option 2 A path is in sequential paths and not in partitioned paths
Option 3 A path is in partitioned paths and not in sequential paths

We need to eliminate all occurrences of options 2 and 3 so that the paths found
in the sequential version are identical to the paths found in the partitioned ver-
sion. Consider a stack S and two partitions A and B of S. algg is the sequential
algorithm processing S and alg 4,algg the partitioned algorithms.

Because A is the first partition, each object in alg 4 is visited in exactly the same
order as each object in algg. When deciding whether to add an object as the
initial object of a path, the decision will be the same for both algs and alg, as
the visited boolean will have the same value. The difference in paths of A comes
from whether the path will be accepted or not. Option 2 occurs when the a path
that ends on the overlap is cut because it is too short, but actually continues in
partition B. To include these paths a new rule must be added.

Rule 1 Accept all paths of length > 1 if the path ends on the overlap that would
have otherwise been rejected because of length.

Option 3 occurs when the path would be cut by algg because of objects not yet
visible to alg4 like in a previous example. These paths can be accepted for now

14

and pruned at a later stage. To recap, with rule 1 applied to alga, only option
1 and 3 occur, and option 3 can be pruned later.

As partition B is not the first partition objects that have never been visited
in algp might have been visited in algg. The consequence is that the number
of visited objects in a path will differ for the same paths in the two different
algorithms, and the choice to accept is no longer the same. Note that this is only
relevant for the objects in the first slice (the overlap slice) that is evaluated in
algp. The reason for this is that all other slices are evaluated in the exact same
order as in algg. The solution is to accept all candidate paths where the initial
object is of the overlap slice regardless of the number of already visited objects.
In addition, the paths that were continuations from a previous partition must
be kept. Two new rules are added:

Rule 2 Accept all paths of length > 3 if the path starts on the overlap regardless of
the number of already visited objects in the path.
Rule 3 Accept all paths where 3 > length > 1 if the path starts on the overlap.

By combining all 3 rules for algp, option 2 is eliminated entirely. Paths corre-
sponding to option 3 must be pruned later and paths corresponding to option
1 are good. If a stack is partitioned into more than 2 partitions, rule 1 2 and 3
must be applied to all partitions excluding the first, which only needs rule 1.

At the end of the algs and algp, all original paths of algs can be obtained from
the the separate results. The key is to start with the results of alg4. Recall that
alg 4 evaluated each object in the exact same order as algg. We need to simulate
the workings of algg with the results of the other partitioned algorithms. Each
path produced by alg4 is again evaluated in order and joined with a path from
a subsequent partition. When the path has been joined the two criteria are
again tested. Options 2 and 3 can now be completely eliminated. This results
in the exact same collection of paths that algg found. The pseudocode for this
algorithm is given in listing 1.3.

4.3 Partitioned Object Level Tracking

Partitioned concurrent tracking assigns one core to each partition. It is also
possible to assign one node to a partition. The processors on each node can then
use a different form of multithreading. Each slice in a partition has a number
of objects. A subset of objects can be assigned to each processor. Note that
this again produces a different set of paths compared to the sequential and
partitioned tracking algorithms since the objects are no longer evaluated in the
same order. We still consider this in our experiments however. This method is
called Partitioned Object Level Tracking.

0O Ui Wi

o S S = S T
=W NN = OO

15

for partition P in partitions do:
for path in P do:

duplicatecount := 0
for partition Pl in remainingPartitions do:

for pathl in Pl do:

if last element of path = first element of pathl then
join (path ,pathl)

for each object in path do:

if object.visited = true then
duplicatecount := duplicatecount +1
else
object . visited := true

if path.length >= minlength and duplicatecount/path.length < 0.5 then
results += path
Listing 3. Pseudocode for the joining algorithm

4.4 Overview of Concurrency Options

To recap, the concurrency options available for the experiments are:

1. Stack Level Concurrency — Processing different input stacks on multiple
nodes

2. Slice Level Concurrency — Processing different slices on multiple cores

Sequential Tracking — Processing an input stack sequentially

4. Partitioned Concurrent Tracking — Processing partitions of an input stack
on multiple nodes and/or cores

5. Partitioned Object Level Tracking — Processing different sets of objects of
an input stack or partition on multiple nodes

©w

Figures 4 and 5 give a graphical representation of the distribution of stacks,
slices, and objects using these concurrency options.

Objects
: ()

Processor Processor Processor Processor : Processor Processor Processor Processor

Node

Fig. 4. Partitioned Concurrent Tracking (left) and Partitioned Object Level Tracking

(right)

Node. Node.

Processor

]

Fig. 5. Stack/slice level concurrency

17

5 Experiment Setup and Results

5.1 Experiment 1

Setup Experiment 1 uses method 2 as described in Section 4.1 and only per-
forms segmentation. This experiment measures job time for an input set of 512
stacks, processed over 1,2,4 or 8 nodes. The images are MTLn3 cancer cells,
cultured in 4 different well plates. The 512 stacks are made up of:

— 144 images from well plate 2, not treated.

144 images from well plate 2, treated with EGF.
144 images from well plate 3, not treated.

— 88 images from well plate 3, treated with EGF.

Each main job of 512 stacks is split into multiple jobs using TORQUE job arrays.
The array is scheduled and run. We vary the number of stacks per job (in the
jobarray). The maximum number of nodes tested was 8, effectively giving this
configuration of jobs:

Nodes|Jobs|Stacks per Job
1 1 512
2 2 256
4 4 128
4 8 64
4 16 |32
4 32 |16
4 64 |8

4 128 |4

4 256 |2

4 512 |1

8 8 64
8 16 (32
8 32 |16
8 64 |8

8 128 |4

8 256 |2

8 512 |1

Results Figures 6 and 7 show the results of this experiment using up to 4 and
8 nodes respectively. In addition to the actual experiment time the ideal time
is shown. The ideal time is the time taken for 1 node divided by the number of
nodes. The results show that using 2 nodes with 2 jobs instead of 1 node with 1
job gives a speedup of 1.93. Using 4 nodes with 4 jobs gives a speedup of 3.31.
Interestingly, using 4 nodes with 8 jobs still gives a very close speedup of 3.40.
After this point the speedup drastically diminishes when using more than 8 jobs

18

across 4 nodes. On 8 nodes the behaviour is largely analogous. Using 8 nodes
with 8 jobs gives a speedup of 6.26. Again, speedup decreases when using more
than 8 jobs across 8 nodes.

An explanation for the large increase with for example 512 jobs over 4 nodes is
the overhead. TORQUE must schedule 512 jobs instead of 4. However, the real
overhead comes from the software bug described in section 4.1. This error causes
approximately 128 seconds of overhead to be added per job. With 512 jobs this
amounts to an extra 65,536 seconds which is about 4% hours per node that is
wasted.

It is possible to estimate the timings of each job without this bug. Several timings
were taken per job: the total time from the first job submission to the last job
completion, the average job time, the average segmentation time, and the average
tracking time. The estimated total times can be found using the formula:

(average job time — 128) x nr of jobs

(1)

The results are displayed in figures 8 and 9. The corrected values correspond
much more closely with our estimate that there would be a linear scaling as the
number of nodes increased. It is again clear that using the same number of jobs
as nodes is the best option. With the corrections, using more jobs than nodes
still gives less speedup, however it is much closer than before. In theory, the
difference in speedup is now solely attributed to the TORQUE overhead and the
system calls executed in the jobscripts. This experiment did not copy its local
results back to the fileserver therefore no I/O data is available.

nr of nodes

5.2 Experiment 2

Setup Experiment 2 is for the most part analogous to experiment 1. However,
method 1 is used instead of method 2. This eliminates the overhead caused by
the bug. This experiment utilizes all available nodes and was run 3 times. The
results reflect the average of these runs. A final difference is that this time the
job arrays feature is not used, and there are an equal amount of jobs as nodes.

Results We see that the results verify our corrected results from the previ-
ous experiments and that a linear speedup is obtained. Figure 10 shows how
segmentation scales for up to 24 nodes.

Segmentation Scaling
1-4 Nodes (4-16 procs, method 2)

20000

19000

18000

17000

16000

15000

14000

13000

12000

== actual

11000 ——ideal
10000

Time (s)

9000
8000
7000
6000
5000
4000
3000
2000
1000

1) 22 4@ 84 16 (4) 32 (4) 64 (4) 128 (4) 256 (4) 512 (4)

Jobs (Nodes)

Fig. 6. Segmentation scaling up to 4 nodes using TORQUE job arrays and method 2.

Segmentation Scaling
1-8 Nodes (4-32 procs, method 2)

12000
10000

8000

—&— actual
=~ ideal
6000

Time (s)

4000

2000

1(1) 2(2) 44 8(8) 16 (8) 32(8) 64 (8) 128 (8) 256 (8) 512 (8)

Jobs (Nodes)

Fig. 7. Segmentation scaling up to 8 nodes using TORQUE job arrays and method 2.

20

Time (s)

Time (s)

Segmentation Scaling
1-4 Nodes (4-16 procs, method 2)

9000
8000
7000
6000
5000
4000
3000
2000
1000
0
11 22 4(4) 8(4) 16(4) 32(4) 64 (4) 128 (4)256 (4)512 (4)

Jobs (Nodes)

Fig. 8. Segmentation results using up to 4 nodes, with time correction.

Segmentation Scaling
1-8 Nodes (4-32 procs, method 2)

9000
8000
7000
6000
5000
4000
3000
2000
1000
0
11 22 4@ 8(8) 16(8) 32(8) 64 (8) 128 (8)256 (8)512 (8)

Jobs (Nodes)

Fig. 9. Segmentation results using up to 8 nodes, with time correction.

== corrected
=== jdeal

== corrected
=== jdeal

21

Segmentation Scaling
1-24 Nodes (4-96 procs, method 1)

7000
6000
5000
4000
3000
2000

Time(s)

1000

0
11) 22) 44) 8@8) 12(12) 16(16) 20(20) 24(24)

Jobs(Nodes)

Fig. 10. Segmentation results using up to 24 nodes.

5.3 Experiment 3

Setup Experiment 3 uses method 1 to test different tracking methods. The
experiment input is 144 non treated image stacks from well plate 2, and their
corresponding masked versions obtained through prior segmentation. Each stack
has 31 slices. This experiment processes partitions of a stack concurrently but
does not process multiple stacks concurrently. Each image file is read directly
from the fileserver and tracked. Once all stacks have been tracked and have writ-
ten their local results the joining starts. Each node sends its results to a master
node where the joining algorithm is run for all stacks. When all algorithms are
finished all results are copied back to the fileserver. The tracking, joining and
copy operations are all timed separately.

The following combinations are tested:

Algorithm Cores|Nodes
Sequential tracking 1 1
Partitioned tracking 1 2-10
Partitioned tracking 2 1-6
Partitioned tracking 4 1-3
Partitioned object level tracking|2 1-10
Partitioned object level tracking|4 1-10

== gctual
=== |deal

22

Results Each experiment is run 3 times and the averaged results are given in
figure 11. The line represents a linear (ideal) speedup. When looking at the total
job times the algorithm appears to scale for up to two processors. When 2 or
more processors are used the speedup does not increase much further, averaging
around the 3.27 mark. An unexpected outcome is that the speedup for 8 or 9
cores is even lower than that for 7 cores.

The total job time includes the tracking time, join time and data copy time.
The results of tracking with the copy time excluded are displayed in figure 12.
Again, the line represents the linear speedup. This time the chart shows that
there is in fact a significant improvement even when more than 2 processors are
used. In some cases a superlinear speedup is achieved. The use of 1 core per
node consistently gives the best performance. A possible explanation for this
is that 1 cpu is used for the algorithm, and in our implementation the entire
node (4 processors) has been reserved by TORQUE. No other user intensive
user processes were running on the remaining 3 cores. As a result, when 1 core
per node is used the entire cpu cache and RAM memory can be used for track-
ing without interference. When 2 or 4 cores per node are used these resources
must be shared, possibly causing increased cache miss rates. Using 4 cores per
node is the slowest option (though it still achieves close to linear speedup). Even
though it is outperformed, using 4 cores per node is still desirable. If one core per
node is used and another user requests the remaining cores for another process
performance may drop beyond that of using 4 cores per node. Even if no such
request is made the remaining cores are essentially wasted.

It is worth noting that using 7, 8 or 9 processors seems to be worse than using
6. This can be explained by the inefficiency of the slice allocator. Each node is

size of stack + 1 slices, except the last slice which also processes the
nr of nodes
31

remainder. For 6 nodes, each node processes % + 1 = 6 slices. For 7 nodes, each
node processes 371 + 1 = 5 slices, except the last slice which processes 8 slices.
Similarly, 8 nodes each process 4 slices, except the last which processes 11. Each
node must complete before the next stack can be processed. Therefore, when
using 7,8 and 9 nodes since there is a node that processes more slices than when
using 6 nodes, 6 nodes is faster. This method of slice allocation is the most basic

easiest to implement method and should be replaced in a future version.

allocated

The difference in speedup between the total job time and tracking + join time
is significant. The primary reason is the I/O bottleneck. Each process generates
a results file in the form of a serialized object. The size varies depending on the
amount of objects in the stack. For busy images in this input set the size was
typically 60MB. The reason that the results are written in this form is that the
existing implementation also did so. The internal datastructure that is written
contains a lot of redundant and duplicate information implicit in the original and
masked image stacks. With these stacks and a lightweight vector description of

23

the paths used in the joining algorithm all information can be reconstructed and
therefore the data copy time is less important.

For the partitioned object level tracking displayed in figure 13 anf 14 the results
are clearly worse. The same slice allocator is used, but instead of each processor
core processing one slice partition, each node processes one partition and assigns
a set of objects to each core. Each core accesses a shared datastructure multiple
times. This is a possible reason for a slowdown compared to the solely partitioned
version.

Partitioned Tracking Scaling

Job Times, 1-12 processors

10000
9000
8000
7000 1 Core Per Node
6000 w2 Cores Per Node
- 4 Cores Per Node
& 5000 m— Sequential
E 4000 — Ideal Line
3000
2000
1000
0

Number of Processors

Fig. 11. Partitioned concurrent tracking total job times.

24

Time(s)

Time(s)

9000
8000
7000
6000
5000
4000
3000
2000
1000

Partitioned Tracking Scaling

Tracking + Join times only, 1-12 processors

1 Core Per Node

I 2 Cores Per Node
4 Cores Per Node

s Sequential

—— Ideal Line

2 3

b1 g
4 5 6

Number of Processors

7 8 9 10 11 12

Fig. 12. Partitioned concurrent tracking tracking and join times.

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Partitioned Object Level Tracking Scaling

Job times, 1-40 processors

2 Cores Per Node
I 4 Cores Per Node

| Sequential
—— Ideal Line
X
2 4

L L]]]

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1 3 5 7 911131517 192123 2527 29 31 33 3537 39

Number of Processors

Fig. 13. Partitioned concurrent object level tracking job times.

25

Partitioned Object Level Tracking Scaling

Tracking + Join times only, 1-40 processors

9000
8000
éggg mm 2 Cores Per Node
5000 I 4 Cores Per Node
% 4000 Sequermal
é 3000 — |deal Line

2000

100 ‘ N S S T R R -

2 4 6 81012141618202224 2628 303234363840
1357 9111315171921232527293133353739

Number of Processors

Fig. 14. Partitioned concurrent object level tracking tracking and join times.

6 Discussion and Conclusion

In this study we have adapted image analysis algorithms for use on the LLSC and
explored the effect of parallel computing on the performance of these algorithms
in HT/HC screening experiments. We have shown that both segmentation and
tracking algorithms can be parallelized efficiently, with segmentation scaling lin-
early up to at least 96 processors using a combination of stack and slice level
concurrency. It has been demonstrated that parallelizing object tracking is pos-
sible, with the results scaling just below linear time using 4 cores per node and
appearing to scale super-linearly when using 1 or 2 cores per node. The results
of a sequential run have successfully been reproduced by developing a joining
procedure for partitioned concurrent tracking. We have also seen that I/0 is a
limiting factor and that this problem must be addressed if experiments are to
be done on a larger scale.

There are numerous projects that could be done in the future to extend this
initial study.

The logical continuation of this study is to merge segmentation and tracking
jobs into one job instead of calling them separately. Each stack must be seg-
mented and tracked. There are many different ways to accomplish this. The
simplest method is to segment using slice level concurrency on one node, with 4
cores with partitioned tracking on 1 node, 4 cores immediately after segmenta-

26

tion. This way no extra data needs to be transferred. Another possible solution
would be to allocate certain nodes as purely segmentation or tracking nodes re-
spectively. The segmentation nodes could continually segment, and write their
output directly to a set of tracking nodes. Since tracking generally has a longer
processing time a balance between the number of segmentation/tracking nodes
must be found. Further research must be done to find the optimal method.

The simple slice allocator currently implemented should be upgraded to use a
more efficient method. Furthermore, the current implementation has no load
balancing algorithm in place. Future studies could examine this further as some
image stacks are busier than others and will take more time to process. An effi-
cient scheduler could be created to evenly disperse busy stacks.

A related software engineering project could improve the datastructures present
in the Java code. It has been shown that I/0 is a limiting factor and any effort to
decrease this limitation could prove useful. Ideas for projects include efficiently
encoding the TIFF stacks and masks, or using a message passing interface to
facilitate better inter process communication.

A web interface could be developed to allow easier job submission. At the mo-
ment, experiments are prepared and run using a terminal in a Linux environment.
The web interface could be used to allow biologists to run their own experiments.

References

1. Zock, J.M.: Applications of high content screening in life science research.

2. Gonzalez, R.C., Woods, R.E: Digital Image Processing (3rd Edition), Prentice-Hall
Inc, Upper Saddle River, NJ, 2006

3. Fiji, http://fiji.sc/Fiji

4. Yan, K.: Image Analysis and Platform Development for Automated Phenotyping In
Cytomics, 2013

5. van Veen, N.: Deploying Single Particle Analysis on the LLSC, 2014

6. Klaver, S.: Deploying and Optimising Electron Tomography with IMOD on the
LLSC, 2015

