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Thomas Helling,
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Abstract

The Ebola outbreak of 2014 in West Africa struck harder than the 24 previous Ebola outbreaks together.

Understanding the spread of the infectious disease can help policymakers and health officials in combating

the disease.

In this research, we investigate the possibilities of gaining insights into the disease dissemination by analyzing

and combining open data sets. We examine to what extent we can analyze data on sub-national level to gain

new insights. We also use machine learning algorithms and a mathematical model to forecast perilous

locations.

Surprisingly, we found that combining data sets did not provide new insights into the disease outbreak. The

results of the analysis showed that the data sets (1) lack quality or (2) are incomplete and thus cannot help

in investigating the disease. Our main recommendation is to improve the data quality since only then data

analysis can lead to opportunities to better investigate the disease outbreak and to combat the disease. Then,

data science can offer new techniques, that are also used and described in the thesis.
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Chapter 1

Introduction

In December 2013, the first case of the Ebola outbreak of 2014 was reported. Although the disease was

encountered many times before, 2014 is the year in which the disease spread out at a new level of intensity.

This time the Ebola outbreak originated in West-Africa, and the number of Ebola cases became higher than in

the 24 previous outbreaks together. With a case amount of around 28, 000 and a mortality rate of 41 percent,

investigating the disease outbreak could lead to new insights [35].

1.1 Ebola: problem statement

Policymakers and health officials from several organizations have tried to effectively respond to the Ebola

outbreak by renewing efforts and developing preventive options, ranging from drug discovery to providing

resources [23]. Of course, they analyzed reports by the World Health Organization(WHO) to support decision

making. However, they experienced difficulties in deciding what locations are in the highest need of resources

and other materials. Therefore, our problem statement reads as follows.

Problem statement: To what extent is it possible to help policymakers and health officials in reacting effectively to an

outbreak of Ebola that is as vigorous as the Ebola outbreak of 2014?

The main topic of our investigations is to diminish the spreading of the infection over the geographical areas.

The research is conducted in the field of data science. More precisely, we will investigate the possibilities

of combining disparate data sets from open data initiatives to gain insights into Ebola and the way it is

diminished. Two of these open data initiatives are the Humanitarian Data Exchange [14] and the Ebola Open

Data Jam[22]. Data sets about health facilities, burial teams, rates of Ebola cases, and more are available on

these open data initiatives. As the availability of data is increasing daily, analyzing this data can provide

1



2 Chapter 1. Introduction

opportunities to better understand the way to combat and adequately respond to an outbreak of a disease

such as Ebola.

1.2 Three research questions

In order to answer the problem statement, we formulate three research questions. They will guide our

research.

Analyzing disparate data sets provides us with information about Ebola and its intricacies. Transforming

the information into knowledge is necessary to obtain adequate insights into the disparate data sets. A large

variety of data sets is supplied on the open data initiatives, but not all of the data sets are useful for the

research. Therefore, our first research question reads as follows.

Research question 1: What kind of disparate Ebola-related open data sets could provide adequate insights into the

dissemination of Ebola?

Disparate data sets provide knowledge. Combining multiple data sets can provide us with new information

and thus knowledge about Ebola and the way it disseminates. We will investigate whether certain circum-

stances at a specific location influence the dissemination of Ebola. For example, we analyze whether districts

with better wealth circumstances have a lower spread of Ebola. Therefore, our second research question reads

as follows.

Research question 2: To what extent can we combine the Ebola-related data sets to gain more knowledge about the

disease dissemination?

A better understanding of Ebola and its consequences by combining related data sets can be of critical

importance in preventing and/or combating the dissemination of Ebola. However, we can also provide

actionable insights into fighting the disease by combining data sets to forecast whether an outbreak may

occur or if an outbreak will get more intense at a specific location. Forecasting high risk Ebola locations may

intensify the attitude towards providing resources or other preventive options. Hence, our third research

question reads as follows.

Research question 3: To what extent can we forecast perilous Ebola locations with the use of the Ebola-related data

sets?

Answering these research questions will demonstrate how and to what extent we can use Ebola related data

sources to provide knowledge about the intricacies of the Ebola outbreak to policymakers and health officials.

The knowledge may lead to a better understanding of the disease outbreak and may support policymakers

and health officials in decision making in the longer run and even in the short run.
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1.3 Research aim

Data science is applied in a large variety of fields, and also in the Ebola outbreak of 2014 organizations started

to collaborate by joining open data initiatives to allow data scientists to help combat the disease [25]. The

aim of this research is to improve to combat against diseases such as Ebola in countries similar to the West

African countries by investigating the outbreak. We hope to provide organizations with insight into a way

to act more preventive towards the way the disease disseminates so that they can contain the intensity of a

future outbreak.

1.4 Research methodology

To answer the problem statement and research questions, we formulated a research methodology. The re-

search methodology consists of five stages; (1) data collection, (2) data integration, (3) public health trian-

gulation, (4) forecasting risk, and (5) data visualization. Table 1.1 addresses what stages of the research

methodology are used to answer the research questions. A description of the stages is given in chapter 3.

Research methodology stage RQ1 RQ2 RQ3

Data collection
Data integration
Public health triangulation
Forecasting risk
Data visualization

Table 1.1: Overview of the research methodology stages and what stages are used to answer the research questions.

1.5 Structure of the thesis

Chapter 1 formulates the problem statement and research questions. It also states the aim and shows the

research methodology. Chapter 2 provides background information about Ebola and the related work in

the field of Ebola and data science. Chapter 3 discusses the methods that we will use to analyse the data.

Chapter 4 discusses the data sets that have been chosen for the research. Chapter 5 discusses the integration

of the data sets. Chapter 6 will compare different data sets to gain new knowledge. Chapter 7 discusses

the forecasting possibilities of risky Ebola locations. Chapter 8 concludes by answering the three research

questions and problem statement. Table 1.2 provides an overview of which chapters will be used to answer

the research questions and problem statement.



4 Chapter 1. Introduction

Chapter PS RQ1 RQ2 RQ3

Chapter 1: Introduction
Chapter 2: Background
Chapter 3: Research methodology
Chapter 4: Data collection
Chapter 5: Data integration
Chapter 6: Public health triangulation
Chapter 7: Forecasting risk
Chapter 8: Conclusions

Table 1.2: Overview of the thesis structure and how each chapter supports in answering the problem statement and
research questions



Chapter 2

Background

In this chapter we provide a background of Ebola and introduce the related work that has been done in the

field of Ebola and data science. In section 2.1 we provide information about the disease itself and discuss

why it broke out at this level of intensity. Section 2.2 discusses methods that have already been applied in the

field of Ebola to provide health officials and policymakers with new insights. In section 2.3 we discuss three

mathematical models that have been applied to forecast the intensity of the Ebola outbreak.

2.1 Ebola Hemmorrhagic Fever

The first case of the Ebola Hemorrhagic Fever was administered in 1976. Ever since, small outbreaks of the

disease appeared multiple times in Uganda, Sudan, Zaire, and the Democratic Republic of Congo. The virus

is transmitted by blood, sweat, urine, vomit, and other bodily fluids. The first symptoms can occur anywhere

between 2 to 21 days after exposure to Ebola, but the average is 8 to 10 days [31]. These symptoms include

a fever, a severe headache, muscle pain, a sore throat and a weak feeling. More intense symptoms occur in

an advanced stage of the infectious period, such as abdominal pain, diarrhea, vomiting, and internal- and

external bleeding out of the nose, ears and eyes [3].

In December 2013, the first Ebola case of the 25th known outbreak of Ebola was encountered [35]. Since that

moment, the number of cases grew at an unexpected rapid pace. By August 2014, the outbreak was so intense

that the WHO declared the epidemic to meet the conditions for a Public Health Emergency of International

Concern, meaning that the outbreak is an extraordinary event which is determined to (1) constitute public

health risk to other states through the international spread of the disease and (2) to be a situation that is

unusual, unexpected, carries implications for public health beyond the affected state’s national borders and

may require immediate international action [33, 34].

5



6 Chapter 2. Background

The spread of the outbreak of 2014 has been intensified by several factors [6, 24]. We mention four of them.

(1) Years of civil war have led to distrust of the citizens towards authorities. Constant criticism towards the

way the public health organizations act against the disease outbreak does not improve the trust of citizens

and the citizens actually think the government is the cause of the disease [19]. (2) There is a scarcity of health

care workers and materials in the affected countries [6]. It was the first time Ebola struck in West Africa,

and therefore health care workers expected the first patients to be infected by Malaria, a disease with similar

symptoms. As the health care workers did not expect that the patients were infected by Ebola, they infected

more patients by using the same injection needles on multiple patients. (3) Religions groups in West Africa

believe in burial ceremonies that include touching and washing the bodies of the dead, while the virus is still

active on the dead body. For example, a religion group used sponges to clean the body and believed that

they were able to consume the wisdom of the dead body by rubbing the sponge over their own head after

cleansing the body. What they did not know, is that they actually infected themselves with Ebola. (4) There is

a high mobility of the population across borders in West-Africa, and therefore the disease disseminates faster

towards new areas [24].

In Ebola reporting by the WHO, there are three sorts of Ebola cases; (1) A confirmed case, which is a suspected

case that tested positive on the virus in the laboratory. (2) A suspected case, which is a person that has one

or more of the Ebola symptoms, or had contact with a suspected Ebola case, probable Ebola case, confirmed

Ebola case, or a dead or sick animal. (3) A probable case, which is a suspected case that is evaluated by a

clinician, or any diseased suspected case that had some association with a confirmed case [32].

2.2 Providing insights

So far, different organizations have tried to empower and support decision making in preventing and con-

taining the spread of Ebola by visualizing the disease dissemination using data sources.

IBM saw an opportunity to help and provided advice to the Sierra Leone government by combining data

sources and engaging with citizens. They used Sierra Leones Open Government Initiative in combination

with the possibility for citizens to report Ebola-related issues and concerns [29]. The system maps two

phenomenons: (1) cities with a low number of resources and (2) daily experiences of citizens affected by

Ebola [2]. Mapping these data collections supports the government in managing resources necessary to fight

the disease.

Simon J. Johnson, from the British Red Cross, created Ebola-related dashboards to better understand the

disease outbreak over time [16]. The goal of the dashboards is to help Ebola responders analyse the data that

is available on the open data initiatives. Figure 2.1 provides an example of a dashboard that was created by
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Simon. It provides four figures about the Ebola situation until 19 July 2015. The upper left figure provides

information about the new confirmed cases in the last two weeks, which is important because it can explain

where perilous locations are in the observed situation. The figure on the upper right provides four key

statistics of the Ebola outbreak until 19 July 2015; (1) the total number of cases, (2) the total number of deaths,

(3) the total population size, and (4) the mortality rate. The two other figures are interactive. It provides an

option to hover over a district, county, or prefecture with your mouse on the map. If you click on one of the

locations, the right figure on the downside shows the corresponding cumulative number of cases over the

outbreak period for that location. Using the dashboard, policymakers and health officials can gain insight

into the way the disease disseminates per location and what location is the most risky at this moment.

Figure 2.1: The Ebola dashboard that Simon J. Johnson from the British Red Cross created to provide policymakers and
health officials more insight into the Ebola dissemination on the situation of 19 July 2015 [16].

A further source of information is the WHO, which releases a weekly situation report about the disease

dissemination with the corresponding visualization of that week [35]. These reports include (1) a summary

of the outbreak, (2) the number of cases reported in the last week, and (3) how well the response against the

disease is doing per country.

Of course, other kinds of data visualization methods are also used to gain knowledge about the disease.

For example, HealthMap provided a map with Ebola related news activity over the time of the outbreak

[12]. Data science strategies such as analyzing HealthMap may also give new information about the disease

outbreak.
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2.3 Forecasting risk

Forecasting by using machine learning algorithms is not yet applied to disease outbreaks and to measure the

amount of risk at specific locations. However, since the end of the twentieth century mathematical modeling

is used more frequently to empower and support decision making in the public health area [17]. In the field

of Ebola, there have been multiple successful and unsuccessful attempts in forecasting the future incidence

by using mathematical models.

One of the key values in mathematical models for infectious diseases is the reproduction number R0, which

describes the average number of persons infected by a single infected case over the infectious period. R0

is difficult to compute, because it is computed by the aid of the transmission rate and contact rate of an

infected case. These variables are extremely hard to determine without intensive control [17]. Most of the

mathematical models attempt to make an estimate by fitting the data on formulas. The reproduction number

of Ebola varies between 1.5 and 2.5, which is relatively low in comparison to a disease such as the measles

with a reproduction number of between 12 and 18 [1].

Fisman et al. [8] introduced the Incidence Decay with Exponential Adjustment (IDEA) model, which describes

the disease dissemination with the previously mentioned reproduction number R0, and an additional variable

which describes the decay of the outbreak factor d. d represents the control efforts against the disease, public

behaviour changes, or any other dynamic change that slows disease transmission. They fitted the model on

two straightforward parameters: (1) the number of cases and (2) the number of deaths. However, d was

computed by using historical data. If policymakers and health officials are starting to respond more intense

to the disease outbreak, the value of d would not be sufficiently accurate to forecast the future incidence over

a longer time. The same kind of results were found by the WHO Ebola Response Team, but they were also

not able to take the control efforts into account as well [31].

Models with more than two parameters have also been used to provide policymakers and health officials with

insights into the disease dissemination by mathematical modeling. Drake et al. investigated a model by using

more parameters than the IDEA model in Liberia, such as infected cases that are looking for hospitalization

and individual behaviour of citizens. Using their model, they showed that the dissemination of the disease

depends on both hospital availability and individual behaviour towards Ebola. However, even if the capacities

of hospitals tend to increase or decrease, individual behaviour is the most important aspect in the way the

dissemination of the disease diminishes and can be taken care of [7].



Chapter 3

Research methodology

This chapter describes our approach to answer the problem statement and research questions. Section 3.1

discusses the identification and selection of relevant data sets for the research. In section 3.2 we discuss our

approach to combine the disparate data sets and deal with missing data. In section 3.3 we consider how

we investigate the combination of data sets to gain new insights. Section 3.4 provides a method to forecast

perilous situations with the use of a data mining tool. In the last section, we consider the methods used to

visualize and analyze the data sets.

3.1 Data collection

We analyzed a range of data sets from the HDX [14] and the Ebola Open Data Jam [22]. Since there is a

large variety of available data, it is important to notice how we identified data sets that are relevant for the

research.

A data set has to meet three conditions to be useful for the research; (1) the data set has to consist of the

attribute(s)1 time and/or location on sub-national level2. Which of the two attributes is necessary depends

on the type of data set. For instance, a data set that contains information that does not change over time can

be considered as a data set in which we only need the location attribute. (2) The data set has to be reliable.

A data set is reliable if it is supplied by a trusted source (e.g. the WHO) and if the data is up-to-date. (3) The

data set has to be relevant. Relevancy depends on whether we can imagine that the attributes of the data set

influence the way Ebola disseminates over time. In most cases these three conditions cannot be met by the

open data initiatives. Therefore, availability of the data sets is the most important aspect in finding data sets

that are useful for the research.
1An attribute is a quality or feature regarded as a characteristic or inherent part of someone or something.
2The districts of Sierra Leone, counties of Liberia and the prefectures of Guinea. The geographical areas are given in appendix A

9
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3.2 Data integration

Data integration is defined as combining data from multiple sources to provide an unified view of the dis-

parate data sets [18]. We will combine disparate data sets on the attributes time and location. Therefore,

we created a data set with the time and location attribute. Afterwards, we combined each data set on the

attributes time and location by developing PHP algorithms and by using a MySQL database. For two data

sets, the location attribute is insufficiently location specific. For example, a data set provided information on

regional level instead of prefecture level. To integrate these values with other data sets we used (reversed)

geocoding of the Application Programming Interface (API) from Google Maps [10].

Missing data can be an issue on two fronts: (1) missing fields in the combined data set and (2) missing

information that is not available in any of the available data sets. There are several methods for handling

missing values in a data set [21]. The most common method is the use of multiple imputation on missing data

values. There are several methods for multiple imputation, ranging from imputing the mean of the attribute

to considering a given number of instances that are most similar to the instance of interest. In this research,

we imputed data by searching for the value that is most likely to be standing there. Moreover, missing

information that is not available in any of the data sets is something we cannot include in the research.

Therefore, the focus of the research is on the attributes that are available for analysis.

3.3 Public health triangulation

Denzin defined triangulation as the combination of methodologies in a study of the same phenomenon [5].

However, triangulation has had multiple definitions since then. One of them is public health triangulation.

Public health triangulation is defined as combining and interpreting data from multiple sources to empower

and support decision making [27]. As we combine the data sets for new information, public health trian-

gulation comes in when we transform the information about the disease dissemination into knowledge. We

computed and compared Ebola-related indicators and measure whether the indicators can provide insight

into the way the disease disseminates.

3.4 Forecasting risk

There is a fundamental difference in forecasting and prediction. Forecasting relies mainly on data from the

past and present and analysis of trends, it is an extrapolation of the past into the future. Prediction is the

way things will happen in the future, often but not always based on experience or knowledge. Therefore,
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forecasting is a subset of prediction. In our case, we are extrapolating data from the past into the future, and

therefore we are forecasting.

To forecast perilous situations, we used two different approaches. (1) Weka, a data mining tool that analyzes

the data set and tests multiple classification algorithms on the data set [30]. The tool has a collection of

machine learning algorithms for data mining tasks and it provides various methods for preprocessing and

evaluating data. (2) We fitted the Ebola case data by using a mathematical model to extrapolate the case data

and forecast the risk in the upcoming week with the use of Python’s package SciPy. We used the confusion

matrix to evaluate the forecasting accuracy of the models and to compare the models to each other.

In section 3.2 we discuss the combination of disparate data sets. In order to forecast and analyze the perilous

situations, we defined a target attribute that describes the risk of a situation for the upcoming week. The

target attribute can then be used to train the forecasting models.

3.5 Data visualization

To visualize the results we used three methods: (1) a web-based platform programmed in PHP, Javascript

and Highcharts to visualize and analyze the prevalence data, (2) Microsoft Excel, for scatterplotting relations

between indicators, and (3) SciPy’s pylab to visualize the forecasting methods of the mathematical model.



Chapter 4

Data collection

In this chapter we discuss the chosen data sets for the research. The data sets have to meet the three conditions

that we described in section 3.1; (1) the attributes time and location, (2) relevancy, and (3) reliability. However,

in most cases these three conditions cannot be met by the open data initiatives. The most important aspect for

the selection of data sets is therefore availability. The first part of this chapter (section 4.1 to 4.3) discusses the

three data sets that can be used to analyze the disease outbreak; (1) the prevalence data, (2) the sub-national

indicators, and (3) the weather circumstances. The second part (section 4.4 and 4.5) describes two data sets

that could be of critical importance for the analysis but are incomplete. In section 4.6 we discuss two of the

problems that we experienced by collecting the data sets. Finally, section 4.7 provides an answer to research

question 1.

4.1 Ebola case rates

The prevalence of Ebola is important for the research because it will be the basis of our investigations in the

geographical areas. There is a large number of data sets that include the prevalence data over time. Analysis

of the data sets showed the data sets consisted of many inaccurate or outdated data points, and therefore the

quality of the data sets is lacking. For instance, a data set provided by the WHO (1) swapped the values of

two districts for two months, and (2) only provided data until the end of March. An example is provided

in Figure 4.1, in which the cumulative number of cases of Western Area Rural (the orange line) and Western

Area Urban (the blue line) are swapped between November 2014 and January 2015. This problem is a result

of the fact that the WHO updates the data manually.

Simon J. Johnson from the British Red Cross created a data set that includes the number of cases from the

7th of April until the 22th of June. The data set consists of the prevalence data of the counties of Liberia, the

12
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Figure 4.1: Example of lack of quality control in the collected data sets, where the case rates of two locations have been
swapped between November 2014 and January 2015.

prefectures of Guinea, and the districts of Sierra Leone. The cases1, deaths and confirmed cases are given on

a weekly and location basis. We verified the data set against the WHO’s weekly reports, and the data set is

accurate [35].

Since the prevalence data of the British Red Cross meets our conditions, we decided to use the data set to

investigate the disease dissemination. However, the data set is inconsistent because the weekly reports of the

WHO consist of under- and over reporting. Under- and over reporting is done when the number of cases is

lower or higher than the WHO expected on the moment of reporting. Two examples can be seen in figure 4.2,

where there is a sudden decrease and increase in the data points for the locations Bong and Grand Bassa.

(a) Bong, between days 200 and 240 (b) Grand Bassa, between days 200 and 250

Figure 4.2: Example of two locations where under- and over reporting occurs in the prevalence data set

1Probable, suspected and confirmed cases
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4.2 Sub-national indicators

There is a list of indicators2 for the countries Guinea, Sierra Leone and Liberia. The data set consists of 26

indicators. First of all, the International Wealth Index (IWI) is given. The IWI is an index that can be used

to measure a household’s long-term economic status for all low and middle income countries [28]. Locations

with a lower wealth index might intensify the dissemination of the disease. Furthermore, 25 other indicators

are given, such as the number of households with a bad quality toilet, and the number of households with a

bad quality floor. A description of each of the indicators is denoted in appendix B.

The sub-national indicators are from 2012 (for Guinea) and 2013 (for Sierra Leone and Liberia), and are

therefore slightly outdated. However, these are the only indicators that are available on sub-national level for

the Ebola affected countries. We do not believe the indicators changed significantly in the past years, since

there have not been large changes in the environment of the countries. The data is supplied by the Global

Data Lab, an organization that performs research and develops instruments for measuring and analyzing

progress of societies [9].

4.3 Weather circumstances

We think that the weather circumstances could influence the physical contact within households. On the one

hand, we hypothesize that if the weather is cold people tend to stay inside and therefore physical contact is

higher in these houses. On the other hand, in warm weather circumstances people are more likely to sweat, a

bodily fluid that could contain Ebola and therefore intensifies the chance of spread. In both hypotheses, the

weather circumstances influence the way Ebola disseminates and thus is relevant for the research.

A large number of organizations supply data about the weather history. The World Weather Online API is

able to provide a daily average of the weather back to July 2008 on the basis of the latitude and longitude. The

daily average values consist of the precipitation, minimum temperature and maximum temperature of the

day. By using geocoding, we created a data set with the corresponding latitude and longitude of a location

to find the weather circumstances of a specific location.

4.4 Ebola treatment centers and units

A data set with the number of Ebola treatment centers and units with opening- and closing dates denote the

accessibility towards care for local residents on a location. If the availability of these centers and units are

2An indicator is defined as a thing that indicates the state or level of something.
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low at a location, the accessibility towards care for local residents is lower and therefore an outbreak might

be more intense at the specific location. Combining the accessibility with for example the prevalence can

provide us with new insights about the disease dissemination.

Data sets that are supplied on the open data initiatives are updated until the end of December 2014. There-

fore, The data sets are heavily outdated and not reliable. Moreover, in most of the data sets they provide

information about the health care facilities, but the information contains missing attributes, such as time and

location. For example, a health care facility is stated to be closed without a closing date. The data set would

be extremely relevant for the research, but does not fulfil the three conditions that we stated. The lack of

quality in these data sets may critically impact the results of the analysis.

4.5 Control efforts

Control efforts are defined as the interventions that have been taken by aid organizations to contain the

disease dissemination and gain control of Ebola. There are data sets available that consist of information

about the control efforts that are taken on a location. However, the date of the intervention is not given in

the data sets. Therefore, we have no availability to combine the control efforts with the prevalence data and

observe whether the speed of transmission decreases once interventions have taken place. The lack of this

information reduces the impact of the data set and can be an underlying issue in why policymakers and

health officials are experiencing difficulties to contain the spread of Ebola.

4.6 Discussion

From the 55 Ebola-related data sets that were available on the HDX, only two data sets can be used to provide

policymakers and health officials with adequately insights into the way the disease disseminates over time

[14]. Most of the other data sets consist of (1) the same kind of information, (2) data that is not reliable,

and/or (3) missing information (e.g. time and location). There are several problems that lead to the lack of

quality of the data sets. We mention three of them.

(1) The origin of the disease outbreak is in West Africa. In West Africa, the health systems were already

broken before Ebola struck [4]. The software created to track Ebola outbreaks was designed to let one person

manually input the data into the database, which made it difficult to suddenly process all the data of different

aid organizations that supplied case reports. Therefore, collecting data amid an outbreak of this intensity is

a challenge.
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(2) The priority of combating the disease was to respond to the outbreak, instead of focusing on the challenge

of collecting data [4]. Direct actions and interventions had a higher priority than collecting data, and therefore

organizations preferred investing in resources and other materials for direct impact instead of collecting data

for analysis in the longer run. Even though data analysis could support and optimize in coordinating the

resources and materials in an efficient matter.

(3) There already is a large amount of criticism towards the health organizations that combat the disease

[11, 19]. We can imagine that the health organizations prefer to over report in a situation, because they would

otherwise even receive more criticism for making wrong estimations.

Collecting data is a challenge in the West African countries. However, we have shown in section 4.1 that

the inserted data also lacks of quality, which is the responsibility of the organizations themselves. The

organizations underestimated the power of data science in an early stage of the disease outbreak, and now

they see the consequences of not collecting data of high quality. An open data initiative could be of real

power in fighting a disease such as Ebola, but only if the quality of the data sets will be improved. The power

of data science could be of great value in fighting a disease such as Ebola [25].

4.7 Chapter conclusions

In this chapter we investigated research question 1: What kind of disparate Ebola-related open data sets could

provide adequate insights into the dissemination of Ebola? We analyzed the available data sets provided by aid

organizations on the open data initiatives and other sources. We searched for data sets that meet three

conditions; (1) the attributes time and location, (2) relevancy, and (3) reliability.

In most of the data sets we found that (1) the attributes time or location were missing, and/or (2) the data sets

were outdated and thus unreliable. Therefore, availability of data sets that meet these conditions is one of the

key issues in finding data sets that provide adequate insights into the disease dissemination. We found three

data sets that met the three conditions; (1) the prevalence data set, (2) the sub-national indicators, and (3) the

weather circumstances. But even these data sets consisted of a lack of quality, which can be explained by the

health organizations that undervalued the power of data science in an early stage of the disease outbreak.

Other data sets did not meet the conditions and therefore limit the research, because the lack of quality in

the data sets may critically impact the results of the analysis and therefore obscure underlying correlations.

In this chapter we focused on the collection of data sets that can be relevant for the research. However, gaining

knowledge about the disease dissemination by combining the data sources can provide us with insights into

fighting diseases such as Ebola. Therefore, the next chapters will investigate how we can combine the data

sets to gain new knowledge about the way the disease disseminates.
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Data integration

Data integration is defined as combining data from multiple sources to provide an unified view of the dis-

parate data sets [18]. This chapter discusses the integration of the data sets that are used for the research.

We integrate the chosen data sets from chapter 4 on a weekly basis ranging from the 7th of April 2014 to

the 22nd of June 2015 for all the possible locations: (1) the prefectures of Guinea, (2) the districts of Sierra

Leone, and (3) the counties of Liberia. The first three sections (5.1 to 5.3) discuss the combination of the three

data sets, with the corresponding problems that have occurred. In section 5.4 we define the target attributes

for forecasting and add them to the data set. In section 5.5 we consider the final data set that is created by

integrating the data sets.

5.1 Case rates

We use the Ebola prevalence data set from Simon J. Johnson from the British Red cross. The data set provides

the number of cases on a weekly basis. As we are analyzing the way the disease disseminates, we denote how

infectious diseases spread over time. Infectious diseases start off slowly. If each infected person infects two

other persons, the number of cases grows exponential. Once organizations start to intervene and gain control

of the disease outbreak, the number of new cases slowly diminishes over time [20]. Therefore, infectious

diseases spread in terms of a S-shape, also known as a sigmoid curve. Our data set shows the same kind of

sigmoid curves. An example of a S-shape of the data set is given in figure 5.1b.

In figure 5.1a we notice some missing values. We interpolated the missing values using a linear equation.

Mathematically, the equation is denoted as follows.

y = c0 +
c1−c0
t1−t0

17
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Where c0 is the cumulative number of cases that has been seen for the last time and c1 is the cumulative

number of cases that is observed in the future. t0 is the day that the last number of cases has been seen

and t1 is the new day that the new cases are found. Figure 5.1 provides an example of the results of the

linear imputation for the total number of cases. The figure shows that dates with a value of zero where cases

have been seen earlier, will be imputed to a representative value. We imputed the missing values for the

cumulative number of (1) cases, (2) deaths, and (3) confirmed cases.

(a) Before imputation (b) After imputation

Figure 5.1: An example that shows the results of the imputation into the data set for the district Kenema

There are also other indicators that we can derive from the prevalence data: (1) the number of new cases of a

week, since it provides an indication of the intensity of the outbreak on that specific date. (2) The prevalence

of the past three weeks. The transmission time of Ebola is 2 to 21 days, so the virus can still be active in this

time span [31]. (3) The number of new cases of neighbouring locations, as there is a high mobility across

border in West Africa [24].

Regarding (1) and (2), we computed the incidence and number of new cases in the last three weeks by

subtracting the cumulative number of cases of the observed date, from the cumulative number of cases for

one or three weeks. Regarding (3), we manually created a data set with all the neighbouring locations for

each location. Then, we computed a summation of the incidence data of all the neighbouring locations and

inserted it in the data set.

5.2 Sub-national indicators

To integrate the sub-national indicators with the prevalence data, the sub-national indicators data set should

be sufficiently location specific. The sub-national indicators data set provides information about the districts

of Sierra Leone, the counties of Liberia, and the regions of Guinea. We analyze the dissemination of Ebola
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on the prefectures of Guinea, and thus we have to specify the indicators of each prefecture instead of the

regions. Therefore, we used reversed geocoding to derive the prefectures that correspond with the regions.

The sub-national indicators of each region are then assigned to the corresponding prefectures. Afterwards,

we joined the prevalence data set and the sub-national indicators data set on the location attribute.

5.3 Weather circumstances

The data set that consists of the latitude and longitude of each location that we created in section 4.3, provides

the possibility to analyze the weather circumstances on a location. By using the World Weather Online API,

we requested the daily (1) precipitation, (2) minimum temperature, and (3) maximum temperature. By using

the World Weather Online API and the generated latitudes and longitudes data set, we requested the average

weather circumstances of a week and added it to the total data set by joining the data sets on the attributes

time and location.

5.4 Target attributes

Risk Incidence(i)

None i < 1

Low 1 >= i < 5

Medium 5 >= i < 20

High i >= 20

Table 5.1: Assigned risk values
based on incidence of the upcom-
ing week

The target attribute of the data set is a categorical variable that describes

what kind of risk an observed location has in the upcoming week. The risk

values can be (1) none, (2) low, (3) medium, and (4) high. We discretized1

the amount of risk by observing the incidence in the upcoming week. Ta-

ble 5.1 provides the assigned risk values based on the incidence for the

upcoming week.

5.5 Result

The resulting data set consists of 60 locations over 64 weeks, ranging from the 7th of April to the 22th of

June. The total number of rows of the data set is 3, 840. The data set consists of 38 attributes. There are 37

attributes that consist of historical data, and 1 attribute that describes the risk for the upcoming week. The 37

attributes can be analysed to observe whether they help in forecasting a risky location. A description of each

attribute of the resulting data set is provided in table 5.2.

1Discretization is defined as converting or partitioning continuous attributes to categorical attributes.
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# Attribute Description
1 Date The date of the day
2 Location The location on sub-national level
3 Cases The cumulative number of cases
4 Confirmed

cases
The cumulative number of confirmed cases

5 Deaths The cumulative number of deaths
6 New cases The number of new cases
7 New cases in

last two weeks
The number of new cases from this day to two weeks ago

8 New cases of
neighbouring
countries

The number of new cases of the last two weeks in neighbouring locations

9 Precipitation The average amount of rain, snow and other water vapours of the upcoming week
10 Maxtemp The average maximum temperature of the upcoming week
11 Mintemp The average minimum temperature of the upcoming week
12 IWI The international wealth index
13 Edyr The mean years of education of persons aged 20-49

14 Edyr fem The mean years of education of women aged 20-49

15 Edyr male The mean years of education of men aged 20-49

16 Urban Percentage of people living in urban area or region
17 Wrk agri Index of married men aged 20-49 working in agricultural occupation
18 Wrk inagr Index of married men aged 20-49 working in lower non-agricultural occupation
19 Wrk unagr Index of married men 20-49 working in an upper non-agricultural occupation
20 Electr Index of households with electricity in the region
21 Small house Index of households with none or one sleeping room in region
22 Large house Index of households with three or more sleeping rooms in region
23 Qual floor Index of households with high quality floor in region
24 Bad floor Index of households with bad quality floor in region
25 Tap water Index of households with piped water in region
26 Bad water Index of households with bad quality water supply in region
27 Flush toilet Index of households with flush toilet in region
28 Bad toilet Index of households with bad quality or no toilet in region
29 Age 0-9 Percentage of population aged 0-9 in region
30 Age 10-19 Percentage of population aged 10-19 in region
31 Age 20-29 Percentage of population aged 20-29 in region
32 Age 30-39 Percentage of population aged 30-39 in region
33 Age 40-49 Percentage of population aged 40-49 in region
34 Age 50-59 Percentage of population aged 50-59 in region
35 Age 60-69 Percentage of population aged 60-69 in region
36 Age 70-79 Percentage of population aged 70-79 in region
37 Age 80-89 Percentage of population aged 80-89 in region
38 Risky Categorical variable describing the risk in the upcoming week

Table 5.2: The resulting attributes of the data set

5.6 Chapter conclusions

This chapter supports to answer research question 2: To what extent can we combine the Ebola-related data sets

to gain more knowledge about the disease dissemination? We combined the Ebola-related data sets of chapter 4

on the attributes time and/or location. We created a total data set where the three data sets are combined:

(1) the prevalence data set, (2) the sub-national indicators data set, and (3) the weather circumstances. We

computed and imputed the missing values in the prevalence data set and the sub-national indicators data
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set. We also defined a target attribute for forecasting purposes.

By combining the data sets, we can now investigate whether we can transform the information of the data

sets into knowledge. The next chapters will investigate if we can gain new insights into Ebola and the way it

disseminates.
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Public health triangulation

Public Health Triangulation is defined as combining and interpreting data from multiple sources to empower

and support decision making [27]. This chapter discusses two of the insights into the disease dissemination

that we found by combining and analyzing the data sets. In section 6.1 we discuss how we measure the speed

of dissemination, which we can compare against the sub-national indicators to observe whether there exists

a correlation between the speed of dissemination and the sub-national indicators. In section 6.2 we compute

the correlations between the sub-national indicators and (1) the total number of cases of a location, and (2) the

speed of dissemination. In section 6.3 we discuss our results. Lastly, in section 6.4 we provide a provisional

answer to research question 2.

6.1 Speed of Ebola dissemination

A method to compute the speed of dissemination of Ebola using prevalence data is by computing the repro-

duction number [31]. However, it is extremely difficult to determine the contact rate and transmission rate

without intensive control [17]. Therefore, we thought of our own method. By determining the take-off date

and stabilization date, we can measure the growth per day over the period of take-off and stabilization. The

take-off date is the date where the incidence is consistently higher than zero. The stabilization date is the

date where the incidence consistently decays and slowly tends to become zero. We can describe the speed

of dissemination by measuring the growth per day in the worst time of the epidemic period of a specific

location. We computed both values using a different method.

We are not able to compute the take-off date by observing on what moment the first case occurs, because

sometimes only one case occurs and is immediately dealt with. The data is also inconsistent since we deal

with under- and over reporting. Therefore, we averaged the last five weeks of new cases seen from the week

22
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that we observe. Afterwards we look forward three weeks to determine whether the growth is consistently

higher than the average of the last five weeks. If this is the case, we decide this is a take-off date for the

disease outbreak at a specific location.

For measuring the stabilization date we cannot use the same approach in a reversed matter, because if the

disease stabilizes, the incidence can still consistently grow over time. Therefore, we computed the stabilization

date by taking the maximum growth of incidence in a week over the entire period and afterwards analyzing

whether a lower number than 40 % of the maximum growth occurs four times.

Figure 6.1 shows the moment of take-off and stabilization for the district Bo, and we can see that the estima-

tions are representative for a take-off and stabilization date. The number of cases does keep growing after the

stabilization date, but we measure the speed of dissemination on the worst period of the disease outbreak.

However, because of inconsistencies in the data set we could not always compute the correct take-off. Six

locations did not meet the requirements to observe a take-off date. Therefore, we updated the take-off date

manually by observing on what moment the incidence tends to grow consistently at the locations Gueckedou,

Dabola, Gbarpolu, Kouroussa, Grand Gedeh and Pita.

Figure 6.1: Example of the take-off date and stabilization date measured by our approach for the district Bo

Afterwards, we calculate the speed of dissemination(y) as follows:

y = c1−c0
t1−t1

Where c is the number of cases on a certain time stamp (date of take-off (0) and date of stabilization (1))

and t is the date in days for stabilization and take-off. By using this method, it computes the same speed of

dissemination for locations where both the number of cases and the duration of the outbreak is twice as low.

6.2 Sub-national indicators

Searching for a correlation between the sub-national indicators and indicators of the dissemination of Ebola

provides us with insight into the disease outbreak. We analyzed (1) the Pearson correlation between the
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sub-national indicators and the total number of cases, and (2) the Pearson correlation between the speed of

dissemination and the sub-national indicators.

We found that four sub-national indicators had a correlation of above 0.5, meaning that they have a strong

association with the indicators of the Ebola dissemination. However, Figure 6.2a shows that the indicators of

the Ebola dissemination of the locations Montserrado and Western Area Urban are outliers in the observed

data. As the Pearson correlation is sensitive to outliers, we removed these points from the data set. The right

figure shows the data set after removal of these points, and the correlations decreased to a value lower than

0.21, meaning there is no strong association between the indicators. Table 6.1 demonstrates the indicators

that had a correlation of above 0.5, but after removing the outliers had a weak correlation of lower than 0.3.

We observe in figure 6.2b that the data points are randomly separated and there is not a linear association to

be found. A total list of the correlations can be found in appendix C.

(a) With outliers (b) Without outliers

Figure 6.2: Scatterplots of the urbanization index with the cumulative number of cases with and without outliers

Indicator Correlation with total number of cases Correlation with speed of dissemination
Edyr 0.188 0.204

Edyr fem 0.216 0.231

Urban 0.109 0.188

Wrk unagr 0.215 0.242

Table 6.1: Correlation of four of the sub-national indicators with the speed of dissemination and the total number of cases

6.3 Discussion

Measuring the correlation of the sub-national indicators with indicators about the disease outbreak showed

not to have a strong association with the disease outbreak. However, we do believe that some of the sub-

national indicators can influence the way the disease disseminates. We mention two of them: (1) the urban-

ization index and (2) the IWI.

Regarding (1), this is the first time the disease broke out in more urbanized countries in comparison to earlier
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outbreaks, and it struck harder than ever before [6]. Physical contact is inevitable in cities these days, making

the chance of an infected person to transmit the disease higher than in rural areas. We therefore hypothesize

that the urbanization index can influence the way the disease disseminates.

Regarding (2), we hypothesize that wealth can influence the Ebola dissemination in two ways. On the one

hand, bad wealth circumstances can lead to a faster spread of Ebola because citizens have less accessibility

towards health care. On the other hand, good wealth circumstances may lead to highly infrastructured

environments that could relate to our hypothesis of (1).

One of the current limitations is that the sub-national indicators and prevalence data is not sufficiently lo-

cation specific. On locations with a low urbanization rate, the disease could still have been broken out in a

city, explaining the high number of cases on that location. These kinds of situations make it hard to conclude

whether the sub-national indicators have impact on the disease outbreak. However, we can see that inves-

tigating the disease outbreak on sub-national level could not provide us with more insights into the disease

outbreak.

6.4 Chapter conclusions

This chapter provides a provisional answer to research question 2: To what extent can we combine the Ebola-

related data sets to gain more knowledge about the disease dissemination? We measured the speed of dissemination

to compare against the sub-national indicators. Then, we observed whether the sub-national indicators corre-

late with (1) the total number of cases and (2) the speed of dissemination. The sub-national indicators that we

compared did not have a strong association. However, we do believe that some of the sub-national indicators

influence the way the disease disseminates, if the data is sufficiently location specific.

Therefore, our provisional answer to research question 2 reads as follows. At the moment, we are not able to

gain more knowledge about the disease dissemination by triangulating the data sets. This is explained by the

fact that the data has to be more location specific to investigate whether indicators such as the urbanization

index or IWI influence the way the disease disseminates in the geographical areas.
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Forecasting risk

This chapter discusses our approach to forecast risky locations. In section 7.1 we discuss how we train the

machine learning algorithms and test the forecasts. In section 7.2 we discuss how we evaluate and compare

the forecasting models. In section 7.3 we provide a baseline algorithm that we will use to compare against

three other forecasting algorithms: (1) C4.5, (2) Naive Bayes, and (3) a mathematical model. Section 7.4

discusses the C4.5 and Naive Bayes algorithms of Weka that we used and their results. Section 7.5 considers

an alternative approach with the use of a mathematical model to forecast perilous locations. In section 7.6 we

investigate if we can improve accuracy by smoothing the data. In section 7.7 we discuss the algorithms and

analyse what algorithm scored best by measuring performance of the test sets. Finally, section 7.8 provides

an answer to research question 2 and research question 3.

7.1 Data preprocessing

Since Weka does not support time series analysis, we removed the date attribute from the data set and

analyzed situations on other attributes. To train the forecasting models and test our forecast, we created

twelve training sets and twelve test sets. Each training set consists out of the historical data until the first

of each month, and each test set consists of the risk of the locations in the upcoming week from the week

after the last month of the training set. For example, if our training set consists of the historical data towards

the first of July, our test set consists of the risk of the 60 locations in the week between the first and seventh

of July. We created twelve training sets and twelve test sets, ranging from June 2014 to May 2015. The risk

distributions can be found in appendix D.
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7.2 Data evaluation

In order to evaluate our forecasting methods, we used the confusion matrix to derive the overall forecasting

accuracies for each of the algorithms that is used. The confusion matrix maps each of the actual values and

forecasted values in a matrix. The confusion matrix defines four types of values; (1) true positives (TP), the

values that are correctly identified, (2) true negatives (TN), the values that are correctly rejected, (3) false

positives (FP), the values that are incorrectly identified, and (4) false negatives (FN), the values that are

incorrectly rejected.

By investigating the confusion matrix and computing three indicators we can investigate the forecasting

accuracies of the models. We measure (1) the precision, that indicates how many times we correctly identify

the risk if we forecast the risk, (2) the recall, that indicates how many times we correctly identify the risk in

comparison to the total amount of times the risk occurs, and (3) the F-measure, that combines the precision

and recall. Mathematically, we denote the indicators as follows.

Precision = TP
TP+FP

Recall = TP
TP+FN

F − measure = 2∗Precision∗Recall
Precision+Recall

7.3 Baseline algorithm

To analyse whether the data integration of chapter 5 helps in forecasting the future risk, we need a baseline

algorithm to compare to the algorithms that take the additional indicators into account. An usual baseline

algorithm for machine learning is the ZeroR algorithm, which predicts the target attribute that occurs most

often. The ZeroR algorithm has an accuracy of 54.9%, which forecasted all the test cases to be not risky. For

infectious diseases the prevalence data is known for a specific location. Therefore, policymakers and health

officials currently analyse the prevalence data to support decision making and to decide what locations are

currently in the highest need of resources and other materials. Since policymakers and health officials analyse

the prevalence data, we used the OneR algorithm as baseline algorithm. It splits on only one attribute that

predicts the risk with the least errors in it [13]. The OneR algorithm splits on the incidence of the last two

weeks, making it the most important attribute to forecast situations. With a minimum bucket size of 6, table

7.1 provides the forecasting results of the baseline model.

The OneR algorithm beats the ZeroR algorithm with an accuracy of 69.7%. The precision and recall of the

model demonstrate that the biggest mistakes are made in forecasting the low and medium risk locations.

This could partially be explained by the inconsistencies of the prevalence data. A second reason is that the
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number of no risk training examples is of a larger size than the number of low risk examples, and therefore

sometimes low risk cases are classified as no risk cases. We also observe that forecasting high risk cases scores

relatively high in comparison to forecasting low and medium risk cases. This can be explained by the fact

that if a high risk location is observed there is a high chance of observing a high risk location again.

Risk None Low Medium High
None 384 19 10 1 414

Low 88 20 25 1 134

Medium 26 12 42 18 98

High 4 3 11 56 74

502 54 88 76 720

Risk Precision Recall F-measure
None 0.765 0.928 0.886

Low 0.370 0.149 0.212

Medium 0.477 0.429 0.452

High 0.737 0.757 0.747

Table 7.1: Forecasting results of the baseline algorithm

7.4 Forecasting by Weka

We used Weka’s feature selection to investigate whether the sub-national indicators of section 4.2 and weather

circumstances of section 4.3 possibly influence the risk on a specific location. Several evaluators in combina-

tion with their corresponding search methods have been used to investigate whether the indicators are of any

value. The evaluators measure the importance of attributes by using algorithms and by ranking them. The

evaluators that we used (InfoGain, GainRatio, CfsSubset, ChisquaredAttribute) showed that the sub-national

indicators and weather forecasts are of low value to forecasting the risk. We also verified this by measuring

the correlation towards the speed of dissemination in section 6.2. Forecasting without the indicators gave

better results in testing the algorithms. Therefore, we removed the indicators from the data set.

Feature extraction

Since the sub-national indicators and weather circumstances did not have a strong association with the target

attribute, we extracted other features out of the prevalence data. We are working with time series data, so

we extracted new features that could help in forecasting risky locations by using time. We came up with

the following features; (1) slope, the weekly growth from the time of take-off (from 6.1) until the day we

are looking at. If the slope is high, there might be a higher chance of risk. (2) Reproduction, the growth of

the number of cases in comparison to the last week (computed by dividing the current incidence with the

incidence of the week before), and (3) the days since the disease took off, also based on section 6.1.
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By using the same evaluators to measure the value for forecasting risky locations, we found that these in-

dicators have a better association with the risk compared to the total number of cases, number of new

neighbouring cases and previously analyzed indicators.

Algorithms

We tested two algorithms to forecast perilous situations; (1) C4.5, a classifier that builds a decision tree by

searching for the attribute with the highest information gain using the information entropy. It iteratively

splits on the attribute with the highest information gain until all examples are covered [26]. (2) Naive Bayes,

a probabilistic classifier that is based on the Bayes theorem, which describes the probability that a certain

event occurs on the basis of related other events [15]. After testing and debugging the data with parameters

chosen in Weka, we found that the C4.5 algorithm scored best on the test sets. We optimized the parameters

of the C4.5 algorithm (J48 in Weka). By changing the confidence factor to 0.05, and the minimum number of

instances per leaf to 10, we forecasted most accurately. The forecasting results of the C4.5 algorithms can be

found in table 7.2.

With an accuracy of 71%, the C4.5 algorithm scored slightly better than the OneR algorithm. The decision

tree of the C4.5 algorithm varied with each training set. It used the following attributes to forecast risk;

the number of new cases in the last week, the number of new cases in the last three weeks, the slope, the

neighbouring cases, the days since take-off, and the cumulative number of cases. Like the OneR algorithm,

the F-measure of forecasting low and medium risk locations is relatively low compared to the no and high

risk forecast. The reason is explained in section 7.3.

Risk None Low Medium High
None 370 31 12 1 414

Low 58 36 37 3 134

Medium 16 18 45 19 98

High 2 1 11 60 74

446 86 105 85 720

Risk Precision Recall F-measure
None 0.830 0.894 0.861

Low 0.419 0.269 0.328

Medium 0.429 0.459 0.443

High 0.706 0.811 0.755

Table 7.2: Forecasting results of the C4.5 algorithm
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7.5 Forecasting with the IDEA model

Adding multiple indicators forecasted slightly better than the baseline algorithm. Fisman et. al. accurately

fitted data in an early stage of the disease outbreak with the use of the IDEA model to forecast the future

incidence [8]. If we use the historical data to fit the IDEA curve until the day that is known, we can extrapolate

the data to observe what the risk will be in the upcoming week.

Curve fitting

The IDEA curve is bell-shaped. We expected the incidence data to be normal distributed as well, but as we

demonstrated in figure 4.2, the data is inconsistent because of over- and under reporting. The equation to fit

the data on the IDEA model is as follows:

It = ( R0
(1+d)t )

t

Where R0 is the reproduction number, d is the discount factor that explains the control efforts against the

disease or any other dynamic changes that slow the disease dissemination. Furthermore, t is the time in days

and It is the incidence given on a certain time t.

On the basis of earlier results of the IDEA model we made an initial guess of R0 = 1.89 and d = 0.0009 [8].

The model will try to fit the data by using this equation and initial guess. The model best fits the data if it

looks from the point of take-off, as it will otherwise overestimate in forecasting risky locations in an early and

late phase of the disease outbreak, because the curve will try to fit on the entire prevalence data. Therefore,

we observe whether there are more than zero cases seen in the data. If the incidence is higher than zero in

the data, we use this moment as starting point for curve-fitting. Otherwise, it will fit the data on the zero

point and it will forecast no risk. This also occurs if the disease stabilized to a zero point and afterwards new

cases occur. At these moments, we re-fit the curve from that moment to better forecast the upcoming risk.

Some examples of the curve fitting problems and solutions are given in figure 7.1 and 7.2. Lastly, sometimes

it is hard for the program to find the optimal amount of parameters to fit the curve. Increasing the amount

of calls to the curve fit function solves the problem and fits almost all data points that are available.

Forecast

We defined the risk of the upcoming week by using the same discretization values of table 5.1. Then, we

checked whether the forecasted risk corresponds with the observed risk of that week. Table 7.3 shows the

forecasting results by using the IDEA model. With an accuracy of 65.6% the model scores worse than the C4.5

and OneR algorithm. One of the limitations of this method is that it cannot deal with weird inconsistencies
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(a) Example where curve fits forecast (b) Example with overestimation

Figure 7.1: Example of curve fitting of the mathematical model with overestimation

(a) Example where curve fit happens on total incidence (b) Example where model re-fits the data from day 230

Figure 7.2: Example of re-fitting the forecasting curve because the disease stabilized in an earlier stage

in the data (e.g. a sudden unexplained drop of 15 cases for 4 weeks), while the OneR and Weka algorithm

adapt by only analyzing the current situation instead of the entire historical data. Moreover, the model tends

to forecast no risk when there is a low risk. We can explain this by the fact that the curve stabilizes earlier

than the data does, and that the model has to deal with inconsistencies in the data.

7.6 Improvements

The prevalence data has a large number of inconsistencies in it. If we smooth the data, we may improve

accuracy of the forecasting models. Therefore, we smoothed the data by taking the average of the incidence

of the last four weeks. By smoothing the data, we can deal better with inconsistencies in the data set. Figure

7.3 demonstrates the result of smoothing the data, and shows that a decrease in the amount of inconsistencies.
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Risk None Low Medium High
None 320 55 17 22 414

Low 38 53 23 18 132

Medium 16 18 34 30 98

High 2 1 7 64 74

376 127 81 134 718

Risk Precision Recall F-measure
None 0.851 0.773 0.809

Low 0.417 0.402 0.409

Medium 0.420 0.347 0.380

High 0.478 0.865 0.616

Table 7.3: Forecasting results of the mathematical model

Next, we defined the risk by the same discretization factor as we did in section 7.5, but by using the average

number cases of the last four weeks for the upcoming week.

(a) Before smoothing (b) After smoothing

Figure 7.3: Incidence of Ebola for Conakry before and after smoothing

By smoothing the data, the OneR algorithm and C4.5 algorithm both had a slightly higher accuracy. The C4.5

algorithm forecasted with an accuracy of 71.1%, and the OneR algorithm forecasted with an accuracy of 69%.

However, the accuracy of the mathematical model grew significantly. The accuracy of the model using the

smoothed data is 75.5%. The model scores higher than the other algorithms, because at first it was limited

towards inconsistent data. Smoothing the data decreases inconsistency, therefore increasing accuracy. The

model could even be more accurate, if the model also re-fits data if we signalise a new outbreak in an earlier

stage of stabilization on the same location. The current model only re-fits the IDEA model after the disease

is completely stabilized, while in some cases the disease comes back in an earlier stage of stabilization. The

results of the improved model are shown in table 7.4

Risk None Low Medium High
None 361 8 2 0 371

Low 71 77 9 4 161

Medium 24 20 42 16 102

High 4 3 13 55 75

460 108 66 75 709
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Risk Precision Recall F-measure
None 0.785 0.973 0.869

Low 0.713 0.478 0.572

Medium 0.637 0.412 0.500

High 0.733 0.733 0.733

Table 7.4: Forecasting results of the improved mathematical model

7.7 Discussion

The OneR, C4.5 and IDEA algorithm scored well in comparison to the ZeroR algorithm. By using the preva-

lence data supplied by the Simon J. Johnson, the C4.5 algorithm scored best. All algorithms had a bad

F-measure on the locations with a low and medium risk, because of inconsistencies in the data set. Moreover,

low and medium risk locations are harder to forecast because they describe a change towards the take-off or

stabilization of the outbreak.

The algorithms used in Weka and the mathematical model both have limitations. The OneR and C4.5 algo-

rithm both forecast given a certain situation. They both investigate the indicator that is of most importance,

and based on the importance the algorithms will make the decision and forecast. In addition, the C4.5 algo-

rithm also uses other indicators that could be of any value and splits the data in larger decision tree. Deciding

by analyzing a certain situation could be powerful, but the data could be in an entirely other phase of the

disease outbreak(e.g. splitting on the new cases when the disease takes off could give an other forecast than

when the disease almost stabilizes). Therefore, analyzing time series data could be of better value. The IDEA

model has problems in forecasting because the quality of data is low. Inconsistencies occur in the prevalence

data, because under- and over reporting occurs in the incidence data. In these situations, the decision trees

adapt easier than the mathematical model, since they analyze on a specific situation instead of the entire

historical data.

If we smooth the incidence data, the accuracy of the forecast by using the mathematical model is higher than

all the other methods. In this way, fitting a curve in the historical data to forecast the risk can be done better

because the data is less inconsistent. However, by smoothing the line we can only forecast the future average

cases of the last four weeks. The improvement of accuracy proves that data of better quality provides the

possibility to improve forecasting perilous locations. We cannot use this model to forecast risky locations

in the current situation, because the average incidence could be dependent on the incidence that was seen

four weeks ago. It does provide us with the knowledge that cleaner data will improve in forecasting risky

locations. Therefore, it can provide insights into a way to act more preventive towards an outbreak that is as

vigorous as the Ebola outbreak of 2014.
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7.8 Chapter conclusions

This chapter partially provides an answer to research question 2: To what extent can we combine the Ebola-related

data sets to gain more knowledge about the disease dissemination?. This chapter also provides an answer to research

question 3: To what extent can we forecast perilous locations with the use of the Ebola-related datasets?

Answer to research question 2

We used multiple Weka evaluators to check whether (1) the weather forecasts help in forecasting the dis-

ease outbreak, and (2) whether the sub-national indicators help in forecasting risky locations. None of the

indicators helped in forecasting future risk.

Therefore, our answer to research question 2 reads as follows. Based on the results of section 6.2 and section

7.4 we can conclude that the combination of the Ebola-related data sets cannot provide us with more infor-

mation about the way the disease disseminates. However, if the data would be more location specific, we

could analyze the disease outbreak more specifically and decide whether the indicators could or could not

provide us with new knowledge about the way the disease disseminates.

Answer to research question 3

We defined a baseline algorithm to forecast perilous locations by using the OneR algorithm. Then, we used

three forecasting models to forecast risky Ebola locations and compare them to the OneR algorithm: (1) C4.5,

(2) Naive Bayes, and (3) a mathematical model. Both the sub-national indicators and weather circumstances

did not help in forecasting a risky location, and therefore we extracted features out of the time series data.

In all models, the most difficult part was forecasting whether there is a low risk, since all forecasting models

tend to forecast no risk when there actually is a low risk. This is explained by (1) the small number of low risk

examples in comparison to high number of no risk examples to train the model and (2) the inconsistencies in

the data.

Hence, our answer to research question 3 reads as follows. We are able to forecast perilous situations by

using machine learning algorithms with a certainty of 71%. The Ebola-related data sets that we combined

did not add any value in forecasting risky locations. Extracting features out of the time series data provided

us with better results. Moreover, mathematical modeling did not forecast better than the machine learning

algorithms, but the mathematical model adapts less easy towards inconsistencies in the data. Smoothing the

data showed that the accuracy of the mathematical model can improve significantly if the data is of higher
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quality and thus can help in providing insight into a way to act more preventive towards an Ebola outbreak

on a specific location.
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Conclusions

In this chapter we provide an answer to the three research questions and the problem statement formulated in

chapter 1. In section 8.1 we provide answers to the research questions. In section 8.2 we answer the problem

statement. Finally, we discuss future work in section 8.3.

8.1 Answers to the research questions

Research question 1: What kind of disparate Ebola-related open data sets could provide adequate insights into the

dissemination of Ebola?

The answer of the first research question is derived from chapter 4. We searched for data sets provided by

aid organizations on the open data initiatives that meet three conditions; (1) the data set has to consist of

the attributes time and location, (2) the data set has to be relevant for the research, and (3) the data set has

to be reliable. Although most of the data sets met the relevancy condition, they were lacking the attributes

time and location, and/or were not up to date and thus unreliable. We were able to find three data sets that

provide information about the dissemination of Ebola; a prevalence data set, (2) the sub-national indicators

data set, and (3) the weather circumstances data set. A data set about the Ebola treatment centers and units,

and a data set about the interventions taken by organizations were not available. These limit the research

because they may critically impact the results of the analysis and obscure underlying correlations.

Research question 2: To what extent can we combine the Ebola-related data sets to gain more knowledge about the

disease dissemination?

The answer of the second research question is derived from chapter 6 and chapter 7. The 25 sub-national

indicators that we combined on the attribute location did not have a strong association with (1) the speed

36
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of dissemination of the disease and (2) the total number of cases. Both the forecasting models (see section

7.4) and the measurement of correlation (see section 6.2) verified that we could not use the sub-national

indicators to gain more insight into the disease outbreak. Moreover, the weather circumstances did not have

a strong association with forecasting perilous locations. However, we do believe that some of the indicators

can influence the way the disease disseminates, such as the urbanization index and the International Wealth

Index. To investigate whether these indicators influence the disease dissemination, the location has to be

sufficiently location specific. Therefore, we may conclude that the data has to be more location specific to be

of any value in investigating the disease outbreak and to gain insights into the disease dissemination.

Research question 3: To what extent can we forecast perilous Ebola locations with the use of the Ebola-related data

sets?

The answer of research question 3 is derived from chapter 7. We are able to forecast perilous locations by

using machine learning algorithms with a certainty of 71%, meaning that we forecasted better than forecasting

based on only the prevalence data with the OneR algorithm. The key aspect in improving forecasting accuracy

was to extract features out of the prevalence data based on time. However, by smoothing the data and using

a mathematical model we showed that we could forecast risky locations with a higher accuracy, if the data

would be of higher quality. The lack of quality is explained by under- and over reporting done by the aid

organizations that supply the data. Therefore, we may conclude that we are able to forecast risky situations,

but our accuracy can be improved significantly if the data is of higher quality.

8.2 Answers to the problem statement

Problem statement: To what extent is it possible to help policymakers and health officials in reacting effectively to an

outbreak of Ebola that is as vigorous as the Ebola outbreak of 2014?

In this thesis we investigated whether we can provide insights into the Ebola dissemination by analyzing and

combining data sets. Our aim was to improve the combat against diseases such as Ebola in the field of data

science. We investigated (1) what kind of data sets were available and useful for the research, (2) how we

could use these data sets to gain new insights, and (3) if we are able to forecast perilous locations by using

these data sets.

From our investigations, we may conclude that the collection of data sets is a big issue in the field of Ebola.

There is a lack of quality in each of the data sets, limiting the research. We may also conclude that the data

that is provided should be on a more specific location level than on sub-national level to gain more insights

into the way the disease disseminates. Moreover, we may conclude that we could provide insight into a way

to act more preventive towards the outbreak by forecasting upcoming perilous situations by analyzing the
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prevalence data. However, the forecast can only be used as an indication since it is not perfectly correct.

Our answer to the problem statement reads as follows. If we would like to help policymakers and health

officials in reacting effectively to an Ebola outbreak in the field of data science, we should start with recom-

mending them to not underestimate the power of data science. It is time for the public health organizations

to make a larger step towards the data century and improve the way to collect and supply data. Then, more

specific investigations could lead to new insights into the disease dissemination and data science could be-

come of real power. The power of data science could maybe not prevent an outbreak, but it could definitely

help in analyzing the outbreak and even prevent it from getting so intense as the Ebola outbreak of 2014.

8.3 Future work

This section provides recommendations to further analyze the disease dissemination and thus support health

officials and policymakers in decision making. We have five recommendations for future work.

(1) Data quality is of critical importance to investigate the disease outbreak. In our approach we imputed

the missing values in the data set to improve the quality of the data sets. However, analyzing methods to

signalize under- and over reporting could help in improving the quality of the data sets. We have shown

that the improvement of data quality could increase the accuracy of forecasting risky situations. Therefore,

searching for methods to clean the data can significantly help in investigating the disease outbreak and

forecasting perilous situations.

(2) The IDEA model has shown to fit the prevalence data and was able to forecast perilous situations. How-

ever, the current model is limited to only re-fit the model if we observe that the disease is completely stabilized

and another outbreak occurs on the same location. However, signalizing another outbreak if the disease is

close to stabilizing could therefore improve the accuracy of the model.

(3) Forecasting risk by using our mathematical model only uses the prevalence data set. Accuracy may

improve by adding additional indicators to the model and by analyzing what kind of indicators could be of

importance to improve the model.

(4) We analyzed the forecasting possibilities by discretizing the incidence for the upcoming week. Regression

models can also be used to analyze the forecasting accuracy and give an indication of the upcoming risk.

Evaluating and optimizing by using regression models can provide more specific information about the risk

for the upcoming week.

(5) We combined the data sets and analyzed whether the sub-national indicators were associated with the way

the disease disseminates. Triangulating on more indicators could help in investigating the disease outbreak.
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For instance, investigating whether the total number of cases at a location correlates with the way the disease

decays over time on the specific location, may provide us with new knowledge about the disease outbreak.

Besides these recommendations, one of the most important aspects to improve future work in the field

of Ebola and data science is by improving the data collection methods and the way it is supplied. The

organizations should supply data of higher quality, and the data should be more location specific. Then, at

least two data sets can provide us with interesting insights: (1) a data set about the interventions taken by

organizations to control the outbreak, and (2) a data set about the Ebola treatment centers and units. These

data sets can explain underlying correlations and therefore be of great importance to improve the combat

against diseases such as Ebola.
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Appendix A

Map of Ebola affected countries

The investigations of the research are in the geographical areas. We analyze (1) The prefectures of Guinea, (2)

the districts of Sierra Leone, and (3) the counties of Liberia. The figure below provides a map of the locations

on sub-national level.
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Figure A.1: The geographical areas on sub-national level of Guinea, Liberia, and Sierra Leone



Appendix B

The sub-national indicators

The sub-national indicators data set that is supplied by the Global Data Lab consists of indicators of the Ebola

affected countries. Below a table is provided with the indicators and their corresponding description.

# Indicator Description
1 IWI The international wealth index
2 Edyr The mean years of education of persons aged 20-49

3 Edyr fem The mean years of education of women aged 20-49

4 Edyr male The mean years of education of men aged 20-49

5 Urban Percentage of people living in urban area or region
6 Wrk agri Index of married men aged 20-49 working in agricultural occupation
7 Wrk inagr Index of married men aged 20-49 working in lower non-agricultural occupation
8 Wrk unagr Index of married men 20-49 working in an upper non-agricultural occupation
9 Electr Index of households with electricity in the region
10 Small house Index of households with none or one sleeping room in region
11 Large house Index of households with three or more sleeping rooms in region
12 Qual floor Index of households with high quality floor in region
13 Bad floor Index of households with bad quality floor in region
14 Tap water Index of households with piped water in region
15 Bad water Index of households with bad quality water supply in region
16 Flush toilet Index of households with flush toilet in region
17 Bad toilet Index of households with bad quality or no toilet in region
18 Age 0-9 Percentage of population aged 0-9 in region
19 Age 10-19 Percentage of population aged 10-19 in region
20 Age 20-29 Percentage of population aged 20-29 in region
21 Age 30-39 Percentage of population aged 30-39 in region
22 Age 40-49 Percentage of population aged 40-49 in region
23 Age 50-59 Percentage of population aged 50-59 in region
24 Age 60-69 Percentage of population aged 60-69 in region
25 Age 70-79 Percentage of population aged 70-79 in region
26 Age 80-89 Percentage of population aged 80-89 in region

Table B.1: Description of the sub-national indicators of the Ebola affected countries
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Appendix C

Correlations with the sub-national

indicators

The tables below show the correlation of the sub-national indicators with (1) the number of total cases and

(2) the speed of dissemination before and after removal of the outliers.

46



47

Indicator Correlation with total amount of cases Correlation with speed of dissemination
IWI 0.282 0.263

Edyr 0.558 0.553

Edyr fem 0.645 0.635

Edyr male 0.494 0.492

Urban 0.579 0.569

Wrk agri -0.423 -0.410

Wrk inagr 0.363 0.344

Wrk unagr 0.502 0.512

Electr 0.220 0.212

Small house 0.370 0.352

Large house -0.330 -0.331

Qual floor 0.472 0.455

Bad floor -0.389 -0.366

Tap water 0.040 0.305

Bad water -0.035 -0.037

Flush toilet -0.136 -0.128

Bad toilet -0.120 -0.169

Age 0-9 -0.110 -0.131

Age 10-19 -0.032 0.005

Age 20-29 0.061 0.086

Age 30-39 0.143 0.122

Age 40-49 0.001 -0.026

Age 50-59 -0.041 -0.061

Age 60-69 0.016 0.014

Age 70-79 0.049 0.046

Age 80-89 -0.025 -0.388

Table C.1: Correlation of the sub-national indicators with the speed of dissemination and the total number of cases before
removal of outliers
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Indicator Correlation with total amount of cases Correlation with speed of dissemination
IWI -0.097 -0.094

Edyr 0.188 0.204

Edyr fem 0.216 0.231

Edyr male 0.165 0.180

Urban 0.109 0.188

Wrk agri 0.079 0.058

Wrk inagr -0.148 -0.132

Wrk unagr 0.215 0.242

Electr -0.075 -0.071

Small house -0.041 -0.051

Large house -0.056 -0.050

Qual floor 0.126 0.015

Bad floor -0.133 -0.148

Tap water 0.054 0.054

Bad water 0.086 0.085

Flush toilet -0.077 -0.076

Bad toilet -0.253 -0.258

Age 0-9 -0.098 -0.13

Age 10-19 0.083 0.122

Age 20-29 0.129 0.154

Age 30-39 0.096 0.066

Age 40-49 -0.136 -0.155

Age 50-59 -0.175 -0.179

Age 60-69 -0.017 -0.016

Age 70-79 0.014 0.015

Age 80-89 -0.078 0.015

Table C.2: Correlation of the sub-national indicators with the speed of dissemination and the total number of cases after
removal of outliers



Appendix D

Training and test sets

The distribution of the training sets and test sets for analyzing and building the machine learning algorithms

in chapter 7 are given below.

Risk Training set 1 Training set 2 Training set 3 Training set 4 Training set 5 Training set 6
None 438 591 871 1011 1163 1265

Low 24 52 85 122 164 219

Medium 17 27 42 72 121 156

High 1 10 22 55 112 160

Training set 7 Training set 8 Training set 9 Training set 10 Training set 11 Training set 12
1357 1480 1593 1717 1889 2049

274 351 414 467 529 577

208 263 300 337 386 412

201 246 273 299 316 322

(a) Risk distribution of the training sets without smoothing

Risk Test set 1 Test set 2 Test set 3 Test set 4 Test set 5 Test set 6
None 50 48 37 34 27 22

Low 7 8 11 7 13 12

Medium 2 2 6 8 8 14

High 1 2 6 11 12 12

Test set 7 Test set 8 Test set 9 Test set 10 Test set 11 Test set 12
24 26 29 36 34 47

15 15 15 8 15 8

13 12 9 12 8 4

8 7 7 4 3 1

(b) Risk distribution of the test sets without smoothing

Table D.1: Risk distribution of the training sets and test sets without smoothing
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Risk Training set 1 Training set 2 Training set 3 Training set 4 Training set 5 Training set 6
None 426 679 868 1004 1142 1244

Low 36 64 93 142 204 255

Medium 15 30 41 75 119 156

High 2 7 18 39 95 145

Training set 7 Training set 8 Training set 9 Training set 10 Training set 11 Training set 12
1320 1419 1524 1636 1794 1919

321 409 472 542 613 673

206 273 320 354 404 452

193 239 264 288 309 316

(a) Risk distribution of the training sets with smoothing
Risk Test set 1 Test set 2 Test set 3 Test set 4 Test set 5 Test set 6
None 49 51 38 29 25 23

Low 7 5 13 14 13 14

Medium 4 2 5 9 9 10

High 0 2 4 9 13 13

Test set 7 Test set 8 Test set 9 Test set 10 Test set 11 Test set 12
16 22 27 33 31 36

22 17 18 11 14 15

12 13 8 10 13 7

10 8 7 6 2 2

(b) Risk distribution of the test sets with smoothing

Table D.2: Risk distribution of the training sets and test sets with smoothing



Appendix E

Results of the forecasting models

We have shown the results of the most important forecasting models in chapter 7. This appendix shows the

results of the forecasting models that we also used to analyze the forecasting possibilities, but did not score

considerably better than the other algorithms.
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