Universiteit Leiden

Opleiding Informatica & Economie

Fully Automatic Machine Learning: Hyper-parameter

Optimization and Model Selection with Scikit-learn

Rachelle Blok
02/09/15

Siegfried Nijssen
Erik Schultes

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands







Fully Automatic Machine Learning:
Hyper-parameter Optimization and Model Selection with
Scikit-learn

Rachelle Blok



Abstract

Finding the machine learning algorithm that works the best on a given data set is
not an easy task: not only are there many algorithms in the literature to choose
from, each algorithm also has parameters that need to be set. For this study, we
participated in the first round of a machine learning challenge. The optimization
problem of selecting the best algorithm and setting the optimal hyper-parameters
is investigated. We show that this problem can be addressed by creating a Python
program that automatically selects the best algorithm. Different preprocessing
methods and algorithms are evaluated. The hyper-parameters are optimized using
a random search method. The performance of our model is tested on 20 data
sets coming from different domains. Each data set spans a range of difficulties,
including different tasks, missing values and different types of attributes.
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Chapter 1

Introduction

Machine learning studies algorithms that can learn from data and make predic-
tions on data. By providing example inputs to an algorithm, this algorithm can
learn from these examples and build a model. This model can then be used to
make predictions on data that was not seen before. The advantage of this model is
that it is not explicitly programmed. The model adapts automatically when new
data is added.

The purpose of machine learning is to transform raw data into meaningful infor-
mation by using algorithms. Suppose we have a data set that contains information
about patients in a hospital. This data set is split into two types of attributes: de-
scriptive attributes and one or more target attributes. The descriptive attributes
are used to predict the target attribute(s). For example descriptive attributes can
be gender and age. Based on these attributes, we want to predict if a patient will
survive. This attribute survive is called the target attribute. In order to predict
the target attribute survive, a model should be trained on a data set where the
target attribute is known. Historical data can be used for this purpose. This is
called supervised machine learning because we train on a data set where the out-
come is known. Many different algorithms can be used to train on the data set,
for example linear models and support vector machines. Subsequently, the target
attribute survive should be predicted as well as possible on a data set that was
not seen before. The target attribute can take on two values: 1 for survive and
0 for die. For each patient this value is predicted. This is called classification.
We classify the patients into two groups: patients that will survive and patients
that will die. The performance of each algorithm is measured by a scoring metric.
For example, the performance is measured by the amount of patients where the
predicted value and the real target value are compared and the predicted value
was correct. For each algorithm the performance can vary. The goal is often to
select the algorithm that performs best, in other words the algorithm that predicts



the target attribute as well as possible. This optimization problem is called model
selection.

Machine learning has become an increasingly important research field as it can
play a role in many real-world applications. A few domains in which machine
learning is applied are robotics, speech recognition and computer vision. For ex-
ample, for robotics machine learning is used to participate in a competition which
involves robot driving in a desert. The robot is able to detect distant objects. For
speech recognition, machine learning is used to train a system to recognize speech.

The process of collecting a data set to predicting a target attribute is called
the data modeling chain. This process involves the following steps:

1. formalizing a question into a modeling approach: what do we want to know
and how are we going to achieve this

2. selecting appropriate data: which data are we going to use
3. designing a model: which algorithm are we going to use

4. fitting the model to data (training)

5. making predictions on new data (testing)

6. interpreting the results

It takes a lot of effort for data scientists to design an appropriate model for model
selection. A logical thought is to write a program that automatically selects the
best algorithm based on characteristics of the data set. Automating the full mod-
eling chain is difficult. However, model fitting can and should be completely au-
tomated [2]. Automating the design of a model and making predictions can be
automated as well. For this study, such automatic machine learning will be inves-
tigated.



Chapter 2

Research question

Many tools are available for machine learning purposes, but it still is a complex
task to choose the right learning algorithm for a particular data set. This problem
is called model selection. Model selection is a hard problem, as the search space
over algorithms and model parameters is large. Every algorithm has parameters
that can be set to different values. These parameters are called hyper-parameters.
For example, for the K-Nearest Neighbours algorithm a certain amount of neigh-
bours needs to be chosen in order to run the algorithm. The problem of identifying
a good value for hyper-parameters is called hyper-parameter optimization. As there
is a growing need for statistical data analysis by non-experts, model selection and
hyper-parameter optimization should be simplified and automated as much as pos-
sible. A lot of research was conducted about model selection and hyper-parameter
optimization separately. Surprisingly, the combination of the two optimization
problems has not yet been investigated thoroughly. The hyper-parameter opti-
mization method will be discussed in chapter 5.3. The suggested model selection
strategy will be discussed in chapter 6.1.

For this study model selection and hyper-parameter optimization will be com-
bined in order to choose the best algorithm automatically for a given data set.
The goal is to find the perfect black box eliminating the human in the loop. Also,
preprocessing methods should be evaluated for each data set and algorithm sepa-
rately. In machine learning, preprocessing methods are used to transform a data
set. For example, when a data set contains categorical attributes such as music
genre which can take the values pop, rock and classic, you may want to convert
these attributes to binary values. This method will ensure that the data set can
be handled by more algorithms. Another example is to scale numerical attributes
to values between 0 and 1. This can be useful for algorithms where distance is
important, for example K-Nearest Neighbours. The used preprocessing methods
for this study are discussed in chapter 5.2.



The goal of this study is to develop a program that automatically selects the
algorithm with the highest accuracy on a given data set. There is only a limited
time budget available to search for the best algorithm. Because of this limited
time budget, some smart strategies should be applied in order to find the best
algorithm as quickly as possible. These strategies will be discussed in this study.



Chapter 3

Related work

The Auto-WEKA project is the first project that combines both problems of model
selection and hyper-parameter optimization into one search space. This project
shows that this optimization problem can be solved by a fully automated approach.
All 39 WEKA classification algorithms are considered. For this project the open
source package WEKA is used, which was written in Java. This package has some
limitations, for example it does not take scalability into account. Also, optimizing
the preprocessing methods is not investigated during this project [3].

Another project which combines model selection and hyper-parameter opti-
mization in one search space is Hyperopt-Sklearn. This project also takes prepro-
cessing methods into account. Hyperopt-Sklearn is a Python package for automatic
algorithm configuration of machine learning algorithms provided by Scikit-learn.
This project uses a library called Hyperopt, which can be used for serial and par-
allel optimization over search spaces. Hyperopt is used to describe a search space
over possible configurations of Scikit-learn components, including preprocessing
and classification modules. The search space used in the project includes six pre-
processing methods and seven classification algorithms. The hyper-parameters of
the preprocessing methods as well as the classification algorithms are optimized.
The algorithms used for optimization are random search, annealing and TPE [8].

Lastly, a study by the National Institute of Astrophysics, Optics and Electron-
ics [10], considers the use of Particle Swarm Optimization (PSO) for full model
selection. In this study, full model selection is defined as follows: “given a pool
of preprocessing methods, feature selection and learning algorithms, to select the
combination of these that obtains the lowest classification error for a given data
set; the task also includes the selection of hyper-parameters for the considered
methods.”



Many researches were done about hyper-parameter optimization. Different
strategies were explored to optimize hyper-parameters. Two common used strate-
gies are grid search and random search. Both strategies will be discussed further
in chapter 5.3. Other strategies are exhaustive enumeration, hill-climbing, beam
search, genetic algorithms, experimental design approaches, sequential parameter
optimization, racing algorithms and combinations of fractional experimental de-
sign and local search [7].

For model selection many strategies were explored in the literature. One exam-
ple is to use Hoeffding Races. The idea of this algorithm is to first let all algorithms
participate in a race. At each point in the algorithm, a random point from the
test set is selected. The error at that point for all algorithms is calculated. The
algorithms with the worst error are eliminated from the race. The Hoeffding al-
gorithm is repeated until there is one algorithm left. In this way, algorithms that
perform badly are dropped early in the race [9].



Chapter 4

CodaLab challenge

4.1 General information

For this study we participate in an online challenge!. It is a supervised machine
learning challenge in which data present themselves as input-output pairs {z,y}
and the goal is to solve regression and classification problems. The objective of
this challenge is to find, for a given combination of data sets, task, metric of
evaluation, available computational time, the combination of methods and hyper-
parameter setting that is best suited. The difficulty of the challenge is that each
data set spans a range of difficulties, including missing values, sparsity, different
tasks, different scoring metrics and categorical variables. These difficulties will be
discussed further in chapter 4.4.

4.1.1 Rounds and phases

The challenge consists of 6 rounds and in each round 5 data sets are made avail-
able. Some data sets may be recycled from other challenges. Only the Master
round includes completely new data.

The 6 rounds are:

1. Preparation: different tasks, sparse and full matrices, some missing values,
some categorical variables, small and large number of features.

2. Novice: only binary classification problems, no missing data, no categorical
variables, balanced classes, moderate number of features, sparse and full
matrices, noise.

thttps://www.codalab.org/competitions/2321



3. Intermediate: multi-class and binary classification problems, unbalanced
classes, some missing values, some categorical variables, large number of
features.

4. Advanced: all types of classification problems, up to 300,000 features.
5. Expert: classification and regression problems, all difficulties.

6. Master: classification and regression problems, all difficulties, completely
new data sets.

Each round consists of three different phases:

e Tweakathon: the program can be improved by tweaking the code on the
data sets and running the program on your own system. In this phase the
program does not need to be constrained by a time budget. Code and results
can be submitted. The leaderboard scores are based on the validation set
results.

e Final: no code submission. The program is evaluated on the test set. The
results of the Tweakathon phase are revealed. To participate in this phase
it is required to submit code in the Tweakathon phase.

e AutoML: submitted code is ”blind tested” in limited time on the Codal.ab
platform. The program is evaluated on the test set which contains data that
is never seen before. To participate in this phase it is required to submit
code in the Tweakathon phase of the previous round.

Difficulties are introduced from round to round, cumulating all the difficulties
from the previous rounds plus new ones.

For this study we used the 5 data sets from the first round (Preparation). We
did not participate online as a consequence of postponed deadline dates. Hence
we did not compare the performance of our program with other participants of the
challenge.

4.1.2 Code submission

Participants can submit their code and results. The code will be executed on the
servers of the challenge and will be evaluated on unknown data sets. The scores of
all participants will be shown on a leaderboard. The participants with the highest
scores can win prizes. The total prize pool is 30,000 USD [2].

10



4.2 Python program

A skeleton program is provided by the challenge that is written in Python, using the
machine learning library Scikit-learn?. The sample code uses ensemble algorithms
which improve over time by adding more base learners. The hyper-parameters are
not optimized and also the sample code does not include preprocessing methods.

4.2.1 Scikit-learn

Scikit-learn is a Python library that supports many machine learning application
areas. It provides implementations of many well known machine learing algo-
rithms. Its interface is easy to use and tightly integrated with the Python lan-
guage. It differs from other machine learning tools for the following reasons: it is
distributed under the BSD license, it incorporates compiled code for efficiency, it
depends only on numpy and scipy and it focuses on imperative programming. It
also incorporates the C++ libraries LibSVM and LibLinear that provide reference
implementations of Support Vector Machines (SVMs) and generalized linear mod-
els.

The library does not only include algorithms. It also includes cross validation
methods and scoring metrics. Additionally, it supports model selection methods.
For example GridSearchCV can be used to try different values for hyper-parameters
on a specified parameter grid and determine what works best by maximizing a score
[4].

4.2.2 Skeleton program

The skeleton program consists of a few separate files:

e data_io.py: afile that organizes the input and output of data. This program
is also used to create, move and delete directories.

e data manager.py: this file loads and saves data easily with a cache and
generates a directory in which each key is a feature (name, format, number
of features, etc). It reads information that is specified in the information file.

e data _converter.py: a file that performs various data conversions, for ex-
ample converting binary targets to a numeric vector.

e models.py: the constructor selects a model based on the data information
passed as argument. It fits the model on a data set and predicts the target
variables.

Zhttp://scikit-learn.org/stable/
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e run.py: the main program. It keeps track of the time spent, reads the data
set, executes algorithms on a data set that are specified in models.py and
creates prediction files.

e libscores.py: the calculations of the scoring metrics are specified in this
file.

e score.py: it reads the prediction files created by run.py, compares the
prediction file with the solution file and calculates a score based on the
specified scoring metric.

4.3 Tasks

Each data set has a different task. Four different tasks can be distinguished:
regression, binary classification, multi-class classification and multi-label classifi-
cation. These tasks will be discussed below. Also, a special approach to deal with
multi-class and multi-label classification will be discussed. This approach is called
the One-vs-all classifier.

4.3.1 Regression

For regression we want to predict a numeric value. Assume that we want to predict
the total income of a person in one year. We have a data set that contains the
attributes age and education. Based on these attributes we want to predict the
value of the target attribute income. One possible regression model is the linear
regression model. In this model, the relationship is represented by

I =a+bA+cE

where [ is income, A is age and E is education. The parameter a reflects a default
income, parameter b reflects the effect of age on income and parameter ¢ reflects
the effect of education on income. We need to determine the values of these pa-
rameters. This is an example of a linear regression model, but many other types
of models are possible.

The task of regression is to determine an estimate of these parameters, based
on the information contained in the data set. Many lines can be drawn by the
formula. The goal is to find the line that fits the instances contained in the data
set as well as possible. Regression chooses the line where the sum of squared errors
is at a minimum. The error can be defined as the vertical distance between the
real target value and the predicted target value of an instance. In this example
this is a linear line, but the line can be of any form.

12



In figure 4.1 below an example of a regression line is shown. The vertical lines
represent the distances between the instances and the regression line.

Figure 4.1: Regression: a linear regression model

4.3.2 Binary classification

Each instance in a data set can belong to one out of two classes. For example,
when we want to predict if an email contains spam, the target value can be 0 (no
spam) or 1 (spam).

4.3.3 Multi-class classification

In multi-class classification, an instance belongs to one of possibly more than two
classes. The instance can be assigned to one and only one label at the same time.
For example, when we want to predict what type of fruit an instance belongs to
(pear, apple, banana), there are more than two classes that can be distinguished.
An instance can be a pear or apple, but not both at the same time.

In figure 4.2 below a comparison of binary and multi-class classification is
shown. With binary classification, an instance can be a circle or cross. With
multi-class classification, an instance can be a square, cross or triangle.?

4.3.4 Multi-label classification

An instance can belong to more than one class at the same time. An instance
is assigned to a set of labels. For example, a document can have more than one

3Source: http://www.holehouse.org/mlclass/06_Logistic_Regression.html
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Figure 4.2: Binary classification vs. Multi-class classification

subject. It can be assigned to religion, politics and history at the same time.

In figure 4.3 below an example of multi-label classification is shown. It shows
that an instance can belong to more than one music genre at the same time.*

-

Figure 4.3: Multi-label classification

4.3.5 One-vs-all classifier

For multi-class and multi-label classification, an approach to solve these problems
is to consider the problem as a collection of binary classification problems. This
method is called One-vs-all. N different binary classifiers are trained. Each clas-
sifier is trained to distinguish the instance in a single class from the instances in
all remaining classes. To classify a new instance, the N classifiers are run. For

4Source: http://musicmachinery.com/2009/10/28 /ismir-oral-session-5-tags/
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multi-class classification, the classifier that produces the largest value is chosen
[11]. This value represents the probability that an instance belongs to a certain
class and is produced by many binary classification algorithms. For multi-label
classification, every classifier predicts a different target attribute. The approach is
also called Binary Relevance. Binary relevance is often criticized for ignoring the
correlation between labels. Also, the training complexity is linear to the number
of labels k [12].

In our study we use this approach for all algorithms with a multi-label classi-
fication task. Multi-class classification is inherently supported by most algorithms.

In Scikit-learn a module called One-Vs-The-Rest implements the One-vs-all
method. This module is used to deal with multi-label classification problems.

4.4 Data sets

In total 20 data sets were used for this study. 5 data sets were used from the
first round of the challenge and the other 15 data sets were collected from other
resources.

4.4.1 Data sets from the challenge

The data sets that are provided by the challenge come from a wide variety of
domains including medical diagnosis, speech recognition, text classification and
protein structure prediction. The 5 data sets that were used in the Preparation
phase are:

e Adult: the prediction task is to determine whether a person makes over 50K
a year, based on census data from 1994.

e Cadata: LibSVM dataset from Statlib house prices (1997).

e Digits: a data set carved out of the MNIST data set from LeCun, Cortes
and Burges (1998) of handwritten digits, extracted from a larger benchmark
collected by the US National Institute of Standards and Technologies.

e Dorothea: data set prepared for the NIPS 2003 feature selection challenge
from one of the KDD Cup 2001 tasks.

e Newsgroups: the 20 Newsgroups data set (1997) used for text categoriza-
tion.

15



4.4.2 Data sets from other resources

For this study 15 other data sets were collected from the UCI Machine Learning
repository ®, OpenML ¢ and for multi-label data sets the KEEL data set repository

7

was used.

In order to compare the results of our program with other results, most data
sets that were gathered from the UCI Machine Learning repository are also avail-
able on OpenML. This online platform collects and organizes results from many
data sets online. A large amount of experiments are run for different data sets
using algorithms from the WEKA package. This makes it possible to compare our
own results with results of others.

The 15 data sets that were collected are:

Electricity: data set collected from the Australian New South Wales Elec-
tricity Market. The class label identifies the change of the price relative to
a moving average of the last 24 hours.

Nursery: a data set that was derived from a hierarchical decision model
originally developed to rank applications for nursery schools.

Kropt: a game data set collected from OpenML.
Spambase: a collection of spam e-mails and non-spam e-mails.

Splice: splice junctions are points on a DNA sequence at which ‘superfluous’
DNA is removed during the process of protein creation in higher organisms.
The problem posed in this data set is to recognize, given a sequence of DNA,
the boundaries between exons (the parts of the DNA sequence retained after
splicing) and introns (the parts of the DNA sequence that are spliced out).

Kin8nm: a data set concerned with the forward kinematics of an 8 link
robot arm. This is a variant of the original data set, which is known to be
highly non-linear and medium noisy.

Wind: daily average wind speeds for 1961 - 1978 at 12 synoptic meteoro-
logical stations in the Republic of Ireland.

Stock: a data set that contains daily stock prices from January 1988 through
October 1991, for ten aerospace companies.

Shttps://archive.ics.uci.edu/ml/datasets.html
Shttp://www.openml.org
Thttp://sci2s.ugr.es/keel /multilabel.php
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e Houses: a data set containing information from all the block groups in
California from the 1990 Census. A block group on average includes 1425.5
individuals living in a geographically compact area.

e Sick: a data set containing thyroid disease records.

e Diabetes: a Pima Indians Diabetes Database. All patients are females at
least 21 years old of Pima Indian heritage.

e Hepatitis: a data set containing information about hepatitis. The objective
is to predict if a patient is going to die.

e Yeast: a data set that contains information about a set of yeast cells. The
task is to determine the localization site of each cell.

e Mediamill: contains data from a generic video indexing problem where each
item can belong to one or more classes.

e Emotions: a music data set that contains 72 music features for 593 songs
that are categorized into one or more out of 6 classes of emotions.

Transforming data sets

Some data sets that were collected from these resources had to be transformed be-
fore they could be used. For example, all nominal attributes that were represented
as a string were converted to binary values to make them work on all algorithms.
Unique identifiers were deleted from the data sets. Also, some data sets were rep-
resented in the ARFF format that is used for WEKA. They had to be converted
to the format that was used in the skeleton program of the challenge. For some
data sets, the order of the records was shuffled to remove possible patterns in the
data.

4.4.3 Training, validation and test set

The data sets that were provided by the challenge were split into separate sets.
Each data set contains two separate sets: a training set and validation set. The
training set was used for training a model. We used 10-fold cross validation to
train the model. This approach splits the training set into ten folds. Nine folds
are used for training and one fold is used for testing. This is repeated ten times,
whereby the folds are rotated. So in the end each fold is used for testing. Using
this approach, a score on the training set was calculated for each algorithm.

In order to evaluate as many algorithms as possible, a timeout was set on the
10-fold cross validation process for each algorithm. When the training set was

17



large, a sample of the training set was used to train a model. These adjustments
are further explained in chapter 6.1.

In figure 4.4 below the k-fold cross validation method is illustrated 8. In this
case, k is 10. The white folds are used for training and the gray folds are used for
testing.

- k folds (all instances) o
fold
s
1 y 4
t 2
u
r
n 3
S
/lesling fold
Y & A

Figure 4.4: k-fold cross validation

The training and validation sets were labeled, meaning the solutions are known.
In this way a score could be calculated for data that was not seen before. We used
the validation set to calculate the score for the best algorithm. The best algo-
rithm was chosen based on the score of the 10-fold cross validation approach on
the training set.

For the 15 data sets that were collected from other resources, only one main
labeled data set was available (i.e. it was not split into separate training and vali-
dation sets). We have partitioned the data set into two mutually exclusive subsets
called a training and validation set. This method is called the holdout method.
A common ratio is to use 2/3 of the data as the training set and the remaining
1/3 as the validation set. We have slightly used this guideline and have split this
data set into 60% for training and 40% for validation. Randomly, records from
the data set were added to the training and validation set. The holdout method
is a pessimistic estimator as only a portion of the data is used for training. Fewer
validation set instances means that the confidence interval for the accuracy will
be wider [5]. The holdout method was combined with the 10-fold cross validation
method for the training set as described above.

8Source: http://cse3521.artifice.cc/classification-evaluation.html
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We have not used the test sets that were provided by the challenge. These test
sets were unlabeled so they could not be used to evaluate an algorithm.

4.4.4 Information file

Each data set that was provided by the challenge contains an information file. In
this file the characteristics of the data set are specified. When there is no infor-
mation file available, the Python program will extract the characteristics from the
data itself. For the data sets that were collected from other resources, we have
created the information file manually.

The information file contains the following information:

Task (task): the task for which the problem is solved. This can be one
out of 4 values: regression, binary classification, multi-class classification or
multi-label classification.

Target type (target_type): the type of the target variable. This can be
numerical or binary.

Feature type (feat_type): the type of the attribute variables. This can be
numerical, categorical, binary or mixed. The type for each variable can be
specified separately in a feature type file.

Metric (metric): the metric used to calculate the score. For all available
scoring metrics, see chapter 4.5.

Number of features (feat_num): the number of attribute variables, so the
number of columns in the data matrix.

Number of target values (target_num): number of values to predict. For
regression this is always 1.

Number of labels for classification problems (label num): number of
labels a target variable can accept. For regression this is always 1.

Number of training examples (train_num)
Number of validation set examples (valid_num)
Number of test set examples (test_num)

Existence of categorical variables (has_categorical): the presence or ab-
sence of categorical variables in the data set. It can take values 1 (for yes)
and 0 (for no).
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e Existence of missing values (has_missing): the presence or absence of
missing values in the data set. It can take values 1 (for yes) and 0 (for no).

e The representation of the data matrix (is_sparse): if the data set is in
sparse or dense format. It can take values 1 (for sparse) and 0 (for dense).

e Time budget in seconds (time_budget)

For the data sets from other resources, the time budget was set to 400 seconds.

See Appendix A for a full overview of all data sets and their characteristics.

4.5 Scoring metrics

The skeleton program provided by the challenge implements some scoring metrics
that are used to evaluate the performance of the algorithms on a data set. Each
data set has its own metric, which is specified in the information file. The score
is computed based on the prediction files that predict the target values on the
training and validation set. For regression problems this target value is a contin-
uous numeric coefficient y;. For binary classification problems, the target value
is a single binary indicator y; in {0,1}. For multi-class and multi-label classifi-
cation problems, the target value is a vector of binary indicators [y;;] in {0, 1}.
Multi-label problems are treated as multiple binary classification problems and are
evaluated by the average of the scores of each binary classification problem.

In the challenge, the scores that are computed are normalized. Because of the
fact that this normalization resulted in some negative scores for multi-label data
sets, we decided to remove the normalization for all scoring metrics.

The available scoring metrics are:

e R2: used for regression problems. It is the slope of the regression line and is
calculated as follows: R2 =1 - MSE / VAR where MSE is the mean squared
error and VAR is the variance. The MSE is calculated with the formula

(Yo — Ypn)’
MSE:Z Ysn Nypm

n=1
where N is the number of instances in the data set, y;,, is the solution for
every instance and v, , is the prediction for every instance. The VAR is
calculated with the formula

 (Yon — )
VAR =y St

n=1
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where 7 is the mean of the solution over all instances.

BAC: balanced accuracy, which is the average of sensitivity and specificity.
This is also called class-wise accuracy. Sensitivity is calculated with the
formula

max (le — 15, tp)
max (le — 15, (tp + fn))

where tp are the true positives and fn are the false negatives. Specificity is
calculated with the formula

sensitivity =

max (le — 15,tn)
max (le — 15, (tn + fp))

speci ficity =
where tn are the true negatives and fp are the false positives.

If the task is multi-class classification, then the BAC is equal to sensitivity.
For every class i a BAC is calculated (BAC;). For the other tasks, the BAC
is calculated with the formula

BAC = 0.5 x (sensitivity + speci ficity)

The BAC is averaged over all classes with the formula

“. BAC,

BAC =
C

c=1
for every class c.

For multi-label problems, the class-wise accuracy is averaged over all classes.
For multi-class classification problems, the predictions are binarized by se-
lecting the class with the largest score before computing the class-wise accu-
racy.

AUC: area under the ROC curve which is used for ranking and binary
classification problems. The ROC curve shows the sensitivity on the vertical
axis and (1 - specificity) on the horizontal axis.

ROC curves rely on prediction algorithms that return a probability that an
example belongs to a class; they are constructed by iterating over all possible
thresholds on this probability. By setting a threshold on a probability, we
can split the classes into negatively and positively defined classes. Based on
this threshold we decide if an instance is classified as positive or negative.
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The AUC score is defined by calculating the area under the ROC curve. The
average AUC score over all classes is computed with the formula

AUC =2x AUC — 1
where AUC' is

C
ave -y A0

for every class c.

F1: the harmonic mean of precision and recall. Precision is calculated with

the formula
lp

(tp+ fp)
where tp are the true positives and fp are the false positives. Recall is
calculated as

precision =

ip

recall = ————
(tp+ fn)

where fn are the false negatives.

The Fl-score is calculated with the formula:

- (recall * precision)

arithmetic_mean

The arithmetic.mean is calculated with the formula
arithmetic_mean = 0.5 x max (le — 15, (recall 4 precision))

Then the average over all classes is taken. So

¢ F1,
C

Fl1=

c=1

for every class c.

PAC: probabilistic accuracy that is calculated with the formula

c
PACZZM

for every class ¢ where CE is the cross entropy, also called log loss. This

loss function is used in logistic regression. It is defined as the negative log-
likelihood of the true labels given a probabilistic classifier’s predictions.
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4.6 Time budget

For every data set from the challenge a time budget is specified in the information
file. This is to make sure that all participants have the same amount of time
available to execute their program. When uploading the code to the CodalLab
platform, the execution time is limited to the time budget. When running the
code on an own platform, the execution time does not need to be constrained by
the time budget. The unit of the time budget is seconds. For the 15 data sets that
we collected from other resources we set the time budget to 400 seconds.
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Chapter 5

Existing methods in Scikit-learn

In this chapter we describe existing methods implemented in Scikit-learn that we
have used for our study. Different types of algorithms, preprocessing methods and
hyper-parameter optimization methods are discussed.

5.1 Portfolio of algorithms

For this study different types of algorithms were selected. They are all implemented
in the Scikit-learn library. In this chapter, each algorithm will be described briefly.

5.1.1 Linear models

Different types of linear models were evaluated. A linear model depends on its
parameters in a linear way. The models are described below.

e Ordinary Least Squares: this algorithm fits a linear model on a data set,
also called Linear Regression. The goal is to minimize the sum of squares
of the instances in the data set. The linear model consists of coefficients
w = (wi,...,wp). The values of these coefficients should be optimized in
order to find the best linear model.

e Ridge Regression: this algorithm improves the Ordinary Least Squares re-
gression. It is an iterative process that shrinks coefficients, so the model
becomes more stable which leads to a better prediction performance. It
forces parameters of a model to not take too large values. However, it does
not set coefficients to 0 so it does not give an easier interpretable model than
the model that is produced by Ordinary Least Squares [31].

e Lasso: this algorithm also tries to improve the Ordinary Least Squares re-
gression. It shrinks some coefficients to improve the prediction accuracy. It
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also sets some coefficients to 0 in order to provide an interpretable model.
So in fact it does both continuous shrinkage and automatic variable selection
simultaneously. It produces a sparse model [31].

e Flastic Net: this algorithm tries to improve the performance of the Lasso
algorithm. Like Lasso, it does continuous shrinkage and automatic variable
selection simultaneously. It can also select groups of correlated attributes.
This algorithm can be useful for sparse models and when there are multiple
attributes which are correlated with one another [32].

e Logistic Regression: this algorithm is a linear model for classification rather
than regression. A single outcome variable Y;(i = 1, ..., n) follows a Bernoulli
probability function. It takes on the value 1 with probability m; and 0 with
probability 1 — ;. Then 7; varies over the observations as an inverse logistic
function of a vector x; [33]. This logistic function can be formulated as

B 1
S e
e Bayesian Ridge Regression: this algorithm is similar to the classical Ridge
Regression algorithm. The difference is that this algorithm estimates a prob-
abilistic model of the regression problem. In a Bayesian model, the hyper-
parameters are given prior distributions. The values of the hyper-parameters
are estimated from the data [34].

5.1.2 Ensemble methods

An ensemble method uses a set of classifiers whose individual results are combined
in some way (for example by a majority vote) to classify new examples. Ensembles
often perform much better than individual classifiers. This is because individual
algorithms can get stuck in local optima. When using an ensemble method, the
algorithm runs from different starting points and this may provide a better ap-
proximation and reduce the chance to get stuck. Also, an algorithm can be viewed
as searching a space of hypotheses and the goal is to identify the best hypothe-
sis. When the training set is too small, the algorithm can find many hypotheses
that all have the same accuracy on the training data. In order to find the best
hypothesis, an ensemble method can average the votes of all individual classifiers
and reduce the risk of choosing the wrong classifier [27].

Two types of ensemble methods can be distinguished: Bagging and Boost-
ing. They both rely on resampling techniques to obtain different training sets for
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each of the classifiers.

For the Bagging method each classifier is trained on a random redistribution
of the training set. Each training set is generated by randomly drawing, with
replacement, N examples. N is the size of the original training set. It is possible
that some instances are repeated and some instances are left out in the resulting
training set. Each classifier is generated with a different random sampling of the
training set. The predictions of each classifier are averaged. Bagging is effective
on algorithms where small changes in the training set result in large changes in
predictions. An example of such an algorithm is a decision tree [28].

For the Boosting method a series of classifiers is produced. The generated
training set of each classifier is based on the performance of the earlier classifier(s)
in the series. Instances that were incorrectly predicted by previous classifiers are
chosen more often than instances that were correctly predicted. In this way more
weight is given to incorrectly predicted instances and the goal is to produce new
classifiers which improve the prediction accuracy of these instances [28].

Examples of Bagging methods are the Bagging Tree classifier and Random
Forests classifier. Examples of Boosting methods are the AdaBoost classifier and
the Stochastic Gradient Boosting classifier. For the Bagging Tree and AdaBoost
classifier an estimator can be specified. The default estimator is a decision tree.
We have focused on this default estimator as decision trees work well with ensem-
ble methods and they have a fast training speed.

Different types of ensemble methods were used:

e Bagging Trees: several training sets are created by resampling with replace-
ment. For each training set a tree is grown to maximum size and the result is
averaged. In this way the variance component of the output error is reduced.
The part of the data that is used for the samples is called the “in-bag” data
and the part that is left out is called the “out-of-bag” data. When the in-
dividual trees differ a lot from each other, then averaging will improve the
results [29].

e Random Forests: a large number of trees are grown (500 to 2000). Each tree
is grown with a randomized subset of predictors. To find the best split at each
node, a randomly chosen subset of the total number of predictors is chosen.
The trees are grown to maximum size and the result is averaged across all
trees. The “out-of-bag” samples can be used to calculate an unbiased error
rate. Because of the large number of trees, overfitting is nearly impossible
29].
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e Stochastic Gradient Boosting: many trees are built from “pseudo”-residuals,
which is the gradient of the loss function of the previous tree. A tree is built
from a random subsample of the data at each iteration without replacement.
Advantages of using part of the data are that it improves the computation
speed and the prediction accuracy. It also prevents overfitting. Gradient
boosting is resistant to outliers [30].

e AdaBoost: the AdaBoost classifier maintains a set of weights over the train-
ing instances. In each iteration the weighted error should be minimized.
The weights are updated in each iteration. A heavier weight is placed on
the instances that were misclassified and a lighter weight is placed on the
instances that were correctly classified. In this way, subsequent iterations
focus on wrongly classified instances and a more difficult learning problem
is constructed. The final classifier combines all individual classifiers by a
weighted vote. A stronger weight is assigned to the classifiers that have a
high accuracy [27].

5.1.3 Support Vector Machines

A Support Vector Machine (SVM) has a robust performance with respect to sparse
and noisy data. Therefore it is often used for text categorization and protein func-
tion prediction.

When an SVM is used for classification, it finds the optimal hyperplane that sepa-
rates two classes. It chooses the hyperplane that leaves the largest margin between
the samples of the two classes. A parameter called the kernel can be set when
there is no linear separation possible. The kernel can be linear or non-linear. It
can automatically realize a non-linear mapping to a feature space [19].
Classification success of an SVM does not depend on the dimensions of the input
space. Therefore an SVM is robust against the curse of dimensionality.

For multi-class data sets, the one-against-one approach is used [20].

In figure 5.1 below an example of a hyperplane of an SVM is shown !.

5.1.4 Stochastic Gradient Descent

A Stochastic Gradient Descent can be used well for large-scale and sparse machine
learning problems.

Let the empirical risk be an error function to measure the training set perfor-
mance and we want to minimize this. For a normal gradient descent, the empirical

1Source: http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
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Figure 5.1: Hyperplane of an SVM

risk is minimized by updating weights in each iteration on the basis of the gra-
dient of the empirical risk. This algorithm achieves linear convergence when the
initial weight is close enough to the optimum and when the gain is sufficiently
small. Stochastic Gradient Descent is a simplification of this algorithm. Instead of
computing the gradient of the empirical risk exactly, each iteration estimates the
gradient by randomly picking an example. The stochastic algorithm does not need
to remember which examples were picked in previous iterations. The convergence
speed of Stochastic Gradient Descent is limited by the noisy approximation of the
true gradient [26].

The Stochastic Gradient Descent algorithm can be applied to linear classifiers
such as SVM and Lasso. For the best results, the data should have zero mean and
unit variance.

This algorithm supports multi-class classification by using a one-vs-all ap-
proach.

5.1.5 Naive Bayes

The Naive Bayes algorithm assumes that all attributes of the instances are inde-
pendent of each other given the class. This assumption is often false. However, the
Naive Bayes algorithm performs well on classification tasks. It is mostly used for
document classification and spam filtering. The algorithm works well when there
are a large number of attributes. Because of the independence assumption, the
parameters for each attribute can be learned separately. This simplifies learning
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a lot. A Naive Bayes algorithm runs fast as it requires only one pass through the
data if all attributes are discrete. It is robust to irrelevant attributes [24].

Two types of Naive Bayes algorithms were selected:

e Gaussian Naive Bayes: for this algorithm it is assumed that numeric at-
tributes obey a Gaussian distribution (also called a normal distribution).
This means that within each class the values of numeric attributes are nor-
mally distributed. Such a distribution can be written in terms of mean (u)
and standard deviation (o). The probability that the attributes are Gaussian
is computed. The formula used is:

p(X =z|C = ¢) = g(z; pie, 0¢)

where
( ) 1 _ew?
T, o) =
g V2mo
The mean and standard deviation are estimated using maximum likelihood
[25].

e Bernoullt Naive Bayes: this type of algorithm is appropriate for tasks that
have a fixed number of attributes. Instances should be represented by a
vector of binary attributes. For example it can be used for text classification
where each attribute is a word. The binary values indicate which words
occur and do not occur in a document [24].

5.1.6 Nearest Neighbours

The Nearest Neighbours algorithm classifies instances based on the class of their
nearest neighbours. When taking more than one neighbour into account, the
algorithm is referred to as the k-Nearest Neighbours algorithm. The k-Nearest
Neighbours algorithm consists of two stages. First, the nearest neighbours are
determined using a distance metric. The distance between the instance and the
neighbours is calculated using Euclidean distance. Second, the class of the instance
is determined based on the classes of the nearest neighbours. The class that is
assigned to the instance is the majority class of the nearest neighbours [21].

5.1.7 Decision Trees

A Decision Tree is capable of breaking down a complex decision-making process
into a collection of simpler decisions. Advantages of a Decision Tree are that they
are fast and easy to understand. On the other hand, a Decision Tree can cause
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overfitting. This problem can occur when the depth of the Decision Tree is too
large or the tree is too complex. This problem can be solved by methods such as
pruning or setting a maximum depth.

A Decision Tree is built by recursive partitioning. The tree starts at the root
and an attribute is chosen to split the data on using some criterion. The criterion
used here can be the Gini index or the information gain. The process repeats
recursively for each child. When the full tree is built, a pruning step is executed
which reduces the size of the tree [22].

In figure 5.2 below an example of a Decision Tree is shown. It shows the root,
the intermediate nodes and the leaf nodes [23].

-« depth I

At G

Figure 5.2: Decision Tree

terminals
(class labels)

5.2 Preprocessing methods

Many different types of preprocessing methods are available. Applying preprocess-
ing methods on a data set can have different goals:

e to transform a data set. For example, categorical attributes can be converted
to binary values.

e to make a data set work on different types of algorithms. For some algorithms
it is required that all attributes are numerical.

e to improve the running time of an algorithm. For example, by removing
attributes in a data set (dimensionality reduction), the data set will become
smaller and the algorithm will run faster.
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For this study, some of the preprocessing methods are selected on the basis of
properties of the data set. These methods are described in section 5.2.1. For
other preprocessing methods it is better to apply them on the basis of the type of
algorithm that is evaluated. These methods are discussed in section 5.2.2.

5.2.1 General preprocessing methods

e Missing values imputation: it is possible that a data set contains missing
values, which are defined as 'NaN’. Many algorithms do not know how to
handle these missing values. Therefore they have to be replaced by some
other value. There are different strategies to handle missing values. One
standard strategy is to delete the entire row or column that contains missing
values. The disadvantage is that information will be lost. A better strategy
is to impute missing values. Strategies that have been evaluated for this
study are:

— Replace by zero: every missing value is replaced by zero.

— Replace by mean: the missing value is replaced by the mean of the
column or row to which it belongs. For this study the missing value is
replaced by the mean of the column.

e Dealing with categorical variables: a data set can contain categorical
variables, for example gender. These categorical variables can be represented
as integers. For example, female can be represented as 1 and male can be
represented as 0. These integers cannot be used directly for the algorithms,
as these integers will be interpreted as ordered values. This is often not
desired for categorical variables. A method called One Hot Encoder can be
used to transform the categorical variables. The categorical variables with
m possible values will be transformed into m binary features, with only one
active.

e Dimensionality reduction: when many attributes are present in a data
set, it can take a long time to run an algorithm. The goal of dimensionality
reduction is to compress the size of the data set. Another goal is to remove
the attributes that do not add much information. By removing these noisy
attributes, the prediction accuracy of an algorithm can improve. Only the
most important attributes will remain. Different strategies for dimensionality
reduction were evaluated for this study:

— Principal Component Analysis (PCA ): this method only works for dense
matrices. The first principle component should have the largest possible
variance. This is computed by choosing a vector where the projection
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of the data points on this vector leads to an attribute with the highest
possible variance. PCA computes a new attribute for each example by
projecting the example on a principal component (a vector). In this
way a new data set is created. The second component is computed
under the constraint of being orthogonal to the first component. A new
data set is then created in the same way. The other components are
computed likewise [13].

PCA works best when data is normalized first. This is because the axis
is calculated based on the weights of the attributes. An attribute with
a high standard deviation will have a higher weight for the calculation
of an axis. If the data is normalized first, all attributes will have the
same standard deviation and thus have the same weight.

— Select K best: the k features with the highest scores are kept, based on
the scoring function chi-squared. The parameter k can be chosen freely.
The chi-square test measures dependence between attributes. This test
removes the attributes that are most likely to be independent of class.
These attributes are irrelevant for classification. This method does not
work for regression tasks because of chi-squared.

— Feature selection KDD cup 2001: this method only works for binary
classification and sparse matrices. It was used by the KDD cup 2001
[17]. First, the algorithm selects the instances in the data set where
the target value is 1. For each attribute separately, the number of
true positives is calculated. True positives can be defined as where the
predicted and the real value are both positive. The k attributes with
the most number of true positives will remain. This parameter k can
be chosen and is set to 1000 by default.

Random projection

For the above three dimensionality reduction methods we experimented with
an algorithm in order to choose the number of attributes to keep. This ran-
dom projection method is called the Johnson-Lindenstrauss lemma. This
method estimates the minimum amount of attributes to keep. The number
of attributes to keep depends on the size of the data set.

The Johnson-Lindenstrauss lemma shows that a set of n points in high di-
mensional Euclidean space can be mapped down into an O(logn/e?) dimen-
sional Euclidean space. The distance between any two points changes by
only a factor of (1 £ ¢€), for any 0 < ¢ < 1. So the distances are nearly
preserved [18]. The amount of attributes that remain depends on the value
of e. This value is set to 0.1 by default.
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5.2.2 Preprocessing methods based on algorithm

e Normalize: this preprocessing method scales the input vectors to unit norm.
A normalized attribute can be described by the following formula:

fo =1/

where f, is the normalized attribute [14].
e Scaling:

— Standard Scaler: this method standardizes attributes by removing the
mean and scaling to unit variance. The transformed attribute Z is
calculated by the formula

T —p
o

7 =
where 4 is the sample mean and o is the sample standard deviation of
that attribute [15].

— Min Max Scaler: it standardizes attributes by scaling each attribute to
a given range, in this case between 0 and 1. Suppose we have attribute
x, the scaled value of x can be calculated by the following formula:

xz—1

T
where [ is a lower bound and u is an upper bound. The value of z
results in a value between 0 and 1 [16].

5.3 Hyper-parameter optimization

While grid search is the most used strategy for hyper-parameter optimization, it
does not seem to be very efficient. Grid search is described as follows. Suppose we
have a set of hyper-parameter variables (e.g., for neural networks it would be the
learning rate, the number of hidden units, the strength of weight regularization,
etc.). For grid search it is required to choose a set of values for each parameter
(LW...LU5)), Every possible combination of values is tried, so the number of trials
in a grid search is S = []r—, |L™]| elements. This product over K sets makes the
search space very large, because the number of joint values grows exponentially
with the number of hyper-parameters [6].

Bergstra and Bengio [6] describe another method called random search. This
method is more efficient than grid search in highly dimensional spaces. As grid
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search tries out every possible combination, it carries out many trials that may
be irrelevant for a particular data set. Bergstra and Bengio [6] show that random
search is able to find models that are as good or better than grid search with a
small fraction of the computation time. Random search obtains independent draws
from a uniform density from the same configuration space as would be spanned by
a regular grid. In contrast to grid search, not all parameter values are tried out,
but only a part of the specified parameter distributions is sampled. In this way,
random search achieves low effective dimensionality. The number of parameter
settings that are tried out can be specified. When using random search, it is easy
to expand the search space by adjusting the distribution for each parameter. How-
ever, the downside of this method is that it is possible that the best combination
of hyper-parameters will not be found. By increasing the number of trials, the
chance to find the best combination increases.

The algorithm for random search is described below.

Algorithm 1: RandomSearch(N, 6,)

Outline of random search in parameter configuration space; 0;,. denotes the in-
cumbent parameter configuration, better N compares two configurations based on
the first IV instances from the training set.

Input : Number of runs to use for evaluating parameter configurations, IV;
initial configuration 6, € ©.

Output: Best parameter configuration 0;,, found.
Oine < 0o;
while not TerminationCriterion() do

f < random 6 € O;

if betterN (0, 0;,.) then

‘ einc A 9;

end
return 60,

N O oA W N =

For this study a random search method, which is implemented in Scikit-learn,
was used called RandomizedSearchCV. For every algorithm separately a parameter
grid was created and the number of different trials to run was set. The parameter
values can be numerical or categorical. For continuous parameters it is important
to define a range of continuous values. For example, for a Stochastic Gradient
Descent the learning rate can take on any value between 0 and 1.

The score of each parameter setting is calculated using 10-fold cross validation.

The training set is randomly split into 10 mutually exclusive subsets of approx-
imately equal size. The inducer is trained and tested 10 times; each time t €
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{1,2,...,k}, it is trained on D\ D, and tested on D,. The cross-validation score is
calculated using the r2 score for regression problems and the f1 score for classifi-
cation problems [5].

When the training set was large, a random sample of the training set was used
for random search. A training set is considered large when the number of training
instances is larger than 10,000 or when the number of attributes is larger than
50,000. If the number of training instances is larger than 10,000, a sample of 10%
was used. When the number of training instances is smaller than 10,000 but the
number of features is larger than 50,000, a sample of 50% was used. These per-
centages are only applied when at least 5000 instances of the total training set
remain. When the number of instances that remain is less than 5000 and when
the original number of instances is larger than 5000, a sample of 5000 instances of
the training set is taken.

See Appendix B for an overview of all hyper-parameter settings for each algo-
rithm.
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Chapter 6

Proposed method

In this chapter we describe the experiments that we carried out on the existing
methods described in Chapter 5.

First we will describe our model selection strategy (section 6.1). For some

steps in this strategy we have carried out experiments. For example applying
preprocessing methods on a data set is part of our strategy. For the 5 data sets
that were provided by the first round of the challenge, we did some experiments
on preprocessing methods. The purpose of these experiments was to determine
which preprocessing methods work best for a given data set or algorithm. This is
discussed in section 6.2.
Another part of our strategy is to execute the different algorithms in a particular
order. Therefore we carried out an experiment that considers the order in which
the algorithms are evaluated for all 20 data sets. As a consequence of a fixed time
budget, we want to evaluate the algorithms that run fast and in general provide a
high score first. Therefore we have tried to optimize the order of the algorithms.
This is discussed in section 6.3.

6.1 Automatic model selection strategy

An obvious method to search through a space of algorithms is to use a brute force
approach. This means that for every algorithm the accuracy is calculated and
the best one is picked. The time to find the accuracy of a particular algorithm is
proportional to the size of the training set train. Suppose that the search space
consists of a finite number of algorithms algo, then the amount of work required is
at least O(train x algo), which is expensive [9]. The amount of work can be even
higher as not all algorithms are linear in the size of the data.
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If we would create a search space of all algorithms combined with all possible
hyper-parameter values for each algorithm, this would take a lot of computational
time as the search space will be incredibly large. Alternatively, we can try each
algorithm with their default hyper-parameters, calculate the accuracy for each al-
gorithm on the training set and eliminate the algorithms with the lowest scores. We
can then continue with the best algorithms and optimize their hyper-parameters.
This would save a lot of computational time as the search space would be much
smaller by only optimizing the best algorithms. This strategy is implemented for
the program of this study. It can be compared to Hoeffding Races in which the
worst algorithms are eliminated early in the process [9].

The strategy to determine which algorithm performs best for a given data set
can be described as follows:

Step 1: Apply general preprocessing steps based on characteristics of the data set
Step 2: Apply preprocessing steps based on the evaluated algorithm

Step 3: Train and calculate scores of all algorithms in a particular order with
their default hyper-parameters on the training set using 10-fold cross
validation

Step 4: Save the 3 algorithms with the best scores

Step 5: Use random search to optimize the hyper-parameters of the 3 best algo-
rithms and calculate scores using 10-fold cross validation on the training
set

Step 6: Save the best algorithm and calculate the score on the validation set

For steps 1, 2 and 3 we carried out experiments in order to optimize these steps
to get the best result. In the next chapter, we will evaluate how well the results
of these experiments work on a large number of data sets.

In step 2, we use grid search to determine the best combination of preprocess-
ing steps based on the evaluated algorithm. For every combination that is tried,
we set a timeout of 10 seconds.

In step 3, the algorithms are executed in a particular order which is based on

the experiments. The set of algorithms tried for a given data set depends on the
task. For example, for regression a different set of algorithms will be tried than
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for binary classification. For some algorithms, the default hyper-parameters were
adapted a little bit. See Appendix E for the adapted default hyper-parameters
that were used.

In step 3 we set a timeout of 60 seconds for calculating the score on the training
set using 10-fold cross validation for each algorithm. We decided to set a timeout
because of the fact that we want to try as many algorithms as possible. When it
takes too long for an algorithm to run, we terminate the process and try another
algorithm.

In step 5 we set a timeout to the remaining time of the time budget specified
in the information file. When there is no time left, the process is terminated.

In step 6 we did not set a timeout. The time it takes to calculate the final
score on the validation set is not limited.

In steps 3 and 5, the r2 metric is used to calculate the scores on the training
set for regression tasks. For the other tasks the f1 metric is used.

In step 3 and 5, if the training set is large a sample of the training set is used.
A training set can be defined as large when the number of training instances is
larger than 10,000 or when the number of attributes is larger than 50,000. When
the training set contains more than 10,000 instances, 10% of the training set is
used for training the model. When the number of attributes is larger than 50,000,
50% of the training set is used. Otherwise the whole training set is used. These
percentages are only applied when at least 5000 instances of the total training set
remain. When the number of instances that remain is less than 5000 and when the
original number of instances is larger than 5000, a sample of 5000 instances of the
training set is taken. If the original training set contains less than 5000 instances,
then the original amount is used.

In step 6, the scoring metric used for calculating the score on the validation

set is specified in the information file of the data set (which is in most cases the
r2 or the fl score).

6.2 Experiment 1: Preprocessing methods

For the 5 data sets that were provided by the challenge, we did some experiments
on the preprocessing methods. The preprocessing methods are split into two parts:
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1. Preprocessing methods that are executed based on characteristics of the data
set.
Three categories can be distinguished:

e Missing values: we compare the performance of replacing by zero with
replacing by the mean of the column. Only the data set Adult contains
missing values. Therefore we use this data set for this experiment.

e Categorical variables: only the data set Adult contains categorical
variables. We use One Hot Encoder to deal with these variables.

e Dimensionality reduction: we apply a dimensionality reduction strat-
egy when the number of features is equal to or larger than 1400. Only
the data sets Digits, Newsgroups and Dorothea have more than 1400
features. Therefore we use these data sets to experiment with different
dimensionality reduction methods.

— PCA: this strategy only works for dense data. We evaluate the
Digits data set for this method. We experiment with two different
methods to determine the number of features to keep. The first
method is to set the number of features to keep to 4% of the original
number of features in the data set. For the second method we
use the Johnson Lindenstrauss lemma to determine the number of
features to keep.

— Select K Best: we use this strategy when the data set is sparse
and when the task is multi-class or multi-label classification. We
evaluate the Newsgroups data set for this method. We experiment
with two different methods to select the number of features to keep.
The first method sets the number of features to keep to 1000. For
the second method we use the Johnson Lindenstrauss lemma to
determine the number of features to keep.

— Feature selection KDD cup 2001 this method only works for binary
classification and sparse matrices. We use the Dorothea data set to
evaluate this method. We experiment with two different methods
to select the number of features to keep. The first method sets the
number of features to keep to 1000. For the second method we
use the Johnson Lindenstrauss lemma to determine the number of
features to keep.

2. Preprocessing methods that are executed based on the algorithm that is
evaluated.
For all algorithms, we experiment with the following preprocessing methods:

e Normalize: scale the input vectors to unit norm.
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e Scaling: we experiment with two different methods for each algorithm:
Standard Scaler and Min Max Scaler.

For the preprocessing methods that are applied based on characteristics of the
data set (1) we do the following for all algorithms. We compare the two meth-
ods for missing values with each other. We also compare the two methods for
determining the number of features to keep for the three dimensionality reduc-
tion methods with each other. Based on the data set that is evaluated, we apply
these preprocessing methods. For example, for the Dorothea data set only the two
methods for Feature selection KDD cup 2001 are applied.

For the preprocessing methods that are based on the algorithm that is evalu-
ated (2), we try different combinations of normalizing and one method of scaling
with each other for every data set and every algorithm. These combinations are
evaluated together with the applied preprocessing methods based on character-
istics of the data set on each algorithm (1). So for both types of preprocessing
methods we use the same approach: evaluating the different types of methods for
each data set and every algorithm separately. For the Dorothea and Newsgroups
data sets we evaluate combinations of Normalizing and Standard Scaler with each
other on every algorithm. For the other 3 data sets we evaluate combinations of
Normalizing and Min Mazx Scaler on every algorithm. For this part of the exper-
iment we set the methods for Select K best and Feature selection KDD cup 2001
to 1000 features to keep. For PCA we set the number of features to keep to 4%.
So, for example for the data set Newsgroups, we evaluate different combinations
of Normalizing, Standard Scaler and Select K best with 1000 features with each
other for every algorithm.

For every experiment we measure the time spent and the score on the vali-
dation set. We only use the 5 data sets from the challenge for the experiments.
So only these data sets have seen the validation set. The other 15 data sets that
are not used for the experiments have not seen the validation set. When the time
to execute the experiment takes longer than 10 minutes, the experiment is termi-
nated. We then document the time spent and the score with a ’-’. Sometimes an
error occurs. For example, for the SGD Classifier scaling is sometimes necessary.
We then document the time spent and score with 'error’.

For a full overview of the experiments for each data set, see Appendix C.
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6.3 Experiment 2: Order of executing the algo-
rithms

Because of the restricted time budget for each data set, we want to execute the
algorithms with their default hyper-parameters in a particular order. The goal is
to first execute the algorithms that give a high score on the training set and run
fast.

For all 20 data sets that we have used for this study, we measure the time it
takes to run each algorithm for a specific data set. We also measure the score
on the training set. The algorithms that are executed for a particular data set
depends on the task of the data set (regression, binary classification, multi-class
classification or multi-label classification). Therefore the 20 data sets can be split
into four groups (table 6.1).

Regression | Binary classification | Multi-class classification | Multi-label classification
Cadata Dorothea Digits Adult
Kin8nm Electricity Newsgroups Yeast
Wind Spambase Nursery Mediamill
Houses Sick Kropt Emotions
Stock Diabetes Splice
Hepatitis

Table 6.1: Data sets per task

6.4 Results of the experiments

6.4.1 Experiment 1.1: Preprocessing methods based on
characteristics of the dataset

e Missing values: based on the results of the experiments, we can conclude
that replace by the mean of the column gives better results than replace by
zero. Therefore we decide to use this strategy.

e Categorical variables: if there are categorical variables in the data set, we
always apply One Hot Encoder.

¢ Dimensionality reduction: for all three methods, setting the number of
features to 1000 gives better results than using the Johnson Lindenstrauss
lemma. Most of the time the Johnson Lindenstrauss lemma results in more
than 1000 features and therefore the time spent increases a lot. Also, we
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cannot conclude that this method always improves the score on the valida-
tion set. Therefore we decide to set the number of features to keep to 1000
for all three methods.

Of course the results of these experiments can be overfitted on these 5 data
sets. Therefore they are not necessarily the best settings for other data sets.

6.4.2 Experiment 1.2: Preprocessing methods based on
the algorithm that is evaluated

Based on the experiments, we cannot conclude which preprocessing methods work
best for every algorithm. It depends on the data set that is used.

Therefore we decide to implement a search space using grid search. For every
data set, all combinations of Normalize, Standard Scaler and Min Max Scaler are
evaluated for each algorithm. The best combination of preprocessing steps is de-
termined when the algorithms are executed with their default hyper-parameters.
We use 10-fold cross validation to calculate a score for every combination on the
training set. When the task is regression, we use the r2 metric to assign a score.
For all other tasks we use the f1 metric. For every combination that is tried we
set a timeout of 10 seconds. The best combination for each algorithm is then
saved inside a dictionary. This combination is executed during other steps in the
program (during random search and calculating the final score on the validation
set).

When the training set is large, a random sample of the training set is used
for grid search. A training set is considered large when the number of training
instances is larger than 10,000 or when the number of attributes is larger than
50,000. If the number of training instances is larger than 10,000, a sample of
10% is used. When the number of training instances is smaller than 10,000 but
the number of features is larger than 50,000, a sample of 50% is used. These
percentages are only applied when at least 5000 instances of the total training set
remain. When the number of instances that remain is less than 5000 and when
the original number of instances is larger than 5000, a sample of 5000 instances of
the training set is taken.

6.4.3 Experiment 2: Order of executing the algorithms

Based on the experiment, we created a certain order in which the algorithms are
executed for each task separately. We assign ranks to each algorithm to create the
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order.

Calculation of the order using ranks
We first order the algorithms for each data set by the score on the training set.
We give each algorithm a rank. Rank 1 is applied to the algorithm with the highest
score on the training set. We then compute the average rank of the algorithms
for all data sets that belong to a certain task. For example, we compute the
average rank of the Random Forest classifier for the data sets that belong to the
task binary classification. We then order the algorithms based on this average rank.

For example, the list of ranks for the Random Forest classifier for the data sets
that have task binary classification looks like this:

[Dorothea: 5; Electricity: 2; Spambase: 8; Sick: 3; Diabetes: 6; Hepatitis: 1; |

The average rank (avg_rank) of the Random Forest classifier for the task binary
classification is then

avg_rank = Z rankgy

deDatasets

where d are the data sets. In this example the average rank is

5+24+84+34+6+1
avg_rank = ret —g rot =4,17

We order the algorithms based on this average rank.

We repeat the same computations for the execution time. We first order
the algorithms for each data set by the time spent on the training set. Rank 1
is applied to the algorithm with the shortest execution time. We then compute
the average rank of the algorithms for all data sets that belong to a certain task.
Lastly, we order the algorithms based on this average rank.

For each task we now have an average rank of each algorithm for the score and
execution time. For example, for binary classification the list of average ranks for

the score is represented by

[GaussianNB: 1,7; BernoulliNB: 2,8; Logistic Regression: 3,3; Decision Tree
Classifier: 4,3; KNeighbours Classifier: 4,6]
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We then convert these average ranks to absolute ranks. So the list will now

look like

(1): [GaussianNB: 1; BernoulliNB: 2; Logistic Regression: 3; Decision Tree
Classifier: 4; KNeighbours Classifier: 5]

We do the same for the execution time. For example, the list of absolute ranks
for execution time looks like

(2): [Decision Tree Classifier: 1; GaussianNB: 2; KNeighbours Classifier: 3;
Logistic Regression: 4; BernoulliNB: 5]

So for each task we now have two lists with absolute ranks (for score and
execution time). The next step is to compute the final absolute rank for each
algorithm by combining both lists. We first compute the average rank (avg_rank)
for each algorithm (alg) by the formula

abs_rank(score) + abs_rank(time)
2

avg_rank(alg) =
By combining (1) and (2) we now get the following list of average ranks:

(3): [GaussianNB: 1,5; BernoulliNB: 3,5; Logistic Regression: 3,5; Decision
Tree Classifier: 2,5; KNeighbours Classifier: 4]

We order this list and convert the average ranks to absolute ranks. The final
list will look like

(4): [GaussianNB: 1; Decision Tree Classifier: 2; BernoulliNB: 3; Logistic Re-
gression: 4; KNeighbours Classifier: 5;]

List (4) represents the order in which the algorithms will be executed for the
task binary classification. We repeat the same computations for the other tasks.

For all results of this experiment, see Appendix D.
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Chapter 7

Results

We compared the results of our program with three other programs. First we
applied some necessary preprocessing steps.

7.1 Preprocessing

When missing values are present in the data set, we imputed these missing values
with the mean of the column. We decided to use this strategy because it gave
the best results on the Adult data set during the experiments on the 5 data sets
provided by the challenge. From these 5 data sets, only the Adult data set has
missing values so we could only evaluate the different strategies on this data set.
For the other 15 data sets, the Sick and Hepatitis data sets have missing values.
We decided to use the same strategy for all 3 data sets. In order to be able to
compare the performance of our program with the other programs on a fair basis,
we keep the strategy for missing values the same for all programs.

7.2 Programs

¢ Random Forest program: a Random Forest classifier with the default
hyper-parameters is executed. We used three variants of the Random Forest
classifier. For binary and multi-class classification we used the standard
Random Forest classifier. For regression we used a Random Forest regressor.
For multi-label classification, we wrapped the Random Forest classifier inside
a One-vs-all classifier.

e Decision Tree program: a Decision Tree classifier with the default hyper-
parameters is executed. We used three variants of the Decision Tree classifier.
For binary and multi-class classification we used the standard Decision Tree

45



classifier. For regression we used a Decision Tree regressor. For multi-label
classification, we wrapped the Decision Tree classifier inside a One-vs-all
classifier.

e Skeleton program: this program is provided by the challenge and uses
ensemble methods. They improve over time by adding more base learn-
ers. The base learners increase exponentially, starting with one base learner.
They are increased until the time spent is equal to the time budget. The
default hyper-parameter settings are used.

The choice of the ensemble method is made based on this decision tree:

— If the task is regression, use the Random Forest regressor.

— If categorical features are present in the data set, use the Random Forest
classifier.

— If the data set is sparse, use the Bagging classifier with Bernoulli Naive
Bayes as base estimator.

— In all other cases, use the Gradient Boosting classifier.

In case the task is multi-label classification, we wrap the ensemble method
inside a One-vs-all classifier.

For all programs we simply train the model on the training set and then cal-
culate a score on the validation set. For training the model we set a timeout. For
the 5 data sets provided by the challenge, the timeout is equal to the time budget
that is specified in the information file. For the other 15 data sets the timeout is
set to 400 seconds. For calculating a score on the validation set we do not set a
timeout.

When a timeout occurred on a data set while training the model, we document

the score and execution time with 0. For detailed results of our program and the
three competing programs see Appendix F.
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7.3 Comparison

7.3.1 Comparison on validation score

When we compare all four programs on validation score, we get the following graph
(figure 7.1). On the y-axis the score on the validation set is shown. This score is
based on a scoring metric (for example the r2 metric for regression tasks and the
f1 metric for other tasks). The scoring metric used is different for every data set
and is specified in the information file. On the x-axis the 20 data sets are shown.
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Figure 7.1: Comparison of all programs on validation score

For the data sets Dorothea, Diabetes, Newsgroups, Kropt, Kin8nm and Stock
our program produces the highest scores. The algorithms that are chosen for these
data sets are respectively the Random Forest classifier, Logistic Regression, Ran-
dom Forest classifier, Bagging classifier, SVR and KNeighbours regressor. When
we analyze the hyper-parameters of the Random Forest classifiers for the Dorothea
and Newsgroups data sets (this is the best algorithm for these data sets when using
our program) and compare them with the default hyper-parameters that are used
for the Random Forest program, the difference is that the number of estimators
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is set to 30 for our program. For the Random Forest program the number of es-
timators is set to 10. Therefore the Random Forest classifiers that are chosen as
the best algorithm for the Dorothea and Newsgroups data sets give a better score,
because more trees are built so there is a higher chance that a better tree is found.
For the data sets Spambase, Adult, Yeast, Cadata, Wind and Houses the skele-
ton program produces the highest scores. The algorithms that are chosen for
these data sets are respectively the Gradient Boosting classifier, Random Forest
classifier, Gradient Boosting classifier, Random Forest regressor, Random Forest
regressor and Random Forest regressor. For the Adult data set the Random Forest
classifier was also chosen for the Random Forest program and our own program.
When we compare the hyper-parameters for all three programs, we see that the
number of estimators is set to 10 for the Random Forest program, the number
of estimators is set to 30 for our own program and it is set to 128 for the skele-
ton program. For our program the Min Maz scaler was applied as preprocessing
step. Because of the high number of estimators, the skeleton program produces the
highest score. For the Cadata data set the Random Forest regressor was chosen
for our own program and the Random Forest program as well. When we compare
the hyper-parameters, we see that the number of estimators is set to 256 for the
skeleton program, it is set to 10 for the Random Forest program and it is set to 30
for our own program. For our own program the hyper-parameter “criterion” is set
to “mse”. We can conclude that for this data set the high number of estimators
results in a high score for the skeleton program.

For the data sets Hepatitis, Mediamill and Emotions the Random Forest program
produces the best scores. For the data sets Sick and Nursery the Decision Tree
program produces the best scores.

For the data set Electricity, the Random Forest program, skeleton program and
our own program produce the highest scores. For all three programs the Random
Forest classifier is chosen. When we compare the Random Forest classifier for all
three programs, the number of estimators for the skeleton program is set to 1024.
For the Random Forest program, the number of estimators is set to 10 and for
our own program the number of estimators is set to 30. Min Max Scaler has been
applied as preprocessing step for our program. For this data set the number of
estimators does not have any influence. A possible explanation for this is that the
best decision tree is already found with a small number of estimators.

For the Digits data set, both the Random Forest program and our own program
produce the highest scores. For both programs the Random Forest classifier is
chosen. For the data set Splice, the skeleton program and our own program pro-
duce the highest scores. The algorithms that are chosen for these two programs
are the Random Forest classifier and Bagging classifier respectively.
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The data sets that get the highest scores with our program (including the data
sets that get the same highest score with another program) have the following data
set tasks: 3 binary classification data sets, 4 multi-class classification data sets and
2 regression data sets. For the skeleton program the distribution is 2 binary clas-
sification data sets, 1 multi-class classification data set, 2 multi-label classification
data sets and 3 regression data sets. For the Random Forest program the dis-
tribution is 2 binary classification data sets, 1 multi-class classification data set
and 2 multi-label classification data sets. For the Decision Tree program the dis-
tribution is 1 binary classification data set and 1 multi-class classification data set.

So we can conclude that for 6 out of 20 data sets, our own program gives the
best results. In 6 out of 20 data sets, the skeleton program provides the best scores.
In 3 out of 20 data sets, the Random Forest program gives the highest scores. In
2 out of 20 data sets, the Decision Tree program gives the highest scores. In 1
out of 20 data sets, the Random Forest program, the skeleton program and our
own program give the highest scores. In 1 out of 20 data sets, the Random Forest
program and our own program give the best scores. In 1 out of 20 data sets, the
skeleton program and our own program give the best scores.

To conclude, in most of the cases our own program performs the best. When
only using our program, we get the highest scores for 9 out of 20 data sets.

7.3.2 Comparison on execution time in seconds

When we compare the execution time of all programs and for each data set, we
get the following graph (figure 7.2). On the y-axis the execution time in seconds
is shown. On the x-axis the 20 data sets are shown.
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Figure 7.2: Comparison of all programs on execution time

For 10 out of 20 data sets, the Random Forest program gives the shortest exe-
cution time. For the other 10 out of 20 data sets, the Decision Tree program gives
the shortest execution time. When we look at the tasks of the data sets for which
the Decision Tree program needs the shortest time, the distribution is as follows.
For 4 binary classification data sets the Decision Tree program needs the shortest
time. The Decision Tree program is also faster for 3 multi-class classification data
sets, 1 multi-label classification data set and 2 regression data sets. The Random
Forest program is faster for 2 binary classification data sets, 2 multi-class classifi-
cation data sets, 3 multi-label classification data sets and 3 regression data sets.

Both the skeleton program and our own program need a much longer execu-
tion time than the two other programs for all data sets. This is logical as the
skeleton program keeps adding more base learners until there is no time left. Our
own program searches through a search space for the preprocessing methods and
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hyper-parameter settings. Also it evaluates many different algorithms. For 7 out
of 20 data sets, our program needs more time compared to the skeleton program.
In 1 out of 20 data sets, the execution time exceeds the time budget for our pro-
gram. In 12 out of 20 data sets, the skeleton program needs more time compared
to our program.

Our program needs more time for most multi-class and multi-label classification

data sets. The 8 data sets that need more time for our program (including the
data set that exceeds the time budget) compared to the skeleton program exists of
3 multi-class classification data sets, 3 multi-label classification data sets, 1 binary
classification data set and 1 regression data set.
For the skeleton program, most data sets that need more time compared to our
program have a binary classification or regression task. The 12 data sets that
need more time exists of 5 binary classification data sets, 4 regression data sets, 2
multi-class classification data sets and 1 multi-label classification data set.

7.3.3 Trade-off between execution time and validation score
(1/2)
In the four scatter plots below (figure 7.3 until 7.6) all 20 data sets for each program
separately are plotted. On the x-axis the execution time in seconds is shown on
a logarithmic scale. On the y-axis the score on the validation set is shown (based
on a specific scoring metric which is specified in the information file). Each color
represents another data task. The red color represents the binary classification
task, the purple color represents the regression task, the green color represents
the multi-label classification task and the blue color represents the multi-class
classification task. The labels of the data points represent the data sets. The
optimal location of the data points would be in the top left corner. That position
represents a high score on the validation set and a short execution time. When
the time budget exceeded for a certain data set, then this data set is not plotted.
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Figure 7.3: Trade-off between execution time and validation score for the Random
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Decision Tree program

0,9 o 3

* 4 12 .7

0.8 ® 10

0,7 °
! 19" 2

0,6 o5

18 LY
0,5 ].Jﬁ5

Validation score

04 13
03

02 17

0,1

1 10 100 1000

Execution time

Figure 7.4: Trade-off between execution time and validation score for the Decision
Tree program
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Figure 7.6: Trade-off between execution time and validation score for our own
program

When we look at the scatter plot of the Random Forest program, we can see
that most data points are located in the top left corner. For most of the data sets
the execution time lies between 1 and 10 seconds. This is the case for all regression
data sets. For the data sets Newsgroups and Mediamill more time is needed. This
is possibly because of the large number of attributes for the Newsgroups data set
and the large number of target attributes for the Mediamill data set. For most
data sets the validation score lies between 0,6 and 1,0. This is the case for all
binary classification and regression data sets.

When we look at the scatter plot of the Decision Tree program, we can see that
the data points are more distributed compared to the Random Forest program.
For most of the data sets the execution time lies between 1 and 10 seconds. This
is the case for all regression and multi-label classification data sets. For the data
sets Dorothea and Digits the execution time is longer. A possible explanation
for this is that both data sets have a large number of attributes. For most data
sets the validation score lies between 0,5 and 1,0. This is the case for all binary
classification and multi-class classification data sets.
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When we look at the scatter plot of the skeleton program, we can see that the
execution time varies between 100 and 1000 seconds. We can see that most data
sets have around the same execution time. This is because we keep adding base
learners until there is no time left. For most of the data sets the validation score
lies between 0,6 and 1,0. This is the case for all regression data sets. Compared
to the Random Forest and Decision Tree program, the skeleton program needs a
much longer execution time for all data sets.

When we look at the scatter plot of our own program, we can see that the ex-
ecution time varies more compared to the skeleton program. This is especially the
case for the binary classification data sets. The execution time varies more because
our program stops when the whole process of evaluating all algorithms, optimizing
the preprocessing steps and optimizing the hyper-parameters is finished. Because
of this it is possible that our program finishes while there is still some time left.
For the skeleton program we keep adding base learners so this process will continue
until there is no time left. Especially for small data sets our program runs fast.
We can see that the Stock, Diabetes and Hepatitis data sets need less time. This
is because they have a small number of attributes and a small number of training
instances and validation instances. For most of the data sets the execution time
varies between 100 and 1000 seconds. For most of the data sets the validation
score lies between 0,6 and 1,0. This is the case for all binary classification and
regression data sets.

We can conclude that the scatter plots of the Random Forest and Decision Tree
program look alike. But when we take a closer look we can see some differences.
Most of the data points of the Random Forest program are located close together
in the top left corner. The data points of the Decision Tree program are a little
bit more spread out across different validation scores. We can also see that the
scatter plots of the skeleton program and our own program look alike. However,
the validation scores of the skeleton program are more distributed compared to
the validation scores of our own program. There is more variation in the execution
times of our own program compared to the skeleton program.

7.3.4 Trade-off between execution time and validation score
(2/2)
In the graph below (figure 7.7) we plotted a line for every data set. The line of each

data set is created by plotting the execution time and validation score for all four
programs. So each line is created by four data points. The squares represent the
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Random Forest program, the triangles represent the Decision Tree program, the
circles represent the skeleton program and the crosses represent our own program.
On the x-axis the execution time in seconds is shown. On the y-axis the score on
the validation set is shown (based on a specific scoring metric which is specified in
the information file).

Trade-off Execution time & Validation Score

\ —4
/
—

I=] =]
W [}
1’}
]
3
|

=]
~l

=]
-]

=]
I

Validation score
[=]
L

=]
w

=]
[X]

=]
[

o

a 100 200 300 400 500 600 700 80O
Execution time
—i&—Dorothea  —#— Electricity Spambase —&— Sick —&— Diabetes Hepatits = —#— Digits
—— Newsgroups —8— Nursery —— [ ropt —a— Splice —a— Adult —&— Yeast —a— Mediamill
Emotions ~—e—Cadata Kingnm Wind —a— Houses —a— Stock

Figure 7.7: Trade-off between execution time and validation score for each data
set

In this graph we can see if there is any relation between execution time and val-
idation score. For example we would see many linearly rising lines if the validation
score increases when the execution time for a program is longer. This is not always
the case. For some data sets the validation score decreases when the execution
time increases. For example for the data set Digits the Random Forest program
gives a higher score (0,93) and shorter execution time (63,93 seconds) compared to
the Decision Tree (score of 0,85 in 83,12 seconds) and skeleton program (score of
0,64 in 342,54 seconds). There are some lines that increase linearly. When looking
at the data we can see that this is the case for 4 data sets (Electricity, Spambase,
Splice and Wind). For example for the Wind data set the skeleton program has
the longest execution time (444,09 seconds) and highest score (0,78). For this data
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set there is a difference in validation score of 0,24 compared to the Decision Tree
program (a score of 0,54) with a much shorter execution time (1,83 seconds).

7.3.5 Comparison on type of algorithms

For our program, all data sets evaluated a Decision Tree classifier and Random
Forest classifier, except for the data sets Yeast, Mediamill and Cadata. For the
data sets Yeast and Cadata there was only enough time to evaluate the Random
Forest classifier. For the data set Mediamill no algorithm was evaluated because
of a timeout on the first evaluated algorithm (Random Forest classifier).

The distribution of algorithms that were chosen as best algorithms for our
program is represented as follows:

e 5 times Random Forest classifier

e 5 times Bagging classifier

2 times SVR (Support Vector Machine regressor)

2 times KNeighbors classifier

1 time Logistic Regression

e 1 time GaussianNB (Gaussian Naive Bayes)

1 time Random Forest regressor

1 time Bagging regressor
e 1 time KNeighbors regressor

We can conclude that there is quite some variation in the choice of algorithm.
There is not one algorithm that will always give the highest score on all data sets.
When we join the regressors and classifiers of the same algorithm (for example the
Random Forest classifier and Random Forest regressor), we can see that the Ran-
dom Forest algorithm and Bagging algorithm are chosen most often. The Random
Forest algorithm is chosen 6 times and the Bagging algorithm also 6 times. These
two algorithms cover more than half of all data sets.

A possible explanation for the fact that the Random Forest and Bagging al-
gorithm are chosen most often is the following. Compared to an algorithm such
as a Support Vector Machine, the hyper-parameters of these two algorithms do
not have to be set to a certain value in order to get a good score. For a Support
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Vector Machine the hyper-parameter “C” is critical and should be set to a certain
value. Our strategy tries all algorithms with their default hyper-parameters and
then keeps the three best algorithms. Because of this, it is possible that a Support
Vector Machine is eliminated at this step in the process. The consequence is that
we do not know if the Support Vector Machine would have provided a good score
when the hyper-parameters would have been optimized.
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Chapter 8

Conclusion

On the basis of this study we can draw some conclusions.

First of all, we discovered that the influence of preprocessing methods is differ-
ent for each algorithm and data set. It is not possible to use the same preprocessing
methods for all algorithms or all data sets in order to get the best results. For
example for an SGD Classifier it can be important to scale the attributes, while
for a Random Forest classifier scaling does not have any influence on the perfor-
mance. The best way to discover which methods work best on a given algorithm
and data set, is to try all different combinations and save the combination with the
best result. Presumably it is possible to eliminate some combinations for a certain
algorithm based on common knowledge. For example for a K-Nearest Neighbours
algorithm it is obvious to normalize the attributes as distance is an important

property.

Secondly we can conclude that our program does not always give the best val-
idation score on a data set. For 9 out of 20 data sets we get the highest score with
our program. These data sets mostly have a multi-class or regression task. For
some data sets, the skeleton program, Decision Tree program or Random Forest
program give a better result. The Decision Tree program will only provide the
best score for 2 out of 20 data sets.

Thirdly, when we compare all four programs on execution time, we can see that
our program and the skeleton program need a much longer time compared to the
Random Forest program and Decision Tree program. The Decision Tree program
needs a shorter time for most binary classification data sets, the Random Forest
program is faster for most multi-label data sets. When we compare our program
and the skeleton program, we can see that our program needs more time for most
multi-class and multi-label data sets. The skeleton program needs more time for
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most binary classification and regression data sets.

We can also conclude that random subsampling of the data when the data set
is large is a good method to evaluate an algorithm in a relatively short time. By
randomly picking instances from the data set we can create a sample. In this way
we do not have to look at all instances to evaluate an algorithm so the algorithm
will run much faster.

Moreover, we can conclude that setting a timeout when searching through a
search space is a good strategy. When many algorithms need to be evaluated, we
would like to terminate an algorithm that is running very slow. In this way we do
not waste too much time when evaluating a particular algorithm.

When we look at the trade-off between execution time and validation score for
each data set and program separately, we cannot conclude that there is a clear
relation between execution time and validation score. For some data sets, the
programs that need a longer execution time do not necessarily provide a higher
validation score. This is only the case for 4 data sets.

Furthermore, when we analyze the type of algorithm that is chosen by our
program as the best algorithm for each data set, we can conclude that the choice
depends on the data set itself. There is not one algorithm that will always give
the best result for all data sets. The algorithms that are chosen most often by our
program are the Random Forest and Bagging algorithm.

8.1 Future work

Our study can be extended in many different ways.

First of all, we used random search instead of exhaustive grid search to opti-
mize the hyper-parameters of an algorithm. Experiments can be carried out in
order to compare the performance of both methods.

For the experiments with the preprocessing methods and optimizing the order
of the algorithms, the separation of the training and validation set could be im-
proved. When trying different combinations of preprocessing methods on the 5
data sets, we calculated a score on the validation set. We used this score to de-
cide which preprocessing methods work best. This method can cause overfitting,
because the data sets have seen the validation set so the decision is not based on
unseen data. It would have been better to keep a separate validation set and to
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use this set to evaluate the results of the experiments.

This is also the case for the experiment about optimizing the order of the al-
gorithms. We calculated a rank for each algorithm based on the score on the
validation set and the execution time. A better method would be to evaluate the
final order of the algorithms on an unseen data set.

Furthermore, we did not optimize all hyper-parameters of the preprocessing
methods. For example, for PCA a search space can be created over the hyper-
parameters n_components and whiten. Furthermore, we did not evaluate all pre-
processing methods that are implemented in Scikit-learn. For example we did not
look at the influence of Tf-idf for data sets based on text classification.

Also, we did not include all algorithms implemented in Scikit-learn. For exam-
ple we did not implement the Extremely Randomized Trees algorithm.

Moreover, we based the choice of algorithms that are tried for a particular data
set on the task of the data set. For example, for binary classification data sets
we tried other algorithms than for regression data sets. Of course the choice of
algorithms can be based on many other properties of a data set. For example, the
choice can be based on the number of attributes or number of instances that are
present in a data set. Also, it can be based on the type of attributes, for example
categorical or numerical attributes.

Another part of this study that can be investigated further is the model se-
lection strategy. We used a brute force approach by first trying all algorithms
with their default hyper-parameters. Then we used a strategy similar to Hoeffding
Races in which the worst algorithms are eliminated early in the process. There
are many other possible strategies to decide which algorithm will give the best
result on the validation set. For example, a Particle Swarm Optimization (PSO)
strategy can be investigated.

In this study we made some assumptions. For example, we set the time budget
of the data sets that were not provided by the challenge to 400 seconds. We did not
experiment with other amounts. Maybe some data sets need a longer execution
time in order to get better results. This can be investigated by experimenting with
different amounts. Also, we set timeouts for evaluating the different algorithms.
For example, for evaluating each algorithm with their default hyper-parameters
we set a timeout of 60 seconds. Experiments can be carried out for setting the
right amount of seconds (or not setting a timeout at all).
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Moreover, this study can be extended by evaluating many more data sets. We
only evaluated 20 data sets for this study.
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Appendices

A Data sets

Name Task Metric | Time | Categorical | Missing | Sparse | Target type | Feat type | Feat num | Target num | Label num | Train num | Valid num
Dorothea Binary auc 400 0 0 1 Binary Binary 100000 1 2 800 350
Electricity | Binary f1 400 1 0 0 Binary Mixed 8 1 2 27188 18124
Spambase Binary 1 400 0 0 0 Binary Numerical | 57 1 2 2761 1840
Sick Binary f1 400 1 1 0 Binary Mixed 29 1 2 2264 1508
Diabetes Binary 1 400 0 0 0 Binary Numerical | 8 1 2 461 307
Hepatitis Binary 1 400 1 1 0 Binary Mixed 19 1 2 93 62
Digits Multiclass | bac 300 0 0 0 Categorical Numerical | 1568 10 10 15000 20000
Newsgroups | Multiclass | pac 300 0 0 1 Numerical Numerical | 61188 20 20 13142 1877
Nursery Multiclass | f1 400 1 0 0 Categorical Categorical | 8 5 5 7776 5184
Kropt Multiclass | f1 400 1 0 0 Categorical Categorical | 6 18 18 16834 11222
Splice Multiclass | f1 400 1 0 0 Categorical Categorical | 60 3 3 1914 1276
Adult Multilabel | f1 300 1 1 0 Binary Mixed 24 3 3 34190 4884
Yeast Multilabel | f1 400 0 0 0 Binary Numerical | 103 14 14 1451 966
Mediamill Multilabel | f1 400 0 0 0 Binary Numerical | 120 101 101 26345 17562
Emotions Multilabel | f1 400 0 0 0 Binary Numerical | 72 6 6 356 237
Cadata Regression | r2 200 0 0 0 Numerical Numerical | 16 1 0 5000 5000
Kin8nm Regression | r2 400 0 0 0 Numerical Numerical | 8 1 0 4916 3276
Wind Regression | r2 400 0 0 0 Numerical Numerical | 14 1 0 3945 2629
Houses Regression | 12 400 0 0 0 Numerical Numerical | 8 1 0 12384 8256
Stock Regression | r2 400 0 0 0 Numerical Numerical | 9 1 0 570 380

Table 1: Datasets
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B Hyper-parameter optimization

Classifier Optimized parameters Values Number of iterations
AdaBoostClassifier learning rate 0,1 15
BaggingClassifier max features, max samples 0,1]; [0,1] 15
BernoulliNB alpha 0,1 15
DecisionTreeClassifier criterion, splitter, max features, min samples split, min samples leaf | gini, entropy; best, random; [0,1]; [1,11]; [1,11] 30
GaussianNB - - -
GradientBoostingClassifier | learning rate, max features, min samples split, min samples leaf [0.1]; [0,1]; [1,11]; [1,11] 30
KNeighborsClassifier n neighbors, weights, algorithm [1,11]; uniform, distance; auto, ball tree, kd tree, brute 15
LogisticRegression C expon(scale = 100) 15
RandomForestClassifier max features, min samples split, min samples leaf [0,1]; [1,11]; [1,11] 30
SGDClassifier alpha, 11 ratio, loss, penalty 10°-[1,7]; [0,1]; log, modified huber; 11, 12, elasticnet 5
SVC C, kernel, gamma expon(scale = 100); linear, poly, rbf; expon(scale=0.1) 5
DecisionTreeRegressor max features, min samples split, min samples leaf [0.1]; [1,11]; [1,11] 240
SVR C, kernel, gamma expon(scale = 100); linear, poly, rbf; expon(scale=0.1) 5
AdaBoostRegressor learning rate, loss 0,1]; linear, square, exponential 30
BaggingRegressor max features, max samples 0,1]; [0,1] 15
RandomForestRegressor max features, min samples split, min samples leaf 0,1]; [1,11]; [1,11] 30
GradientBoostingRegressor | loss, learning rate, max features, min samples split, min samples leaf | Is, lad, huber, quantile; [0,1];(0,1]; [1,11]; [1,11] 30
KNeighborsRegressor n neighbors, algorithm [1,11]; auto, ball tree, kd tree, brute 15
Linear Regression fit intercept, normalize true, false; true, false 4
BayesianRidge alpha 1, alpha 2, lambda 1, lambda 2 10°-[1,7]; 10"-[1,7]; 10°-[1,7]; 10°-[1,7] 15
SGDRegressor alpha, 11 ratio, loss, penalty 10°-[1,7]; [0,1]; squared loss, huber; 11, 12, elasticnet 15
Ridge alpha, solver, fit intercept, normalize 0,1]; auto, svd, cholesky, Isqr, sparse_cq; true, false; true, false | 15
Lasso alpha, fit intercept, normalize 0,1]; true, false; true, false 15
ElasticNet alpha, 11 ratio, fit intercept, normalize 0,1]; [0,1]; true, false; true, false 5

Table 2: Hyper-parameter optimization settings
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C Experiments

Classifier Preprocessing Validation score | Time spent
AdaBoostClassifier feature selection (1000), standard scaler 0.6185 219.08
AdaBoostClassifier feature selection (1000) 0.6185 227.52
AdaBoostClassifier normalize, feature selection (1000) 0.6185 43.40
AdaBoostClassifier normalize, feature selection (1000), standard scaler 0.6185 47.21
AdaBoostClassifier feature selection Johnson Lindenstrauss 0.5814 92.33
BaggingClassifier normalize, feature selection (1000), standard scaler | 0.865 43.91
BaggingClassifier normalize, feature selection (1000) 0.800 61.62
BaggingClassifier feature selection (1000) 0.817 65.13
BaggingClassifier feature selection (1000), standard scaler 0.808 66.25
BaggingClassifier feature selection Johnson Lindenstrauss 0.7806 113.28
BernoulliNB normalize, feature selection (1000), standard scaler | 0.7014 43.87
BernoulliNB feature selection (1000), standard scaler 0.7014 47.41
BernoulliNB normalize, feature selection (1000) 0.7014 50.56
BernoulliNB feature selection (1000) 0.7014 54.90
BernoulliNB feature selection Johnson Lindenstrauss 0.53 67.16
DecisionTreeClassifier normalize, feature selection (1000), standard scaler | 0.48 51.01
DecisionTreeClassifier normalize, feature selection (1000) 0.40 51.02
DecisionTreeClassifier feature selection (1000), standard scaler 0.423 52.50
DecisionTreeClassifier feature selection (1000) 0.3674 52.87
DecisionTreeClassifier feature selection Johnson Lindenstrauss 0.4819 79.16
GaussianNB normalize, feature selection (1000) 0.7118 41.80
GaussianNB feature selection (1000), standard scaler 0.7118 42.52
GaussianNB feature selection (1000) 0.7118 63.16
GaussianNB normalize, feature selection (1000), standard scaler 0.7118 84.39
GaussianNB feature selection Johnson Lindenstrauss 0.5739 140.28
GradientBoostingClassifier | normalize, feature selection (1000), standard scaler | 0.73 41.15
GradientBoostingClassifier | feature selection (1000) 0.7340 482.02
GradientBoostingClassifier | feature selection (1000), standard scaler - -
GradientBoostingClassifier | normalize ,feature selection (1000) - -
GradientBoostingClassifier | feature selection Johnson Lindenstrauss - -
KNeighborsClassifier feature selection (1000) 0.117 43.46
KNeighborsClassifier normalize, feature selection (1000) 0.117 43.82
KNeighborsClassifier feature selection (1000), standard scaler 0.203 43.96
KNeighborsClassifier normalize, feature selection (1000), standard scaler 0.203 44.57
KNeighborsClassifier feature selection Johnson Lindenstrauss 0.00 62.25
LogisticRegression normalize, feature selection (1000) 0.778 42.76
LogisticRegression feature selection (1000) 0.778 42.94
LogisticRegression feature selection (1000), standard scaler 0.822 44.93
LogisticRegression normalize, feature selection (1000), standard scaler 0.822 56.18
LogisticRegression feature selection Johnson Lindenstrauss 0.792 63.55
RandomForestClassifier normalize, feature selection (1000) 0.8245 39.84
RandomForestClassifier feature selection (1000), standard scaler 0.8511 40.34
RandomForestClassifier normalize, feature selection (1000), standard scaler 0.848 48.57
RandomForestClassifier feature selection (1000) 0.8741 68.15
RandomForestClassifier feature selection Johnson Lindenstrauss 0.7977 51.08
SGD Classifier feature selection (1000), standard scaler 0.807 65.38
SGD Classifier normalize, feature selection (1000) 0.7714 75.48
SGD Classifier feature selection (1000) 0.7714 819.88
SGD Classifier normalize, feature selection (1000), standard scaler 0.807 874.67
SGD Classifier feature selection Johnson Lindenstrauss 0.789 178.89
SVC normalize, feature selection (1000), standard scaler | 0.842 47.33
SVC feature selection (1000), standard scaler 0.842 654.40
SvC feature selection (1000) 0.848 70.05
SvVC normalize, feature selection (1000) 0.848 70.89
SVC feature selection Johnson Lindenstrauss 0.8430 66.40
Table 3: Experiments Dorothea data set
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Classifier Preprocessing Validation score | Time spent
AdaBoostClassifier PCA (4 %) 0.5916 71.53
AdaBoostClassifier PCA (4 %), Normalization 0.5916 76.76
AdaBoostClassifier PCA (4 %), Min Max Scaler 0.5917 77.55
AdaBoostClassifier PCA (4 %), Min Max Scaler, Normalization 0.5917 81.15
AdaBoostClassifier PCA Johnson Lindenstrauss 0.5598 368.47
BaggingClassifier PCA (4 %) 0.8897 151.58
BaggingClassifier PCA (4 %), Min Max Scaler, Normalization 0.892 158.13
BaggingClassifier PCA (4 %), Min Max Scaler 0.888 163.87
BaggingClassifier PCA (4 %), Normalization 0.8939 173.34
BaggingClassifier PCA Johnson Lindenstrauss - -
BernoulliNB PCA (4 %) 0.6919 65.03
BernoulliNB PCA (4 %), Min Max Scaler, Normalization 0.00 72.06
BernoulliNB PCA (4 %), Normalization 0.6919 85.75
BernoulliNB PCA (4 %), Min Max Scaler 0.00 97.57
BernoulliNB PCA Johnson Lindenstrauss 0.6963 107.80
DecisionTreeClassifier PCA (4 %) 0.78953 91.21
DecisionTreeClassifier PCA (4 %), Min Max Scaler 0.7886 92.38
DecisionTreeClassifier PCA (4 %), Min Max Scaler, Normalization 0.7889 93.11
DecisionTreeClassifier PCA (4 %), Normalization 0.7922 94.64
DecisionTreeClassifier PCA Johnson Lindenstrauss 0.7351 340.65
GaussianNB PCA (4 %), Normalization 0.85107 61.68
GaussianNB PCA (4 %), Min Max Scaler 0.85107 71.46
GaussianNB PCA (4 %), Min Max Scaler, Normalization 0.85107 73.68
GaussianNB PCA (4 %) 0.85107 76.30
GaussianNB PCA Johnson Lindenstrauss 0.3297 126.39
GradientBoostingClassifier | PCA (4 %) 0.8614 202.57
GradientBoostingClassifier | PCA (4 %), Normalization 0.8612 211.30
GradientBoostingClassifier | PCA (4 %), Min Max Scaler, Normalization 0.8616 217.92
GradientBoostingClassifier | PCA (4 %), Min Max Scaler 0.8615 225.95
GradientBoostingClassifier | PCA Johnson Lindenstrauss - -
KNeighboursClassifier PCA (4 %) 0.95711 250.08
KNeighboursClassifier PCA (4 %), Normalization 0.95711 261.62
KNeighboursClassifier PCA (4 %), Min Max Scaler 0.89685 299.87
KNeighboursClassifier PCA (4 %), Min Max Scaler, Normalization 0.89685 342.88
KNeighboursClassifier PCA Johnson Lindenstrauss - -
LogisticRegression PCA (4 %), Min Max Scaler 0.8695 105.28
LogisticRegression PCA (4 %), Min Max Scaler, Normalization 0.8695 112.16
LogisticRegression PCA (4 %) 0.8733 455.20
LogisticRegression PCA (4 %), Normalization 0.8734 756.92
LogisticRegression PCA Johnson Lindenstrauss - -
RandomForestClassifier PCA (4 %), Min Max Scaler, Normalization | 0.92192 67.43
RandomForestClassifier PCA (4 %) 0.91875 74.67
RandomForestClassifier PCA (4 %), Min Max Scaler 0.920508 81.86
RandomForestClassifier PCA (4 %), Normalization 0.91935 90.38
RandomForestClassifier PCA Johnson Lindenstrauss 0.7219 158.67
SGDClassifier PCA (4 %), Min Max Scaler, Normalization | 0.8668 118.72
SGDClassifier PCA (4 %), Min Max Scaler 0.8668 120.71
SGDClassifier PCA (4 %), Normalization error error
SGDClassifier PCA (4 %) error error
SGDClassifier PCA Johnson Lindenstrauss, Min Max Scaler - 1412.35
SVC PCA (4 %), Min Max Scaler, Normalization | 0.911 272.02
SvC PCA (4 %), Min Max Scaler 0.893 499.03
SVC PCA (4 %), Normalization 0.00 635.40
SVC PCA (4 %) 0.00 784.42
SvC PCA Johnson Lindenstrauss - -

Table 4: Experiments Digits data set
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Classifier Preprocessing Validation score | Time spent
OneVSRest AdaBoostClassifier Missing values (replace by 0), OHE, Normalize 0.7974 15.08
OneVSRest AdaBoostClassifier Missing values (replace by 0), OHE, Min Max Scaler 0.7974 15.77
OneVSRest AdaBoostClassifier Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.7974 15.87
OneVSRest AdaBoostClassifier Missing values (replace by 0) 0.7974 17.20
OneVSRest AdaBoostClassifier Missing values (replace by 0), OHE 0.7974 17.40
OneVSRest AdaBoostClassifier Missing values (replace by mean) 0.7982 13.44
OneVSRest BaggingClassifier Missing values (replace by 0), OHE, Normalize 0.8072 76.68
OneVSRest BaggingClassifier Missing values (replace by 0), OHE, Min Max Scaler 0.8061 80.27
OneVSRest BaggingClassifier Missing values (replace by 0) 0.8045 82.70
OneVSRest BaggingClassifier Missing values (replace by 0), OHE 0.8042 87.53
OneVSRest BaggingClassifier Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.8092 92.57
OneVSRest BaggingClassifier Missing values (replace by mean) 0.8077 66.86
OneVSRest BernoulliNB Missing values (replace by 0), OHE, Normalize 0.7235 3.52
OneVSRest BernoulliNB Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.7339 3.61
OneVSRest BernoulliNB Missing values (replace by 0), OHE, Min Max Scaler 0.7339 3.65
OneVSRest BernoulliNB Missing values (replace by 0), OHE 0.7235 5.66
OneVSRest BernoulliNB Missing values (replace by 0) 0.7235 6.55
OneVSRest BernoulliNB Missing values (replace by mean) 0.7230 2.29
OneVSRest DecisionTreeClassifier Missing values (replace by 0) 0.7364 57.28
OneVSRest DecisionTreeClassifier Missing values (replace by 0), OHE, Min Max Scaler 0.7377 7.75
OneVSRest DecisionTreeClassifier Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.736 9.54
OneVSRest DecisionTreeClassifier Missing values (replace by 0), OHE, Normalize 0.7341 9.65
OneVSRest DecisionTreeClassifier Missing values (replace by 0), OHE 0.736 9.85
OneVSRest DecisionTreeClassifier Missing values (replace by mean) 0.7383 5.19
OneVSRest GaussianNB Missing values (replace by 0), OHE, Min Max Scaler 0.7463 3.45
OneVSRest GaussianNB Missing values (replace by 0), OHE, Normalize 0.7463 3.48
OneVSRest GaussianNB Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.7463 3.49
OneVSRest GaussianNB Missing values (replace by 0) 0.7463 4.87
OneVSRest GaussianNB Missing values (replace by 0), OHE 0.7463 5.82
OneVSRest GaussianNB Missing values (replace by mean) 0.7475 2.30
OneVSRest GradientBoostingClassifier | Missing values (replace by 0), OHE, Min Max Scaler 0.8102 23.01
OneVSRest GradientBoostingClassifier | Missing values (replace by 0), OHE, Normalize 0.8102 24.97
OneVSRest GradientBoostingClassifier | Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.8102 25.56
OneVSRest GradientBoostingClassifier | Missing values (replace by 0) 0.8102 28.35
OneVSRest GradientBoostingClassifier | Missing values (replace by 0), OHE 0.8102 28.58
OneVSRest GradientBoostingClassifier | Missing values (replace by mean) 0.8099 20.33
OneVSRest KNeighboursClassifier Missing values (replace by 0), OHE 0.6536 19.44
OneVSRest KNeighboursClassifier Missing values (replace by 0) 0.6535 22.74
OneVSRest KNeighboursClassifier Missing values (replace by 0), OHE, Normalize 0.6535 34.28
OneVSRest KNeighboursClassifier Missing values (replace by 0), OHE, Normalize, Min Max Scaler | - -
OneVSRest KNeighboursClassifier Missing values (replace by 0), OHE, Min Max Scaler - -
OneVSRest KNeighboursClassifier Missing values (replace by mean) 0.6535 14.92
OneVSRest LogisticRegression Missing values (replace by 0), OHE 0.7250 11.33
OneVSRest LogisticRegression Missing values (replace by 0), OHE, Normalize 0.7275 12.92
OneVSRest LogisticRegression Missing values (replace by 0), OHE, Min Max Scaler 0.7451 4.78
OneVSRest LogisticRegression Missing values (replace by 0) 0.7248 40.44
OneVSRest LogisticRegression Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.7451 5.17
OneVSRest LogisticRegression Missing values (replace by mean) 0.7295 35.45
OneVSRest RandomForest Missing values (replace by 0), OHE, Min Max Scaler 0.8058 20.88
OneVSRest RandomForest Missing values (replace by 0), OHE, Normalize 0.8066 22.18
OneVSRest RandomForest Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.8062 22.21
OneVSRest RandomForest Missing values (replace by 0) 0.8082 23.37
OneVSRest RandomForest Missing values (replace by 0), OHE 0.8059 29.61
OneVSRest RandomForest Missing values (replace by mean) 0.8058 17.96
OneVSRest SGDClassifier Missing values (replace by 0), OHE 0.731 11.20
OneVSRest SGDClassifier Missing values (replace by 0), OHE 0.731 17.80
OneVSRest SGDClassifier Missing values (replace by 0), OHE, Normalize 0.7310 4.48
OneVSRest SGDClassifier Missing values (replace by 0), OHE, Min Max Scaler 0.7439 4.97
OneVSRest SGDClassifier Missing values (replace by 0), OHE, Normalize, Min Max Scaler | 0.7439 5.14
OneVSRest SGDClassifier Missing values (replace by 0) 0.731 8.44
OneVSRest SGDClassifier Missing values (replace by mean) 0.731 2.63

OneVSRest SVC

Missing values (replace by 0), OHE

OneVSRest SVC

Missing values (replace by 0), OHE, Normalize, Min Max Scaler

OneVSRest SVC

Missing values (replace by 0), OHE, Normalize

OneVSRest SVC

OneVSRest SVC

(
(
Missing values (replace by 0), OHE, Min Max Scaler
Missing values (replace by mean)

Table 5: Experiments Adult data set
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Classifier

Preprocessing

Validation score

Time spent

AdaBoostRegressor Min Max Scaler 0.4281 13.40
AdaBoostRegressor - 0.4214 6.64
AdaBoostRegressor Normalize 0.4834 8.06
AdaBoostRegressor Normalize, Min Max Scaler 0.4526 8.31
BaggingRegressor - 0.7482 14.45
BaggingRegressor Min Max Scaler 0.7509 15.58
BaggingRegressor Normalize 0.7480 16.87
BaggingRegressor Normalize, Min Max Scaler 0.7551 18.31
BayesianRidge - 0.6408 2.98
BayesianRidge Min Max Scaler 0.6408 3.43
BayesianRidge Normalize 0.6408 3.84
BayesianRidge Normalize, Min Max Scaler 0.6408 4.50
DecisionTreeRegressor Normalize 0.5048 101.01
DecisionTreeRegressor Normalize, Min Max Scaler 0.511 101.25
DecisionTreeRegressor Min Max Scaler 0.5030 102.06
DecisionTreeRegressor - 0.5028 102.53
DecisionTreeRegressor Normalize, Min Max Scaler | 0.5215 92.74
ElasticNet Min Max Scaler 0.0368 4.71
ElasticNet Normalize 0.599 4.78
ElasticNet Normalize, Min Max Scaler 0.036 5.05
ElasticNet - 0.5995 5.15
GradientBoostingRegressor | Normalize 0.6479 172.80
GradientBoostingRegressor | Normalize, Min Max Scaler 0.6479 174.60
GradientBoostingRegressor | - 0.6479 189.44
GradientBoostingRegressor | Min Max Scaler 0.6479 220.83
KNeighborsRegressor Normalize, Min Max Scaler 0.398 18.67
KNeighborsRegressor - 0.075 5.23
KNeighborsRegressor Normalize 0.075 5.88
KNeighborsRegressor Min Max Scaler 0.398 6.72
KNeighborsRegressor Normalize, Min Max Scaler 0.398 7.14
Lasso - 0.6408 4.63
Lasso Normalize 0.6408 4.92
Lasso Min Max Scaler 0.6408 5.03
Lasso Normalize, Min Max Scaler 0.6408 5.49
Linear Regression - 0.6408 2.36
Linear Regression Min Max Scaler 0.6408 4.59
Linear Regression Normalize 0.6408 4.65
Linear Regression Normalize, Min Max Scaler 0.6408 5.43
RandomForestRegressor Normalize 0.7473 15.61
RandomForestRegressor Normalize, Min Max Scaler 0.74566 16.18
RandomForestRegressor - 0.7526 16.40
RandomForestRegressor Min Max Scaler 0.7425 17.23
Ridge - 0.4037 4.42
Ridge Min Max Scaler 0.4037 7.54
Ridge Normalize 0.4037 8.04
Ridge Normalize, Min Max Scaler 0.4037 9.07
SGDRegressor Normalize, Min Max Scaler | 0.3308 4.43
SGDRegressor Min Max Scaler 0.3308 5.78
SGDRegressor Normalize error error
SGDRegressor - error error
SVR Min Max Scaler 68 -0.0538 121.28
SVR Normalize, Min Max Scaler | -0.0538 6.64
SVR Normalize - -

SVR - - -

Table 6: Experiments Cadata data set




Classifier

Preprocessing

Validation score

Time spent

AdaBoostClassifier standard scaler, select K best (1000) 0.0085 84.44
AdaBoostClassifier normalize, select K best (1000) 0.0082 85.61
AdaBoostClassifier select K best (1000) 0.0082 87.67
AdaBoostClassifier normalize, standard scaler, select K best (1000) 0.0085 94.02
AdaBoostClassifier select K best Johnson Lindenstrauss 0.0082 334.73
BaggingClassifier normalize, select K best (1000) 0.2332 405.33
BaggingClassifier select K best (1000) 0.2278 411.90
BaggingClassifier normalize, standard scaler, select K best (1000) 0.2345 482.78
BaggingClassifier standard scaler, select K best (1000) 0.2334 484.62
BaggingClassifier select K best Johnson Lindenstrauss - -
BernoulliNB select K best (1000) 0.2571 70.01
BernoulliNB normalize, select K best (1000) 0.2571 84.13
BernoulliNB normalize, standard scaler, select K best (1000) | 0.2921 84.77
BernoulliNB standard scaler, select K best (1000) 0.2921 87.27
BernoulliNB select K best Johnson Lindenstrauss - -
DecisionTreeClassifier normalize, standard scaler, select K best (1000) | 0.1717 101.34
DecisionTreeClassifier standard scaler, select K best (1000) 0.1743 114.49
DecisionTreeClassifier select K best (1000) 0.0070 87.73
DecisionTreeClassifier normalize, select K best (1000) 0.0047 90.53
DecisionTreeClassifier select K best Johnson Lindenstrauss 0.0084 348.48
GaussianNB standard scaler, select K best (1000) 0.1677 83.83
GaussianNB normalize, standard scaler, select K best (1000) 0.1677 84.72
GaussianNB normalize, select K best (1000) 0.1542 85.76
GaussianNB select K best (1000) 0.1542 87.80
GaussianNB select K best Johnson Lindenstrauss 0.2797 456.53
GradientBoostingClassifier | select K best (1000) 0.1501 361.06
GradientBoostingClassifier | normalize, standard scaler, select K best (1000) 0.1373 392.84
GradientBoostingClassifier | normalize, select K best (1000) 0.1498 412.17
GradientBoostingClassifier | standard scaler, select K best (1000) 0.1376 417.99
GradientBoostingClassifier | select K best Johnson Lindenstrauss - -
KNeighborsClassifier select K best (1000) 0.0383 185.59
KNeighborsClassifier normalize, select K best (1000) 0.0383 223.07
KNeighborsClassifier standard scaler, select K best (1000) 0.2607 72.35
KNeighborsClassifier normalize, standard scaler, select K best (1000) 0.2607 74.62
KNeighborsClassifier select K best Johnson Lindenstrauss 0.062 204.78
LogisticRegression select K best (1000) 0.3777 162.44
LogisticRegression normalize, select K best (1000) 0.3777 188.62
LogisticRegression normalize, standard scaler, select K best (1000) 0.2977 82.94
LogisticRegression standard scaler, select K best (1000) 0.2977 86.38
LogisticRegression select K best Johnson Lindenstrauss 0.4838 169.10
RandomForestClassifier select K best (1000) 0.3087 T77.57
RandomPForestClassifier normalize, select K best (1000) 0.3073 80.60
RandomForestClassifier normalize, standard scaler, select K best (1000) 0.2457 82.45
RandomPForestClassifier standard scaler, select K best (1000) 0.2765 94.14
RandomPForestClassifier select K best Johnson Lindenstrauss 0.3826 157.77
SGDClassifier normalize, standard scaler, select K best (1000) 0.293 77.96
SGDClassifier select K best (1000) 0.3063 80.68
SGDClassifier standard scaler, select K best (1000) 0.293 83.72
SGDClassifier normalize, select K best (1000) 0.3063 86.53
SGDClassifier select K best Johnson Lindenstrauss 0.4090 77.66
SVC normalize, standard scaler, select K best (1000) | 0.2266 215.94
SVC standard scaler, select K best (1000) 0.2264 220.90
SVC standard scaler, select K best (1000) 0.2264 220.90
SVC normalize, select K best (1000) - -

SVC select K best (1000) - -

SVC standard scaler, select K best Johnson Lindenstrauss 0.2595 534.28

Table 7: Experiments Newsgroups data set
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D Order of executing algorithms for each task

Regression

Binary classification

Multi-class classification

Multi-label classification

Linear Regression

RandomForestClassifier

DecisionTreeClassifier

KNeighborsClassifier

KNeighborsRegressor

DecisionTreeClassifier

RandomForestClassifier

RandomForestClassifier

Lasso LogisticRegression LogisticRegression LogisticRegression
Ridge BernoulliNB GaussianNB GaussianNB
RandomForestRegressor GradientBoostingClassifier | BaggingClassifier SGDClassifier
BayesianRidge KNeighborsClassifier KNeighborsClassifier BernoulliNB
DecisionTreeRegressor GaussianNB BernoulliNB AdaBoostClassifier
GradientBoostingRegressor | AdaBoostClassifier SGDClassifier GradientBoostingClassifier
ElasticNet BaggingClassifier GradientBoostingClassifier | DecisionTreeClassifier
BaggingRegressor SGDClassifier AdaBoostClassifier BaggingClassifier
SGDRegressor SVC SVC SVC
AdaBoostRegressor

SVR

Table 8: Order of executing algorithms for each task
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Default Hyper-parameters

Classifier Adapted default hyper-parameters
AdaBoostClassifier n estimators = 30

BaggingClassifier n estimators = 30

BernoulliNB

DecisionTreeClassifier

GaussianNB

GradientBoostingClassifier | n estimators = 30 (5 for multi-class)
KNeighborsClassifier

LogisticRegression

RandomForestClassifier n estimators = 30

SGDClassifier n iter = 10°/train_num, loss = log
SVC probability = True

DecisionTreeRegressor

SVR

AdaBoostRegressor

n estimators = 30

BaggingRegressor

n estimators = 30

RandomForestRegressor

n estimators = 30

GradientBoostingRegressor

n estimators = 30, warm start = True

KNeighborsRegressor

Linear Regression

BayesianRidge normalize = True

SGDRegressor warm start = True

Ridge fit intercept = True, normalize = True
Lasso normalize = True, warm start = True
ElasticNet normalize = True, warm start = True

Table 9: Default hyper-parameters used
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F Results of programs

Name Time (seconds) | Score | Algorithm

Dorothea 479,82 0,84 Random Forest Classifier
Electricity | 403,04 0,66 Random Forest Classifier
Spambase 403,66 0,92 Bagging Classifier

Sick 147 0,85 Bagging Classifier
Diabetes 55,24 0,65 Logistic Regression
Hepatitis 66,65 0,79 Kneighbors Classifier
Digits 448,89 0,93 Random Forest Classifier
Newsgroups | 441,26 0,34 Random Forest Classifier
Nursery 476,73 0,63 Bagging Classifier

Kropt 553,59 0,82 Bagging Classifier

Splice 436,47 0,92 Bagging Classifier

Adult 399,12 0,9 Random Forest Classifier
Yeast 545,82 0,41 Kneighbors Classifier
Mediamill 0 0 0

Emotions 403,79 0,5 GaussianNB

Cadata 233,62 0,74 Random Forest Regressor
Kin8nm 405,28 0,84 SVR

Wind 404,52 0,77 SVR

Houses 407,24 0,76 Bagging Regressor

Stock 57,23 0,99 Kneighbors Regressor

Table 10: Results own program
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Name Time (seconds) | Score | Algorithm

Dorothea 49,99 0,76 RandomForest Classifier
Electricity | 5,15 0,66 RandomForest Classifier
Spambase 4,03 0,91 RandomForest Classifier
Sick 1,71 0,84 RandomForest Classifier
Diabetes 3,35 0,62 RandomForest Classifier
Hepatitis 2,72 0,83 RandomForest Classifier
Digits 63,93 0,93 RandomForest Classifier
Newsgroups | 291,53 0,28 RandomForest Classifier
Nursery 6,39 0,68 RandomForest Classifier
Kropt 8,29 0,72 RandomForest Classifier
Splice 1,8 0,88 RandomForest Classifier
Adult 5,17 0,89 RandomForest Classifier
Yeast 4,15 0,38 RandomForest Classifier
Mediamill 405,42 0,12 RandomForest Classifier
Emotions 1,85 0,63 RandomForest Classifier
Cadata 2,55 0,73 RandomForest Regressor
Kin8nm 2,1 0,63 RandomForest Regressor
Wind 2,21 0,76 RandomForest Regressor
Houses 3,42 0,76 RandomForest Regressor
Stock 1,47 0,97 RandomForest Regressor

Table 11: Results Random Forest program
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Name Time (seconds) | Score | Algorithm

Dorothea 70,6 0,54 DecisionTree Classifier
Electricity | 5,09 0,63 DecisionTree Classifier
Spambase 1,83 0,9 DecisionTree Classifier
Sick 1,72 0,88 DecisionTree Classifier
Diabetes 1,59 0,59 DecisionTree Classifier
Hepatitis 1,45 0,77 DecisionTree Classifier
Digits 83,12 0,85 DecisionTree Classifier
Newsgroups | 0 0 DecisionTree Classifier
Nursery 5,25 0,69 DecisionTree Classifier
Kropt 8,28 0,79 DecisionTree Classifier
Splice 1,77 0,86 DecisionTree Classifier
Adult 4,25 0,87 DecisionTree Classifier
Yeast 6,24 0,39 DecisionTree Classifier
Mediamill 0 0 DecisionTree Classifier
Emotions 3,86 0,53 DecisionTree Classifier
Cadata 3,7 0,51 DecisionTree Regressor
Kin8nm 3,56 0,22 DecisionTree Regressor
Wind 1,83 0,54 DecisionTree Regressor
Houses 3,87 0,67 DecisionTree Regressor
Stock 1,44 0,96 DecisionTree Regressor

Table 12: Results Decision Tree program
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Name Time (seconds) | Score | Algorithm

Dorothea 464,37 0,12 Bagging Classifier
Electricity | 448 0,66 Random Forest Classifier
Spambase 425,16 0,94 Gradient Boosting Classifier
Sick 449 0,87 Random Forest Classifier
Diabetes 420,37 0,62 Gradient Boosting Classifier
Hepatitis 430,78 0,81 Random Forest Classifier
Digits 342,54 0,64 Gradient Boosting Classifier
Newsgroups | 756,47 0,31 Bagging Classifier

Nursery 452,22 0,64 Random Forest Classifier
Kropt 451,59 0,8 Random Forest Classifier
Splice 436,49 0,92 Random Forest Classifier
Adult 335,52 0,91 Random Forest Classifier
Yeast 429,69 0,42 Gradient Boosting Classifier
Mediamill 614,04 0,05 Gradient Boosting Classifier
Emotions 420,53 0,62 Gradient Boosting Classifier
Cadata 222,35 0,76 Random Forest Regressor
Kin8nm 439,39 0,67 Random Forest Regressor
Wind 444,09 0,78 Random Forest Regressor
Houses 431,48 0,77 Random Forest Regressor
Stock 429,38 0,98 Random Forest Regressor

Table 13: Results Skeleton program
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